JP2009015923A - Resin film formation method and resin film formation device - Google Patents

Resin film formation method and resin film formation device Download PDF

Info

Publication number
JP2009015923A
JP2009015923A JP2007173921A JP2007173921A JP2009015923A JP 2009015923 A JP2009015923 A JP 2009015923A JP 2007173921 A JP2007173921 A JP 2007173921A JP 2007173921 A JP2007173921 A JP 2007173921A JP 2009015923 A JP2009015923 A JP 2009015923A
Authority
JP
Japan
Prior art keywords
light
resin film
irradiation
intensity distribution
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007173921A
Other languages
Japanese (ja)
Other versions
JP4554646B2 (en
Inventor
Naoto Ozawa
直人 小澤
Takayuki Suzuki
隆之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2007173921A priority Critical patent/JP4554646B2/en
Priority to PCT/JP2007/066229 priority patent/WO2008029615A1/en
Priority to US12/439,583 priority patent/US8409671B2/en
Priority to CN2007800321602A priority patent/CN101512648B/en
Priority to TW096132281A priority patent/TWI436356B/en
Publication of JP2009015923A publication Critical patent/JP2009015923A/en
Application granted granted Critical
Publication of JP4554646B2 publication Critical patent/JP4554646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To successfully irradiate other face areas with light without irradiating a predetermined circumference part of a board with light without using a light shielding mask, and moreover to make a boundary of irradiation and non-irradiation clear. <P>SOLUTION: A resin film formation method for irradiating and curing a resin film being spread on the board with light is characterized in that the boundary of irradiation and non-irradiation of the second light near a setting position is made clear by irradiating up to a predetermined position before a setting position of the resin film which stops irradiation of light with a first light of which gradient of luminous intensity distribution is a gentle gradient which does not produce irregularity on the resin film at the boundary of irradiation and non-irradiation while shifting it toward an outer periphery side from a rotation center axis line side; forming a second light by controlling the first light so that the gradient of the luminous intensity distribution becomes sharp at the predetermined position; and controlling the second light so that it becomes an intensity distribution of sharp gradient set up beforehand at the setting position. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光ディスクなどの基板上に均一な膜厚の光透過樹脂膜を形成、又は光ディスクなどの基板と基板との間に均一な膜厚の樹脂膜を形成する樹脂膜形成方法及び樹脂膜形成装置に関する。   The present invention relates to a resin film forming method and a resin film in which a light-transmitting resin film having a uniform film thickness is formed on a substrate such as an optical disk, or a resin film having a uniform film thickness is formed between substrates such as an optical disk. The present invention relates to a forming apparatus.

一般に光ディスク(次世代光ディスク)は、例えば1.1mm程度の厚みの透明な樹脂基板に1層又は2層の記録層を形成し、それを透明な樹脂膜で保護した構造、又は0.6mm程度の厚みの2枚の透明な樹脂基板が透明な接着性樹脂膜により貼り合わされた構造が基本となっている。この場合、それら透明な樹脂基板は一方の基板だけに信号記録層が形成されたもの、又は双方の基板に信号記録層が形成されたものがあり、そして、双方の基板の厚みが等しいもの、又は薄い透明なシートを光透過保護層としているものもある。さらに、このように貼り合せた構造の2枚のディスクを接着剤により貼り合わせて4枚の透明な基板を積層した構造の光ディスクなどもある。これら構造は、追記型の高記録密度の光ディスク又は追記型のDVD、あるいは再生専用の高記録密度の光ディスク又は再生専用のDVD、あるいは書換型の光ディスクなど種々の光ディスクに採用されている。また、光ディスク以外のものでも、透明なガラスやレンズのような基板を複数枚接着剤により貼り合せる場合などがある。   In general, an optical disc (next-generation optical disc) has a structure in which one or two recording layers are formed on a transparent resin substrate having a thickness of, for example, about 1.1 mm, and is protected with a transparent resin film, or about 0.6 mm. The basic structure is a structure in which two transparent resin substrates having a thickness of 1 are laminated with a transparent adhesive resin film. In this case, these transparent resin substrates include those in which a signal recording layer is formed only on one substrate, or those in which a signal recording layer is formed on both substrates, and those in which both substrates have the same thickness, Alternatively, there is a thin transparent sheet as a light transmission protective layer. Further, there is an optical disk having a structure in which two disks having such a bonded structure are bonded with an adhesive and four transparent substrates are laminated. These structures are employed in various optical disks such as a write-once high recording density optical disk or a write-once DVD, a read-only high recording density optical disk or a read-only DVD, or a rewritable optical disk. In addition to optical disks, there are cases where a plurality of substrates such as transparent glass and lenses are bonded with an adhesive.

多層の光ディスクにおいて、1層の信号記録層を有する透明な樹脂基板にスピンコート法によって1層又は2層の樹脂膜を形成する技術は広く知られている(例えば、特許文献1、2参照)。スピンコート法によって透明な樹脂膜を形成する場合に内周から外周までの厚みを均一に作製することは困難であり、外周側が内周側に比べて厚くなる。特許文献1では、この問題を解決するために、放射線硬化性樹脂を基板全体に塗布した後、基板の回転数を加速し、加速中に放射線照射して放射線硬化性樹脂を硬化させるなどの工夫を行っている。また、その外周端近傍での厚みを均一化するために、基板を回転させたまま放射線硬化性樹脂を硬化すると、外周端部にバリが生じるので、その外周部の放射線硬化性樹脂に放射線が照射されないようにしている。また、前掲の特許文献2では、スピンコート法によって透明な樹脂膜を形成する場合、内周よりも膜厚が厚くなる樹脂膜の外周部分をマスクで覆うことによって放射線が照射されないようにし、膜厚が厚くなる樹脂膜の外周部分を未硬化の状態にしておき、重力で平坦化する製造方法を開示している。なお、膜厚が厚くなる樹脂膜の外周部分は信号記録領域内から信号記録領域外にわたる場合もあれば、信号記録領域外に対応する樹脂膜の外周領域に形成される場合もある。   In a multilayer optical disc, a technique for forming one or two resin films on a transparent resin substrate having one signal recording layer by spin coating is widely known (for example, see Patent Documents 1 and 2). . When a transparent resin film is formed by spin coating, it is difficult to produce a uniform thickness from the inner periphery to the outer periphery, and the outer periphery becomes thicker than the inner periphery. In Patent Document 1, in order to solve this problem, after applying a radiation curable resin to the entire substrate, the number of rotations of the substrate is accelerated, and radiation is irradiated during acceleration to cure the radiation curable resin. It is carried out. In addition, if the radiation curable resin is cured while rotating the substrate in order to make the thickness in the vicinity of the outer peripheral edge uniform, burrs are generated at the outer peripheral edge, so that radiation is applied to the radiation curable resin at the outer peripheral part. I try not to be irradiated. Further, in the above-mentioned Patent Document 2, when a transparent resin film is formed by spin coating, the outer peripheral portion of the resin film whose thickness is thicker than the inner periphery is covered with a mask so that radiation is not irradiated. A manufacturing method is disclosed in which an outer peripheral portion of a resin film whose thickness is increased is left in an uncured state and is flattened by gravity. It should be noted that the outer peripheral portion of the resin film whose thickness is increased may extend from the signal recording area to the outside of the signal recording area, or may be formed in the outer peripheral area of the resin film corresponding to the outside of the signal recording area.

他方、基板を貼り合わせる光ディスクでは、接着剤を介して2枚の基板を重ねた後に、高速回転させて接着剤を基板間で均一に展延して余分な接着剤を振り切り、その後の硬化工程で基板の一方側から、又は双方から紫外線を照射して接着剤を短時間で硬化することが一般的に行われている。その紫外線の照射は、UVランプを使って所定の時間だけ連続的に紫外線を照射、あるいはキセノンランプを使ってパルス的に紫外線を照射することが行われている。この紫外線の他の照射方法として、高速回転によって基板の全面に塗膜を形成した後に、基板を低速回転させながら、小さな照射面積の紫外線スポット光を内側から外周方向に順に照射し、基板の全面に形成された塗膜を内側から順に硬化させる方法が提案されている(例えば、特許文献3参照)。   On the other hand, in the case of an optical disc for bonding substrates, after two substrates are stacked via an adhesive, the adhesive is spread evenly between the substrates by rotating at high speed, and the excess adhesive is shaken off, followed by a curing step In general, the adhesive is cured in a short time by irradiating ultraviolet rays from one side or both sides of the substrate. The ultraviolet irradiation is performed by continuously irradiating ultraviolet rays for a predetermined time using a UV lamp or by irradiating ultraviolet rays in a pulse manner using a xenon lamp. As another irradiation method of this ultraviolet ray, after a coating film is formed on the entire surface of the substrate by high-speed rotation, an ultraviolet spot light of a small irradiation area is sequentially irradiated from the inside to the outer periphery direction while rotating the substrate at a low speed. There has been proposed a method of curing the coating film formed in order from the inside (see, for example, Patent Document 3).

また、この方法と同様な別の照射方法として、特許文献3に記載された方法がスポット光であったのに対して、機械的な照射範囲調整機構を用いて円状の光の面積を順次拡大して行って内側から外周方向に順に照射して、塗膜を内側から順に硬化するものがある(例えば、特許文献4参照)。更に、塗膜が展延しているときに所定の膜厚になったその塗膜の箇所に順次紫外線を順次照射して膜厚を確定して行き、それ以上外側に塗膜が移動しないようにして高精度に均一な塗膜を形成する技術もすでに提案されている(例えば、特許文献5参照)。
特許第3742813号公報 特開2006−351103公報 特開平9−161333号公報 特開2003−091888公報 特開2004−280927公報
Further, as another irradiation method similar to this method, the method described in Patent Document 3 is spot light, whereas the area of the circular light is sequentially changed using a mechanical irradiation range adjustment mechanism. There is one that expands and irradiates sequentially from the inner side to the outer peripheral direction and hardens the coating film in order from the inner side (see, for example, Patent Document 4). Furthermore, when the paint film is spread, the part of the paint film that has reached the predetermined film thickness is irradiated with ultraviolet rays sequentially to determine the film thickness, so that the paint film does not move further outside. Thus, a technique for forming a uniform coating film with high accuracy has already been proposed (see, for example, Patent Document 5).
Japanese Patent No. 3742813 JP 2006-351103 A JP-A-9-161333 JP 2003-091888 A JP 2004-280927 A

前掲の特許文献1には外周部の放射線硬化性樹脂に放射線が照射されないようにする具体的な方法などは記述されていないが、前掲の特許文献2ではマスク部材で外周部を覆うことによって外周端部の放射線硬化性樹脂が硬化されないようにしている。しかしながらこの方法では、スピンコート法により放射線硬化性樹脂を展延している過程で放射線を照射すると、振り切られた放射線硬化性樹脂がマスク部材に付着し硬化するので、展延の過程で放射線を照射することは難しい。更に特許文献1、2に開示されている放射線の照射方法では、スピン装置で放射線照射を行うと、振り切られた放射線硬化性樹脂がスピン装置の内壁に付着し硬化するので、放射線照射工程はスピン装置とは別のポジションで行わなければならないという問題がある。また、マスク部材で遮光する方法はマスク部材を放射線硬化性樹脂膜に接触させることができないので、漏れた放射線がその樹脂膜に照射され、その樹脂膜の軟化と硬化との境界領域が半硬化状態になるために、その後に高速回転工程を行っても樹脂膜の厚みを均一化させることが困難であった。また、マスク機構を備えることで装置が大型化、複雑化するばかりでなく、コストアップになるという問題もある。   Although the above-mentioned patent document 1 does not describe a specific method for preventing radiation from being applied to the radiation curable resin at the outer peripheral part, the above-mentioned patent document 2 covers the outer periphery by covering the outer peripheral part with a mask member. The radiation curable resin at the end is prevented from being cured. However, in this method, if radiation is irradiated in the process of spreading the radiation curable resin by the spin coating method, the shaken radiation curable resin adheres to the mask member and cures. It is difficult to irradiate. Furthermore, in the radiation irradiation methods disclosed in Patent Documents 1 and 2, when radiation is performed with a spin device, the radiation curable resin that has been shaken off adheres to the inner wall of the spin device and cures, so that the radiation irradiation process is performed by spin There is a problem that it must be performed in a position different from the device. Further, since the mask member cannot shield the mask member from contact with the radiation curable resin film, the leaked radiation is irradiated to the resin film, and the boundary region between the softening and curing of the resin film is semi-cured. Therefore, it is difficult to make the thickness of the resin film uniform even if a high-speed rotation process is performed thereafter. In addition, the provision of the mask mechanism not only increases the size and complexity of the apparatus, but also increases the cost.

特許文献3に記載された方法は、結果的に急勾配の山形の強度分布を有するスポット光を回転している基板上の塗膜に螺旋状に照射させて順次螺旋状に硬化させていく方法である。したがって、勾配の急な山形の強度分布を有するスポット光が螺旋状に照射される毎に急激に螺旋状に硬化される。この螺旋状に急速に硬化されることにより、塗膜が螺旋状に急激に硬化収縮し、この急激な硬化収縮に起因して、塗膜が螺旋状に凸凹して波うつために塗膜の平坦性が低下し、また、外観的に螺旋状の線が描かれてしまうという外観上の問題がある。さらに、塗膜を硬化させるまでに時間がかかるという欠点もある。前掲の特許文献4に記載された方法は、照射時間の経過に伴って円状の光の外径が大きくなって、光の照射範囲を拡大していくメカシャッタ方式であるので、基板の外周側に比べて内周側の光照射時間が長くなり、内周と外周とで温度差が生じて基板に反りを発生させる原因となる。また、装置全体が大型化し、重くなるだけでなく、メカシャッタを冷却するための冷却装置が必要になるなどの欠点がある。特に、次世代の光ディスクにあっては高精度の平坦性が要求されるので、このような反りの発生を無視することはできない。   As a result, the method described in Patent Document 3 is a method of irradiating a coating film on a rotating substrate spirally with spot light having a steep mountain-shaped intensity distribution and sequentially curing the coating in a spiral manner. It is. Therefore, every time the spot light having a mountain-shaped intensity distribution with a steep slope is irradiated in a spiral shape, the spot light is hardened in a spiral shape. By rapidly curing in this spiral shape, the coating film rapidly cures and shrinks in a spiral shape, and due to this rapid curing shrinkage, the coating film becomes uneven in a spiral shape and undulates. There is a problem in appearance that flatness is lowered and a spiral line is drawn in appearance. Furthermore, there is a drawback that it takes time to cure the coating film. The method described in the above-mentioned Patent Document 4 is a mechanical shutter system in which the outer diameter of the circular light increases as the irradiation time elapses and the light irradiation range is expanded. Compared to the above, the light irradiation time on the inner circumference side becomes longer, and a temperature difference occurs between the inner circumference and the outer circumference, which causes the substrate to warp. In addition, the entire apparatus becomes large and heavy, and there is a disadvantage that a cooling device for cooling the mechanical shutter is required. In particular, since the next-generation optical disc requires high-precision flatness, the occurrence of such warping cannot be ignored.

前掲の特許文献5に記載された放射線照射方法は、高精度に均一な塗膜を形成する技術ではあるが、放射線の照射幅が狭い場合には前掲の特許文献3と同様な問題点が生じる。放射線の強度分布の勾配が緩やかな山形の強度分布にするほどその問題点は解決されるが、放射線の強度分布を緩やかな山形にする場合には照射境界領域が不鮮明になり、広い範囲の照射境界領域における樹脂膜が硬化が不足する。このことは、前掲の特許文献2の問題点と同様に、その後に高速回転工程を行っても樹脂膜の厚みを均一化させることは難しい。   The radiation irradiation method described in the above-mentioned Patent Document 5 is a technique for forming a uniform coating film with high accuracy. However, when the radiation irradiation width is narrow, the same problem as in the above-mentioned Patent Document 3 occurs. . The more the angle distribution of the radiation intensity distribution, the more the problem is solved. However, when the intensity distribution of the radiation is a gentle mountain shape, the irradiation boundary area becomes unclear and a wide range of irradiation is achieved. The resin film in the boundary region is insufficiently cured. Similar to the problem of the above-mentioned Patent Document 2, it is difficult to make the thickness of the resin film uniform even if a high-speed rotation process is performed thereafter.

したがって、本発明は高速回転による遠心力を利用して基板上に均一な膜厚の樹脂膜を、又は基板間に均一な膜厚の樹脂膜を形成する場合の問題点を解決することを主眼としている。先ず、前記樹脂膜を一様に硬化させるために光照射面に照射する光として、内周側又は回転中心軸線から設定位置の手前の所定位置まで、半径方向の強度分布の勾配が光の照射と非照射との境界での前記樹脂膜の硬化収縮率を、硬化が進行する方向(基板の内側から外側に向かう方向)に対して緩やかにして、前記樹脂膜に凹凸を生じない第1の光を照射し、次にその所定位置から光を制御して強度分布の勾配を急にし、所定位置から設定位置まで強度分布の勾配が急な光を照射することによって、光の照射全面にほぼ一様に光エネルギー量を照射しながら、前掲の特許文献1〜5の前記問題点を解決している。   Therefore, the present invention mainly aims to solve the problems in the case where a resin film having a uniform film thickness is formed on the substrates using the centrifugal force generated by the high-speed rotation or a resin film having a uniform film thickness between the substrates. It is said. First, as the light to be irradiated on the light irradiation surface in order to uniformly cure the resin film, the gradient of the intensity distribution in the radial direction is irradiated from the inner peripheral side or the rotation center axis to a predetermined position before the set position. The curing shrinkage rate of the resin film at the boundary between the non-irradiation and the non-irradiation is made gentle with respect to the direction in which the curing proceeds (the direction from the inner side to the outer side of the substrate), and the resin film is not uneven. By irradiating light, and then controlling the light from its predetermined position to make the gradient of the intensity distribution steep, and irradiating light with a steep gradient of the intensity distribution from the predetermined position to the set position, almost the entire surface of the light irradiation The above-mentioned problems of Patent Documents 1 to 5 are solved while uniformly irradiating the amount of light energy.

第1の発明は、基板を回転中心軸線を中心に高速回転させることにより前記基板に供給された光硬化性樹脂を展延して所定の膜厚の樹脂膜を前記基板に形成している最中に、又は前記基板に形成した後に、前記樹脂膜に光を照射して硬化させる樹脂膜形成方法において、前記光の照射を止める前記樹脂膜の設定位置の手前の所定位置まで、前記光の強度分布の勾配が光の照射と非照射との境界で前記樹脂膜に凹凸を生じないような緩やかな勾配の第1の光を前記回転中心軸線側から外周側に向けて移行させながら照射し、前記所定位置で前記第1の光の強度分布の勾配が急傾斜になるように制御し始めて第2の光を形成し、前記設定位置では予め設定された急な勾配の強度分布になるように前記第2の光を制御し、前記設定位置近傍での第2の光の照射と非照射の境界を鮮明にすることを特徴とする樹脂膜形成方法を提供する。   According to a first aspect of the present invention, a photocurable resin supplied to the substrate is spread by rotating the substrate at a high speed about a rotation center axis to form a resin film having a predetermined thickness on the substrate. In the resin film forming method in which the resin film is irradiated with light during or after being formed on the substrate, the light is irradiated to a predetermined position before the setting position of the resin film to stop the light irradiation. Irradiate the first light with a gentle gradient that does not cause unevenness in the resin film at the boundary between the irradiation and non-irradiation of the intensity distribution while shifting from the rotation center axis side to the outer peripheral side. The second light is formed by starting control so that the gradient of the intensity distribution of the first light becomes steep at the predetermined position, and the intensity distribution has a preset steep gradient at the set position. The second light is controlled at a second position near the set position. To provide a resin film forming method characterized by vivid illumination and boundaries of the non-irradiation of light.

