JP2009016593A - Electrode wire for solar cell, its base material, and manufacturing method of base material - Google Patents

Electrode wire for solar cell, its base material, and manufacturing method of base material Download PDF

Info

Publication number
JP2009016593A
JP2009016593A JP2007177137A JP2007177137A JP2009016593A JP 2009016593 A JP2009016593 A JP 2009016593A JP 2007177137 A JP2007177137 A JP 2007177137A JP 2007177137 A JP2007177137 A JP 2007177137A JP 2009016593 A JP2009016593 A JP 2009016593A
Authority
JP
Japan
Prior art keywords
base material
electrode wire
molten solder
solar cell
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007177137A
Other languages
Japanese (ja)
Other versions
JP5073386B2 (en
Inventor
Kazuhiro Shiomi
和弘 塩見
Masaaki Ishio
雅昭 石尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Neomaterial Ltd
Original Assignee
Neomax Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Materials Co Ltd filed Critical Neomax Materials Co Ltd
Priority to JP2007177137A priority Critical patent/JP5073386B2/en
Publication of JP2009016593A publication Critical patent/JP2009016593A/en
Application granted granted Critical
Publication of JP5073386B2 publication Critical patent/JP5073386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode wire for a solar cell having excellent plastic deformability relative to a conventional one; its base material; and a manufacturing method of a base material. <P>SOLUTION: This base material of this electrode wire 1 for a solar cell before plating with molten solder plating applied to a surface of the base material 2 is formed of a rolled material of pure copper containing 99.90 mass% of Cu. When peak intensities by X-ray diffraction of crystal orientations <100>, <114> and <112> in the rolling direction are represented by P<100>, P<114> and P<112>, respectively, a peak intensity ratio PR (%) of the crystal orientations of <114> and <112> represented by expression: PR (%) =( P<114>+P<112>)*100/(P<100>+P<114>+P<112>) is set to 50-90%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、太陽電池の接続用リード線として用いられる電極線材およびその基材に関する。   The present invention relates to an electrode wire used as a connecting lead wire of a solar cell and a base material thereof.

太陽電池は、PN接合を有するシリコン半導体で形成された半導体基板と、前記半導体基板の表面に線状に設けられた複数の表面電極に交叉するように設けられたはんだ帯にはんだ付けされた接続用リード線を備えている。通常、所望の起電力を得るために複数の太陽電池を直列に接続して使用される。直列接続は一つの太陽電池の表面電極に接続用リード線の一方の表面(下面)をはんだ付けし、他方の表面(上面)を隣接する太陽電池の、比較的大きな領域の裏面電極にはんだ付けすることによってなされる。   A solar cell is a connection that is soldered to a semiconductor substrate formed of a silicon semiconductor having a PN junction and a solder band provided so as to cross a plurality of surface electrodes provided linearly on the surface of the semiconductor substrate. For use with lead wires. Usually, a plurality of solar cells are connected in series to obtain a desired electromotive force. In series connection, one surface (lower surface) of the connecting lead wire is soldered to the surface electrode of one solar cell, and the other surface (upper surface) is soldered to the back electrode of a relatively large area of the adjacent solar cell. Made by doing.

従来、前記接続用リード線の素材となる電極線材は、タフピッチ銅で形成された丸形断面の銅線が圧延されて平坦状に潰された潰し銅線を基材とし、その表面に溶融はんだめっき層が積層形成されたものが用いられていた。しかし、近年、基板の薄肉化に伴って、前記電極線材を基板にろう付けする際、基板にクラックが入るという問題があった。これは電極線材の基材を形成する銅の熱膨張率が半導体基板に比して大きく、ろう付け後の冷却収縮の際に電極線材の収縮が基板によって拘束され、その反作用として基板に応力を生じさせるからである。   Conventionally, the electrode wire used as the material of the connecting lead wire is based on a crushed copper wire that is rolled and flattened by rolling a copper wire having a round cross section formed of tough pitch copper, and the surface thereof is a molten solder. What was laminated | stacked and formed the plating layer was used. However, in recent years, with the thinning of the substrate, there has been a problem that the substrate is cracked when the electrode wire is brazed to the substrate. This is because the thermal expansion coefficient of copper forming the base material of the electrode wire is larger than that of the semiconductor substrate, and the shrinkage of the electrode wire is constrained by the substrate during cooling shrinkage after brazing, and as a reaction, stress is applied to the substrate. This is because it is generated.

このような問題を解消するため、国際公開WO 2005/114751号公報(特許文献1)に記載されているように、本発明者らは、耐力を19.6〜85MPaに低下させた純銅などで形成した基材に溶融はんだめっきを施した太陽電池用電極線材を提案した。かかる電極線材によれば、ろう付け後の冷却収縮時に電極線材の基材が自ら塑性変形し、基板による拘束が軽減されるので、基板に生じる応力も軽減され、基板の割損を防止することができる。
国際公開WO 2005/114751号公報
In order to solve such a problem, as described in International Publication WO 2005/114751 (Patent Document 1), the present inventors have used pure copper whose proof stress is reduced to 19.6 to 85 MPa. A solar cell electrode wire was proposed in which the formed substrate was subjected to molten solder plating. According to such an electrode wire, since the base material of the electrode wire is plastically deformed by itself during cooling shrinkage after brazing and the restraint by the substrate is reduced, the stress generated on the substrate is also reduced, and the substrate is prevented from being damaged. Can do.
International Publication WO 2005/114751

従来、板厚の薄い半導体基板としては、板厚が200〜250μm 程度のものが用いられてきた。しかし、近年、コスト低減のため、基板の厚さがますます薄肉化する傾向にあり、特に、最近では原材料の高騰に伴い、この傾向が一層顕著になっている。   Conventionally, a semiconductor substrate having a thickness of about 200 to 250 μm has been used as a thin semiconductor substrate. However, in recent years, there has been a tendency to reduce the thickness of the substrate for cost reduction. In particular, this trend has become more prominent with the recent increase in raw materials.

このため、上記特許文献1において提案した電極線材でも半導体基板に対する十分な耐割損性を有しているとはいえず、より一層の塑性変形能が求められている。本発明はかかる問題に鑑みなされたもので、従来の電極線材よりも優れた塑性変形能を備えた太陽電池用電極線材、その基材、基材の製造方法を提供することを目的とする。   For this reason, even the electrode wire proposed in the above-mentioned Patent Document 1 cannot be said to have sufficient breakage resistance to the semiconductor substrate, and a further plastic deformability is required. This invention is made | formed in view of this problem, and it aims at providing the manufacturing method of the electrode wire for solar cells provided with the plastic deformation ability superior to the conventional electrode wire, the base material, and a base material.