第2の発明は、前記第1の発明において、光照射開始時刻t1から前記第1の光が前記所定位置に到達する時刻t2までの間、前記第1の光は前記樹脂膜の光照射面の内周側から外周側に向け移行して前記基板を照射し、前記時刻t2から、前記第1の光の強度分布の勾配が大きくなるように制御され始めた前記第2の光を前記基板に照射し、前記第2の光は、前記設定位置に到達する時刻t3には、予め設定された前記急な勾配の強度分布に制御されていることを特徴とする樹脂膜形成方法を提供する。   According to a second invention, in the first invention, the first light is a light irradiation surface of the resin film from a light irradiation start time t1 to a time t2 when the first light reaches the predetermined position. Irradiating the substrate by moving from the inner periphery side to the outer periphery side, and the second light that has started to be controlled so as to increase the gradient of the intensity distribution of the first light from the time t2. The resin film forming method is characterized in that the second light is controlled to the preset steep gradient intensity distribution at time t3 when the second light reaches the set position. .

第3の発明は、前記第1の発明又は前記第2の発明において、前記第1の光の移行速度を、照射時間の経過に伴って前記光照射面の回転中心側に比べて外周側が遅くなるように制御することにより、前記第1の光が照射する照射面の単位面積当たりの光照射エネルギー量を一様にすることを特徴とする樹脂膜形成方法を提供する。   According to a third invention, in the first invention or the second invention, the transition speed of the first light is slower on the outer peripheral side than the rotation center side of the light irradiation surface as the irradiation time elapses. By controlling so as to provide a resin film forming method, the amount of light irradiation energy per unit area of the irradiation surface irradiated with the first light is made uniform.

第4の発明は、前記第1の発明ないし前記第3の発明のいずれかにおいて、前記第1の光の照射時間を、前記光照射面の回転中心側に比べて外周側が長くなるように制御することにより、前記第1の光が照射する照射面の単位面積当たりの光照射エネルギー量を一様にすることを特徴とする樹脂膜形成方法を提供する。   According to a fourth invention, in any one of the first invention to the third invention, the irradiation time of the first light is controlled so that the outer peripheral side becomes longer than the rotation center side of the light irradiation surface. Thus, there is provided a resin film forming method characterized in that the amount of light irradiation energy per unit area of the irradiation surface irradiated with the first light is made uniform.

第5の発明は、前記第1の発明ないし前記第4の発明のいずれかにおいて、前記基板は1層以上の信号記録層が形成されたディスク基板であり、前記光照射面は前記ディスク基板の前記信号記録層上に形成された光透過層であり、前記ディスク基板を回転させることにより前記光硬化性樹脂を展延させて所定の膜厚の前記光透過層を形成している状態で、前記第1の光及び前記第2の光が前記光透過層に照射され、前記第2の光を照射した後に、前記ディスク基板を再び回転させて、外周側の未硬化の前記光透過層を平坦化することを特徴とする樹脂膜形成方法を提供する。   According to a fifth invention, in any one of the first invention to the fourth invention, the substrate is a disc substrate on which one or more signal recording layers are formed, and the light irradiation surface is the disc substrate. A light transmission layer formed on the signal recording layer, in a state where the light transmission layer having a predetermined thickness is formed by spreading the photocurable resin by rotating the disk substrate. The first light and the second light are applied to the light transmission layer, and after the second light is applied, the disk substrate is rotated again, and the uncured light transmission layer on the outer peripheral side is removed. Provided is a method for forming a resin film, which is characterized by planarization.

第6の発明は、前記第1の発明ないし前記第4の発明のいずれかにおいて、前記第1の光の外周側への移行速度は、前記樹脂膜を形成する液状物質が展延されて前記樹脂膜が所定の厚みになっていく時間に依存し、前記樹脂膜が所定の厚みになった時点で膜厚を順次確定していくことを特徴とする樹脂膜形成方法を提供する。   According to a sixth aspect of the present invention, in any one of the first to fourth aspects, the transfer speed of the first light to the outer peripheral side is determined by the liquid material forming the resin film being spread. There is provided a resin film forming method characterized in that the film thickness is sequentially determined when the resin film reaches a predetermined thickness depending on the time during which the resin film reaches a predetermined thickness.

第7の発明は、基板回転機構の回転による遠心力を利用して基板上に又は基板間に形成された樹脂膜に光を照射して硬化させる紫外線照射機構を備えた装置おいて、前記紫外線照射機構は、前記樹脂膜の光照射面に照射される光を発生する光源と、前記光の照射開始、照射停止を制御する制御装置と、前記光の強度分布の勾配を変える光強度分布変更機構とを備え、前記強度分布変更機構は、前記光の照射を止める前記樹脂膜の設定位置の手前の所定位置まで、前記光の強度分布の勾配が光照射と非照射との境界で前記樹脂膜に凹凸を生じないような緩やかな勾配の光が照射されるように前記基板の回転中心軸線側から外周側に向けて前記光を移行させ、前記所定位置で前記光の強度分布の勾配が大きくなるように変更し、前記光の強度分布は前記設定位置では予め設定された急な勾配となり、前記設定位置近傍での前記光の照射と非照射の境界を鮮明にすることを特徴とする樹脂膜形成装置を提供する。   According to a seventh aspect of the present invention, there is provided an apparatus including an ultraviolet irradiation mechanism for irradiating and curing a resin film formed on or between the substrates using a centrifugal force generated by rotation of the substrate rotation mechanism. The irradiation mechanism includes a light source that generates light irradiated on the light irradiation surface of the resin film, a control device that controls the start and stop of irradiation of the light, and a light intensity distribution change that changes a gradient of the light intensity distribution. And the intensity distribution changing mechanism has a gradient of the light intensity distribution at a boundary between light irradiation and non-irradiation up to a predetermined position before the setting position of the resin film that stops the light irradiation. The light is shifted from the rotation center axis side of the substrate toward the outer peripheral side so that light with a gentle gradient that does not cause unevenness on the film is irradiated, and the gradient of the intensity distribution of the light is at the predetermined position. Change the intensity distribution so that it becomes larger The setting becomes steep gradient preset in position, to provide a resin film forming apparatus characterized by sharpening the light irradiation and the boundary of the non-irradiation at said set position near.

第8の発明は、前記第7の発明において、前記光強度分布変更機構は、前記光源からの光の強度分布の勾配を変えるレンズ機構と、前記レンズ機構を前記樹脂膜に対して垂直上方向に移動させる昇降装置とからなり、前記昇降装置が前記レンズ機構を前記光照射面から離れる方向に移動させるとき、前記光は前記光照射面を回転中心軸線側から外周側に向けて移行し、前記光の照射開始時刻t1から前記光が前記所定位置に到達する時刻t2に、前記レンズ機構が前記光の焦点を絞って前記光の強度分布の勾配が大きくなるように変更することを特徴とする樹脂膜形成装置を提供する。   In an eighth aspect based on the seventh aspect, the light intensity distribution changing mechanism includes: a lens mechanism that changes a gradient of light intensity distribution from the light source; and the lens mechanism that is vertically upward with respect to the resin film. And when the lifting device moves the lens mechanism in a direction away from the light irradiation surface, the light moves from the light irradiation surface toward the outer peripheral side from the rotation central axis side, From the irradiation start time t1 to the time t2 when the light reaches the predetermined position, the lens mechanism changes the focus of the light so as to increase the gradient of the light intensity distribution. A resin film forming apparatus is provided.

第9の発明は、前記第7の発明において、前記昇降装置は、前記円環状光形成部と前記レンズ機構とが前記光照射面から離れるように駆動するとき、前記円環状光形成部と前記レンズ機構とが前記光照射面から離れるに従って、上昇速度を低下させて前記光が照射する照射面の単位面積当たりの光照射エネルギー量を一様にすることを特徴とする樹脂膜形成装置を提供する。   In a ninth aspect based on the seventh aspect, the elevating device drives the annular light forming portion and the lens mechanism when the annular light forming portion and the lens mechanism are driven away from the light irradiation surface. Provided is a resin film forming apparatus characterized in that the amount of light irradiation energy per unit area of the irradiation surface irradiated with the light is made uniform by decreasing the rising speed as the lens mechanism moves away from the light irradiation surface. To do.

第10の発明は、前記第7の発明又は前記第9の発明において、前記円環状光形成部は、前記光源からの光を導光する多数の光ファイバの先端部を備え、その先端部は円環状にされた光ファイバの円環状の先端部になっており、その円環状の先端面から円環状の光が照射されることを特徴とする樹脂膜形成装置を提供する。   In a tenth aspect of the invention according to the seventh aspect or the ninth aspect, the annular light forming portion includes a plurality of optical fiber tip portions that guide light from the light source, and the tip portions are Provided is a resin film forming apparatus characterized in that it is an annular tip portion of an annular optical fiber, and annular light is irradiated from the annular tip surface.

第11の発明は、前記第7の発明において、前記光強度分布変更機構は、前記光源からのスポット状の光の強度分布の勾配を変えるレンズ機構と、前記光源と前記レンズ機構とを前記光照射面に対し平行に移行させる平行移動装置とからなり、前記基板が回転している状態で、前記平行移動装置が前記光源と前記レンズ機構とを前記樹脂膜上を平行に移動させることにより、前記スポット状の光は前記光照射面を前記回転中心軸線側から外周側に向けて移行し、前記スポット状の光の照射開始時刻t1から前記スポット状の光が前記所定位置に到達する時刻t2に、前記レンズ機構が前記スポット状の光の焦点を絞り始めて前記スポット状の光の強度分布の勾配が大きくなるように変更することを特徴とする樹脂膜形成装置を提供する。   In an eleventh aspect based on the seventh aspect, the light intensity distribution changing mechanism includes a lens mechanism that changes a gradient of the intensity distribution of the spot-like light from the light source, and the light source and the lens mechanism are connected to the light source. It consists of a translation device that moves parallel to the irradiation surface, and in a state where the substrate is rotating, the translation device moves the light source and the lens mechanism in parallel on the resin film, The spot-like light moves on the light irradiation surface from the rotation center axis side toward the outer peripheral side, and a time t2 when the spot-like light reaches the predetermined position from the irradiation start time t1 of the spot-like light. In addition, a resin film forming apparatus is provided in which the lens mechanism starts to focus the spot-like light so that the gradient of the intensity distribution of the spot-like light is increased.

第12の発明は、前記第7の発明ないし前記第11の発明のいずれかにおいて、前記レンズ部と前記樹脂膜との間に位置するように、前記レンズ機構に特定波長カットフィルタを備え、その特定波長カットフィルタが特定波長以下の波長の前記光を通過させないことによって、光の色収差による影響を低減して設定位置Yでの光の照射と非照射の境界をより鮮明にすることを特徴とする樹脂膜形成装置を提供する。   In a twelfth invention according to any one of the seventh invention to the eleventh invention, the lens mechanism includes a specific wavelength cut filter so as to be positioned between the lens portion and the resin film, The specific wavelength cut filter prevents the light having a wavelength equal to or less than the specific wavelength from passing through, thereby reducing the influence of light chromatic aberration and making the boundary between light irradiation and non-irradiation at the set position Y clearer. A resin film forming apparatus is provided.

第13の発明は、前記第7の発明において、前記光強度分布変更機構は、前記光源を前記光照射面に対して平行な方向と上下方向に移行させる多方向移動装置を備え、前記基板が回転している状態で、前記多方向移動装置が前記光源を前記樹脂膜に対して平行に前記回転中心軸線側から外周方向に移動させ、前記光が照射開始時刻t1から前記所定位置に到達する時刻t2に、前記多方向移動装置が前記光源を下降させて前記樹脂膜に対して近づけることにより、時刻t2前の前記光よりも光の強度分布の勾配が大きくなるようにすることを特徴とする樹脂膜形成装置を提供する。   In a thirteenth aspect based on the seventh aspect, the light intensity distribution changing mechanism includes a multidirectional moving device that shifts the light source in a direction parallel to the light irradiation surface and in a vertical direction. In the rotating state, the multi-directional moving device moves the light source in the outer peripheral direction from the rotation center axis side in parallel with the resin film, and the light reaches the predetermined position from the irradiation start time t1. At time t2, the multi-directional moving device lowers the light source and brings it closer to the resin film so that the gradient of the light intensity distribution becomes larger than that of the light before time t2. A resin film forming apparatus is provided.

第14の発明は、前記第7の発明において、前記光強度分布変更機構は、前記光源を前記光照射面に対して平行な方向に移行させると共に前記光源の前記光照射面に対する傾倒角度を変更し得る移動・角度変更装置を備え、前記基板が回転している状態で、照射開始時刻t1から前記所定位置に到達する時刻t2まで、前記移動・角度変更装置は前記前記光源を前記樹脂膜に対して所定の角度を傾斜させながら前記樹脂膜と平行に前記回転中心軸側から外周方向に移動させ、前記光照射面に対して所定の角度で勾配して照射される前記光が前記所定位置に到達する時刻t2に、前記移動・角度変更装置が前記光源の角度を前記光照射面に対して垂直方向に変更することにより、時刻t2前の前記光よりも強度分布の勾配が大きな光を前記設定位置まで照射することを特徴とする樹脂膜形成装置を提供する。   In a fourteenth aspect based on the seventh aspect, the light intensity distribution changing mechanism shifts the light source in a direction parallel to the light irradiation surface and changes an inclination angle of the light source with respect to the light irradiation surface. The movement / angle changing device includes a movable / angle changing device, and the moving / angle changing device uses the light source as the resin film from an irradiation start time t1 to a time t2 when the substrate reaches the predetermined position. The light that is moved in the outer peripheral direction from the rotation center axis side in parallel to the resin film while being inclined at a predetermined angle with respect to the light irradiation surface is inclined at a predetermined angle with respect to the light irradiation surface. When the movement / angle changing device changes the angle of the light source in the direction perpendicular to the light irradiation surface at the time t2 when the light reaches the time t2, light having a larger gradient in intensity distribution than the light before the time t2 is obtained. Said setting To provide a resin film forming apparatus characterized by irradiating up location.

前記第1の発明によれば、樹脂膜の回転中心軸線側から設定位置まで光を照射する場合に、遮光マスクを用いることなく、前記樹脂膜の光照射面にほぼ一様な光エネルギー与えて前記樹脂膜を一様に硬化させることができるだけでなく、設定値での光の照射と非照射との境界を狭い領域で鮮明にすることができる。したがって、従来の樹脂膜が波打つことなどによるその平坦性の低下の問題を解決できる。また、照射光が広がらないから、不要な箇所に光が照射されることがなく、樹脂膜の形成ポジションと同一のポジションで光の照射を行うことも可能である。   According to the first aspect of the invention, when light is irradiated from the rotation center axis side of the resin film to the set position, substantially uniform light energy is given to the light irradiation surface of the resin film without using a light shielding mask. Not only can the resin film be cured uniformly, but the boundary between light irradiation and non-irradiation at a set value can be made clear in a narrow region. Therefore, it is possible to solve the problem of deterioration in flatness due to the undulation of the conventional resin film. Further, since the irradiation light does not spread, it is possible to irradiate light at the same position as the resin film formation position without irradiating light to unnecessary portions.

前記第2の発明によれば、前記第1の発明で得られる効果に加えて、少なくとも光の強度分布の勾配が樹脂膜の設定位置Yで予め設定された急な勾配になればよいので、緩やかな勾配の強度分布の光から設定された急な勾配の強度分布の光まで変更する時間を制御、例えば最短にすることによって、緩やかな勾配の光の照射時間を長くすることができ、樹脂膜の平坦化に影響することないので、均一な膜厚で平坦性のより優れた樹脂膜を形成することができる。   According to the second aspect of the invention, in addition to the effect obtained in the first aspect of the invention, at least the gradient of the light intensity distribution only needs to be a steep gradient set in advance at the setting position Y of the resin film. By controlling the time to change from light with a light intensity distribution with a gentle gradient to light with a light intensity distribution with a steep gradient, for example, by making it the shortest, the irradiation time of light with a gentle gradient can be lengthened, and the resin Since it does not affect the flattening of the film, it is possible to form a resin film having a uniform film thickness and better flatness.

前記第3の発明又は前記第4の発明によれば、前記発明のいずれかで得られる効果の他に、強度分布の勾配が緩やかな照射光の外周側への移行に伴う照度の変化を補償して照射強度を一様にできるので、光の有効な照射時間を短くでき、樹脂膜の平坦性をより向上できると共に、基板の反りを抑制できる。   According to the third invention or the fourth invention, in addition to the effects obtained in any of the inventions, compensation is made for a change in illuminance associated with the transition of irradiation light having a gentle intensity distribution gradient toward the outer periphery. Since the irradiation intensity can be made uniform, the effective irradiation time of light can be shortened, the flatness of the resin film can be further improved, and the warpage of the substrate can be suppressed.

前記第5の発明によれば、光マスクなどを用いることなく、平坦性の優れた樹脂膜を有する品質の高い光ディスク基板を得ることができる。また、照射光が不要に広がらないから、不要な箇所に光が照射されることがなく、樹脂膜の形成した基板回転機構で光の照射を行うことも可能である。   According to the fifth aspect of the invention, a high-quality optical disk substrate having a resin film with excellent flatness can be obtained without using an optical mask or the like. Further, since the irradiation light does not spread unnecessarily, light is not irradiated to unnecessary portions, and it is possible to irradiate light with a substrate rotation mechanism formed with a resin film.

前記第6の発明によれば、前記第1の発明ないし前記第5の発明で得られる効果の他に、光の外周側への移行速度を、樹脂膜が所定の膜厚になる箇所が内周側から外周側に移行していく速度とほぼ等しくしているので、光の照射に起因する樹脂膜の平坦性の低下、及び基板の反りの問題を解決できる。   According to the sixth aspect of the invention, in addition to the effects obtained in the first to fifth aspects of the invention, the speed at which the light is transferred to the outer peripheral side is set at the location where the resin film has a predetermined thickness. Since the speed is almost equal to the speed of transition from the peripheral side to the outer peripheral side, it is possible to solve the problems of deterioration of the flatness of the resin film and warping of the substrate caused by light irradiation.

前記第7の発明によれば、遮光マスクを用いることなく、基板の所定外周部分に光を照射せずにそれ以外の面域に良好に光を照射でき、しかも光の照射と非照射との境界が鮮明な装置を提供できる。したがって、樹脂膜の平坦性の低下の問題を解決できる。   According to the seventh aspect of the present invention, it is possible to satisfactorily irradiate light to other surface areas without irradiating light to a predetermined outer peripheral portion of the substrate without using a light shielding mask. A device having a clear boundary can be provided. Therefore, the problem of the flatness of the resin film can be solved.

前記第8の発明によれば、前記第7の発明で得られる効果の他に、レンズ機構によって円環状の光の焦点を絞って強度分布の勾配を変更しているので、容易に所望の勾配を有する強度分布を得ることができ、円環状の光を照射することによる影響を従来のような弊害を実質的に生じない程度まで低下させることができる。   According to the eighth invention, in addition to the effects obtained in the seventh invention, the gradient of the intensity distribution is changed by focusing the annular light by the lens mechanism, so that the desired gradient can be easily obtained. An intensity distribution having the above can be obtained, and the effect of irradiating the annular light can be reduced to such an extent that the conventional adverse effects are not substantially caused.

前記第9の発明によれば、前記第7の発明で得られる効果の他に、光照射面に照射される光のエネルギーが一様になるように光を制御しているので、より一層、樹脂膜の平坦性を向上できる。   According to the ninth invention, in addition to the effects obtained in the seventh invention, the light is controlled so that the energy of the light applied to the light irradiation surface is uniform. The flatness of the resin film can be improved.

前記第10の発明によれば、前記第7の発明又は前記第9の発明によって得られる効果の他に、光ファイバの円環状の先端面から円環状の光を照射するので、光照射ヘッドを小型軽量化でき、また、放熱が小さいので冷却装置が不要であるなど、更に小型軽量化ができるので、光照射ヘッドの駆動力を小さくでき、駆動速度を高速化できる。   According to the tenth aspect, in addition to the effects obtained by the seventh aspect or the ninth aspect, the annular light is emitted from the annular tip surface of the optical fiber. Since the size and weight can be reduced, and since the heat radiation is small, a cooling device is not required and the size and weight can be further reduced. Therefore, the driving force of the light irradiation head can be reduced and the driving speed can be increased.