本発明者は、純銅板を種々の圧下率で圧延し、圧延方向に沿って線状に切断した後、軟化焼鈍して基材を製造したところ、圧延条件によっては基材の耐力が著しく低下することを知見した。そして、基材の圧延方向に対する結晶方位をX線回折法により調べたところ、<100>、<114>、<112>が支配的であり、さらに低耐力の基材では<114>、<112>がより支配的であることを見出した。本発明はかかる知見に基づいてなされたものである。   The present inventor rolled a pure copper sheet at various rolling reductions, cut it linearly along the rolling direction, and then softened and annealed to produce a base material. Depending on the rolling conditions, the base material yield strength was significantly reduced. I found out that Then, when the crystal orientation with respect to the rolling direction of the base material was examined by X-ray diffraction, <100>, <114>, <112> were dominant, and in the base material having a low yield strength, <114>, <112 > Was found to be more dominant. The present invention has been made based on such findings.

本発明の第1形態に係る基材は、基材の表面に溶融はんだめっきが施された太陽電池用電極線材のめっき前の基材であって、前記基材は、Cuを99.90mass%以上含む純銅の圧延材で形成され、圧延方向の結晶方位<100>、<114>、<112>のX線回折によるピーク強度をそれぞれP<100>、P<114>、P<112>と表すとき、下記式に示す<114>および<112>の結晶方位のピーク強度比PR(%)が50〜90%とされたものである。
PR(%)=(P<114>+P<112>)・100/(P<100>+P<114>+P<112>)
The base material which concerns on 1st form of this invention is a base material before the plating of the electrode wire material for solar cells by which the surface of the base material was hot-melt-plated, Comprising: The said base material is 99.90 mass% of Cu. The peak intensities by X-ray diffraction of the crystal orientations <100>, <114>, <112> in the rolling direction are P <100>, P <114>, P <112> respectively. When expressed, the peak intensity ratio PR (%) of crystal orientations <114> and <112> shown in the following formula is 50 to 90%.
PR (%) = (P <114> + P <112>) / 100 / (P <100> + P <114> + P <112>)

本発明の基材によれば、圧延方向に対する<114>および<112>の結晶方位のピーク強度比PR(%)が50〜90%であるので、圧延方向の耐力が15MPa程度以下に低下させることができる。このため、圧延方向に塑性変形し易くなり、この基材に溶融はんだめっきを施した電極線材を用いることにより、はんだ付け後の冷却収縮の際に半導体基板に収縮が拘束されても、基材が容易に塑性変形するため半導体基板に対する耐割損性に優れる。   According to the base material of the present invention, the peak strength ratio PR (%) of <114> and <112> crystal orientation with respect to the rolling direction is 50 to 90%, so that the proof stress in the rolling direction is reduced to about 15 MPa or less. be able to. For this reason, it becomes easy to be plastically deformed in the rolling direction, and by using an electrode wire material that has been subjected to molten solder plating on the base material, even if the semiconductor substrate is shrunk in the shrinkage after cooling, the base material However, since it is easily plastically deformed, it has excellent breakage resistance against a semiconductor substrate.

上記基材を形成する純銅は、不純物であるO、PをO:0〜500ppm、P:0〜150ppmに規制することが好ましい。純銅に含まれる不純物としては、O、Pのほか、As、Sb、Bi、Pb、S、Feなどが含まれるが、O、Pは微量で塑性変形能が低下するため、これらを上記範囲に規制することにより、前記結晶方位の制御と相まって容易に基材の低耐力化を図ることができる。   The pure copper forming the substrate preferably regulates impurities O and P to O: 0 to 500 ppm and P: 0 to 150 ppm. Impurities contained in pure copper include As, Sb, Bi, Pb, S, Fe, etc. in addition to O and P. However, since O and P are very small, their plastic deformability decreases, so these are within the above range. By restricting, it is possible to easily reduce the strength of the base material in combination with the control of the crystal orientation.

前記基材は、長さ方向に沿って溶融はんだ収容用凹部を形成することが好ましい。前記溶融はんだ収容用凹部を設けることで、前記凹部に供給された溶融はんだが凝固する際、溶融はんだの中央部は膨らみ難く、平坦状になりやすい。このため、この基材に溶融はんだめっきを施した電極線材は、平坦化した溶融はんだ層を半導体基板にはんだ付けすることにより、はんだ付け性が向上する。   It is preferable that the base material is formed with a molten solder accommodating recess along the length direction. By providing the molten solder accommodating recess, when the molten solder supplied to the recess is solidified, the central portion of the molten solder is difficult to swell and tends to be flat. For this reason, the electrode wire material obtained by subjecting the base material to molten solder plating is improved in solderability by soldering the flattened molten solder layer to the semiconductor substrate.

また、本発明の太陽電池用電極線材は、上記基材と、この基材の表面に積層形成された溶融はんだめっき層を備えたものである。上記基材の耐力が非常に低下したものであり、このため溶融はんだめっき後の電極線材も耐力が低下するため、本発明に係る太陽電池用電極線材によれば半導体基板に対する耐割損性を向上させることができる。   Moreover, the electrode wire for solar cells of the present invention comprises the above base material and a molten solder plating layer formed on the surface of the base material. The yield strength of the base material is greatly reduced, and therefore the yield strength of the electrode wire after hot-dip solder plating is also lowered. Therefore, according to the solar cell electrode wire according to the present invention, the breakage resistance to the semiconductor substrate is improved. Can be improved.

また、本発明の太陽電池用電極線材の基材の製造方法は、Cuを99.90mass%以上含む純銅板に対して中間圧延および中間焼鈍を行い、その後、圧下率が55〜90%の最終圧延を行って板状中間材を得て、前記板状中間材を圧延方向に沿って線状に切断加工して線状中間材を得て、前記線状中間材に最終焼鈍を施す。前記純銅板は不純物であるO、PをO:0〜500ppm、P:0〜150ppmとすることが好ましい。なお、従来、銅の圧延材を焼鈍して軟化させるには、最終圧延の圧下率を95%程度と高くして圧延し、焼鈍することが有効と考えられていた。   Moreover, the manufacturing method of the base material of the electrode wire material for solar cells of this invention performs intermediate rolling and intermediate annealing with respect to the pure copper plate which contains 99.90 mass% or more of Cu, and is a final reduction rate of 55-90% after that. Rolling is performed to obtain a plate-shaped intermediate material, and the plate-shaped intermediate material is cut into a line along the rolling direction to obtain a line-shaped intermediate material, and the linear intermediate material is subjected to final annealing. In the pure copper plate, O and P, which are impurities, are preferably O: 0 to 500 ppm and P: 0 to 150 ppm. Conventionally, in order to anneal and soften a rolled copper material, it has been considered effective to perform rolling and annealing at a reduction rate of about 95% in the final rolling.

最終圧延の圧下率を55〜90%と低く設定することにより、焼鈍後の線状基材の圧延方向に対する<114>および<112>の結晶方位のピーク強度比PR(%)を50〜90%にすることができる。また、切断加工後の線状中間材に対して最終焼鈍を施すので、短時間の加熱で再結晶させることができ、上記特定結晶方位を有する基材を容易かつ効率的に製造することができる。   By setting the rolling reduction of the final rolling as low as 55 to 90%, the peak intensity ratio PR (%) of the crystal orientation of <114> and <112> with respect to the rolling direction of the linear base material after annealing is 50 to 90. %. Moreover, since the final annealing is performed on the linear intermediate material after the cutting process, it can be recrystallized by heating in a short time, and the base material having the specific crystal orientation can be easily and efficiently manufactured. .

本発明の基材によれば、Cuを99.90mass%以上含む純銅の圧延材で形成され、圧延方向に対する<114>および<112>の結晶方位のピーク強度比PR(%)を50〜90%とするので、導電性に優れ、しかも圧延方向の耐力を15MPa程度以下に低下させることができ、優れた塑性変形能を備える。このため、この基材に溶融はんだめっきを施した電極線材は、半導体基板に対する耐割損性が優れたものとなり、従来より薄肉化した半導体基板の太陽電池に対する配線材として好適である。   According to the base material of the present invention, it is formed of a rolled material of pure copper containing 99.90 mass% or more of Cu, and a peak intensity ratio PR (%) of <114> and <112> crystal orientation with respect to the rolling direction is 50 to 90. %, The electrical conductivity is excellent, and the proof stress in the rolling direction can be reduced to about 15 MPa or less, and an excellent plastic deformability is provided. For this reason, the electrode wire material obtained by subjecting the base material to molten solder plating has excellent breakage resistance with respect to the semiconductor substrate, and is suitable as a wiring material for a solar cell of a semiconductor substrate that is thinner than the conventional one.

以下、図面を参照して本発明の実施形態に係る電極線材およびその基材について説明する。図1は、第1実施形態に係る電極線材1の横断面を示しており、Cuを99.90mass%以上含む純銅で形成された方形断面を有する線状の基材2と、この基材2の外周面に積層形成された溶融はんだめっき層3A,3Bを有している。なお、溶融はんだめっき層は図例では基材2の表面、裏面のみに積層されているが、実際には基材2の側面にも不可避的に形成される。図1および後述の図2において、基材側面の溶融はんだめっき層は記載省略されている。   Hereinafter, an electrode wire and a substrate thereof according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a cross section of an electrode wire 1 according to the first embodiment. A linear base material 2 having a rectangular cross section formed of pure copper containing 99.90 mass% or more of Cu, and the base material 2 Are provided on the outer peripheral surface of the molten solder plating layers 3A and 3B. In addition, although the molten solder plating layer is laminated | stacked only on the surface and the back surface of the base material 2 in the example of a figure, in fact, it forms inevitable also on the side surface of the base material 2. In FIG. 1 and FIG. 2 described later, the description of the molten solder plating layer on the side surface of the substrate is omitted.

前記純銅は、Cu含有量が99.90mass%以上のものを用いる。好ましくは99.95mass%以上、より好ましくは99.99mass%以上のものがよい。また、不純物としては、As、Sb、Bi、Pb、S、Fe、O、Pなどが含まれるが、特にO、Pは微量で塑性変形能が低下するため、O量は0〜500ppm、好ましくは0〜300ppm、より好ましくは0〜100ppmとし、P量は0〜150ppm、好ましくは0〜50ppmに規制することが望ましい。タプピッッチ銅、無酸素銅(OFHC)、りん脱酸銅は上記成分を満足するため好適な素材である。   The pure copper has a Cu content of 99.90 mass% or more. Preferably it is 99.95 mass% or more, more preferably 99.99 mass% or more. Further, as impurities, As, Sb, Bi, Pb, S, Fe, O, P, etc. are included. Particularly, since O and P are small amounts and the plastic deformability is reduced, the amount of O is preferably 0 to 500 ppm, preferably Is 0 to 300 ppm, more preferably 0 to 100 ppm, and the amount of P is desirably 0 to 150 ppm, preferably 0 to 50 ppm. Tappitch copper, oxygen-free copper (OFHC), and phosphorus deoxidized copper are suitable materials because they satisfy the above components.

前記基材2は、圧延方向に対して<100>、<114>、<112>の結晶方位のX線回折によるピーク強度をそれぞれP<100>、P<114>、P<112>と表すとき、下記式に示す<114>および<112>の結晶方位のピーク強度比PR(%)が50〜90%とされる。
PR(%)=(P<114>+P<112>)・100/(P<100>+P<114>+P<112>)
The base material 2 represents peak intensities by X-ray diffraction of crystal orientations <100>, <114>, and <112> with respect to the rolling direction as P <100>, P <114>, and P <112>, respectively. The peak intensity ratio PR (%) of crystal orientations <114> and <112> shown in the following formula is set to 50 to 90%.
PR (%) = (P <114> + P <112>) / 100 / (P <100> + P <114> + P <112>)

従来、最終圧延を強圧下し、焼鈍した後の圧延材は圧延方向の結晶方位が<100>に揃い易いが、本発明者の調査により、<100>の結晶方位よりも<114>および<112>の結晶方位を主体とすることが塑性変形能の向上には有効であることが見出された。後述の実施例から明らかなように、前記PRが50%未満、90%超では一旦低下した耐力が上昇するようになる。このため、本発明ではPRを50〜90%、好ましくは65〜85%とする。   Conventionally, the rolled material after squeezing the final rolling and annealing is easy to align the crystal orientation in the rolling direction to <100>. However, according to the investigation of the present inventors, <114> and < It has been found that a crystal orientation of 112> as a main component is effective in improving the plastic deformability. As will be apparent from the examples described later, when the PR is less than 50% and more than 90%, the proof stress once lowered increases. For this reason, in the present invention, the PR is set to 50 to 90%, preferably 65 to 85%.