前記第11の発明によれば、前記第7の発明によって得られる効果の他に、レンズ機構によってスポット状の光の焦点を絞って強度分布の勾配を変更しているので、容易に所望の勾配を有する強度分布を得ることができ、スポット状の光を照射することによる影響を従来のような弊害を実質的に生じない程度まで低下させることができる。   According to the eleventh aspect of the invention, in addition to the effects obtained by the seventh aspect, the gradient of the intensity distribution is changed by focusing the spot-like light by the lens mechanism. The intensity distribution having the above can be obtained, and the effect of irradiating the spot-like light can be reduced to a level that does not substantially cause the conventional adverse effects.

前記第12の発明によれば、前記第7の発明ないし前記第11の発明のいずれかによって得られる効果の他に、色収差の影響を低減できるので、設定位置での光の照射と非照射の境界をより鮮明にすることができる。   According to the twelfth invention, in addition to the effects obtained by any of the seventh to eleventh inventions, the influence of chromatic aberration can be reduced. The boundary can be made clearer.

前記第13の発明及び第14の発明によれば、前記第7の発明によって得られる効果の他に、レンズ機構を省略することが可能であるので、経済性に優れた装置を提供できる。また、小型で軽量の装置を提供できる。   According to the thirteenth and fourteenth inventions, in addition to the effects obtained by the seventh invention, it is possible to omit the lens mechanism, so that it is possible to provide an apparatus that is excellent in economic efficiency. In addition, a small and lightweight device can be provided.

本発明が適用される対象物は、ブルーレイディスク(Blu−ray Disc)、又はHD−DVD(High Definition DVD)と称される高記録密度の光ディスクに限られるわけではないが、特にこれら高記録密度の光ディスクにあっては、カバー層となる光透過性の樹脂膜、及び接着剤層も兼ねる透明な樹脂膜の厚みの不均一性は大きな問題になる。ブルーレイディスクでは、接着剤層とシートとからなる光透過保護層、あるいは光の透過特性に優れた樹脂膜だけからなる光透過保護層の厚みが0.1mmと非常に薄いので、接着剤層や前記樹脂膜の厚みの不均一性及び基板の反りはディスクの品質に大きな影響を及ぼし、高記録密度の光ディスクの品質を左右する。また、高記録密度の別の光ディスクであるHD−DVDにあっては、貼り合わされる双方の基板が0.6mmの厚みであって、通常のDVDと同じであるが、それらを貼り合わせる接着剤層の膜厚を十分に高い精度で均一にしなければならず、いずれにせよ接着剤層や樹脂膜の厚みの均一性及び反りの低減が高記録密度の光ディスクの品質を大きく左右する。また、通常のDVD、コンパクトディスクなど他の種々の基板に形成される樹脂膜の膜厚をより一層均一化すると共に、基板の反りを低減することが望まれる。   An object to which the present invention is applied is not limited to a high recording density optical disc called a Blu-ray Disc (HD) or HD DVD (High Definition DVD). In such an optical disc, the non-uniformity in the thickness of the light-transmitting resin film serving as the cover layer and the transparent resin film also serving as the adhesive layer is a serious problem. In the Blu-ray Disc, the thickness of the light transmission protective layer consisting of an adhesive layer and a sheet or the light transmission protective layer consisting only of a resin film having excellent light transmission characteristics is as thin as 0.1 mm. The non-uniformity of the thickness of the resin film and the warp of the substrate have a great influence on the quality of the disc, and influence the quality of the optical disc having a high recording density. In addition, in the case of HD-DVD, which is another optical disk with high recording density, both substrates to be bonded are 0.6 mm in thickness and are the same as ordinary DVDs. The film thickness of the layer must be uniform with sufficiently high accuracy, and in any case, the uniformity of the thickness of the adhesive layer and the resin film and the reduction of the warpage greatly affect the quality of the optical disk having a high recording density. In addition, it is desired to make the film thickness of the resin film formed on various other substrates such as ordinary DVDs and compact discs more uniform and reduce the warpage of the substrate.

先ず、実施形態を説明する前に本発明の基本について図1、図2により説明する。本発明はブルーレイディスクなどのような基板1の外周端の手前の設定位置Yまで光を照射し、設定位置Yで光の照射を少なくとも一旦止めるものである。しかし、このように基板1の外周端の手前の設定位置Yまでで光の照射を止める場合には、前に述べたように、樹脂膜の波うちを防ぐために光照射と非照射との境界で前記樹脂膜に凹凸を生じないような緩やかな強度分布を有する光(光の照射範囲の広い)を設定位置まで照射するのが好ましいが、このような勾配が緩やかな強度分布を有する光が設定位置Yを越えないように照射するのは難しく、また、できるだけ光が設定位置Yを越えないように照射すると、設定位置Yの手前での光の照射と非照射との中間の領域、つまり硬化の進み方の異なる硬化が不十分な領域がかなり広くなり、後の工程によってこの中間の領域が樹脂膜の平坦性の低下を招来するという問題がある。したがって、本発明は、高速回転によって形成された樹脂膜2の設定位置Yの手前の所定位置Zまで、光照射と非照射との境界で樹脂膜2に凹凸を生じないような勾配が緩やかな強度分布を有する光を照射し、その光の強度分布を所定位置Zで制御し始め、光が設定位置Yで消滅するときには少なくとも予め決められた急な勾配の強度分布を有するように光を制御するものである。   First, the basics of the present invention will be described with reference to FIGS. In the present invention, light is irradiated to a set position Y just before the outer peripheral edge of the substrate 1 such as a Blu-ray disc, and the light irradiation is stopped at least once at the set position Y. However, in the case where the light irradiation is stopped up to the set position Y just before the outer peripheral edge of the substrate 1 as described above, the boundary between the light irradiation and the non-irradiation in order to prevent the wave of the resin film as described above. It is preferable to irradiate light having a gentle intensity distribution (a wide light irradiation range) that does not cause unevenness in the resin film to a set position. It is difficult to irradiate so as not to exceed the set position Y, and if the light is irradiated so as not to exceed the set position Y as much as possible, an intermediate region between light irradiation and non-irradiation before the set position Y, that is, There is a problem that the region where the curing is different and the region where the curing is insufficient is considerably widened, and the intermediate region causes a decrease in the flatness of the resin film by a subsequent process. Therefore, the present invention has a gentle gradient that does not cause unevenness in the resin film 2 at the boundary between light irradiation and non-irradiation up to a predetermined position Z before the set position Y of the resin film 2 formed by high-speed rotation. Irradiates light having an intensity distribution, starts controlling the intensity distribution of the light at a predetermined position Z, and controls the light to have at least a predetermined steep gradient intensity distribution when the light disappears at the set position Y To do.

この方法によれば、設定位置Yでの光の照射と非照射との境界が鮮明になり、樹脂膜の硬化と非硬化の中間の領域が狭くなるので、設定位置Yよりも外周側の樹脂膜に悪影響を与えることなく樹脂膜の平坦性を向上させることができる。つまり、光の照射と非照射との境界の不鮮明な中間の領域は一部の樹脂が硬化傾向を呈する状態、つまり硬化が不十分な状態にあり、次の高速回転処理時にその硬化の不十分な領域の樹脂膜が遠心力によって外周側に移動するために薄くなり、樹脂膜の平坦性を低下させるので、光の照射と非照射との境界の不鮮明な領域が狭いほど樹脂膜の平坦性の向上にとっては好ましい。あるいは前記不鮮明な領域が設定位置Yの外周側に延びていれば、後の高速回転処理によってもその領域は平坦にならず、いずれにせよ平坦性は低下する。なお、硬化とは、高速回転による遠心力で、樹脂膜が外方向に部分的にも移動しない程度まで、樹脂が固化していることを言う。   According to this method, the boundary between light irradiation and non-irradiation at the setting position Y becomes clear, and the intermediate region between the curing and non-curing of the resin film is narrowed. The flatness of the resin film can be improved without adversely affecting the film. In other words, in the middle region where the boundary between light irradiation and non-irradiation is unclear, some resins tend to cure, that is, the curing is insufficient, and the curing is insufficient during the next high-speed rotation process. Since the resin film in a certain area moves to the outer peripheral side due to centrifugal force, it becomes thin and lowers the flatness of the resin film. Therefore, the flatter the area where the boundary between light irradiation and non-irradiation is unclear, the flatter the resin film It is preferable for improvement. Or if the said unclear area | region has extended to the outer peripheral side of the setting position Y, the area | region will not become flat also by a subsequent high-speed rotation process, and flatness will fall anyway. The term “curing” means that the resin is solidified to such an extent that the resin film does not move partially in the outward direction by centrifugal force due to high-speed rotation.

前記液状物質として紫外線硬化型の樹脂を用いる場合には、ここで用いる光は紫外線である。第1の光U1は、例えば図2に示すように、光エネルギー(強度)が緩やかにピーク値まで上昇し、ピーク値から比較的緩やかに下降する照射範囲の広い山形の強度分布(勾配の緩やかな)を有する光であり、光の照射と非照射との境界の強度が緩やかに変化する。つまり、第1の光U1が円環状の光又は円形のスポット状の光であるとき、円形状の基板1の半径方向の光幅の強度分布の勾配が光照射と非照射との境界で樹脂膜2に凹凸を生じないような緩やかに変化する光である。したがって、光照射面2Aでの第1の光U1における基板1の半径方向の光幅は後述する第2の光U2の光幅よりも大きい。   When an ultraviolet curable resin is used as the liquid material, the light used here is ultraviolet light. For example, as shown in FIG. 2, the first light U1 has a broad mountain-shaped intensity distribution (gradient slope) in which the light energy (intensity) gradually rises to the peak value and falls relatively slowly from the peak value. The intensity of the boundary between light irradiation and non-irradiation changes gently. That is, when the first light U1 is an annular light or a circular spot-like light, the gradient of the intensity distribution of the light width in the radial direction of the circular substrate 1 is resin at the boundary between light irradiation and non-irradiation. The light gradually changes so as not to cause unevenness in the film 2. Therefore, the light width in the radial direction of the substrate 1 in the first light U1 on the light irradiation surface 2A is larger than the light width of the second light U2 described later.

ここで、第1の光U1は緩やかな山形の強度分布を有する光であるという表現は、後述する第2の光U2のシャープな山形の強度分布の立上りの勾配、又は立上りと立下りの勾配と対比して第1の光U1の強度分布の立上りの勾配、又は立上りと立下りの勾配が緩やかであることをいう。したがって、第1の光U1は不図示の光源からの光そのものであっても良いし、またその光を拡張した光、あるいは光源からの光を縮小、例えば焦点を絞った光であっても良いが、光照射と非照射との境界で樹脂膜2に凹凸を生じないような緩やかに変化する光である。ここで、光の強度分布の立上り及び立下りの勾配は互いにほぼ同じでも、異なってもどちらでもよいが、光の強度分布の立上りが樹脂膜の硬化収縮の変化率に影響する。つまり、光の強度分布の立下りが通過するときには既に樹脂膜は硬化さており、光の強度分布の立下りは樹脂膜の硬化収縮の変化率に影響しないので、光の強度分布の立下りの勾配は実質的に問題にならない。なお、光の強度分布の立上りは基板1に照射される光の強度分布の外周側(光の進行方向)の勾配、立下りは基板1の中心軸線X側の勾配をそれぞれ言う。   Here, the expression that the first light U1 is a light having a gentle mountain-shaped intensity distribution means that the rising gradient of the sharp mountain-shaped intensity distribution of the second light U2, which will be described later, or the rising and falling gradients. In contrast, it means that the rising gradient or rising and falling gradient of the intensity distribution of the first light U1 is gentle. Therefore, the first light U1 may be light from a light source (not shown), or may be light obtained by expanding the light or reducing light from the light source, for example, focused light. However, the light gradually changes so as not to cause unevenness in the resin film 2 at the boundary between light irradiation and non-irradiation. Here, the rising and falling gradients of the light intensity distribution may be substantially the same or different from each other, but the rising of the light intensity distribution affects the rate of change in curing shrinkage of the resin film. In other words, the resin film is already cured when the falling edge of the light intensity distribution passes, and the falling edge of the light intensity distribution does not affect the rate of change in the curing shrinkage of the resin film. Gradient is not really a problem. The rising of the light intensity distribution refers to the gradient on the outer peripheral side (light traveling direction) of the light intensity distribution applied to the substrate 1, and the falling refers to the gradient on the central axis X side of the substrate 1.

高速回転により樹脂が展延されて樹脂膜2が基板1上に形成されている期間又は形成された後に、図1(A)に示すように、第1の光U1は樹脂膜2の内周端2Bに照射される。第1の光U1の照射時間は、樹脂膜2の内周端2Bが所定の膜厚になる時刻t1(以下では光照射開始時刻t1という。)から第1の設定時間T1が経過する時刻t2までの間であり、第1の光U1は第1の設定時間T1の間に内周端2Bから光照射面2Aを設定位置Yの手前の所定位置Zまで移行する。つまり、第1の光U1は時刻t2に所定位置Zに到達する。この第1の光U1が移行する過程で、どの照射箇所でも第1の光U1の強度分布に従って光の強度が変化するので、光の強度が一様になるように前記第1の光が照射する照射面の単位面積当たりの光照射エネルギー量を一様にすることが好ましい。   After the resin is spread by high-speed rotation and the resin film 2 is formed on the substrate 1 or after it is formed, the first light U1 is transmitted to the inner periphery of the resin film 2 as shown in FIG. The end 2B is irradiated. The irradiation time of the first light U1 is the time t2 when the first set time T1 elapses from the time t1 when the inner peripheral edge 2B of the resin film 2 reaches a predetermined film thickness (hereinafter referred to as the light irradiation start time t1). The first light U1 moves from the inner peripheral end 2B to the predetermined position Z before the set position Y from the inner peripheral end 2B during the first set time T1. That is, the first light U1 reaches the predetermined position Z at time t2. In the process in which the first light U1 moves, the intensity of the light changes according to the intensity distribution of the first light U1 at any irradiation location. Therefore, the first light is irradiated so that the intensity of the light becomes uniform. It is preferable that the amount of light irradiation energy per unit area of the irradiated surface to be made uniform.

前述したように、スピンコート法によって樹脂膜2を形成するときには外周部で膜厚が厚くなる肉厚部分2Cが生じるので、設定位置Yは肉厚部分2Cの内周側寸前の位置である。第1の光U1の移行速度は一定、又は予め決めた速度プログラムで変化する速度であるので、第1の光U1が樹脂膜2の内周端2Bから設定位置Yの手前の所定位置Zまで移行する所要時間は予め正確に求めることができ、その所要時間が第1の設定時間T1(時刻t1〜t2)である。この第1の設定時間T1は後述する第2の設定時間T2の長さに左右される。ここで、第1の光U1はその半径方向の強度分布の勾配が緩やかに変化する光であり、光の照射と非照射との境界が比較的不鮮明な状態を呈するので、第1の光U1が外周側に移行する過程で基板1の回転により微視的に見て不連続的に照射されても、従来のように塗膜の平坦性の低下、反りあるいは外観上の問題が生じることはない。   As described above, when the resin film 2 is formed by the spin coating method, the thick portion 2C having a thick film thickness is generated at the outer peripheral portion. Therefore, the setting position Y is a position immediately before the inner peripheral side of the thick portion 2C. Since the transition speed of the first light U1 is constant or changes at a predetermined speed program, the first light U1 travels from the inner peripheral end 2B of the resin film 2 to the predetermined position Z before the set position Y. The required time to shift can be accurately obtained in advance, and the required time is the first set time T1 (time t1 to t2). The first set time T1 depends on the length of a second set time T2 described later. Here, the first light U1 is light in which the gradient of the intensity distribution in the radial direction changes gently, and the boundary between light irradiation and non-irradiation exhibits a relatively unclear state, so the first light U1. In the process of moving to the outer peripheral side, even if it is irradiated discontinuously as viewed microscopically by the rotation of the substrate 1, the flatness of the coating film, the warp or the appearance problem may occur as in the past. Absent.

第2の光U2は、図2に示すように、第1の光U1に比べて強度分布が急な勾配の光である。第2の光U2は、設定位置Yでの光の照射と非照射との境界が鮮明になる程度の勾配を有する強度分布に設定されている。つまり、第2の光U2は第1の光U1の強度分布を第2の設定時間T2(t2〜t3)以内に設定強度分布まで変化させる光であり、第2の設定時間T2内に強度分布の勾配が急勾配になって行く光である。したがって、光の強度分布の変更速度が速ければ第2の設定時間T2は短く、その分だけ第1の設定時間T1を長くすることができる。他方、強度分布の変更速度が遅ければ第2の設定時間T2は長くなり、その分だけ第1の設定時間T1が短くなる。第2の光U2は樹脂膜2が肉厚部分2Cの寸前の設定位置Yまで照射され、肉厚部分2Cには実質的に照射されないで消滅する。   As shown in FIG. 2, the second light U2 is light having a steep gradient in intensity distribution compared to the first light U1. The second light U2 is set to have an intensity distribution having a gradient such that the boundary between light irradiation and non-irradiation at the setting position Y becomes clear. That is, the second light U2 is light that changes the intensity distribution of the first light U1 to the set intensity distribution within the second set time T2 (t2 to t3), and the intensity distribution within the second set time T2. It is light that the gradient of becomes steep. Therefore, if the change speed of the light intensity distribution is fast, the second set time T2 is short, and the first set time T1 can be lengthened accordingly. On the other hand, if the speed of changing the intensity distribution is slow, the second set time T2 becomes longer, and the first set time T1 becomes shorter accordingly. The second light U2 is irradiated to the setting position Y just before the thick portion 2C of the resin film 2, and disappears without being substantially irradiated to the thick portion 2C.

所定位置Zから設定位置Yまでの僅かな距離の面域は第1の光U1よりも勾配が急な第2の光U2が照射されるので、所定位置Zまでの第1の光U1の単位面積当たりの光エネルギー量とほぼ等しくできるので、基板1の照射面全面の光エネルギーをほぼ一様にすることができる。また、設定位置Yでは第2の光U2の照射と非照射との境界が鮮明であるので、樹脂膜2が肉厚部分2Cの寸前まで硬化され、肉厚部分2Cは未硬化のままで残される。このことは、従来のように光の照射を遮るマスク部材を備えることなく、光の照射が不要な領域に光を照射することなく、選択的に所望の強度分布の光を照射することを可能にする。樹脂膜2の未硬化の肉厚部分2Cはそのままに放置されるか、又は未硬化の状態の肉厚部分2Cに遠心力を与えて平坦化するための付加的なスピン処理が行われた後に光が照射され、硬化される。   Since the surface area of a slight distance from the predetermined position Z to the set position Y is irradiated with the second light U2 having a steeper slope than the first light U1, the unit of the first light U1 up to the predetermined position Z Since the amount of light energy per area can be made substantially equal, the light energy of the entire irradiated surface of the substrate 1 can be made substantially uniform. Further, since the boundary between the irradiation of the second light U2 and the non-irradiation is clear at the set position Y, the resin film 2 is cured to the point immediately before the thick part 2C, and the thick part 2C is left uncured. It is. This makes it possible to selectively irradiate light having a desired intensity distribution without irradiating light to an area where light irradiation is unnecessary, without providing a mask member that blocks light irradiation as in the past. To. After the uncured thick portion 2C of the resin film 2 is left as it is or after an additional spin process is performed for applying a centrifugal force to the uncured thick portion 2C to flatten it. Light is irradiated and cured.

[実施形態1]
図1ないし図5によって本発明の実施形態1に係る樹脂膜の形成方法及び形成装置を説明する。図3は本発明の実施形態1に係る樹脂膜の形成装置を説明するための図であり、図4は光の照射を説明するための図である。図5は基板のスピンプログラムの一例であるスピンパターンSPを示す図である。この実施形態1では、光照射と非照射との境界で樹脂膜2に凹凸を生じないような緩やかな勾配の強度分布を有する円環状の第1の光線U1が、その照射面域の光エネルギーの時間積分値(総光量)がほぼ均一になるように、樹脂膜の展延速度に対応して順次、円環状の光線U1の内径と外径とを大きくしていく。基板1の光照射面の全面にほぼ均一の光エネルギー量を照射することによって、基板の内周側から硬化させてほぼ一定の厚みに確定して行く。そして、ほぼ所定の厚みになった箇所の液状物質がその後の高速回転により放射外方向に移動するのを防ぐことによって、基板に反りを発生することなく、基板全面における液状物質の膜厚の均一化及び樹脂膜の平坦化を図っている。なお、基板1は1層以上の信号記録層を有するディスク基板、あるいはガラス基板などであるが、ここでは高記録密度の光ディスクなどのディスク基板を基板1としている。
[Embodiment 1]
A method and apparatus for forming a resin film according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 3 is a view for explaining a resin film forming apparatus according to Embodiment 1 of the present invention, and FIG. 4 is a view for explaining light irradiation. FIG. 5 is a diagram showing a spin pattern SP as an example of a substrate spin program. In the first embodiment, the annular first light beam U1 having a gentle intensity distribution that does not cause unevenness in the resin film 2 at the boundary between light irradiation and non-irradiation is the light energy in the irradiation surface area. The inner diameter and the outer diameter of the annular light beam U1 are sequentially increased in accordance with the spreading speed of the resin film so that the time integral value (total light amount) of the ring is substantially uniform. By irradiating the entire light irradiation surface of the substrate 1 with a substantially uniform amount of light energy, the substrate 1 is cured from the inner peripheral side of the substrate and is determined to have a substantially constant thickness. Further, by preventing the liquid material at a location having a predetermined thickness from moving radially outward due to subsequent high-speed rotation, the film thickness of the liquid material is uniform over the entire surface of the substrate without causing warpage. And flattening the resin film. The substrate 1 is a disk substrate having one or more signal recording layers, a glass substrate, or the like. Here, a disk substrate such as a high recording density optical disk is used as the substrate 1.

先ず、図3によってこの樹脂膜形成装置の概略を説明すると、この樹脂膜の形成装置は選択されたスピンパターンに従って回転中心軸線Xを中心に基板1を回転させる基板回転機構3、基板1に円環状の紫外線を照射する紫外線照射機構4、紫外線照射機構4からの円環状の紫外線から所定の焦点の第1の光U1を形成し、その第1の光U1の焦点を変更して第2の光U2を形成するレンズ機構5、紫外線照射機構4の一部分とレンズ機構5とからなる光照射ヘッド6を上下に移動させる昇降装置7、及びこれらを制御する制御装置8を備える。基板回転機構3は一般的にはスピンナと称されるものであって、制御装置8のメモリ部(不図示)からの選択されたスピンパターン(例えば、図5の曲線SP)に従って回転軸3Aを回転させ得る回転駆動部3Bと、回転軸3Aの先端に固定されている基板受台3Cと、液状物質が周囲に飛散するのを防ぐカバー部材3Dとから概略なる。   First, the outline of this resin film forming apparatus will be described with reference to FIG. 3. This resin film forming apparatus is a substrate rotating mechanism 3 that rotates the substrate 1 around the rotation center axis X according to the selected spin pattern. An ultraviolet irradiation mechanism 4 for irradiating annular ultraviolet rays, a first light U1 having a predetermined focal point is formed from the annular ultraviolet rays from the ultraviolet irradiation mechanism 4, and the focal point of the first light U1 is changed to change the second light U1. A lens mechanism 5 that forms the light U2, a lifting / lowering device 7 that moves a light irradiation head 6 including a part of the ultraviolet irradiation mechanism 4 and the lens mechanism 5 up and down, and a control device 8 that controls these devices are provided. The substrate rotation mechanism 3 is generally called a spinner, and the rotation axis 3A is moved according to a selected spin pattern (for example, a curve SP in FIG. 5) from a memory unit (not shown) of the control device 8. The rotation driving unit 3B that can be rotated, the substrate receiving table 3C fixed to the tip of the rotating shaft 3A, and the cover member 3D that prevents the liquid material from scattering to the surroundings are schematically illustrated.

図示していないが、一例として、一般的な構成の回転機構と液状物質供給機構とが別の位置に備えられており、その液状物質供給装置の吐出ノズルが紫外線硬化型樹脂のような液状物質を円環状に基板1に供給する。円環状に液状物質が供給された基板1は、不図示の搬送機構によって基板受台3C上に移載される。あるいは別の例として、図示しない図面表裏方向に旋回可能な吐出ノズルが基板受台3C上に載置された基板1に円環状に液状物質を供給しても勿論よい。この場合、紫外線照射機構4が動作する前に不図示の前記吐出ノズルは旋回して退避する。   Although not shown, as an example, a rotation mechanism and a liquid substance supply mechanism having a general configuration are provided at different positions, and the discharge nozzle of the liquid substance supply apparatus is a liquid substance such as an ultraviolet curable resin. Is supplied to the substrate 1 in an annular shape. The substrate 1 to which the liquid material is supplied in an annular shape is transferred onto the substrate cradle 3C by a transport mechanism (not shown). Alternatively, as another example, it is of course possible to supply a liquid substance in an annular shape to a substrate 1 on which a discharge nozzle (not shown) capable of turning in the front and back direction of the drawing is placed on the substrate support 3C. In this case, before the ultraviolet irradiation mechanism 4 operates, the discharge nozzle (not shown) turns and retreats.

紫外線照射機構4は、紫外線を出力する紫外線光源4Aと、多数の光ファイバを束ねてなる光ファイバケーブル4Bと、光ファイバケーブル4Bからの紫外線を円環状の紫外線(以下、環状光と言う。)にする円環状光形成部4Cとから概略なる。円環状光形成部4Cは、図4(A)に示すように、光放出面側に透明な材料からなる円環状部4C1を備え、円環状部4C1に光ファイバ4Bの先端部分が円環状に配置されている。光ファイバケーブル4Bは、その先端部分が円環状部4C1においてほぼ円錐状又は紡錘状になるように分けられ、光ファイバ4B一本一本の先端がほぼ同一平面に位置するように円環状部4C1に円環状に埋設されている。ここで、光ファイバケーブル4Bの先端部分と円環状光形成部4Cは光照射ヘッド6の一部分を構成する。   The ultraviolet irradiation mechanism 4 includes an ultraviolet light source 4A that outputs ultraviolet light, an optical fiber cable 4B in which a large number of optical fibers are bundled, and ultraviolet light from the optical fiber cable 4B that is annular ultraviolet light (hereinafter referred to as annular light). It is roughly composed of an annular light forming portion 4C. As shown in FIG. 4A, the annular light forming portion 4C includes an annular portion 4C1 made of a transparent material on the light emitting surface side, and the tip portion of the optical fiber 4B is annularly formed on the annular portion 4C1. Has been placed. The optical fiber cable 4B is divided so that the tip portion thereof is substantially conical or spindle-shaped at the annular portion 4C1, and the annular portion 4C1 is arranged so that the tips of each optical fiber 4B are located on substantially the same plane. Embedded in an annular shape. Here, the tip portion of the optical fiber cable 4B and the annular light forming portion 4C constitute a part of the light irradiation head 6.

レンズ機構5は、円環状光形成部4Cからの環状光を回転中心軸線Xに対して所定の角度φとなるように外周側に方向付けるレンズ部5Aと、円環状光形成部4Cとレンズ部5Aの間隔を変えて環状光の焦点を変える焦点変更部5Bとから概略なる。レンズ機構5は、一例では円環状光形成部4Cにおける光ファイバ4Bの円環状先端面から放出される円環状の紫外線の散乱を抑制し、環状光を所定幅に保持して基板1に照射する働きを行う。レンズ部5Aは、一般的に用いられている複数個のレンズを組み合わせたレンズ構造であり、前記働きを同時に行えるようにレンズ間距離などを調整できるレンズ構造のものがよいが、種々の形状のレンズを組み合わせたもの、例えば一般的な光学式カメラに用いられているズームレンズ構造など、種々のレンズ構造を用いることができる。この実施形態では、基板1が光ディスク基板であるので、レンズ部5Aと基板1との間の距離は10〜500mmの範囲内にあるのが環状光の効率などの面から好ましい。   The lens mechanism 5 includes a lens portion 5A for directing the annular light from the annular light forming portion 4C toward the outer peripheral side at a predetermined angle φ with respect to the rotation center axis X, and the annular light forming portion 4C and the lens portion. The focus change unit 5B changes the focal point of the annular light by changing the interval 5A. In one example, the lens mechanism 5 suppresses scattering of annular ultraviolet light emitted from the annular front end surface of the optical fiber 4B in the annular light forming portion 4C, and irradiates the substrate 1 with the annular light held at a predetermined width. Do the work. The lens portion 5A has a lens structure in which a plurality of commonly used lenses are combined, and a lens structure that can adjust the inter-lens distance so that the above functions can be performed at the same time is preferable. Various lens structures such as a combination of lenses, for example, a zoom lens structure used in a general optical camera can be used. In this embodiment, since the substrate 1 is an optical disk substrate, the distance between the lens portion 5A and the substrate 1 is preferably in the range of 10 to 500 mm from the viewpoint of the efficiency of the annular light.

環状光は回転中心軸線Xに対して所定の角度φ(例えば、5〜30度)で円錐状に勾配している。光照射ヘッド6が設定最下限位置、つまりレンズ部5Aが設定最下限位置(例えば、レンズ部5Aの下面が基板1から10mm上方の位置)にあるときに、環状光である第1の光U1は基板1上に展延されている樹脂膜2の内周部を照射できるように円環状の第1の光U1の内径は決められている。例えば、図4(B)に示すように樹脂膜2の内径をDとすれば、第1の光U1の内径は樹脂膜2の内径Dよりもある程度小さくなければならない。したがって、昇降装置7によって光照射ヘッド6を最下限位置から上方に移動させることにより、樹脂膜2の内周部分を照射していた第1の光U1は基板1の外周方向に向けて移行する。なお、図4(B)に示すCPは基板受台3Cの中央に位置するセンターピンであり、基板1の位置決めなどを行う。   The annular light is inclined in a conical shape at a predetermined angle φ (for example, 5 to 30 degrees) with respect to the rotation center axis X. When the light irradiation head 6 is at the set lower limit position, that is, the lens unit 5A is at the set lower limit position (for example, the lower surface of the lens unit 5A is 10 mm above the substrate 1), the first light U1 that is annular light The inner diameter of the annular first light U1 is determined so that the inner peripheral portion of the resin film 2 spread on the substrate 1 can be irradiated. For example, if the inner diameter of the resin film 2 is D as shown in FIG. 4B, the inner diameter of the first light U 1 must be somewhat smaller than the inner diameter D of the resin film 2. Therefore, by moving the light irradiation head 6 upward from the lowest position by the lifting device 7, the first light U <b> 1 that has irradiated the inner peripheral portion of the resin film 2 moves toward the outer peripheral direction of the substrate 1. . Note that CP shown in FIG. 4B is a center pin located at the center of the substrate cradle 3C, and performs positioning of the substrate 1 and the like.

昇降装置7は、図示しないモータやそのモータの回転力を直線駆動力に変換する直線駆動部材などからなる構造のものであり、光照射ヘッド6を昇降させる。光照射ヘッド6の上昇速度は、レンズ機構5から照射される環状光の内径と外径の広がり速度を決めるものであり、後で詳述する。ここで、レンズ機構5と昇降装置7とは、光の強度分布の勾配を変える光強度分布変更機構の一例を構成する。   The elevating device 7 has a structure including a motor (not shown) and a linear driving member that converts the rotational force of the motor into a linear driving force, and moves the light irradiation head 6 up and down. The rising speed of the light irradiation head 6 determines the spreading speed of the inner and outer diameters of the annular light irradiated from the lens mechanism 5 and will be described in detail later. Here, the lens mechanism 5 and the elevating device 7 constitute an example of a light intensity distribution changing mechanism that changes the gradient of the light intensity distribution.

制御装置8は、樹脂膜2を形成するための液状物質の種類、粘度など種々の条件に対して所望の膜厚が得られるスピンパターン(一例として、図5の曲線SPで示す。)をその不図示のメモリに複数格納している。制御装置8は、回転駆動部3Bの回転駆動を制御する回転制御機能と、紫外線光源4Aのオンオフなどを制御する光制御機能と、樹脂膜の硬化特性や紫外線光源4Aが出力する光の照射強度などの諸条件に対して基板1の全面にほぼ均一な光エネルギーを照射する上昇速度プログラム(一例として、図5の速度パターンVPで示す。)に従って光照射ヘッド6の上昇速度を制御する上昇速度制御機能、図1で述べた時刻t2に焦点変更部5Bに信号を送ってレンズ部5Aの焦点を切り替えさせる焦点調整機能などを備える。   The control device 8 has a spin pattern (shown by a curve SP in FIG. 5 as an example) that provides a desired film thickness under various conditions such as the type of liquid material and the viscosity for forming the resin film 2. A plurality of data are stored in a memory (not shown). The control device 8 includes a rotation control function for controlling the rotation drive of the rotation drive unit 3B, a light control function for controlling on / off of the ultraviolet light source 4A, the curing characteristics of the resin film, and the irradiation intensity of the light output from the ultraviolet light source 4A. The ascending speed for controlling the ascending speed of the light irradiation head 6 according to the ascending speed program (shown as an example by the speed pattern VP in FIG. 5) for irradiating the entire surface of the substrate 1 with substantially uniform light energy under various conditions such as A control function, a focus adjustment function for sending a signal to the focus changing unit 5B at the time t2 described in FIG.

ここで、制御装置8は制御を行う装置の総称であって、個別のコントローラなどで行っても勿論よい。そして、これらスピンプログラム及び上昇速度プログラムはそれぞれの前記制御部におけるメモリに格納されており、選択指令によって読み出し、選択されたスピンパターンSPで回転駆動部3Bを制御して基板1を回転させ、また、選択された速度パターンVPで昇降装置7を上昇させて光照射ヘッド6を上昇させる。なお、これらスピンプログラム及び上昇速度プログラムは、基板回転機構3、昇降装置7にそれぞれ格納される構成となっていても勿論よい。   Here, the control device 8 is a generic term for devices that perform control, and may of course be performed by an individual controller or the like. The spin program and the ascending speed program are stored in the memory of each control unit, read by a selection command, and controls the rotation drive unit 3B with the selected spin pattern SP to rotate the substrate 1, Then, the elevating device 7 is raised by the selected speed pattern VP to raise the light irradiation head 6. Of course, the spin program and the ascending speed program may be stored in the substrate rotating mechanism 3 and the elevating device 7, respectively.

次に、実施形態1の樹脂膜形成装置の動作について説明する。先ず、円環状に液状物質が供給されている光ディスク基板のような基板1が基板受台3Cに載置され、基板受台3Cに吸着保持されると、回転駆動部3Bによって基板受台3Cが選択されたスピンパターンSP(図5)で回転するのに伴い、前記液状物質は基板1上で展延され、樹脂膜2を形成する。ここで、一例としてスピンパターンSPは、図4に示すように基板受台3Cの回転速度がゼロから高速でほぼ直線的に上昇し、設定回転数に達するとその回転数を所定時間保持する。その設定回転数に保持されている期間のある時刻t1で、つまり紫外線硬化型樹脂からなる樹脂膜2の内周部が所定の膜厚になる光照射開始時刻t1で、制御装置8からのオン信号により紫外線光源4Aがオンして紫外線を出力する。その紫外線は光ファイバケーブル4Bを通して円環状光形成部4Cで円環状の紫外線とされ、設定最下限位置にある光照射ヘッド6のレンズ部5Aからの円環状の第1の光U1が樹脂膜2の内周端2B(図1)に照射される。   Next, the operation of the resin film forming apparatus of Embodiment 1 will be described. First, when a substrate 1 such as an optical disk substrate to which a liquid substance is supplied in an annular shape is placed on the substrate cradle 3C and sucked and held on the substrate cradle 3C, the substrate cradle 3C is moved by the rotation drive unit 3B. As the spin pattern SP (FIG. 5) rotates, the liquid material is spread on the substrate 1 to form a resin film 2. Here, as an example, in the spin pattern SP, as shown in FIG. 4, the rotation speed of the substrate cradle 3 </ b> C increases almost linearly from zero, and when the rotation speed reaches a set rotation speed, the rotation speed is held for a predetermined time. At a time t1 during which the rotation speed is maintained at the set rotational speed, that is, at a light irradiation start time t1 at which the inner peripheral portion of the resin film 2 made of an ultraviolet curable resin reaches a predetermined film thickness, The ultraviolet light source 4A is turned on by the signal and outputs ultraviolet light. The ultraviolet ray is converted into an annular ultraviolet ray by the annular light forming portion 4C through the optical fiber cable 4B, and the annular first light U1 from the lens portion 5A of the light irradiation head 6 located at the lowest setting position is the resin film 2. Is irradiated to the inner peripheral end 2B (FIG. 1).

このとき、レンズ部5Aは焦点変更部5Bによって所定の緩やかな焦点を呈するように調整されている。レンズ部5Aからの円環状の第1の光U1は、例えば図2に示すように、第1の光U1が外周側に移行する過程で塗膜の平坦性及び外観性を低下させない程度に焦点の絞りが緩やか山形の強度分布、つまり光エネルギーの立上りと立下りの勾配が緩やかなガウス分布(正規分布)の強度分布を有する光である。この正規分布の光はそのほぼ中心に照度のピーク値を有する。第2の光U1に比べて、第1の光U1は照射範囲が広く、そのピーク値が低いので、内側から外側に移行するときに光照射と非照射との境界で樹脂膜2に凹凸を生じないような光、つまり光の移動方向(立上り)に対する強度変化が緩やかな円環状の光である。しかしながら、後述するように第1の光U1は前記特性から光の照射と非照射との境界が不鮮明となる。第1の光U1の照射とほぼ同時に、制御装置8は選択されたスピンパターンSPに対応する速度パターンVP(図5の曲線VP)で昇降装置7を制御し、光照射ヘッド6を速度パターンVPに従って上昇させる。   At this time, the lens unit 5A is adjusted by the focus changing unit 5B so as to exhibit a predetermined gentle focus. For example, as shown in FIG. 2, the annular first light U <b> 1 from the lens unit 5 </ b> A is focused to such an extent that the flatness and appearance of the coating film are not deteriorated in the process in which the first light U <b> 1 moves to the outer peripheral side. Is a light having an intensity distribution of a gentle mountain shape, that is, an intensity distribution of a Gaussian distribution (normal distribution) in which the gradient of the rise and fall of light energy is gentle. This normally distributed light has a peak value of illuminance at substantially the center thereof. Compared with the second light U1, the first light U1 has a wide irradiation range and a low peak value. Therefore, the resin film 2 is uneven at the boundary between light irradiation and non-irradiation when moving from the inside to the outside. It is light that does not occur, that is, annular light with a gentle change in intensity with respect to the moving direction (rise) of the light. However, as will be described later, the boundary between the irradiation and non-irradiation of the first light U1 is unclear due to the above characteristics. Almost simultaneously with the irradiation of the first light U1, the control device 8 controls the lifting device 7 with the speed pattern VP (curve VP in FIG. 5) corresponding to the selected spin pattern SP, and the light irradiation head 6 is controlled with the speed pattern VP. Raise according to.