前記溶融はんだめっき層3A,3Bを形成するはんだ材としては、融点が130〜300℃程度のSn−Pb合金、Sn−(0.5〜5mass%)Ag合金、Sn−(0.5〜5mass%)Ag−(0.3〜1.0mass%)Cu合金、Sn−(0.3〜1.0mass%)Cu合金、Sn−(1.0〜5.0mass%)Ag−(5〜8mass%)In合金、Sn−(1.0〜5.0mass%)Ag−(40〜50mass%)Bi合金、Sn−(40〜50mass%)Bi合金、Sn−(1.0〜5.0mass%)Ag−(40〜50mass%)Bi−(5〜8mass%)In合金などが使用される。Pbは人体に有害であり、自然環境を汚染するおそれがあるので、汚染防止の観点からはPbフリーのSn−Ag合金、Sn−Ag−Cu合金、Sn−Cu合金、Sn−Ag−In合金、Sn−Ag−Bi合金などのはんだ材が好ましい。また、前記各はんだ材において、溶融はんだの酸化防止のため、50〜200ppm程度のP、数〜数十ppmのGa、数〜数十ppmのGd、数〜数十ppmのGeの内から1種または2種以上を添加することができる。   As a solder material for forming the molten solder plating layers 3A and 3B, Sn—Pb alloy having a melting point of about 130 to 300 ° C., Sn— (0.5 to 5 mass%) Ag alloy, Sn— (0.5 to 5 mass). %) Ag- (0.3-1.0 mass%) Cu alloy, Sn- (0.3-1.0 mass%) Cu alloy, Sn- (1.0-5.0 mass%) Ag- (5-8 mass) %) In alloy, Sn- (1.0-5.0 mass%) Ag- (40-50 mass%) Bi alloy, Sn- (40-50 mass%) Bi alloy, Sn- (1.0-5.0 mass%) ) Ag- (40-50 mass%) Bi- (5-8 mass%) In alloy or the like is used. Since Pb is harmful to the human body and may contaminate the natural environment, Pb-free Sn—Ag alloy, Sn—Ag—Cu alloy, Sn—Cu alloy, Sn—Ag—In alloy are used from the viewpoint of pollution prevention. A solder material such as Sn—Ag—Bi alloy is preferable. Further, in each of the solder materials, in order to prevent the molten solder from being oxidized, one of the P of about 50 to 200 ppm, Ga of several to several tens of ppm, Gd of several to several tens of ppm, and Ge of several to several tens of ppm. Seeds or two or more can be added.

図2は第2実施形態にかかる電極線材1Aを示しており、第1実施形態とはその横断面形状が異なるので、これを中心に説明し、同部材は同符号を付してその説明を省略する。電極線材1Aの基材2Aの横断面形状は、第1実施形態の基材が方形状であるのに対して、長さ方向に沿って一方の表面(図例では下面)の中央部が平坦状に凹んだ皿状断面をなしており、その凹み側が溶融はんだ収容用凹部6とされている。前記基材2Aの材質、圧延方向の結晶方位については第1実施形態と同様である。   FIG. 2 shows an electrode wire 1A according to the second embodiment. Since the cross-sectional shape thereof is different from that of the first embodiment, the explanation will be focused on the same. Omitted. The cross-sectional shape of the substrate 2A of the electrode wire 1A is such that the central portion of one surface (the lower surface in the illustrated example) is flat along the length direction, whereas the substrate of the first embodiment is rectangular. It has a dish-shaped cross section that is recessed in a shape, and the recessed side is a recessed portion 6 for accommodating molten solder. The material of the substrate 2A and the crystal orientation in the rolling direction are the same as in the first embodiment.

前記溶融はんだ収容用凹部6の深さは、最も深い部分で20〜40μm 程度とすればよく、またその開口幅は基材2Aの横幅の90%程度以上とすることが好ましい。開口幅の上限は特に制限はなく、下面全幅に渡って開口していてもよい。なお、溶融はんだ収容用凹部の断面形状は、上記皿形に限らず、全体が弧状に凹んだ弧状断面としてもよい。   The depth of the molten solder accommodating recess 6 may be about 20 to 40 μm at the deepest portion, and the opening width is preferably about 90% or more of the lateral width of the substrate 2A. The upper limit of the opening width is not particularly limited, and it may be opened over the entire bottom surface. In addition, the cross-sectional shape of the recessed part for accommodating a molten solder is not limited to the above-mentioned dish shape, and may be an arcuate cross section in which the whole is recessed in an arc shape.

かかる溶融はんだ収容用凹部6を有する基材2Aでは、基材2Aに溶融はんだめっきを施すと、表面張力の作用により表面がほぼ平坦状となった溶融はんだめっき層3Bが前記凹部6に形成される。この溶融はんだめっき層3Bは表面がほぼ平坦状であるため、良好なはんだ付け性が得られる。   In the base material 2A having the molten solder accommodating recess 6, when the solder 2 is plated on the base 2 A, a molten solder plating layer 3 B whose surface is substantially flat due to the action of surface tension is formed in the recess 6. The Since the surface of the molten solder plating layer 3B is substantially flat, good solderability can be obtained.

次に、上記第1、第2実施形態にかかる基材、電極線材の製造方法について説明する。まず、所定純度の純銅で形成された、板厚数ミリ程度の板材(圧延板あるいは圧延焼鈍板)を準備し、これを中間圧延および中間焼鈍(軟化焼鈍)を所要回数繰り返し、その後、最終圧延を行って目標板厚の板状中間材を得る。前記目標板厚は基材の板厚となり、通常、80〜300μm 程度とされる。   Next, the manufacturing method of the base material and electrode wire according to the first and second embodiments will be described. First, a plate material (rolled plate or rolled annealed plate) made of pure copper of a predetermined purity is prepared, and this is subjected to intermediate rolling and intermediate annealing (softening annealing) as many times as necessary, and then the final rolling. To obtain a plate-like intermediate material having a target plate thickness. The target plate thickness is the thickness of the substrate, and is usually about 80 to 300 μm.

前記板状中間材は、通常、0.8〜15mm程度の幅になるように、圧延方向に沿ってスリットされ、長尺の線状中間材とされる。この線状中間材に最終焼鈍(軟化焼鈍)が施されて線状基材とされる。スリットの際にスリッターの回転刃の間隔や回転速度を調整することによって、線状中間材に前記皿状の溶融はんだ収容用凹部を容易に形成することができる。   The plate-like intermediate material is usually slit along the rolling direction so as to have a width of about 0.8 to 15 mm to be a long linear intermediate material. The linear intermediate material is subjected to final annealing (softening annealing) to obtain a linear base material. By adjusting the interval and rotation speed of the slitting blades at the time of slitting, the dish-shaped recess for accommodating molten solder can be easily formed in the linear intermediate material.