これに伴い、光照射ヘッド6は速度パターンVPに従って回転中心軸線Xに沿って上昇する、つまり基板1の上面から離れていくから、第1の光U1の内径及び外径は大きくなっていき、第1の光U1は内周側から外周側に移行する。この移行速度は、樹脂膜2が展延されて内側から外側へ所定の厚みになっていく時間に従って決められる。つまり、円環状の第1の光を前記液状物質の展延にほぼ合わせて外周側に移行させ、樹脂膜2が所定の厚みになった時点で膜厚を順次確定していく。そして、光照射開始時刻t1から第1の設定時間T1が経過する時刻t2で、第1の光U1が図1で説明した設定位置Yの手前の所定位置Zに達するものとして、光照射開始時刻t1から第1の設定時間T1が経過すると同時(時刻t2で)に、制御装置8は焦点変更部5Bに信号を送出し、焦点変更部5Bはレンズ部5Aと円環状光形成部4Cとの間隔を変えてレンズ部5Aの焦点を予め設定した焦点に絞り始める。   Accordingly, the light irradiation head 6 rises along the rotation center axis X according to the speed pattern VP, that is, moves away from the upper surface of the substrate 1, so that the inner diameter and outer diameter of the first light U1 are increased. The first light U1 moves from the inner peripheral side to the outer peripheral side. This transition speed is determined according to the time during which the resin film 2 is spread and becomes a predetermined thickness from the inside to the outside. That is, the annular first light is shifted to the outer peripheral side substantially in accordance with the spread of the liquid substance, and the film thickness is sequentially determined when the resin film 2 reaches a predetermined thickness. Then, at the time t2 when the first set time T1 elapses from the light irradiation start time t1, it is assumed that the first light U1 reaches the predetermined position Z before the set position Y described in FIG. At the same time (at time t2) when the first set time T1 elapses from t1, the control device 8 sends a signal to the focus changing unit 5B, and the focus changing unit 5B is connected to the lens unit 5A and the annular light forming unit 4C. The focus of the lens unit 5A is started to be reduced to a preset focus by changing the interval.

この一連の働きによって、第1の光U1は樹脂膜2の設定位置Yの手前の所定位置Zに対応する時刻t2で焦点が絞り始められて第2の光U2になる。第2の光U2は時刻t2から第2の設定時間T2が経過する時刻t3に相当する位置である設定位置Yでは、少なくとも図2の曲線U2で示すような急勾配の設定強度分布を有する円環状の第2の光U2となる。この状態では当然に、第2の光U2の光幅は第1の光U1よりも狭くなっており、また、光エネルギーのピーク値は第1の光U1よりも大きくなっている。第2の光U2は、照射面が受ける単位面積当たりの総光量が、所定位置Zでの第1の光U1の単位面積当たりの総光量とほぼ等しくなるように移行速度が決められる。場合によっては第2の光U2の照度が制御される。したがって、第2の光U2は第2の設定時間T2内で焦点の絞りが強くなっていく光であり、焦点変更部5Bの焦点変更速度が速ければ第2の設定時間T2は短くて済み、焦点変更部5Bの焦点変更速度が遅ければ第2の設定時間T2は長くなる。このことから、第2の設定時間T2が短ければ、その分だけ第1の設定時間T1を長くすることができ、好ましい。なお、第2の光U2の焦点の絞りが強くなっていく過程で、後述する電力制御によって紫外線光源4Aが発光する光の光度を制御、例えば単位面積当たりの総光量がほぼ一定になるようにピーク値を制御してもよい。   With this series of functions, the first light U1 starts to be focused at time t2 corresponding to the predetermined position Z before the set position Y of the resin film 2, and becomes the second light U2. The second light U2 is a circle having at least a steep set intensity distribution as shown by the curve U2 in FIG. 2 at the set position Y corresponding to the time t3 when the second set time T2 elapses from the time t2. It becomes the annular second light U2. In this state, naturally, the light width of the second light U2 is narrower than that of the first light U1, and the peak value of light energy is larger than that of the first light U1. The transition speed of the second light U2 is determined so that the total light amount per unit area received by the irradiation surface is substantially equal to the total light amount per unit area of the first light U1 at the predetermined position Z. In some cases, the illuminance of the second light U2 is controlled. Therefore, the second light U2 is a light whose focal stop becomes stronger within the second set time T2, and if the focus change speed of the focus change unit 5B is fast, the second set time T2 can be shortened. If the focus changing speed of the focus changing unit 5B is slow, the second set time T2 becomes long. Therefore, if the second set time T2 is short, the first set time T1 can be lengthened accordingly, which is preferable. In the process of increasing the focus of the second light U2, the intensity of light emitted from the ultraviolet light source 4A is controlled by power control, which will be described later, for example, the total light amount per unit area becomes substantially constant. The peak value may be controlled.

そして、第2の光U2は設定位置Yの近傍手前で最終的な強度分布になり、その設定強度分布の第2の光U2が設定位置Yまで移行し、設定位置Yに達した時刻t3で制御装置8は紫外線光源4Aにオフ信号を送出して消滅させる。実施形態1では、第1の光U1と第2の光U2は樹脂膜2以外には照射されないので、同一の基板回転機構3で光の照射を行っても基板回転機構3のカバー部材3Dなどにほとんど射されない。樹脂膜2を設定位置Yまで硬化させた後、必要があればスピン処理を行い、前記未硬化の部分2Cを平坦化し、第3の光U3を照射して硬化させる。   Then, the second light U2 has a final intensity distribution just before the set position Y, and the second light U2 of the set intensity distribution moves to the set position Y and reaches the set position Y at time t3. The control device 8 sends out an off signal to the ultraviolet light source 4A to make it disappear. In the first embodiment, since the first light U1 and the second light U2 are not irradiated except for the resin film 2, even if the same substrate rotation mechanism 3 irradiates light, the cover member 3D of the substrate rotation mechanism 3 and the like Is hardly shot. After the resin film 2 is cured to the set position Y, spin processing is performed if necessary, the uncured portion 2C is flattened, and cured by irradiation with the third light U3.

実施形態1にあっては、光照射ヘッド6を上昇させることによって円環状の第1の光U1の基板1の半径方向の光幅が広がるので、それにつれて当然に照射面積が大きくなるから単位面積当たり照射される第1の光U1のエネルギー量は外周側にいくに従って小さくなる。したがって、この実施形態1では樹脂膜2に照射される紫外線の照射エネルギー量がほぼ均一になるように、第1の光U1の照射面積が増加するのに伴って光照射ヘッド6の上昇速度が低下する速度パターンVPを用いている。また、第1の光U1の照射面積が増加するのに伴って基板1の回転速度が低下するスピンパターンを組み合わせて用いてもよい。   In the first embodiment, since the light width in the radial direction of the substrate 1 of the annular first light U1 is increased by raising the light irradiation head 6, the irradiation area naturally increases accordingly. The amount of energy of the first light U1 that is radiated per contact becomes smaller toward the outer peripheral side. Therefore, in this Embodiment 1, the rising speed of the light irradiation head 6 increases as the irradiation area of the first light U1 increases so that the irradiation energy amount of the ultraviolet light irradiated to the resin film 2 becomes substantially uniform. A decreasing speed pattern VP is used. Further, a spin pattern in which the rotation speed of the substrate 1 decreases as the irradiation area of the first light U1 increases may be used in combination.

この速度パターンVPによれば、第1の光U1が外周側に向かって移行するのに伴って光照射ヘッド6の上昇速度が低下するので第1の光U1の内径と外径の拡がりが遅くなり、つまり移行速度が遅くなるので第1の光U1の照射時間が長くなる。したがって、スピンパターンSPと速度パターンVPとを選択して組み合わせることによって、第1の光U1の内径と外径の拡がりを、樹脂膜2が所定の膜厚になる箇所が内周側から外周側に移行していく速度とほぼ等しくしながら、基板1の照射全面で第1の光U1の照射エネルギーの時間積分値をほぼ均一にすることができる。よって実施形態1によれば、基板1上に均一の膜厚の樹脂膜2を形成することができるばかりでなく、基板1の熱分布がほぼ均一になるから反りを発生せず、品質の高い樹脂膜が形成された光ディスクなどを得ることができる。   According to this speed pattern VP, the rising speed of the light irradiation head 6 decreases as the first light U1 moves toward the outer peripheral side, so the expansion of the inner diameter and outer diameter of the first light U1 is slow. That is, since the transition speed becomes slow, the irradiation time of the first light U1 becomes long. Therefore, by selecting and combining the spin pattern SP and the speed pattern VP, the inner diameter and the outer diameter of the first light U1 are expanded, and the portion where the resin film 2 has a predetermined film thickness is from the inner peripheral side to the outer peripheral side. The time integral value of the irradiation energy of the first light U1 can be made substantially uniform over the entire irradiation surface of the substrate 1 while being substantially equal to the speed of shifting to. Therefore, according to the first embodiment, not only the resin film 2 having a uniform film thickness can be formed on the substrate 1, but also the heat distribution of the substrate 1 becomes almost uniform, so that no warpage occurs and the quality is high. An optical disk or the like on which a resin film is formed can be obtained.

実施形態1の別の例では、制御装置8が、前述の制御機能を有すると共に、紫外線光源4Aのオンオフばかりでなく、照射時間及び照射強度からなる光制御プログラムに従って紫外線光源4Aに供給される電力を制御する制御機能も有する。前記光制御プログラムによれば、基板1面上での第1の光U1の照射面積の増加率、つまり第1の光U1の半径の増加に比例して第1の光U1の照度の増加率を高めるよう、紫外線光源4Aの入力電力を制御することになる。このようにしても、基板1の全面で第1の光U1の照射エネルギーの時間積分値、つまり単位面積当たりの総光量をほぼ均一にすることができ、実施形態1と同様な品質の基板を得ることができる。基板1との間の距離の増大に従って第1の光U1が基板の外周側に移行するのに伴い、基板1の単位面積当たりの照射エネルギーが小さくなるので、その照射エネルギーの低下を補償するために、回転速度が遅いスピンパターン、上昇速度が遅い上昇速度パターンを組み合わせて行ってもよい。   In another example of the first embodiment, the control device 8 has the above-described control function, and not only the on / off state of the ultraviolet light source 4A but also the power supplied to the ultraviolet light source 4A according to the light control program including the irradiation time and the irradiation intensity. It also has a control function for controlling. According to the light control program, the increase rate of the irradiation area of the first light U1 on the surface of the substrate 1, that is, the increase rate of the illuminance of the first light U1 in proportion to the increase of the radius of the first light U1. Therefore, the input power of the ultraviolet light source 4A is controlled. Even in this case, the time integral value of the irradiation energy of the first light U1 over the entire surface of the substrate 1, that is, the total amount of light per unit area can be made substantially uniform, and a substrate having the same quality as that of the first embodiment can be obtained. Obtainable. As the first light U1 moves to the outer peripheral side of the substrate as the distance to the substrate 1 increases, the irradiation energy per unit area of the substrate 1 decreases, so that the decrease in the irradiation energy is compensated. In addition, a spin pattern with a slow rotation speed and an ascent speed pattern with a slow ascent speed may be combined.

また、第1の光U1の光度を増加させる場合には、前述したようなスピンパターン及び上昇速度パターンの一方又は双方と組み合わせて行っても勿論よい。なお、液状物質の基板1への供給は、基板1を基板受台3Cに載置した状態で、基板受台3Cを低速回転させながら行ってもよい。以上の実施形態の説明では、基板1上の樹脂膜2について説明したが、基板同士を貼り合せた場合の基板間の液状物質が高速回転による遠心力によって外周方向へ展延する過程で、樹脂膜が所定の厚みになる時間に同期させて第1の光U1を外周側に移行させても同様な効果がある。また、最外周の手前で第1の光U1から第2の光U2に切り替えることによって、不図示の基板間の外周端面からはみ出した樹脂を硬化させないままにできるので、その除去が容易に行える。さらに、基板の外周端面からはみ出した樹脂が硬化しない状態で不図示の一方の剥離用の基板の剥離を行うと、剥離時に粉塵が発生しないので、品質の高い多層構造の光ディスクを得ることが可能になる。なお、この光照射は、液状物質が基板全面に展延された後に行っても展延された樹脂膜を硬化させることができる。   In addition, when increasing the luminous intensity of the first light U1, it may of course be performed in combination with one or both of the spin pattern and the rising speed pattern as described above. The supply of the liquid substance to the substrate 1 may be performed while rotating the substrate cradle 3C at a low speed while the substrate 1 is placed on the substrate cradle 3C. In the above description of the embodiment, the resin film 2 on the substrate 1 has been described. However, in the process in which the liquid material between the substrates is bonded to each other by the centrifugal force due to high-speed rotation, The same effect can be obtained even if the first light U1 is shifted to the outer peripheral side in synchronization with the time when the film has a predetermined thickness. Further, by switching from the first light U1 to the second light U2 before the outermost periphery, the resin protruding from the outer peripheral end face between the substrates (not shown) can be left uncured, and therefore can be easily removed. Furthermore, if one of the peeling substrates (not shown) is peeled off when the resin protruding from the outer peripheral end surface of the substrate is not cured, no dust is generated during peeling, so a high-quality multilayer optical disk can be obtained. become. Even if this light irradiation is performed after the liquid material is spread over the entire surface of the substrate, the spread resin film can be cured.

実施形態1における紫外線照射機構4の別の例について図6により説明する。図6において、図1ないし図5で用いた記号と同じ記号は同じ名称の部材を示すものとする。図6に示す例は、実施形態1の紫外線光源4Aに代えて、紫外線を発光する発光ダイオードLEDを用いている。複数の発光ダイオードLEDは、ケースの円環状の外壁部41と円環状の内壁部42との間に密接して又は僅かな間隙で配置されており、これらで円環状光形成部4Cを構成している。この例の円環状光形成部4Cは円環状光形成部4C自身がレンズ機構5の近傍で円環状の紫外線を生じる。円環状光形成部4Cの円環状の光は実施形態1で説明したのと同様なレンズ機構5によって、図2で示したような正規分布の照度を有する第1の光U1、更には第2の光U2にされる。   Another example of the ultraviolet irradiation mechanism 4 in the first embodiment will be described with reference to FIG. In FIG. 6, the same symbols as those used in FIGS. 1 to 5 indicate members having the same names. The example shown in FIG. 6 uses a light emitting diode LED that emits ultraviolet light instead of the ultraviolet light source 4A of the first embodiment. The plurality of light emitting diodes LED are arranged in close contact with or slightly between the annular outer wall portion 41 and the annular inner wall portion 42 of the case, and these constitute the annular light forming portion 4C. ing. In the annular light forming portion 4C of this example, the annular light forming portion 4C itself generates annular ultraviolet light in the vicinity of the lens mechanism 5. The annular light of the annular light forming portion 4C is converted into the first light U1 having the normal distribution illuminance as shown in FIG. 2 by the lens mechanism 5 similar to that described in the first embodiment, and further to the second light. Of light U2.

図7に示す例は、適当な直径の円環状の紫外線照射ランプLPを用いている。円環状の紫外線照射ランプLPはケースの円環状の外壁部41と円環状の内壁部42との間に設けられ、紫外線照射ランプLPは発光した紫外線がほとんどレンズ部5Aに向かうようになっている。この例の円環状光形成部4Cも円環状光形成部4C自身がレンズ機構5の近傍で円環状の光を発光する。円環状光形成部4Cの円環状の光は実施形態1で説明したのと同様なレンズ機構5によって、図2で示したような正規分布の照度を有する第1の光U1、更には第2の光U2にされる。これら例においても、特別な電力制御による光度制御を行わない限り、第2の光U2は第1の光U1に比べて、その光エネルギーのピーク値は大きい。   The example shown in FIG. 7 uses an annular ultraviolet irradiation lamp LP having an appropriate diameter. The annular ultraviolet irradiation lamp LP is provided between the annular outer wall portion 41 and the annular inner wall portion 42 of the case, and the ultraviolet irradiation lamp LP is configured so that the emitted ultraviolet rays are almost directed toward the lens portion 5A. . The annular light forming unit 4C in this example also emits annular light in the vicinity of the lens mechanism 5 by itself. The annular light of the annular light forming portion 4C is converted into the first light U1 having the normal distribution illuminance as shown in FIG. 2 by the lens mechanism 5 similar to that described in the first embodiment, and further to the second light. Of light U2. Also in these examples, unless the light intensity control by special power control is performed, the peak value of the light energy of the second light U2 is larger than that of the first light U1.

したがって、これら例では、実施形態1と違って複数の発光ダイオードLED又は円環状の紫外線照射ランプLPが光源でもあるので、多数光ファイバを束ねた光ファイバケーブルを省略できるだけでなく、光ファイバケーブルに代えて可撓性に優れて丈夫な金属配線を円環状光形成部4C1、4C2に接続することができるので、容易に円環状光形成部4Cを上下方向に昇降させることができ、装置の信頼性を向上させることができる。なお、第1の光U1、第2の光U2の照射は、樹脂膜2を形成した後で、基板回転機構3とは別の光照射ポジションで行ってもよい。   Accordingly, in these examples, unlike the first embodiment, a plurality of light emitting diodes LED or an annular ultraviolet irradiation lamp LP is also a light source, so that not only an optical fiber cable in which a large number of optical fibers are bundled can be omitted, but also an optical fiber cable. Instead, since the flexible and strong metal wiring can be connected to the annular light forming portions 4C1 and 4C2, the annular light forming portion 4C can be easily moved up and down, and the reliability of the apparatus Can be improved. The irradiation with the first light U1 and the second light U2 may be performed at a light irradiation position different from that of the substrate rotation mechanism 3 after the resin film 2 is formed.

また図示しないが、円環状光形成部4Cは相似の形状の円錐状の反射部材を2組用い、円錐状の反射部材の頂点を回転中心軸線Xに位置するように保持して円錐状の光路を形成し、光源からのスポット状の光を前記円錐状の反射部材の頂点に照射し、スポット状の光をほぼ均一に分散させて円環状の光を導出してもよい。その他にも種々の構成が考えられるが、実施形態1は円環状光形成部4Cの構成によって制限されるものではない。   Although not shown, the annular light forming portion 4C uses two sets of conical reflecting members having similar shapes, and holds the apex of the conical reflecting member so as to be positioned at the rotation center axis X, thereby providing a conical optical path. , Irradiating the apex of the conical reflecting member with the spot-like light from the light source, and dispersing the spot-like light almost uniformly to derive the annular light. Various other configurations are conceivable, but the first embodiment is not limited by the configuration of the annular light forming portion 4C.

[実施形態2]
図8及び図9に従って本発明の実施形態2について説明する。図8は実施形態2の方法の基本的な考え方を説明するための図であり、図9は実施形態2の装置について説明するための図である。図8及び図9において、図1ないし図7で用いた記号と同一の記号は同じ名称の部材を示すものとする。この実施形態2が実施形態1と異なる点は、円環状の光に代えてスポット状の光を樹脂膜に照射するところにある。スポット状の光は照射面である樹脂膜に平行に内周側から外周側に移行する円形状又は移行方向に長い長円状(楕円状)の光である。実施形態2では、光の照射工程中、必ず基板1は選択されたスピンパターン又は一定速度で回転している。
[Embodiment 2]
A second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a diagram for explaining the basic concept of the method of the second embodiment, and FIG. 9 is a diagram for explaining the apparatus of the second embodiment. 8 and 9, the same symbols as those used in FIGS. 1 to 7 indicate members having the same names. The second embodiment is different from the first embodiment in that the resin film is irradiated with spot-like light instead of the annular light. The spot-like light is circular light that transitions from the inner peripheral side to the outer peripheral side in parallel with the resin film that is the irradiation surface, or elliptical light that is long in the transition direction (elliptical). In the second embodiment, the substrate 1 is always rotated at a selected spin pattern or at a constant speed during the light irradiation process.