前記中間圧延における圧下率は20〜80%程度でよく、特に限定されないが、最終圧延における圧下率は55〜90%、好ましくは65〜85%とされる。55%未満、90%超となると、圧延方向に対して<114>、<112>の結晶方位が優位な結晶構造を得ることが困難になり、塑性変形能が低下する。また、前記中間焼鈍、最終焼鈍における軟化焼鈍温度は850〜1000℃程度とされ、保持時間は850〜950℃では30〜60sec 程度、950〜1000℃では10〜60sec 程度とされる。   The rolling reduction in the intermediate rolling may be about 20 to 80% and is not particularly limited, but the rolling reduction in the final rolling is 55 to 90%, preferably 65 to 85%. If it is less than 55% and more than 90%, it becomes difficult to obtain a crystal structure in which the crystal orientations <114> and <112> are dominant with respect to the rolling direction, and the plastic deformability is lowered. The softening annealing temperature in the intermediate annealing and final annealing is about 850 to 1000 ° C., and the holding time is about 30 to 60 seconds at 850 to 950 ° C. and about 10 to 60 seconds at 950 to 1000 ° C.

次に、最終焼鈍された線状基材は、溶融はんだめっきが施される。溶融はんだめっきは、溶融はんだめっき浴の下流側に大径の巻き取りドラムを設けておき、線状基材をめっき浴に通し、10MPa程度の張力を掛けて引っ張りながら巻き取り、これによって線状基材を溶融はんだめっき浴に連続的に浸漬し、引き上げることによって行われる。めっき温度は、はんだ合金の融点より50〜100℃程度高い温度に調整される。溶融はんだめっきによって、線状基材の表面に溶融はんだめっき層が形成され、線状の電極線材とされる。溶融はんだ収容用凹部が形成された線状基材の場合、溶融はんだめっき浴に通すだけで、前記凹部側に平坦状の溶融はんだめっき層が形成される。   Next, the finally annealed linear base material is subjected to molten solder plating. In the molten solder plating, a winding drum having a large diameter is provided on the downstream side of the molten solder plating bath, the linear substrate is passed through the plating bath, and the wire is wound while being pulled with a tension of about 10 MPa. This is done by continuously immersing the substrate in a molten solder plating bath and pulling it up. The plating temperature is adjusted to a temperature about 50 to 100 ° C. higher than the melting point of the solder alloy. By molten solder plating, a molten solder plating layer is formed on the surface of the linear base material to obtain a linear electrode wire. In the case of a linear base material in which a molten solder accommodating recess is formed, a flat molten solder plating layer is formed on the recess side only by passing through a molten solder plating bath.

溶融はんだめっきの際、線状基材は引っ張られた状態となり、線状基材には歪みが導入される。このため、基材の耐力はめっき前に比して2倍程度上昇する。もっとも、めっき前の基材の耐力は15MPa程度以下と非常に低いので、めっき後においても従来に比して十分低い値に収まる。なお、線状基材を所定長さに切断した後、この短尺基材に溶融はんだめっきを施して電極線材としてもよい。この場合、めっきの際に基材に張力が掛からないので、電極線材の耐力はより低下する。   During the molten solder plating, the linear base material is pulled, and strain is introduced into the linear base material. For this reason, the proof stress of a base material rises about 2 times compared with plating. However, since the proof stress of the base material before plating is as low as about 15 MPa or less, even after plating, it is kept at a sufficiently low value as compared with the conventional case. In addition, after cut | disconnecting a linear base material to predetermined length, it is good also as an electrode wire material by performing molten solder plating to this short base material. In this case, since the tension is not applied to the substrate during plating, the proof strength of the electrode wire is further reduced.

以上のようにして、溶融はんだめっき層が積層された基材すなわち電極線材が製造され、所要の長さに切断したものが太陽電池の接続用リード線として用いられる。   As described above, a base material on which a molten solder plating layer is laminated, that is, an electrode wire is manufactured, and a member cut to a required length is used as a connecting lead wire of a solar cell.

上記実施形態に係る電極線材を接続用リード線として用いた太陽電池を図を参照して説明する。図3は、実施形態に係る電極線材1または1Aを所定長さに切断した接続用リード線13を備えた太陽電池を示している。この太陽電池は、PN接合を有するシリコン半導体で形成された半導体基板11と、前記半導体基板11の表面に線状に設けられた複数の表面電極12にはんだ付けされた前記接続用リード線13を備えている。前記半導体基板11の裏面には、40〜80mm2 程度の大形表面の裏面電極が複数個設けられている。 A solar cell using the electrode wire according to the embodiment as a connecting lead wire will be described with reference to the drawings. FIG. 3 shows a solar cell including the connection lead wire 13 obtained by cutting the electrode wire 1 or 1A according to the embodiment into a predetermined length. This solar cell includes a semiconductor substrate 11 formed of a silicon semiconductor having a PN junction, and the connecting lead wires 13 soldered to a plurality of surface electrodes 12 linearly provided on the surface of the semiconductor substrate 11. I have. On the back surface of the semiconductor substrate 11, a plurality of back electrodes having a large surface of about 40 to 80 mm 2 are provided.

前記接続用リード線13がはんだ付けされる前の半導体基板11には、複数の線状表面電極12に導通するように、これらの表面電極12に直交して配置されたはんだ帯が形成されている。電極線材1の溶融はんだめっき層3Aまたは3B、あるいは電極線材1Aの溶融はんだ収容用凹部側の溶融はんだめっき層3Bを前記はんだ帯に当接するように接続用リード線13を半導体基板11に載置し、半導体基板11のはんだ帯および接続用リード線13の溶融はんだめっき層を共に溶融することによって前記接続用リード線13は半導体基板11の表面にはんだ付けされる。なお、裏面電極は比較的大きい露出領域(40〜80mm2 程度)を有するため、表面電極へのはんだ付けに比べて、隣接する太陽電池の裏面電極へのはんだ付けは容易である。 The semiconductor substrate 11 before the connection lead wire 13 is soldered is formed with a solder band arranged perpendicular to the surface electrodes 12 so as to be electrically connected to the plurality of linear surface electrodes 12. Yes. The connecting lead wire 13 is placed on the semiconductor substrate 11 so that the molten solder plating layer 3A or 3B of the electrode wire 1 or the molten solder plating layer 3B of the electrode wire 1A on the recessed portion for accommodating the molten solder contacts the solder band. Then, the connecting lead wire 13 is soldered to the surface of the semiconductor substrate 11 by melting the solder band of the semiconductor substrate 11 and the molten solder plating layer of the connecting lead wire 13 together. Since the back electrode has a relatively large exposed area (about 40 to 80 mm 2 ), soldering to the back electrode of the adjacent solar cell is easier than soldering to the front electrode.

この太陽電池によれば、前記電極線材からなる接続用リード線を半導体基板にはんだ付けする際、加熱後の冷却収縮により電極線材が半導体基板に拘束されても容易に塑性変形するため、半導体基板に生じる応力を緩和、軽減させることができる。このため、半導体基板にクラックが入り難く、しかも電極線材の基材は高純度の純銅であるため、導電性に優れ、良好な発電効率が得られる。   According to this solar cell, when soldering the connecting lead made of the electrode wire to the semiconductor substrate, the semiconductor substrate easily deforms plastically even if the electrode wire is restrained by the semiconductor substrate due to cooling shrinkage after heating. It is possible to relieve and reduce the stress generated in. For this reason, it is difficult for cracks to enter the semiconductor substrate, and the base material of the electrode wire is high-purity pure copper, so that it has excellent electrical conductivity and good power generation efficiency.

以下、本発明の電極線材およびその基材について実施例を挙げて具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。   Hereinafter, although an example is given and an electrode wire material and the substrate of the present invention are explained concretely, the present invention is not limitedly interpreted by this example.

純銅A(無酸素銅、Cu:99.96%、O:5ppm、P:0ppm)あるいは純銅B(タフピッチ銅、Cu:99.92%、O:300ppm、P:0ppm)の圧延焼鈍板(板厚3.0mm)を準備し、冷間での中間圧延、中間焼鈍(1000℃×30sec )をそれぞれ1回施して板厚0.2〜2.0mmの中間材を得て、表1に示す圧下率で冷間で最終圧延を行い、板厚0.1mmの板状中間材を製作した。これを幅3mmにスリットし、得られた複数の線状中間材を同表に示す条件でトンネル炉に通して最終焼鈍を施し、複数の線状基材を得た。複数の線状基材の内の一部は、溶融はんだめっき浴の下流側で10MPa程度の張力を掛けて引っ張りながら溶融はんだめっき浴に通して溶融はんだめっきを行った。前記めっき浴は、はんだ組成がSn−3.0mass%Ag−0.5mass%Cu(融点:218℃)であり、浴温を300℃とした。また、複数の線状基材の内の他の一部は、溶融はんだめっきと同様の浴温、通線条件でソルトバスに通して加熱した。   Rolled annealed sheet of pure copper A (oxygen-free copper, Cu: 99.96%, O: 5 ppm, P: 0 ppm) or pure copper B (tough pitch copper, Cu: 99.92%, O: 300 ppm, P: 0 ppm) Thickness 3.0 mm) is prepared, and intermediate rolling in the cold and intermediate annealing (1000 ° C. × 30 sec) are each performed once to obtain an intermediate material having a thickness of 0.2 to 2.0 mm, as shown in Table 1. The final rolling was performed cold at a reduction rate to produce a plate-like intermediate material having a plate thickness of 0.1 mm. This was slit to a width of 3 mm, and the obtained plurality of linear intermediate materials were passed through a tunnel furnace under the conditions shown in the same table, and finally annealed to obtain a plurality of linear substrates. Some of the plurality of linear substrates were subjected to molten solder plating by passing through a molten solder plating bath while being pulled with a tension of about 10 MPa on the downstream side of the molten solder plating bath. The plating bath had a solder composition of Sn-3.0 mass% Ag-0.5 mass% Cu (melting point: 218 ° C) and a bath temperature of 300 ° C. In addition, the other part of the plurality of linear substrates was heated by passing through a salt bath under the same bath temperature and wiring conditions as those of the molten solder plating.

前記最終焼鈍後の線状基材を圧延方向に対して垂直に切断して観察片を採取し、X線回折法(シュルツの反射法)により圧延方向に垂直な面を反射面として、圧延方向の結晶方位<100>、<114>、<112>のピーク強度を測定し、3方位の強度の合計を100としたときの各方位の強度比(%)、並びに<114>および<112>方位のピーク強度比PR(%)を求めた。これらを表1に併せて示す。なお、使用したX線回折装置はRINT−2200(RIGAKU製)であり、測定条件は以下のとおりである。
・測定条件
走査軸2θ/θ、測角範囲10°〜90°、発散スリット0.15mm、散乱スリット4mm、受光スリット5mm
The linear base material after the final annealing is cut perpendicularly to the rolling direction, and an observation piece is collected. By using an X-ray diffraction method (Schulz reflection method), a surface perpendicular to the rolling direction is used as a reflecting surface, and the rolling direction Of the crystal orientations <100>, <114>, and <112>, and the intensity ratio (%) of each orientation when the sum of the three intensities is 100, and <114> and <112> The azimuth peak intensity ratio PR (%) was determined. These are also shown in Table 1. The X-ray diffraction apparatus used was RINT-2200 (manufactured by RIGAKU), and the measurement conditions were as follows.
Measurement conditions: Scanning axis 2θ / θ, angle measurement range 10 ° to 90 °, divergence slit 0.15 mm, scattering slit 4 mm, light receiving slit 5 mm

また、前記線状基材から長さ150mmの引張試験片を採取し、JISZ2241に規定の方法により、長さ方向(圧延方向)に引っ張る引張試験を行い、めっき前の耐力を測定した。測定結果を表1に併せて示す。   Further, a tensile test piece having a length of 150 mm was collected from the linear base material and subjected to a tensile test by pulling in the length direction (rolling direction) by a method defined in JISZ2241, and the proof stress before plating was measured. The measurement results are also shown in Table 1.

さらに、ソルトバスに通した線状基材からその表面に付着したソルトを水洗により除去して、上記線状基材と同様に圧延方向の耐力を測定した。この耐力は、溶融はんだめっきした基材の耐力に相当するため、めっき後の基材の耐力とみなした。測定結果を表1に併せて示す。   Furthermore, the salt adhering to the surface was removed from the linear base material passed through the salt bath by washing with water, and the proof stress in the rolling direction was measured in the same manner as the linear base material. Since this proof stress was equivalent to the proof strength of the base material which carried out the hot-dip solder plating, it was considered as the proof strength of the base material after plating. The measurement results are also shown in Table 1.

表1より、発明例にかかる基材は、めっき前の耐力が15MPa以下であるため、めっき後の耐力も30MPa程度以下と低耐力に止まっており、従来の基材である試料No. 12,32に比して、耐力が大幅に軽減されていることが確認された。   From Table 1, since the proof stress before plating of the base material according to the invention example is 15 MPa or less, the proof stress after plating is about 30 MPa or less, which is a low proof stress. Sample No. 12, which is a conventional base material, Compared to 32, it was confirmed that the yield strength was greatly reduced.