図8において、紫外線光源4Aは、図示しないが、紫外線を発光する発光部材とその照度を調整する部材とスイッチ機構などからなり、制御装置8からの信号によって照度調整及び発光のオン、オフを行う。紫外線光源4Aの前記発光部材は、所望の波長の紫外線を発光するレーザダイオード、小型レーザ管、発光ダイオード、あるいは紫外線ランプなどからなる。前記発光部材レーザダイオード又は発光ダイオードからなる場合、必要に応じて複数個のレーザダイオード又は発光ダイオードを密接して円状又は長円状に配置して、円状又は長円状のスポット光を得てもよい。平行移動機構10は、レールのような案内部材10Aと、案内部材10Aを図8で左右に移動する移動部材10Bと、その移動部材10Bを紫外線光源4Aとレンズ機構5とからなる光照射ヘッド6に結合する結合部材10Cからなる。なお、Eは図示しない電源から紫外線光源4Aに電力を供給する給電線であり、可撓性に優れている。ここで、レンズ機構5と平行移動機構10とは光強度分布変更機構の一例を構成する。   In FIG. 8, although not shown, the ultraviolet light source 4A includes a light emitting member that emits ultraviolet light, a member that adjusts the illuminance thereof, a switch mechanism, and the like, and performs illuminance adjustment and on / off of light emission according to a signal from the control device 8. . The light emitting member of the ultraviolet light source 4A includes a laser diode, a small laser tube, a light emitting diode, or an ultraviolet lamp that emits ultraviolet light having a desired wavelength. When the light emitting member is composed of a laser diode or a light emitting diode, a plurality of laser diodes or light emitting diodes are closely arranged in a circular or oval shape as necessary to obtain a circular or oval spot light. May be. The parallel moving mechanism 10 includes a guide member 10A such as a rail, a moving member 10B that moves the guide member 10A left and right in FIG. 8, and a light irradiation head 6 that includes the ultraviolet light source 4A and the lens mechanism 5 as the moving member 10B. It consists of the coupling member 10C couple | bonded with. Note that E is a power supply line that supplies power to the ultraviolet light source 4A from a power source (not shown), and is excellent in flexibility. Here, the lens mechanism 5 and the parallel movement mechanism 10 constitute an example of a light intensity distribution changing mechanism.

次に、動作説明を行う。制御装置8から信号S1により選択されたスピンパターンで回転駆動部3Bは基板を回転させる。前述したように基板1の高速回転による遠心力の作用で紫外線硬化型樹脂からなる樹脂膜2の内周部が所定の膜厚になる時刻t1で、制御装置8は紫外線光源4Aにオン信号S2を送出し、紫外線光源4Aはオンして紫外線を発光する。レンズ機構5のレンズ部5Aは既に設定焦点に調整されているので、スポット状の第1の光U1を樹脂膜2の内周部分に照射する。第1の光U1の焦点は一定であり、前述したように、第1の光U1は外周側に移行する過程で塗膜の平坦性及び外観性を低下させない程度に焦点の絞りが緩やかな光であり、樹脂膜2の光照射面2Aでは図2で説明したような緩やかな勾配を有する正規分布の強度分布の光である。つまり、第1の光U1は光の照射と非照射との境界が比較的不鮮明な状況を呈し、内側から外側に移行することによって樹脂膜2にほとんど悪影響を与えないスポット状の光である。   Next, the operation will be described. The rotation drive unit 3B rotates the substrate with the spin pattern selected by the signal S1 from the control device 8. As described above, at time t1 when the inner peripheral portion of the resin film 2 made of the ultraviolet curable resin becomes a predetermined film thickness by the action of the centrifugal force due to the high-speed rotation of the substrate 1, the control device 8 sends an ON signal S2 to the ultraviolet light source 4A. And the ultraviolet light source 4A is turned on to emit ultraviolet light. Since the lens portion 5A of the lens mechanism 5 has already been adjusted to the set focal point, the spot-shaped first light U1 is applied to the inner peripheral portion of the resin film 2. The focal point of the first light U1 is constant, and as described above, the first light U1 is light with a gentle aperture stop so as not to deteriorate the flatness and appearance of the coating film in the process of moving to the outer peripheral side. The light irradiation surface 2A of the resin film 2 is light having a normal distribution with a gentle gradient as described with reference to FIG. In other words, the first light U1 is a spot-like light that has a relatively unclear boundary between light irradiation and non-irradiation, and has almost no adverse effect on the resin film 2 by moving from the inside to the outside.

そして、制御装置8は移動部材10Bに信号S3を送出し、移動部材10Bは予め選択された速度パターンで基板1と平行に外周方向に移動する。これに伴い、スポット状の第1の光U1が樹脂膜2の表面を外周側に移行する。その速度パターンは、主に紫外線硬化型の樹脂が展延されて内側から外側へ所定の厚みの樹脂膜2を形成していく時間と、第1の光U1が外周方向に移行するのに伴い変化する周速度とを考慮して決められる。これによって、スポット状の第1の光U1を前記液状物質の展延に合わせて外周側に移行させ、樹脂膜2が所定の厚みになった時点で膜厚を順次確定していく。第1の光U1が、光照射開始時刻t1から第1の設定時間T1の経過する時刻t2まで照射される。そして、時刻t2になると同時に、制御装置8はレンズ機構5の焦点変更部5Bに信号S4を送出し、焦点変更部5Bはレンズ部5Aと樹脂膜1との距離を設定値まで変更する動作を行う。この変更動作は機械的な動作が主であるから、焦点の変更に必要最低限の時間以上の時間、つまり第2の設定時間T2が必要になる。   Then, the control device 8 sends a signal S3 to the moving member 10B, and the moving member 10B moves in the outer peripheral direction in parallel with the substrate 1 with a preselected speed pattern. Along with this, the spot-like first light U1 moves the surface of the resin film 2 to the outer peripheral side. The speed pattern is mainly related to the time during which the ultraviolet curable resin is spread and the resin film 2 having a predetermined thickness is formed from the inside to the outside, and the first light U1 moves in the outer peripheral direction. It is determined in consideration of the changing peripheral speed. Thus, the spot-shaped first light U1 is shifted to the outer peripheral side in accordance with the spread of the liquid material, and the film thickness is sequentially determined when the resin film 2 reaches a predetermined thickness. The first light U1 is emitted from the light irradiation start time t1 to the time t2 when the first set time T1 elapses. At the same time t2, the control device 8 sends a signal S4 to the focus changing unit 5B of the lens mechanism 5, and the focus changing unit 5B changes the distance between the lens unit 5A and the resin film 1 to a set value. Do. Since this change operation is mainly a mechanical operation, a time longer than the minimum time necessary for changing the focus, that is, the second set time T2 is required.

スポット状の第1の光U1は時刻t2が経過すると第2の光U2となる。第2の光U2は、焦点変更部5Bがレンズ部5Aの焦点の変更開始から変更終了までの第2の設定時間T2の間で、焦点が強く絞られ、図2に示したような急勾配をもつ正規分布の強度分布を有する。したがって、特別な電力制御による光度制御を行わない限り、第2の光U2は第1の光U1に比べて、その光エネルギーのピーク値は大きい。そして、第2の光U2は時刻t2から第2の設定時間T2がほぼ経過した時刻t3で樹脂膜2の設定位置Yに達し、設定位置Yでは第2の光U2の焦点は少なくとも設定値まで絞られている。第1の光U1及び第2の光U2が樹脂膜2に照射されている期間は、基板1は例えば図5に示したスピンパターンSPで回転しており、第1の光U1は前述のように光の照射と非照射との境界が比較的不鮮明な状況を呈する光であり、第1の光U1が外周側に移行する過程で極めて短い時間で見ると不連続的に照射されるから、従来のように塗膜の平坦性の低下を抑制でき、外観上の問題が生じることはない。   The spot-shaped first light U1 becomes the second light U2 when the time t2 elapses. The second light U2 is strongly focused during the second set time T2 from the start of change of the focus of the lens unit 5A to the end of change by the focus changing unit 5B, and has a steep slope as shown in FIG. Has a normal distribution of intensity distribution. Therefore, unless the light intensity control by special power control is performed, the peak value of the light energy of the second light U2 is larger than that of the first light U1. Then, the second light U2 reaches the setting position Y of the resin film 2 at time t3 when the second setting time T2 has substantially elapsed from time t2, and at the setting position Y, the focus of the second light U2 reaches at least the setting value. It is squeezed. During the period in which the first light U1 and the second light U2 are applied to the resin film 2, the substrate 1 is rotated by, for example, the spin pattern SP shown in FIG. 5, and the first light U1 is as described above. Since the boundary between light irradiation and non-irradiation is relatively unclear, the first light U1 is irradiated discontinuously when viewed in a very short time in the process of moving to the outer peripheral side. As in the prior art, a decrease in the flatness of the coating film can be suppressed, and no problem in appearance occurs.

次に色収差の補正について説明する。以上の実施形態では光として紫外線を用いたが、図示しない紫外線光源からの紫外線は、例えば200〜400nmの波長を有する光が大部分を占める。一般的に波長に対するレンズの屈折率が異なるために、光がレンズの同一面域に入射しても、波長の異なる光はレンズでそれぞれ違う屈折率で屈折され、レンズからからの光線は僅かずつずれて光照射面に照射される。この色収差の影響によって、前述のように光の強度分布が急な勾配になるように制御しても、色収差の影響によって、光の照射と非照射との境界が十分に鮮明にならず、境界に幅が広くなり、このことは樹脂膜の不十分な硬化領域の幅を広くする傾向がある。   Next, correction of chromatic aberration will be described. In the above embodiment, ultraviolet rays are used as light. However, the ultraviolet rays from an ultraviolet light source (not shown) are mostly light having a wavelength of, for example, 200 to 400 nm. In general, because the refractive index of a lens with respect to wavelength is different, even if light is incident on the same surface area of the lens, light with different wavelengths is refracted by the lens with different refractive indexes, and light rays from the lens are slightly different. The light irradiation surface is shifted and irradiated. Even if the intensity distribution of light is controlled to have a steep slope as described above due to the effect of chromatic aberration, the boundary between light irradiation and non-irradiation is not sufficiently sharpened due to the effect of chromatic aberration. This increases the width of the insufficiently cured region of the resin film.

このような色収差の影響を低減し、光の波長による光の照射と非照射との境界を鮮明にするために、レンズ機構5におけるレンズ部5Aと基板1との間に、所定以下の波長の光を通過させないカットフィルタ(不図示)を設ける。一例として、300nm以下の波長の紫外線を除去するカットフィルタを用いることにより、基板1の樹脂膜2に照射される光は300〜400nmの波長の紫外線がほとんどになり、波長の差異による光のずれが小さくなるために、当然に樹脂膜2の設定位置Yでの光の照射と非照射の境界が鮮明になる。なお、このカットフィルタは所定位置Zまで照射される紫外線の色収差の補正を行わないものの方が好ましい。   In order to reduce the influence of such chromatic aberration and make the boundary between light irradiation and non-irradiation depending on the wavelength of light clear, the lens mechanism 5 has a wavelength of a predetermined wavelength or less between the lens portion 5A and the substrate 1. A cut filter (not shown) that does not allow light to pass through is provided. As an example, by using a cut filter that removes ultraviolet light having a wavelength of 300 nm or less, light irradiated to the resin film 2 of the substrate 1 is mostly ultraviolet light having a wavelength of 300 to 400 nm, and the light shift due to the difference in wavelength. Therefore, naturally, the boundary between light irradiation and non-irradiation at the set position Y of the resin film 2 becomes clear. In addition, it is preferable that this cut filter does not correct the chromatic aberration of ultraviolet rays irradiated to the predetermined position Z.

[実施形態3]
図10によって本発明の実施形態3について説明する。図10において、図1〜図9で用いた記号と同一の記号は同じ名称の部材を示すものとする。この実施例でもスポット状の紫外線を樹脂膜2に照射するが、途中でレンズ機構により光(紫外線)の焦点を変えることなく、紫外線を発生する紫外線光源4Aを途中で下降させてスポット状の光(紫外線)の広がりを縮小し、正規分布の強度分布を急傾斜にするところに特徴がある。装置構成は図8に示した装置と類似している部分が多いので、図8を利用して説明する。この装置では、図8に示した移動機構10の結合部材10Cの少なくとも一部分が伸縮するシリンダ部材などからなる伸縮部材(不図示)から構成されていると都合が良い。なお、この実施形態3では第1の光U1の焦点の絞りを変えて第2の光U2を形成するという焦点の切替えが不要であるので、レンズ機構を省略することができる。
[Embodiment 3]
A third embodiment of the present invention will be described with reference to FIG. 10, the same symbols as those used in FIGS. 1 to 9 indicate members having the same names. In this embodiment, spot-like ultraviolet rays are irradiated onto the resin film 2, but without changing the focal point of the light (ultraviolet rays) by the lens mechanism in the middle, the ultraviolet light source 4A that generates ultraviolet rays is lowered in the middle to produce spot-like light. It is characterized in that the spread of (ultraviolet rays) is reduced and the intensity distribution of the normal distribution is steeply inclined. Since the apparatus configuration has many parts similar to the apparatus shown in FIG. 8, the description will be made with reference to FIG. In this apparatus, it is convenient that at least a part of the coupling member 10C of the moving mechanism 10 shown in FIG. 8 is composed of an expansion / contraction member (not shown) made of a cylinder member that expands and contracts. In the third embodiment, since it is not necessary to change the focal point of changing the focal point of the first light U1 to form the second light U2, the lens mechanism can be omitted.

この方法を実現する装置は、実施形態2に比べて、平行移動機構10に対応する不図示の多方向移動装置が樹脂膜2から上方に離れて位置する。この多方向移動装置の動作については後述するが、この多方向移動装置は光強度分布変更機構の一例を構成し、紫外線光源4Aを水平方向と下方向に移動させる公知の機構を有する。実施形態2に比べて紫外線光源4Aが樹脂膜2からより離れて上方にあり、紫外線光源4Aから照射された紫外線は拡がって樹脂膜2の光照射面2Aでは緩やかな傾斜をもつ正規分布の強度分布を有する第1の光U1となる。第1の光U1の強度分布は一定であり、前述したように、第1の光U1は外周側に移行する過程で塗膜の平坦性及び外観性を低下させない程度に緩やかな強度分の光である。つまり、第1の光U1は光の照射と非照射との境界が比較的不鮮明な照射範囲の広い光であり、内側から外側に移行することによって樹脂膜2の平坦性にほとんど悪影響を与えない光である。   In the apparatus that realizes this method, a multi-directional moving device (not shown) corresponding to the parallel moving mechanism 10 is located away from the resin film 2 as compared with the second embodiment. Although the operation of the multidirectional moving device will be described later, this multidirectional moving device constitutes an example of a light intensity distribution changing mechanism and has a known mechanism for moving the ultraviolet light source 4A in the horizontal direction and the downward direction. Compared with the second embodiment, the ultraviolet light source 4A is further away from the resin film 2, and the ultraviolet light emitted from the ultraviolet light source 4A spreads and the intensity of the normal distribution having a gentle inclination on the light irradiation surface 2A of the resin film 2 It becomes the 1st light U1 which has distribution. The intensity distribution of the first light U1 is constant. As described above, the first light U1 has a light intensity that is gentle enough not to deteriorate the flatness and appearance of the coating film in the process of moving to the outer peripheral side. It is. That is, the first light U1 is a light having a wide irradiation range where the boundary between light irradiation and non-irradiation is relatively unclear, and the flatness of the resin film 2 is hardly adversely affected by shifting from the inside to the outside. Light.

スポット状の第1の光U1は前記液状物質の展延に合わせて樹脂膜2と平行に外周側に移行し、選択されたスピンパターンで回転している樹脂膜2が所定の厚みになった時点で膜厚を順次確定していく。スポット状の第1の光U1は時刻t2が経過すると第2の光U2となる。時刻t2になると、制御装置8が多方向移動装置のシリンダ部材のような伸縮部材(不図示)に信号を送出し、その伸縮部材が伸長することにより紫外線光源4Aが下方向に下がる。つまり紫外線光源4Aは時刻t2から第2の設定時間T2の経過後の時刻t3に水平方向に移動しながら設定下限位置まで降下し、このとき第2の光U2は樹脂膜2の設定位置Yに達する。設定位置Yでのスポット状の第2の光U2は、当然にスポット状の第1の光U1に比べて拡がり方が少なく、かつ紫外線光源4Aと樹脂膜2との間の距離が短いので、減衰が小さいから光照射面2Aでの照射範囲が狭くなり、かつ光照度のピーク値が大きくなると共に、正規分布である強度分布の勾配が急傾斜になるので、紫外線の照射と非照射との境界が鮮明になる。   The spot-shaped first light U1 moves to the outer peripheral side in parallel with the resin film 2 in accordance with the spread of the liquid substance, and the resin film 2 rotating with the selected spin pattern has a predetermined thickness. The film thickness is determined sequentially at that time. The spot-shaped first light U1 becomes the second light U2 when the time t2 elapses. At time t2, the control device 8 sends a signal to an expansion / contraction member (not shown) such as a cylinder member of the multidirectional movement device, and the ultraviolet light source 4A is lowered downward by extending the expansion / contraction member. That is, the ultraviolet light source 4A descends to the setting lower limit position while moving in the horizontal direction from time t2 to time t3 after the elapse of the second setting time T2, and at this time, the second light U2 reaches the setting position Y of the resin film 2. Reach. Naturally, the spot-like second light U2 at the setting position Y is less spread than the spot-like first light U1, and the distance between the ultraviolet light source 4A and the resin film 2 is short. Since the attenuation is small, the irradiation range on the light irradiation surface 2A becomes narrow, the peak value of the light illuminance increases, and the gradient of the intensity distribution, which is a normal distribution, becomes steep, so the boundary between ultraviolet irradiation and non-irradiation Becomes clear.

したがって、樹脂膜2が外周部で厚くなる肉厚部分2Cの寸前まで硬化され、肉厚部分2Cは未硬化のまま残される。つまり、設定位置Yでの最終的な第2の光U2の強さ(照度)がシャープであるので、硬化と未硬化との中間の領域の幅を最小にすることができ、外周部で厚くなる部分2Cの平坦化に役立つ。なお、この実施形態3においては、紫外線光源4Aが最初の高さから設定下限位置まで降下する所要時間が最低限必要であり、その時間の経過と共に第2の光U2の強度分布の勾配が急傾斜になって行く。その時間は調整が可能であるが、第1の光U1の照射時間を長くできるので短い方が好ましい。なお、この実施形態3では第1の光U1の焦点の絞りを変えて第2の光U2を形成するという焦点の切替えが不要であるので、レンズ機構5を省略することができる。例えば、紫外線を発生する紫外線源が適当な直径の円筒状の鏡筒からその紫外線を照射する構造などにあっては、レンズ機構5を省略することが可能であり、経済性に優れる。また、装置の小型・軽量化が可能である。   Accordingly, the resin film 2 is cured to the point immediately before the thick portion 2C where the thickness is increased at the outer peripheral portion, and the thick portion 2C is left uncured. That is, since the final intensity (illuminance) of the second light U2 at the setting position Y is sharp, the width of the intermediate region between the cured and uncured regions can be minimized and thickened at the outer peripheral portion. This serves to flatten the portion 2C. In the third embodiment, the minimum time required for the ultraviolet light source 4A to descend from the initial height to the set lower limit position is required, and the gradient of the intensity distribution of the second light U2 becomes steep as the time elapses. Going inclined. Although the time can be adjusted, the irradiation time of the first light U1 can be lengthened, so that a shorter time is preferable. In the third embodiment, since it is not necessary to change the focal point of changing the focal point of the first light U1 to form the second light U2, the lens mechanism 5 can be omitted. For example, in a structure in which an ultraviolet ray source generating ultraviolet rays irradiates the ultraviolet rays from a cylindrical barrel having an appropriate diameter, the lens mechanism 5 can be omitted, and the cost is excellent. In addition, the apparatus can be reduced in size and weight.