Figure 2009016593
Figure 2009016593

本発明の第1実施形態にかかる電極線材の横断面図である。It is a cross-sectional view of the electrode wire according to the first embodiment of the present invention. 本発明の第2実施形態にかかる電極線材の横断面図である。It is a cross-sectional view of the electrode wire material concerning 2nd Embodiment of this invention. 本発明の電極線材を用いた太陽電池の概略斜視図である。It is a schematic perspective view of the solar cell using the electrode wire of this invention.

符号の説明Explanation of symbols

1,1A 電極線材
2,2A 基材
3A,3B 溶融はんだめっき層
6 溶融はんだ収容用凹部
DESCRIPTION OF SYMBOLS 1,1A Electrode wire material 2,2A Base material 3A, 3B Molten solder plating layer 6 Concave part for molten solder accommodation

Claims (6)

基材の表面に溶融はんだめっきが施された太陽電池用電極線材のめっき前の基材であって、
前記基材はCuを99.90mass%以上含む純銅の圧延材で形成され、圧延方向の結晶方位<100>、<114>、<112>のX線回折によるピーク強度をそれぞれP<100>、P<114>、P<112>と表すとき、下記式に示す<114>および<112>の結晶方位のピーク強度比PR(%)が50〜90%である、太陽電池用電極線材の基材。
PR(%)=(P<114>+P<112>)・100/(P<100>+P<114>+P<112>)
It is a base material before plating of an electrode wire for a solar cell in which molten solder plating is applied to the surface of the base material,
The base is formed of a rolled material of pure copper containing 99.90 mass% or more of Cu, and the peak intensities by X-ray diffraction of crystal orientations <100>, <114>, and <112> in the rolling direction are P <100>, respectively. When represented by P <114> and P <112>, the peak intensity ratio PR (%) of the crystal orientation of <114> and <112> shown in the following formula is 50 to 90%. Wood.
PR (%) = (P <114> + P <112>) / 100 / (P <100> + P <114> + P <112>)
前記純銅は、不純物であるO、PがO:0〜500ppm、P:0〜150ppmとされた、請求項1に記載した太陽電池用電極線材の基材。   The said pure copper is a base material of the electrode wire material for solar cells of Claim 1 by which O and P which are impurities were O: 0-500 ppm and P: 0-150 ppm. 前記基材は、長さ方向に沿って溶融はんだ収容用凹部が形成された、請求項1又は2に記載した太陽電池用電極線材の基材。   The said base material is a base material of the electrode wire material for solar cells of Claim 1 or 2 in which the recessed part for molten solder accommodation was formed along the length direction. 基材の表面に溶融はんだめっきが施された太陽電池用電極線材であって、前記基材として請求項1から3のいずれか1項に記載した基材が用いられた、太陽電池用電極線材。   A solar cell electrode wire having a surface of the base material subjected to molten solder plating, wherein the base material according to any one of claims 1 to 3 is used as the base material. . Cuを99.90mass%以上含む純銅板に対して中間圧延および中間焼鈍を行い、その後、圧下率が55〜90%の最終圧延を行って板状中間材を得て、前記板状中間材を圧延方向に沿って線状に切断加工して線状中間材を得て、前記線状中間材に最終焼鈍を施す、太陽電池用電極線材の基材の製造方法。   Intermediate rolling and intermediate annealing are performed on a pure copper plate containing 99.90 mass% or more of Cu, and then final rolling with a rolling reduction of 55 to 90% is performed to obtain a plate-like intermediate material. A method for producing a substrate for an electrode wire for a solar cell, wherein a linear intermediate material is obtained by cutting into a linear shape along a rolling direction, and the linear intermediate material is subjected to final annealing. 前記純銅は、不純物であるO、PがO:0〜500ppm、P:0〜150ppmとされた、請求項5に記載した、太陽電池用電極線材の基材の製造方法。   The said pure copper is a manufacturing method of the base material of the electrode wire material for solar cells of Claim 5 by which O and P which are impurities were O: 0-500 ppm and P: 0-150 ppm.
JP2007177137A 2007-07-05 2007-07-05 ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE Active JP5073386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177137A JP5073386B2 (en) 2007-07-05 2007-07-05 ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177137A JP5073386B2 (en) 2007-07-05 2007-07-05 ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012181971A Division JP5477921B2 (en) 2012-08-21 2012-08-21 ELECTRODE WIRE FOR SOLAR CELL AND ITS BASE

Publications (2)

Publication Number Publication Date
JP2009016593A true JP2009016593A (en) 2009-01-22
JP5073386B2 JP5073386B2 (en) 2012-11-14

Family

ID=40357139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177137A Active JP5073386B2 (en) 2007-07-05 2007-07-05 ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE

Country Status (1)