[実施形態4]
図11によって本発明の実施形態4におけるスポット状の光の照射方法について説明する。図11において、図1ないし図10で用いた記号と同じ記号は同じ名称の部材を示すものとする。実施形態4も基本的には実施形態2、実施形態3と同様であり、第1の光及び第2の光の形成方法が異なるので、その部分について説明する。図11に示すように、紫外線を発生する紫外線光源4Aを円板状の基板1の回転中心軸線Xから外周方向へ、又は外周方向から回転中心軸線Xにある角度で勾配させ、樹脂膜2の照射面に対する紫外線の照射角度を所定角度勾配させることによって、紫外線光源4Aの発光面よりも拡がった大きな面積のスポット状の第1の光U1を樹脂膜2の照射面に形成するところに第1の特徴があり、紫外線光源4Aを樹脂膜2の照射面に対してほぼ垂直に立てることにより、第1の光U1よりも照度の大きなスポット状の第2の光U2を得るところに第2の特徴がある。
[Embodiment 4]
With reference to FIG. 11, a spot-shaped light irradiation method according to the fourth embodiment of the present invention will be described. In FIG. 11, the same symbols as those used in FIGS. 1 to 10 indicate members having the same names. The fourth embodiment is also basically the same as the second and third embodiments, and the formation method of the first light and the second light is different. As shown in FIG. 11, the ultraviolet light source 4A that generates ultraviolet rays is inclined at an angle from the rotation center axis X of the disk-shaped substrate 1 to the outer peripheral direction or from the outer peripheral direction to the rotation center axis X, A first spot U1 having a larger area than the light emitting surface of the ultraviolet light source 4A is formed on the irradiation surface of the resin film 2 by forming a predetermined angle gradient of the ultraviolet irradiation angle with respect to the irradiation surface. The second light source U2 having a higher illuminance than the first light U1 is obtained by setting the ultraviolet light source 4A substantially perpendicular to the irradiation surface of the resin film 2 to obtain the second light U2. There are features.

移動・角度変更機構11は光強度分布変更機構の一例を構成し、レールのような案内部材11Aと、案内部材11Aを図8で左右に移動する移動部材11Bと、一端が移動部材11Bに結合された結合部材11Cと、結合部材11Cの他端に結合された角度変更部材11Dとからなる。角度変更部材11Dは紫外線光源4Aを支点軸11Eを中心にある角度で回転させる機能を有する。基板回転機構は前記実施形態の基板回転機構3と同じである。角度変更部材11Dは、予め制御装置8からの指令信号C1を受けて紫外線光源4Aを所定角度に傾倒させている。その傾倒角度θは任意であるが、例えば20〜60度の範囲で選択された角度である。   The moving / angle changing mechanism 11 constitutes an example of a light intensity distribution changing mechanism, and includes a guide member 11A such as a rail, a moving member 11B that moves the guide member 11A left and right in FIG. 8, and one end coupled to the moving member 11B. The connecting member 11C and the angle changing member 11D connected to the other end of the connecting member 11C. The angle changing member 11D has a function of rotating the ultraviolet light source 4A at a certain angle around the fulcrum shaft 11E. The substrate rotation mechanism is the same as the substrate rotation mechanism 3 of the above embodiment. The angle changing member 11D receives the command signal C1 from the control device 8 in advance and tilts the ultraviolet light source 4A to a predetermined angle. The tilt angle θ is arbitrary, for example, an angle selected in the range of 20 to 60 degrees.

前述したように、基板回転機構3の高速回転によって基板2上の樹脂膜2の内周が所望の厚みになる光照射時刻t1で、制御装置8は先ず紫外線光源4Aに指令信号C2を送ってオンさせ、第1の光U1となる紫外線を発生させる。紫外線光源4Aは光照射面に対して所定角度傾倒しているので、第1の光U1は光照射面に傾斜して照射される。したがって、その強度分布は図2の曲線U1で示した分布と似たような緩やかな山形、特に立上り(外周側)に比べて立下り(回転中心側)が緩やかな勾配の山形となり、その強度分布のピーク値は一方側に偏る。制御装置8は指令信号C2とほぼ同時に、又は幾分遅れて指令信号C3を移動部材10Bに送出する。移動部材11Bは実施形態2で説明したように、所定の速度パターンで外周方向に移動する。これに伴い、第1の光U1も外周方向に前記所定の速度パターンで移行する。   As described above, at the light irradiation time t1 when the inner circumference of the resin film 2 on the substrate 2 becomes a desired thickness by the high speed rotation of the substrate rotating mechanism 3, the control device 8 first sends a command signal C2 to the ultraviolet light source 4A. It is turned on to generate ultraviolet light that becomes the first light U1. Since the ultraviolet light source 4A is inclined at a predetermined angle with respect to the light irradiation surface, the first light U1 is irradiated to the light irradiation surface while being inclined. Accordingly, the intensity distribution is a gradual mountain shape similar to the distribution shown by the curve U1 in FIG. 2, particularly a mountain shape having a gradual slope at the fall (rotation center side) compared to the rise (outer circumference side). The peak value of the distribution is biased to one side. The control device 8 sends the command signal C3 to the moving member 10B substantially simultaneously with the command signal C2 or with some delay. As described in the second embodiment, the moving member 11B moves in the outer circumferential direction with a predetermined speed pattern. Accordingly, the first light U1 also moves in the outer peripheral direction with the predetermined speed pattern.

そして、基板1の設定位置Yの手前のある位置に対応する時刻t2で、制御装置8は指令信号C1を角度変更部材11Dに送出する。角度変更部材11Dは指令信号C1を受けると、支点軸11Eを中心に時計方向に設定角度回転して、紫外線光源4Aを光照射面、つまり樹脂膜2とほぼ垂直になる方向に向ける。したがって、時刻t1から時刻t2まで強度分布がほぼ一定であった第1の光U1は時刻t2から照射面積が狭くなっていく第2の光U2となる。第2の光U2が設定位置Yにほぼ到達するとき(時刻t3)には、少なくとも紫外線光源4Aは樹脂膜2にほぼ垂直となる方向に向いている。   Then, at time t2 corresponding to a certain position before the set position Y of the substrate 1, the control device 8 sends a command signal C1 to the angle changing member 11D. Upon receiving the command signal C1, the angle changing member 11D rotates the set angle clockwise about the fulcrum shaft 11E, and directs the ultraviolet light source 4A in a direction substantially perpendicular to the light irradiation surface, that is, the resin film 2. Therefore, the first light U1 whose intensity distribution is substantially constant from time t1 to time t2 becomes second light U2 whose irradiation area becomes narrower from time t2. When the second light U2 substantially reaches the set position Y (time t3), at least the ultraviolet light source 4A is oriented in a direction substantially perpendicular to the resin film 2.

したがって、第2の光U2は樹脂膜2の設定位置Yでの強度分布の立上りと立下りが等しい急勾配の正規分布の強度分布になり、紫外線の照射と非照射との境界が鮮明になる光の立上りとなるので、樹脂膜2が外周部の肉厚部分2Cの寸前まで硬化され、肉厚部分2Cは未硬化のまま残される。つまり、設定位置Yでの最終的な第2の光U2の強度分布の立上りが急勾配であるので、硬化と未硬化との中間の領域を最小にすることができ、外周部で厚くなる部分2Cの平坦化に役立つ。なお、この実施形態4においては、紫外線光源4Aが最初の傾倒角度からほぼ垂直の向きになるまでに要する時間が最低限必要であり、その時間の経過と共に第2の光U2の強度分布はシャープになっていく。その時間は調整が可能であるが、第1の光U1の照射時間を長くできるという面から短い方が好ましい。この場合には、第2の光U2の強度分布のピーク値は第1の光U1に比べて大きい。また、紫外線光源4Aの勾配角度は図示とは逆であってもよく、この場合には、立下り(回転中心側)に比べて立上り(外周側)が緩やかな勾配の山形となる。   Therefore, the second light U2 has a normal distribution with a steep normal distribution in which the rising and falling of the intensity distribution at the set position Y of the resin film 2 are equal, and the boundary between irradiation with ultraviolet light and non-irradiation becomes clear. Since the light rises, the resin film 2 is cured to the point immediately before the thick portion 2C of the outer peripheral portion, and the thick portion 2C is left uncured. That is, since the rising of the final intensity distribution of the second light U2 at the setting position Y is steep, the region between the cured and uncured regions can be minimized, and the portion that becomes thicker at the outer peripheral portion Useful for 2C planarization. In the fourth embodiment, the time required for the ultraviolet light source 4A to be substantially perpendicular from the initial tilt angle is necessary, and the intensity distribution of the second light U2 is sharp as time elapses. It will become. Although the time can be adjusted, it is preferable that the time is short from the viewpoint that the irradiation time of the first light U1 can be lengthened. In this case, the peak value of the intensity distribution of the second light U2 is larger than that of the first light U1. Further, the gradient angle of the ultraviolet light source 4A may be opposite to that shown in the figure, and in this case, the rising (outer peripheral side) is a mountain with a gentler slope than the falling (rotation center side).

この実施形態4でも、スポット状の第1の光U1は前記液状物質の展延に合わせて樹脂膜2と平行に外周側に移行し、選択されたスピンパターンで回転している樹脂膜2が所定の厚みになる時点で膜厚を順次確定していくのが好ましいが、ほぼ所定の膜厚の樹脂膜2を形成した後に別の基板回転装置(図示せず)に移載し、基板を回転させながら前述したように第1の光U1と第2の光U2とを照射してもよい。   Also in the fourth embodiment, the spot-like first light U1 moves to the outer peripheral side in parallel with the resin film 2 in accordance with the spread of the liquid substance, and the resin film 2 rotating with the selected spin pattern is obtained. It is preferable to sequentially determine the film thickness when the predetermined thickness is reached. However, after the resin film 2 having a substantially predetermined film thickness is formed, it is transferred to another substrate rotating device (not shown), You may irradiate 1st light U1 and 2nd light U2 as mentioned above, rotating.

以上説明した実施形態2〜4では、円形状又は長円(楕円)状のスポット光であるので、基板がガラス板などであってその上面の回転中心点を含む全面に樹脂膜2を形成したい場合にも対応することができる。実施形態1のように円環状の光の場合にも、レンズ部を樹脂膜の近傍まで近づけることによって、回転中心点を含む全面に樹脂膜2を形成したい場合にも対応することができる。基板の樹脂膜2の中心面域を含む全面をほぼ均一な時間積分値の照射エネルギーで硬化させることができ、均一な膜厚で平坦性の優れた樹脂膜を備える高い品質の基板を得ることができる。また、実施形態2〜4では第1の光U1と第2の光U2を同一の光源から発生したが、第1の光U1と第2の光U2を別々の光源から発生しても良い。   In Embodiments 2 to 4 described above, since the spot light is circular or oval (elliptical), it is desired to form the resin film 2 on the entire surface including the rotation center point on the upper surface of the substrate such as a glass plate. It is possible to deal with cases. Even in the case of annular light as in the first embodiment, it is possible to deal with a case where the resin film 2 is desired to be formed on the entire surface including the rotation center point by bringing the lens portion close to the vicinity of the resin film. The entire surface including the central surface area of the resin film 2 of the substrate can be cured with an irradiation energy having a substantially uniform time integral value, and a high quality substrate having a uniform film thickness and a resin film with excellent flatness is obtained. Can do. In the second to fourth embodiments, the first light U1 and the second light U2 are generated from the same light source. However, the first light U1 and the second light U2 may be generated from separate light sources.

この場合には、例えば基板1の前記設定位置Yの近傍手前に第2の光U2を発生する第2の光源を備え、第1の光U1が設定位置Yの寸前手前に到達するときに、前記第2の光源をオンさせて第2の光U2を基板1の設定位置Yに照射すればよい。また、実施形態1で述べた円環状の第1の光U1と実施形態2〜4で説明したようなスポット状の第2の光U2とを組み合わせても良い。なお、実施形態1と同様にスポット状の光が外周側に移行するのに伴って光の強度を大きくしていっても良い。   In this case, for example, a second light source that generates the second light U2 near the set position Y of the substrate 1 is provided, and when the first light U1 arrives just before the set position Y, The second light source may be turned on to irradiate the set position Y of the substrate 1 with the second light U2. Further, the annular first light U1 described in the first embodiment and the spot-shaped second light U2 as described in the second to fourth embodiments may be combined. As in the first embodiment, the intensity of light may be increased as the spot-shaped light shifts to the outer peripheral side.

なお、本発明は、高記録密度の光ディスクの光ディスク基板に均一で薄い膜厚のカバー層を形成する際に特に有用であることは前述の通りであるが、各種の光ディスクにおける光ディスク基板又はガラスなど種々の基板間に接着剤による膜厚の均一な樹脂膜を形成して基板同士を貼り合せる場合、あるいは種々の基板へ膜厚の均一な樹脂膜を形成する際にも有用である。なお、基板同士を貼り合せる場合には、一方の基板の上に接着剤を環状又は点状に供給し、その上に他方の基板を重ね合わせた状態で高速回転させて基板間に接着剤を展延させて樹脂膜2を形成し、その樹脂膜2が所定の膜厚になった段階で、前記他方の基板を通して前述のように環状光を照射して、樹脂膜2を順次確定していってもよい。また、第1の光の照射は樹脂膜の設定値Yまでがほぼ一定の厚みになった段階で、基板の回転を停止又は回転数を低下させた状態で、前述のように行ってもよい。このとき、第2の光の照射は前述と同様である。   As described above, the present invention is particularly useful when a uniform and thin cover layer is formed on an optical disk substrate of an optical disk having a high recording density. It is also useful when a resin film having a uniform film thickness is formed between various substrates and bonded together, or when a resin film having a uniform film thickness is formed on various substrates. In addition, when bonding substrates together, an adhesive is supplied on one substrate in an annular or dot shape, and the other substrate is superposed on it and rotated at a high speed to put the adhesive between the substrates. The resin film 2 is formed by spreading, and when the resin film 2 reaches a predetermined thickness, the resin film 2 is sequentially determined by irradiating the annular light through the other substrate as described above. May be. Further, the first light irradiation may be performed as described above in a state in which the rotation of the substrate is stopped or the number of rotations is reduced when the resin film has reached a substantially constant thickness up to the set value Y. . At this time, the second light irradiation is the same as described above.

本発明に係る樹脂膜形成方法を説明するための図である。It is a figure for demonstrating the resin film formation method which concerns on this invention. 本発明に係る樹脂膜形成方法に用いられる光を説明するための図である。It is a figure for demonstrating the light used for the resin film formation method concerning this invention. 本発明の実施形態1に係る樹脂膜の形成方法及びその方法を実現する装置の一例を説明するための図である。It is a figure for demonstrating an example of the formation method of the resin film which concerns on Embodiment 1 of this invention, and the apparatus which implement | achieves the method. 実施形態1に用いられる円環状光形成部の一例を説明するための図である。It is a figure for demonstrating an example of the annular | circular shaped light formation part used for Embodiment 1. FIG. 実施形態1おける基板のスピンパターンと光照射ヘッドの上昇速度の一例を示す図である。It is a figure which shows an example of the raise speed of the spin pattern of the board | substrate in Embodiment 1, and a light irradiation head. 実施形態1に用いられる円環状光形成部の別の一例を説明するための図である。It is a figure for demonstrating another example of the annular | circular shaped light formation part used for Embodiment 1. FIG. 実施形態1に用いられる円環状光形成部の別の一例を説明するための図である。It is a figure for demonstrating another example of the annular | circular shaped light formation part used for Embodiment 1. FIG. 本発明の実施形態2に係る樹脂膜の形成方法及びその方法を実現する装置の一例を説明するための図である。It is a figure for demonstrating an example of the formation method of the resin film which concerns on Embodiment 2 of this invention, and the apparatus which implement | achieves the method. 本発明の実施形態2に係る樹脂膜の形成方法を説明するための図である。It is a figure for demonstrating the formation method of the resin film which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る樹脂膜の形成方法を説明するための図である。It is a figure for demonstrating the formation method of the resin film which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る樹脂膜の形成方法及びその方法を実現する装置の一例を説明するための図である。It is a figure for demonstrating an example of the formation method of the resin film which concerns on Embodiment 4 of this invention, and the apparatus which implement | achieves the method.

符号の説明Explanation of symbols

1・・・基板
2・・・樹脂膜
2A・・・光照射面
2B・・・樹脂膜の内周端
3・・・基板回転機構
3A・・・回転軸
3B・・・回転駆動部
3C・・・基板受台
3D・・・カバー部材
4・・・紫外線照射機構
4A・・・紫外線光源
4B・・・光ファイバケーブル
4C・・・円環状光形成部
4C1・・・円環状部
5・・・レンズ機構
5A・・・レンズ部
5B・・・焦点変更部
6・・・光照射ヘッド
7・・・昇降装置
8・・・制御装置
9・・・回転軸
10・・・平行移動機構
11・・・移動・角度変更機構
11A・・・案内部材
11B・・・移動部材
11C・・・結合部材
11D・・・角度変更部材
11E・・・支点軸
41・・・ケースの円環状の外壁部
42・・・ケースの円環状の内壁部
CP・・・基板受台のセンターピン
LED・・・発光ダイオード
X・・・回転中心軸線
Y・・・樹脂膜2の設定位置
U1・・・第1の光
U2・・・第2の光
D・・・樹脂膜2の内径
E・・・給電線
SP・・・スピンパターン
VP・・・速度パターン
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Resin film 2A ... Light irradiation surface 2B ... Inner peripheral edge of resin film 3 ... Substrate rotation mechanism 3A ... Rotating shaft 3B ... Rotation drive part 3C .. Substrate cradle 3D ... Cover member 4 ... UV irradiation mechanism 4A ... UV light source 4B ... Optical fiber cable 4C ... Annular light forming part 4C1 ... Annular part 5. Lens mechanism 5A ... Lens unit 5B ... Focus changing unit 6 ... Light irradiation head 7 ... Elevating device 8 ... Control device 9 ... Rotating shaft 10 ... Parallel movement mechanism 11. .. Movement / angle changing mechanism 11A: guide member 11B ... moving member 11C ... coupling member 11D ... angle changing member 11E ... fulcrum shaft 41 ... annular outer wall 42 of the case 42 ... An annular inner wall of the case CP ... Center pin of the board cradle LED ... Light emitting diode X ... Center axis of rotation Y ... Setting position of resin film 2 U1 ... First light U2 ... Second light D ... Inner diameter of resin film 2 E. ..Power supply line SP ... Spin pattern VP ... Speed pattern

Claims (14)