Country Link
JP (1) JP5073386B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183070A (en) * 2009-01-07 2010-08-19 Kagoshima Univ Photovoltaic generator and manufacturing method thereof
JP2012017515A (en) * 2010-06-11 2012-01-26 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing solder plated wire
WO2012057002A1 (en) * 2010-10-28 2012-05-03 三菱伸銅株式会社 Electrode wire for solar cell, substrate thereof, and substrate manufacturing method
JP2013033738A (en) * 2012-08-21 2013-02-14 Neomax Material:Kk Solar cell electrode wire and base material for the same
WO2013047909A2 (en) 2011-09-29 2013-04-04 Neturen Co., Ltd. Method and apparatus for manufacturing lead wire for solar cell
WO2013047907A1 (en) 2011-09-29 2013-04-04 Neturen Co., Ltd. Method of annealing copper wire for interconnector
WO2013187234A1 (en) * 2012-06-13 2013-12-19 東洋鋼鈑株式会社 Interconnector for solar cell, and solar cell with interconnector
CN110429153A (en) * 2019-08-07 2019-11-08 通威太阳能(合肥)有限公司 A kind of stacked wafer moudle interconnection architecture and preparation method thereof
WO2024016805A1 (en) * 2022-07-21 2024-01-25 常州时创能源股份有限公司 Photovoltaic shingled assembly and preparation method therefor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323354A (en) * 2000-03-06 2001-11-22 Nippon Mining & Metals Co Ltd Rolled copper foil and its manufacturing method
WO2004105141A1 (en) * 2003-05-22 2004-12-02 Neomax Materials Co., Ltd. Electrode wire material and solar battery having connection lead formed of the wire material
WO2005114751A1 (en) * 2004-05-21 2005-12-01 Neomax Materials Co., Ltd. Electrode wire for solar battery
JP2006190574A (en) * 2005-01-06 2006-07-20 Hitachi Cable Ltd Rectangular conductor and lead wire
WO2007037184A1 (en) * 2005-09-28 2007-04-05 Neomax Materials Co., Ltd. Process for producing electrode wire for solar battery
JP2007141930A (en) * 2005-11-15 2007-06-07 Neomax Material:Kk Electrode wire for solar battery and its manufacturing method
JP2008106312A (en) * 2006-10-26 2008-05-08 Hitachi Cable Ltd Rolled copper foil, and its production method
JP2008106313A (en) * 2006-10-26 2008-05-08 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor
JP2008168339A (en) * 2006-12-14 2008-07-24 Hitachi Cable Ltd Plated wire for solar cell, and its manufacturing method
JP2008169461A (en) * 2006-12-14 2008-07-24 Hitachi Cable Ltd Solder plated wire for solar battery and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001323354A (en) * 2000-03-06 2001-11-22 Nippon Mining & Metals Co Ltd Rolled copper foil and its manufacturing method
WO2004105141A1 (en) * 2003-05-22 2004-12-02 Neomax Materials Co., Ltd. Electrode wire material and solar battery having connection lead formed of the wire material
WO2005114751A1 (en) * 2004-05-21 2005-12-01 Neomax Materials Co., Ltd. Electrode wire for solar battery
JP2006190574A (en) * 2005-01-06 2006-07-20 Hitachi Cable Ltd Rectangular conductor and lead wire
WO2007037184A1 (en) * 2005-09-28 2007-04-05 Neomax Materials Co., Ltd. Process for producing electrode wire for solar battery
JP2007141930A (en) * 2005-11-15 2007-06-07 Neomax Material:Kk Electrode wire for solar battery and its manufacturing method
JP2008106312A (en) * 2006-10-26 2008-05-08 Hitachi Cable Ltd Rolled copper foil, and its production method
JP2008106313A (en) * 2006-10-26 2008-05-08 Hitachi Cable Ltd Rolled copper foil and manufacturing method therefor
JP2008168339A (en) * 2006-12-14 2008-07-24 Hitachi Cable Ltd Plated wire for solar cell, and its manufacturing method
JP2008169461A (en) * 2006-12-14 2008-07-24 Hitachi Cable Ltd Solder plated wire for solar battery and method for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183070A (en) * 2009-01-07 2010-08-19 Kagoshima Univ Photovoltaic generator and manufacturing method thereof
JP2012017515A (en) * 2010-06-11 2012-01-26 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing solder plated wire
JP2012017516A (en) * 2010-06-11 2012-01-26 Furukawa Electric Co Ltd:The Method and apparatus for manufacturing solder plated wire
WO2012057002A1 (en) * 2010-10-28 2012-05-03 三菱伸銅株式会社 Electrode wire for solar cell, substrate thereof, and substrate manufacturing method
WO2013047907A1 (en) 2011-09-29 2013-04-04 Neturen Co., Ltd. Method of annealing copper wire for interconnector
WO2013047909A2 (en) 2011-09-29 2013-04-04 Neturen Co., Ltd. Method and apparatus for manufacturing lead wire for solar cell
CN103890200A (en) * 2011-09-29 2014-06-25 高周波热錬株式会社 Method of annealing copper wire for interconnector
CN103890200B (en) * 2011-09-29 2016-08-17 高周波热錬株式会社 The method that the copper cash of connectors is annealed
US9991410B2 (en) 2011-09-29 2018-06-05 Neturen Co., Ltd. Method and apparatus for manufacturing lead wire for solar cell
WO2013187234A1 (en) * 2012-06-13 2013-12-19 東洋鋼鈑株式会社 Interconnector for solar cell, and solar cell with interconnector
JP2013033738A (en) * 2012-08-21 2013-02-14 Neomax Material:Kk Solar cell electrode wire and base material for the same
CN110429153A (en) * 2019-08-07 2019-11-08 通威太阳能(合肥)有限公司 A kind of stacked wafer moudle interconnection architecture and preparation method thereof
WO2024016805A1 (en) * 2022-07-21 2024-01-25 常州时创能源股份有限公司 Photovoltaic shingled assembly and preparation method therefor

Also Published As

Publication number Publication date
JP5073386B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5073386B2 (en) ELECTRODE WIRE FOR SOLAR CELL, ITS SUBSTRATE, AND METHOD FOR PRODUCING SUBSTRATE
US7754973B2 (en) Electrode wire for solar cell
TWI499067B (en) Interconnects for metal tape and solar collectors
JP4780008B2 (en) Plating wire for solar cell and manufacturing method thereof
JP2006054355A (en) Rectangular conductor for solar cell, its manufacturing method and lead wire for solar cell
JP5036545B2 (en) Method for producing electrode wire for solar cell
JP2008098607A (en) Connection lead wire for solar cell, its production process and solar cell
JP2007141930A (en) Electrode wire for solar battery and its manufacturing method
JP6065646B2 (en) Tape-like conductive material, solar cell interconnector and solar cell module
JPWO2015111587A1 (en) Solar cell interconnector and solar cell module
JP5038765B2 (en) Solder-plated wire for solar cell and manufacturing method thereof
JP5446188B2 (en) Interconnector for semiconductor wire mounting and interconnector for solar cell
JP2010141050A (en) Lead wire for solar cell and method of manufacturing the same
JP2008140787A (en) Solder plating wire for solar cell and its manufacturing method
JP2008182170A (en) Solder-plated wire for solar cell and manufacturing method thereof, and solar cell
WO2016002770A1 (en) Metal wire, interconnector for solar cell collector, solar cell module, and method for manufacturing metal wire
JP2009027096A (en) Solder-plated wire for solar cell and manufacturing method thereof
JP5477921B2 (en) ELECTRODE WIRE FOR SOLAR CELL AND ITS BASE
JP2012094743A (en) Solar cell electrode wire rod, its base material, and base material manufacturing method
CN103943703A (en) Interconnector for solar battery and corresponding solar module
JP2016169414A (en) Metal wire for solar cell wire and solar cell module
JP2012114260A (en) Solar cell electrode wire rod and base material thereof and base material manufacturing method
JP2007141621A (en) Lead wire for solar battery
JP2011091168A (en) Solar cell lead wire and method of manufacturing the same, and solar cell using the same
JP2016072096A (en) Metal wire, interconnector for solar battery power collection, and solar battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120822

R150 Certificate of patent or registration of utility model

Ref document number: 5073386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350