基板を回転中心軸線を中心に高速回転させることにより前記基板に供給された光硬化性樹脂を展延して所定の膜厚の樹脂膜を前記基板に形成している最中に、又は前記基板に形成した後に、前記樹脂膜に光を照射して硬化させる樹脂膜形成方法において、
前記光の照射を止める前記樹脂膜の設定位置の手前の所定位置まで、前記光の強度分布の勾配が光の照射と非照射との境界で前記樹脂膜に凹凸を生じないような緩やかな勾配の第1の光を前記回転中心軸線側から外周側に向けて移行させながら照射し、
前記所定位置で前記第1の光の強度分布の勾配が急傾斜になるように制御し始めて第2の光を形成し、前記設定位置では予め設定された急な勾配の強度分布になるように前記第2の光を制御し、前記設定位置近傍での第2の光の照射と非照射の境界を鮮明にすることを特徴とする樹脂膜形成方法。
While the photocurable resin supplied to the substrate is spread by rotating the substrate at a high speed around the rotation center axis, a resin film having a predetermined film thickness is being formed on the substrate, or the substrate In the resin film forming method in which the resin film is cured by irradiating light after being formed,
A gentle gradient in which the gradient of the light intensity distribution does not cause unevenness on the boundary between light irradiation and non-irradiation until a predetermined position before the set position of the resin film where the light irradiation is stopped The first light is irradiated while moving from the rotation center axis side toward the outer peripheral side,
The second light is formed by starting control so that the gradient of the intensity distribution of the first light is steep at the predetermined position, and the intensity distribution has a preset steep gradient at the set position. A method for forming a resin film, comprising: controlling the second light to sharpen a boundary between irradiation and non-irradiation of the second light in the vicinity of the set position.
請求項1において、
光照射開始時刻t1から前記第1の光が前記所定位置に到達する時刻t2までの間、前記第1の光は前記樹脂膜の光照射面の内周側から外周側に向け移行して前記基板を照射し、
前記時刻t2から、前記第1の光の強度分布の勾配が大きくなるように制御され始めた前記第2の光を前記基板に照射し、
前記第2の光は、前記設定位置に到達する時刻t3には、予め設定された前記急な勾配の強度分布に制御されていることを特徴とする樹脂膜形成方法。
In claim 1,
From the light irradiation start time t1 to the time t2 when the first light reaches the predetermined position, the first light moves from the inner peripheral side to the outer peripheral side of the light irradiation surface of the resin film, and Irradiate the substrate,
From the time t2, the substrate is irradiated with the second light that has been controlled to increase the gradient of the intensity distribution of the first light,
The resin film forming method, wherein the second light is controlled to have an intensity distribution with a steep gradient set in advance at time t3 when the second light reaches the set position.
請求項1又は請求項2において、
前記第1の光の移行速度を、照射時間の経過に伴って前記光照射面の回転中心側に比べて外周側が遅くなるように制御することにより、前記第1の光が照射する照射面の単位面積当たりの光照射エネルギー量を一様にすることを特徴とする樹脂膜形成方法。
In claim 1 or claim 2,
By controlling the transition speed of the first light so that the outer peripheral side becomes slower than the rotation center side of the light irradiation surface as the irradiation time elapses, the irradiation surface of the irradiation surface irradiated with the first light is controlled. A method for forming a resin film, characterized in that the amount of light irradiation energy per unit area is made uniform.
請求項1又は請求項2において、
前記第1の光の照射時間を、前記光照射面の回転中心側に比べて外周側が長くなるように制御することにより、前記第1の光が照射する照射面の単位面積当たりの光照射エネルギー量を一様にすることを特徴とする樹脂膜形成方法。
In claim 1 or claim 2,
By controlling the irradiation time of the first light so that the outer peripheral side becomes longer than the rotation center side of the light irradiation surface, the light irradiation energy per unit area of the irradiation surface irradiated with the first light A resin film forming method, characterized in that the amount is uniform.
請求項1ないし請求項4のいずれかにおいて、
前記基板は1層以上の信号記録層が形成されたディスク基板であり、
前記光照射面は前記ディスク基板の前記信号記録層上に形成された光透過層であり、
前記ディスク基板を回転させることにより前記光硬化性樹脂を展延させて所定の膜厚の前記光透過層を形成している状態で、前記第1の光及び前記第2の光が前記光透過層に照射され、
前記第2の光を照射した後に、前記ディスク基板を再び回転させて、外周側の未硬化の前記光透過層を平坦化することを特徴とする樹脂膜形成方法。
In any one of Claim 1 thru | or 4,
The substrate is a disc substrate on which one or more signal recording layers are formed,
The light irradiation surface is a light transmission layer formed on the signal recording layer of the disk substrate,
The first light and the second light are transmitted through the optical disk in a state where the photocurable resin is spread by rotating the disk substrate to form the light transmitting layer having a predetermined thickness. The layer is irradiated,
After irradiating the second light, the disk substrate is rotated again to flatten the uncured light transmission layer on the outer peripheral side.
請求項1ないし請求項4のいずれかにおいて、
前記第1の光の外周側への移行速度は、前記樹脂膜を形成する液状物質が展延されて前記樹脂膜が所定の厚みになっていく時間に依存し、前記樹脂膜が所定の厚みになった時点で膜厚を順次確定していくことを特徴とする樹脂膜形成方法。
In any one of Claim 1 thru | or 4,
The transition speed of the first light to the outer peripheral side depends on the time during which the liquid material forming the resin film is spread and the resin film reaches a predetermined thickness, and the resin film has a predetermined thickness. A method for forming a resin film, characterized in that the film thickness is sequentially determined at a point of time.
基板回転機構の回転による遠心力を利用して基板上に又は基板間に形成された樹脂膜に光を照射して硬化させる紫外線照射機構を備えた装置おいて、
前記紫外線照射機構は、
前記樹脂膜の光照射面に照射される光を発生する光源と、
前記光の照射開始、照射停止を制御する制御装置と、
前記光の強度分布の勾配を変える光強度分布変更機構と、
を備え、
前記強度分布変更機構は、前記光の照射を止める前記樹脂膜の設定位置の手前の所定位置まで、前記光の強度分布の勾配が光照射と非照射との境界で前記樹脂膜に凹凸を生じないような緩やかな勾配の光が照射されるように前記基板の回転中心軸線側から外周側に向けて前記光を移行させ、前記所定位置で前記光の強度分布の勾配が大きくなるように変更し、前記光の強度分布は前記設定位置では予め設定された急な勾配となり、前記設定位置近傍での前記光の照射と非照射の境界を鮮明にすることを特徴とする樹脂膜形成装置。
In an apparatus equipped with an ultraviolet irradiation mechanism that irradiates and cures a resin film formed on or between substrates using centrifugal force generated by the rotation of the substrate rotation mechanism.
The ultraviolet irradiation mechanism is
A light source that generates light irradiated on the light irradiation surface of the resin film;
A control device for controlling irradiation start and irradiation stop of the light;
A light intensity distribution changing mechanism for changing a gradient of the light intensity distribution;
With
The intensity distribution changing mechanism has an unevenness in the resin film at a boundary between light irradiation and non-irradiation in a gradient of the light intensity distribution to a predetermined position before the set position of the resin film where the light irradiation is stopped. The light is shifted from the rotation center axis side of the substrate toward the outer peripheral side so that light with a gentle gradient is irradiated so that the gradient of the light intensity distribution becomes large at the predetermined position. The light intensity distribution has a steep slope set in advance at the set position, and the light irradiation and non-irradiation boundaries in the vicinity of the set position are sharpened.
請求項7において、
前記光強度分布変更機構は、前記光源からの光の強度分布の勾配を変えるレンズ機構と、前記レンズ機構を前記樹脂膜に対して垂直上方向に移動させる昇降装置とからなり、
前記昇降装置が前記レンズ機構を前記光照射面から離れる方向に移動させるとき、前記光は前記光照射面を回転中心軸線側から外周側に向けて移行し、
前記光の照射開始時刻t1から前記光が前記所定位置に到達する時刻t2に、前記レンズ機構が前記光の焦点を絞って前記光の強度分布の勾配が大きくなるように変更することを特徴とする樹脂膜形成装置。
In claim 7,
The light intensity distribution changing mechanism includes a lens mechanism that changes the gradient of the light intensity distribution from the light source, and a lifting device that moves the lens mechanism vertically upward with respect to the resin film,
When the lifting device moves the lens mechanism in a direction away from the light irradiation surface, the light moves from the light irradiation surface toward the outer peripheral side from the rotation center axis side,
From the irradiation start time t1 to the time t2 when the light reaches the predetermined position, the lens mechanism changes the focus of the light so as to increase the gradient of the light intensity distribution. Resin film forming device.
請求項7において、
前記昇降装置は、前記円環状光形成部と前記レンズ機構とが前記光照射面から離れるように駆動するとき、前記円環状光形成部と前記レンズ機構とが前記光照射面から離れるに従って、上昇速度を低下させて前記光が照射する照射面の単位面積当たりの光照射エネルギー量を一様にすることを特徴とする樹脂膜形成装置。
In claim 7,
The elevating device is lifted as the annular light forming portion and the lens mechanism are separated from the light irradiation surface when the annular light forming portion and the lens mechanism are driven so as to be separated from the light irradiation surface. A resin film forming apparatus characterized in that a light irradiation energy amount per unit area of an irradiation surface irradiated with the light is made uniform by reducing a speed.
請求項7又は請求項9において、
前記円環状光形成部は、前記光源からの光を導光する多数の光ファイバの先端部を備え、該先端部は円環状にされた光ファイバの円環状の先端部になっており、その円環状の先端面から円環状の光が照射されることを特徴とする樹脂膜形成装置。
In claim 7 or claim 9,
The annular light forming portion includes a plurality of optical fiber tip portions that guide light from the light source, and the tip portion is an annular tip portion of an annular optical fiber, A resin film forming apparatus, wherein annular light is irradiated from an annular tip surface.
請求項7において、
前記光強度分布変更機構は、前記光源からのスポット状の光の強度分布の勾配を変えるレンズ機構と、前記光源と前記レンズ機構とを前記光照射面に対し平行に移行させる平行移動装置とからなり、
前記基板が回転している状態で、前記平行移動装置が前記光源と前記レンズ機構とを前記樹脂膜上を平行に移動させることにより、前記スポット状の光は前記光照射面を前記回転中心軸線側から外周側に向けて移行し、
前記スポット状の光の照射開始時刻t1から前記スポット状の光が前記所定位置に到達する時刻t2に、前記レンズ機構が前記スポット状の光の焦点を絞り始めて前記スポット状の光の強度分布の勾配が大きくなるように変更することを特徴とする樹脂膜形成装置。
In claim 7,
The light intensity distribution changing mechanism includes: a lens mechanism that changes a gradient of the intensity distribution of spot-like light from the light source; and a translation device that moves the light source and the lens mechanism in parallel to the light irradiation surface. Become
In the state where the substrate is rotating, the parallel movement device moves the light source and the lens mechanism in parallel on the resin film, so that the spot-like light is moved along the rotation center axis along the light irradiation surface. From the side toward the outer periphery,
From the irradiation start time t1 of the spot-like light to the time t2 when the spot-like light reaches the predetermined position, the lens mechanism starts to focus the spot-like light, and the intensity distribution of the spot-like light is changed. A resin film forming apparatus, wherein the gradient is changed so as to increase.
請求項7ないし請求項11のいずれかにおいて、
前記レンズ部と前記樹脂膜との間に位置するように、前記レンズ機構に特定波長カットフィルタを備え、該特定波長カットフィルタが特定波長以下の波長の前記光を通過させないことによって、光の色収差による影響を低減して設定位置Yでの光の照射と非照射の境界をより鮮明にすることを特徴とする樹脂膜形成装置。
In any one of Claims 7 thru | or 11,
The lens mechanism is provided with a specific wavelength cut filter so as to be positioned between the lens portion and the resin film, and the specific wavelength cut filter does not allow the light having a wavelength equal to or less than the specific wavelength to pass, thereby causing chromatic aberration of light. A resin film forming apparatus characterized in that the influence of light is reduced and the boundary between light irradiation and non-irradiation at the set position Y becomes clearer.
請求項7において、
前記光強度分布変更機構は、前記光源を前記光照射面に対して平行な方向と上下方向に移行させる多方向移動装置を備え、
前記基板が回転している状態で、前記多方向移動装置が前記光源を前記樹脂膜に対して平行に前記回転中心軸線側から外周方向に移動させ、
前記光が照射開始時刻t1から前記所定位置に到達する時刻t2に、前記多方向移動装置が前記光源を下降させて前記樹脂膜に対して近づけることにより、時刻t2前の前記光よりも光の強度分布の勾配が大きくなるようにすることを特徴とする樹脂膜形成装置。
In claim 7,
The light intensity distribution changing mechanism includes a multidirectional moving device that shifts the light source in a direction parallel to the light irradiation surface and in a vertical direction,
In a state where the substrate is rotating, the multi-directional moving device moves the light source in the outer peripheral direction from the rotation center axis side in parallel to the resin film,
At the time t2 when the light reaches the predetermined position from the irradiation start time t1, the multidirectional moving device lowers the light source and approaches the resin film, so that the light is emitted more than the light before the time t2. A resin film forming apparatus, wherein the gradient of the intensity distribution is increased.
請求項7において、
前記光強度分布変更機構は、前記光源を前記光照射面に対して平行な方向に移行させると共に前記光源の前記光照射面に対する傾倒角度を変更し得る移動・角度変更装置を備え、
前記基板が回転している状態で、照射開始時刻t1から前記所定位置に到達する時刻t2まで、前記移動・角度変更装置は前記前記光源を前記樹脂膜に対して所定の角度を傾斜させながら前記樹脂膜と平行に前記回転中心軸側から外周方向に移動させ、
前記光照射面に対して所定の角度で勾配して照射される前記光が前記所定位置に到達する時刻t2に、前記移動・角度変更装置が前記光源の角度を前記光照射面に対して垂直方向に変更することにより、時刻t2前の前記光よりも強度分布の勾配が大きな光を前記設定位置まで照射することを特徴とする樹脂膜形成装置。
In claim 7,
The light intensity distribution changing mechanism includes a movement / angle changing device capable of changing the tilt angle of the light source with respect to the light irradiation surface while moving the light source in a direction parallel to the light irradiation surface,
While the substrate is rotating, from the irradiation start time t1 to the time t2 when the substrate reaches the predetermined position, the movement / angle changing device tilts the light source at a predetermined angle with respect to the resin film. Move in parallel to the resin film from the rotation center axis side to the outer circumferential direction,
At time t2 when the light irradiated at a predetermined angle with respect to the light irradiation surface reaches the predetermined position, the moving / angle changing device makes the angle of the light source perpendicular to the light irradiation surface. By changing the direction, the resin film forming apparatus irradiates the set position with light having a larger intensity distribution gradient than the light before time t2.
JP2007173921A 2006-09-04 2007-07-02 Resin film forming method and resin film forming apparatus Expired - Fee Related JP4554646B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007173921A JP4554646B2 (en) 2007-07-02 2007-07-02 Resin film forming method and resin film forming apparatus
PCT/JP2007/066229 WO2008029615A1 (en) 2006-09-04 2007-08-22 Method and apparatus for forming resin film
US12/439,583 US8409671B2 (en) 2006-09-04 2007-08-22 Method and apparatus for forming resin film
CN2007800321602A CN101512648B (en) 2006-09-04 2007-08-22 Resin film formation method and resin film formation device
TW096132281A TWI436356B (en) 2006-09-04 2007-08-30 A resin film forming method and a resin film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007173921A JP4554646B2 (en) 2007-07-02 2007-07-02 Resin film forming method and resin film forming apparatus

Publications (2)

Publication Number Publication Date
JP2009015923A true JP2009015923A (en) 2009-01-22
JP4554646B2 JP4554646B2 (en) 2010-09-29

Family

ID=40356651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007173921A Expired - Fee Related JP4554646B2 (en) 2006-09-04 2007-07-02 Resin film forming method and resin film forming apparatus

Country Status (1)

Country Link
JP (1) JP4554646B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142486A1 (en) 2018-01-16 2019-07-25 株式会社オリジン Method for manufacturing coated object and device for spreading coating substance
WO2020040076A1 (en) 2018-08-22 2020-02-27 株式会社オリジン Method for manufacturing object coated with coating substance
CN113695204A (en) * 2020-05-21 2021-11-26 长鑫存储技术有限公司 Film layer curing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147430A (en) * 1995-11-24 1997-06-06 Mitsubishi Plastics Ind Ltd Production of information recording disk and apparatus therefor
JP2004127401A (en) * 2002-10-01 2004-04-22 Origin Electric Co Ltd Optical disk and apparatus for manufacturing the same
JP2004280927A (en) * 2003-03-14 2004-10-07 Origin Electric Co Ltd Method and device for forming resin film
JP2005317053A (en) * 2004-04-26 2005-11-10 Victor Co Of Japan Ltd Manufacturing method of optical disk, and optical disk device
WO2005118159A1 (en) * 2004-06-03 2005-12-15 Shibaura Mechatronics Corporation Resin layer forming method, resin layer forming apparatus, disc and disc manufacturing method
JP2006048828A (en) * 2004-08-04 2006-02-16 Sony Corp Disk bonding method and optical disk manufacturing device
JP2006190410A (en) * 2005-01-07 2006-07-20 Origin Electric Co Ltd Manufacturing method and device for optical disk
JP2007026517A (en) * 2005-07-14 2007-02-01 Ushio Inc Ultraviolet ray irradiation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147430A (en) * 1995-11-24 1997-06-06 Mitsubishi Plastics Ind Ltd Production of information recording disk and apparatus therefor
JP2004127401A (en) * 2002-10-01 2004-04-22 Origin Electric Co Ltd Optical disk and apparatus for manufacturing the same
JP2004280927A (en) * 2003-03-14 2004-10-07 Origin Electric Co Ltd Method and device for forming resin film
JP2005317053A (en) * 2004-04-26 2005-11-10 Victor Co Of Japan Ltd Manufacturing method of optical disk, and optical disk device
WO2005118159A1 (en) * 2004-06-03 2005-12-15 Shibaura Mechatronics Corporation Resin layer forming method, resin layer forming apparatus, disc and disc manufacturing method
JP2006048828A (en) * 2004-08-04 2006-02-16 Sony Corp Disk bonding method and optical disk manufacturing device
JP2006190410A (en) * 2005-01-07 2006-07-20 Origin Electric Co Ltd Manufacturing method and device for optical disk
JP2007026517A (en) * 2005-07-14 2007-02-01 Ushio Inc Ultraviolet ray irradiation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142486A1 (en) 2018-01-16 2019-07-25 株式会社オリジン Method for manufacturing coated object and device for spreading coating substance
KR20200035466A (en) 2018-01-16 2020-04-03 가부시키가이샤 오리진 Manufacturing method of coating-targeted object and device for spreading coating material
TWI702091B (en) * 2018-01-16 2020-08-21 日商歐利生股份有限公司 Coated object manufacturing method and coating substance spreading device
US11219921B2 (en) 2018-01-16 2022-01-11 Origin Company, Limited Method for manufacturing coated object and coating substance spreading apparatus
WO2020040076A1 (en) 2018-08-22 2020-02-27 株式会社オリジン Method for manufacturing object coated with coating substance
KR20200052971A (en) 2018-08-22 2020-05-15 가부시키가이샤 오리진 Manufacturing method of coating material
US11260418B2 (en) 2018-08-22 2022-03-01 Origin Company, Limited Method for manufacturing target object coated with coating substance
CN113695204A (en) * 2020-05-21 2021-11-26 长鑫存储技术有限公司 Film layer curing device
CN113695204B (en) * 2020-05-21 2022-10-18 长鑫存储技术有限公司 Film layer curing device

Also Published As

Publication number Publication date
JP4554646B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
US8409671B2 (en) Method and apparatus for forming resin film
US5198159A (en) Process of fabricating three-dimensional objects from a light curable resin liquid
JP5894439B2 (en) Irradiation system for stereolithography equipment
JP6737613B2 (en) Optical body and light emitting device
KR20070008409A (en) Method for manufacturing transmission screen, device thereof and transmission screen
JP2014120604A (en) Imprint device, method of manufacturing device and mold for use in imprint device
JP4554646B2 (en) Resin film forming method and resin film forming apparatus
JP4554576B2 (en) Method and apparatus for forming resin film
JP4036367B2 (en) Method and apparatus for forming resin film
JP3742813B2 (en) Manufacturing method and manufacturing apparatus of optical information recording medium
JP4362680B2 (en) Fine structure manufacturing method and manufacturing apparatus
JP2006264253A (en) Lens forming method and lens forming apparatus
JP2005317053A (en) Manufacturing method of optical disk, and optical disk device
JP4227980B2 (en) Manufacturing method of optical information recording medium
JP4529895B2 (en) Manufacturing method of optical disk
JP2003091888A (en) Manufacturing method for optical recording medium and manufacturing device for optical recording medium
JP2006048828A (en) Disk bonding method and optical disk manufacturing device
DE112004002964B4 (en) Method and device for producing an optical disk
JP4179502B2 (en) Method and apparatus for forming coating film
EP1662498A2 (en) Method and apparatus for manufacturing optical disk
KR101543605B1 (en) Apparatus for sealing frit using laser
JP2015182413A (en) Projector system, stereoscopic molding generation apparatus using projector system and stereoscopic molding generation method
JP2006142722A (en) Manufacturing method and manufacturing equipment for resin-combined lens
JP2006269037A (en) Disk bonding apparatus, disk bonding method and bonded disk
JP2006040397A (en) Method for manufacturing information recording medium and information recording medium

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees