JP2009014318A - Air conditioning system and its operating method - Google Patents

Air conditioning system and its operating method Download PDF

Info

Publication number
JP2009014318A
JP2009014318A JP2007179583A JP2007179583A JP2009014318A JP 2009014318 A JP2009014318 A JP 2009014318A JP 2007179583 A JP2007179583 A JP 2007179583A JP 2007179583 A JP2007179583 A JP 2007179583A JP 2009014318 A JP2009014318 A JP 2009014318A
Authority
JP
Japan
Prior art keywords
refrigerant
conditioning system
temperature
air conditioning
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007179583A
Other languages
Japanese (ja)
Other versions
JP4970170B2 (en
Inventor
Tamotsu Yoshii
存 吉井
Yosuke Mino
洋介 三野
Shisei Waratani
至誠 藁谷
Tsuneo Uekusa
常雄 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2007179583A priority Critical patent/JP4970170B2/en
Publication of JP2009014318A publication Critical patent/JP2009014318A/en
Application granted granted Critical
Publication of JP4970170B2 publication Critical patent/JP4970170B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a suitable air conditioning system for a secondary coolant circulation type air conditioning system composed of a primary-side cold water circuit and a secondary-side coolant circuit. <P>SOLUTION: Along with starting control, cold water temperature Ta and coolant evaporation pressure Pa of the secondary-side coolant circuit are measured (S201). Next, present cold water temperature Ta is compared with critical cold water temperature Tc, and present evaporation pressure Pa is compared with critical evaporation pressure Pc (S202). When Ta is higher than Tc and Pa is higher than Pc, which means both the temperature and the pressure are over the critical values, operation of a compressor 4c is started so as to operate an auxiliary coolant circuit (or continue the operation if the circuit is already operating) (S203). When Ta is as low as or lower than Tc or Pa is as low as or lower than Pc, which means either value is below the critical value, the operation of the compressor 4c is stopped to stop the auxiliary coolant circuit (or continue the stop if the circuit is already stopped) (S204). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気調和システム及びその運転方法に係り、特に一次側冷水回路と二次側冷媒回路により構成される二次冷媒循環型空気調和システムに好適な空気調和システムに関する。   The present invention relates to an air conditioning system and a method for operating the same, and more particularly to an air conditioning system suitable for a secondary refrigerant circulation air conditioning system including a primary side chilled water circuit and a secondary side refrigerant circuit.

従来、多階層建物等における空気調和システムに関する技術として、一次側冷水回路と二次側冷媒回路により構成される空気調和システム(以下、二次冷媒循環型空調システムという)が開示されている(例えば特許文献1、特許文献2)。このような従来の二次冷媒循環型空調システム100は、図7に示すように一次側冷水回路103と二次側冷媒回路104により構成されている。一次側冷水回路103は、熱源機101と、熱源機で発生する冷水を建物内で循環する一次側冷水配管103a、103bと、循環ポンプ103cを主要構成とする。熱源機101には、冷却水配管102aと冷却塔102b、冷却水ポンプ102cにより構成される冷却水回路102が接続されている。二次側冷媒回路104は、二次冷媒ポンプユニット(以下、冷媒ユニットという)112と、空調機(以下、AHUという)108と、これらを結ぶ冷媒配管113と、を備えている。冷媒ユニット112は、内部に一次側冷水回路103より供給される冷水と熱交換する凝縮器105と、冷媒タンク106と、冷媒ポンプ107と、を格納している。また、AHU108は、蒸発器109と、吹出ファン110と、冷媒ユニットと蒸発器109を結ぶ冷媒配管113と、を格納している。このような構成により建物内に冷水配管を行う必要がなくなり、漏水等によるトラブルを解消できるという特徴を有する。
特開2004−28484号公報 特開平8−261517号公報
Conventionally, as a technique related to an air conditioning system in a multi-story building or the like, an air conditioning system (hereinafter referred to as a secondary refrigerant circulation air conditioning system) configured by a primary side chilled water circuit and a secondary side refrigerant circuit has been disclosed (for example, Patent Document 1 and Patent Document 2). Such a conventional secondary refrigerant circulation air conditioning system 100 includes a primary chilled water circuit 103 and a secondary refrigerant circuit 104 as shown in FIG. The primary-side chilled water circuit 103 includes a heat source unit 101, primary-side chilled water pipes 103a and 103b that circulate cold water generated by the heat source unit in a building, and a circulation pump 103c. The heat source unit 101 is connected to a cooling water circuit 102 including a cooling water pipe 102a, a cooling tower 102b, and a cooling water pump 102c. The secondary refrigerant circuit 104 includes a secondary refrigerant pump unit (hereinafter referred to as a refrigerant unit) 112, an air conditioner (hereinafter referred to as AHU) 108, and a refrigerant pipe 113 that connects them. The refrigerant unit 112 stores therein a condenser 105 that exchanges heat with cold water supplied from the primary-side cold water circuit 103, a refrigerant tank 106, and a refrigerant pump 107. Further, the AHU 108 stores an evaporator 109, a blower fan 110, and a refrigerant pipe 113 that connects the refrigerant unit and the evaporator 109. With such a configuration, there is no need to provide cold water piping in the building, and troubles due to water leakage and the like can be solved.
JP 2004-28484 A JP-A-8-261517

このような従来の二次冷媒循環型空調システムを、ICT装置等を収容する機械室空調に適用する場合には、以下のような問題があった。
通常、機械室空調においては省エネ等の観点から除湿を行わず、高顕熱運転制御とするのが一般的であるが、室内環境条件によっては積極的に除湿を行う必要がある場合がある。しかし、二次冷媒循環型空調システムの場合、蒸発器における冷媒蒸発温度が一次側冷水温度に依存するため、冷水温度が比較的高い場合には除湿運転制御が困難となる。この場合、一次側冷水温度を下げて蒸発温度をコントロールすることは、熱源機につながる他系統の空調機の制御を阻害することから困難である。
When such a conventional secondary refrigerant circulation type air conditioning system is applied to a machine room air conditioner that houses an ICT device or the like, there are the following problems.
Normally, in machine room air conditioning, it is common not to perform dehumidification from the viewpoint of energy saving, but to perform high sensible heat operation control, but depending on the indoor environment conditions, it may be necessary to actively dehumidify. However, in the case of the secondary refrigerant circulation type air conditioning system, the refrigerant evaporation temperature in the evaporator depends on the primary side cold water temperature, so that the dehumidifying operation control becomes difficult when the cold water temperature is relatively high. In this case, it is difficult to control the evaporation temperature by lowering the primary side cold water temperature because it hinders the control of the other air conditioners connected to the heat source unit.

さらに、熱源機故障など何らかの理由により冷水温度が上昇した場合、AHUの吹出し空気温度が上昇してしまう。
本発明は、上記問題を解決するためのものであって、二次冷媒循環型空調システムにおいて、一次側冷水温度に影響されず、AHUごとに湿度制御、吹出温度制御等を安定的に行うことができる制御技術を提供するものである。
Furthermore, when the cold water temperature rises for some reason, such as a heat source machine failure, the AHU blown air temperature rises.
The present invention is for solving the above-described problem, and in a secondary refrigerant circulation air conditioning system, humidity control, blowing temperature control, and the like are stably performed for each AHU without being affected by the primary side cold water temperature. It provides control technology that can be used.

本発明は以下の内容をその要旨とする。すなわち、
請求項1の発明は、熱源機と、熱源機で発生する冷水を建築物内で循環する一次側冷水回路と、一次側冷水回路の冷水と熱交換する第一の凝縮器と、冷媒タンクと、冷媒ポンプと、第一の蒸発器と吹出ファンを含む空調機(AHU)と、これらを結ぶ第一の冷媒配管と、を備えた二次側冷媒回路と、第一の凝縮器出側の冷媒と熱交換する第二の蒸発器と、第二の蒸発器入り側に膨張弁と、第一の凝縮器出側の冷水と熱交換する第二の凝縮器と、圧縮機と、これらを結ぶ第二の冷媒配管と、を備えた補助冷媒回路と、を備えて成ることを特徴とする空気調和システムである。
The gist of the present invention is as follows. That is,
The invention of claim 1 is a heat source unit, a primary side chilled water circuit that circulates chilled water generated in the heat source unit in a building, a first condenser that exchanges heat with the chilled water in the primary side chilled water circuit, and a refrigerant tank. A secondary refrigerant circuit comprising a refrigerant pump, an air conditioner (AHU) including a first evaporator and a blower fan, and a first refrigerant pipe connecting these, and a first condenser outlet side A second evaporator that exchanges heat with the refrigerant, an expansion valve on the inlet side of the second evaporator, a second condenser that exchanges heat with cold water on the outlet side of the first condenser, a compressor, and An air conditioning system comprising an auxiliary refrigerant circuit including a second refrigerant pipe to be connected.

上記において、AHUの吹出空気温度、除湿量、又は第一の蒸発器熱交換量のいずれか一以上を制御するためのAHUファン風量制御手段及び圧縮機回転数制御手段を、さらに備えたことを特徴とする(請求項2)。
請求項3の発明は、上記各発明において、AHUファン風量の増減又は圧縮機回転数の増減のいずれか一方又は両方を行うことにより、AHUの吹出空気温度、除湿量、又は蒸発器熱交換量のいずれか一以上を目標範囲に制御することを特徴とする空気調和システムの運転方法である。
In the above, AHU fan air volume control means and compressor rotation speed control means for controlling any one or more of the AHU blown air temperature, the dehumidification amount, or the first evaporator heat exchange amount are further provided. It is characterized (claim 2).
The invention of claim 3 is that in each of the above inventions, by performing either or both of increasing and decreasing the AHU fan air volume and increasing or decreasing the compressor rotational speed, the AHU blown air temperature, the dehumidifying amount, or the evaporator heat exchange amount It is the operating method of the air conditioning system characterized by controlling any one or more of these to the target range.

この場合、さらに第一の蒸発器出口において気液二相状態を維持するように、二次側冷媒回路の冷媒流量を制御することができ(請求項4)又は気相状態となるように制御することもできる(請求項5)。   In this case, the refrigerant flow rate of the secondary refrigerant circuit can be further controlled so as to maintain the gas-liquid two-phase state at the outlet of the first evaporator (Claim 4) or controlled so as to be in the gas phase state. (Claim 5).

請求項6の発明は、上記各空気調和システムにおいて、AHU吸込空気の露点温度計測値と、目標露点温度とを比較し、露点温度計測値が目標露点温度より高いときは、AHUファン風量を減少させ、AHUファン風量が下限値に至ったときに、なお第一の蒸発器における冷媒蒸発温度が目標露点温度より高いときは、補助冷媒回路の運転を開始し、その後、AHU吸込空気の露点温度計測値が目標露点温度を下回ったときは、補助冷媒回路の運転を停止し、AHUファン風量をデフォルト値に戻す、ことを特徴とする空気調和システムの湿度制御運転方法である。   The invention according to claim 6 compares the measured dew point temperature of the AHU intake air with the target dew point temperature in each of the air conditioning systems described above, and reduces the AHU fan air volume when the measured dew point temperature is higher than the target dew point temperature. If the refrigerant evaporation temperature in the first evaporator is higher than the target dew point temperature when the AHU fan air volume reaches the lower limit value, the auxiliary refrigerant circuit starts operating, and then the dew point temperature of the AHU intake air When the measured value falls below the target dew point temperature, the operation of the auxiliary refrigerant circuit is stopped, and the AHU fan air volume is returned to the default value.

請求項7の発明は、上記各空気調和システムにおいて、一次側冷水温度又は第一の蒸発器の冷媒蒸発圧力の少なくとも一方が、設定温度以上又は設定圧力以上となったときは、前記補助冷媒回路の運転を開始し、その後、一次側冷水温度が設定温度を下回り、かつ、蒸発圧力が設定圧力を下回ったとき、又は一定時間以上、設定温度及び設定圧力を下回らないとき、は補助冷媒回路の運転を停止する、ことを特徴とする空気調和システムの能力補償運転方法である。   According to the seventh aspect of the present invention, in each of the air conditioning systems, when at least one of the primary side cold water temperature or the refrigerant evaporation pressure of the first evaporator is equal to or higher than a set temperature or a set pressure, the auxiliary refrigerant circuit After that, when the primary side chilled water temperature falls below the set temperature and the evaporation pressure falls below the set pressure, or when it does not fall below the set temperature and set pressure for a certain period of time, the auxiliary refrigerant circuit An operation compensation method for an air conditioning system, characterized in that the operation is stopped.

以下、上記各発明の作用について説明する。表1及び表2は、各制御手段と空調効果の関係をまとめたものである。気相(ガス)戻りの場合と気液2相戻りの場合に分けたのは、冷媒流量の多少によって蒸発器における冷媒過熱度が変化し、冷房能力に影響を与えるためである。図5は、冷媒流量と冷房能力の関係を示すグラフである。同図において、R1は気相戻り領域であって、この範囲では冷媒流量の増加に伴って冷房能力が増加する。R1とR2の境界で過熱度0となり、この冷媒流量のとき冷房能力が最大となる。さらに冷媒流量が増加するに従い気液2相戻り領域(R2)となる。この領域では気液比が下がるのに伴って蒸発器の熱交換効率は低下するものの、冷房能力はほぼ一定である。さらに冷媒流量が増加すると液戻り領域(R3)となる。この領域では、管内流速の増加に伴いわずかではあるが冷房能力が上昇する。   The operation of each of the above inventions will be described below. Tables 1 and 2 summarize the relationship between each control means and the air conditioning effect. The reason for dividing into the case of gas-phase (gas) return and the case of gas-liquid two-phase return is that the degree of refrigerant superheat in the evaporator varies depending on the amount of refrigerant flow and affects the cooling capacity. FIG. 5 is a graph showing the relationship between the refrigerant flow rate and the cooling capacity. In the figure, R1 is a gas phase return region, and in this range, the cooling capacity increases as the refrigerant flow rate increases. The superheat degree becomes 0 at the boundary between R1 and R2, and the cooling capacity becomes maximum at this refrigerant flow rate. Furthermore, it becomes a gas-liquid two-phase return region (R2) as the refrigerant flow rate increases. In this region, the heat exchange efficiency of the evaporator decreases as the gas-liquid ratio decreases, but the cooling capacity is substantially constant. When the refrigerant flow rate further increases, the liquid return region (R3) is obtained. In this region, the cooling capacity increases slightly as the pipe flow rate increases.

このことを考慮して、表1は気相戻り、気液2相戻りの場合において、AHUファン風量又は補助冷媒回路の圧縮機回転数を増減させたときの、蒸発器熱交換量(冷房能力に相当)、吹出し空気温度、蒸発器最低温度に与える効果を示したものである。効果各欄の記号は、以下の内容を表す。すなわち、
「+」:「大きくなる・高くなる」
「−」:「小さくなる・低くなる」
「0」:「ほとんど変化しない」
In view of this, Table 1 shows the amount of heat exchange of the evaporator (cooling capacity) when the AHU fan air volume or the compressor rotation speed of the auxiliary refrigerant circuit is increased or decreased in the case of gas-phase return and gas-liquid two-phase return. It shows the effect on the blown air temperature and the minimum evaporator temperature. The symbol of each effect column represents the following contents. That is,
“+”: “Increases and becomes higher”
"-": "Small / Lower"
“0”: “Almost no change”

Figure 2009014318
Figure 2009014318

表1の制御手段を単独又は組み合わせて制御することにより、冷房能力、吹き出し温度、蒸発器最低温度をコントロールすることができる。各制御手段による制御可能性を表2に示す。   By controlling the control means shown in Table 1 alone or in combination, the cooling capacity, blowing temperature, and minimum evaporator temperature can be controlled. Table 2 shows the controllability by each control means.

Figure 2009014318
一例として、気相戻り条件において「除湿制御」を行うためには、AHUファンについては蒸発器最低温度欄を(−)とする風量減少(A2)が必要となる。これにより目標値に達しないときは、補助冷媒回路(コンプレッサ)の運転を行えばよい(B1)。
Figure 2009014318
As an example, in order to perform “dehumidification control” under the gas-phase return condition, the air volume reduction (A2) is required for the AHU fan with the evaporator minimum temperature column set to (−). Accordingly, when the target value is not reached, the auxiliary refrigerant circuit (compressor) may be operated (B1).

次に図6を参照して、補助冷媒回路稼動が二次側冷媒回路に与える影響について説明する。冷房負荷一定として、当初、二次側冷媒回路のみ稼動状態のときの冷凍サイクルをL1とする。サイクルL1において、A→Bは冷媒ポンプによる昇圧過程、B→Cは第一の蒸発器までの圧損過程、C→Dは第一の蒸発器における蒸発過程、D→Eは第一の蒸発器から凝縮器までの圧損過程、E→Aは第一の凝縮器における凝縮過程である。このときの蒸発温度はT1である。その後、例えば冷水温度の上昇による凝縮温度の上昇に伴い蒸発温度も上昇し、冷凍サイクルはL2のようになる。このときの蒸発温度はT2となる。この段階で補助冷媒回路を稼動させることにより、二次側冷媒回路の凝縮温度を下げることができ、冷凍サイクルはL3=L1となり、当初の蒸発温度を維持することができる。   Next, with reference to FIG. 6, the influence of the auxiliary refrigerant circuit operation on the secondary refrigerant circuit will be described. Assuming that the cooling load is constant, initially, the refrigeration cycle when only the secondary refrigerant circuit is in operation is L1. In cycle L1, A → B is the pressure increasing process by the refrigerant pump, B → C is the pressure loss process up to the first evaporator, C → D is the evaporation process in the first evaporator, and D → E is the first evaporator. The pressure loss process from E to A, E → A, is the condensation process in the first condenser. The evaporation temperature at this time is T1. Thereafter, for example, the evaporating temperature rises as the condensing temperature rises due to the rising of the cold water temperature, and the refrigeration cycle becomes L2. The evaporation temperature at this time is T2. By operating the auxiliary refrigerant circuit at this stage, the condensation temperature of the secondary refrigerant circuit can be lowered, and the refrigeration cycle becomes L3 = L1, and the initial evaporation temperature can be maintained.

本発明によれば、一次側冷水温度に拘らずAHUごとに吹出温度制御、湿度制御等が可能となり、二次側冷媒回路のみの運転では負荷に対応できない場合でも、補助冷媒回路を稼動させることにより対応が可能となる。
また、熱源機故障など、何らかの理由により冷水温度が上昇した場合であっても、補助冷媒回路を稼動させることにより、AHUの吹出し空気温度上昇を回避することができる。
According to the present invention, discharge temperature control, humidity control, and the like can be performed for each AHU regardless of the primary-side chilled water temperature, and the auxiliary refrigerant circuit can be operated even when only the secondary-side refrigerant circuit cannot handle the load. Can be supported.
Moreover, even if the temperature of the cold water rises for some reason, such as a heat source machine failure, it is possible to avoid an increase in the AHU blown air temperature by operating the auxiliary refrigerant circuit.

以下、本発明に係る二次冷媒循環型空気調和システムの各実施形態について、図1乃至4を参照してさらに詳細に説明する。重複説明回避のため、各図において同一構成には同一符号を用いて示している。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。   Hereinafter, each embodiment of the secondary refrigerant circulation air conditioning system according to the present invention will be described in more detail with reference to FIGS. In order to avoid redundant explanation, the same components are denoted by the same reference numerals in the respective drawings. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.

<第一の実施形態>
図1、2を参照して本発明の第一の実施形態について説明する。本実施形態は、AHUファン風量操作及び補助冷媒回路運転により除湿制御を実現するものである。本実施形態は、冷媒の戻り状態のいかんにかかわらず適用可能である。図1は、本実施形態に係る二次冷媒循環型空気調和システム1を示す図である。二次冷媒循環型空気調和システム1は、一次側冷水回路2と、二次側冷媒回路3と、補助冷媒回路4と、により構成されている。
一次側冷水回路2は、建物の屋上部に配置され冷水発生源である熱源機10、冷水を建物内で循環する一次側冷水配管5及び分岐冷水配管5aを主要構成として備えている。
<First embodiment>
A first embodiment of the present invention will be described with reference to FIGS. In the present embodiment, dehumidification control is realized by AHU fan air volume operation and auxiliary refrigerant circuit operation. This embodiment is applicable regardless of the return state of the refrigerant. FIG. 1 is a diagram showing a secondary refrigerant circulation air conditioning system 1 according to the present embodiment. The secondary refrigerant circulation air conditioning system 1 includes a primary side chilled water circuit 2, a secondary side refrigerant circuit 3, and an auxiliary refrigerant circuit 4.
The primary-side chilled water circuit 2 includes a heat source device 10 that is disposed on the roof of a building and serves as a chilled water generation source, a primary-side chilled water pipe 5 that circulates chilled water in the building, and a branched chilled water pipe 5a as main components.

また、二次側冷媒回路3は、冷媒ユニット6、AHU7、及びこれらを結ぶ冷媒配管8を主要構成として備えている。冷媒ユニット6は、分岐冷水配管5aを介して供給される冷水と冷媒とを熱交換する凝縮器6a、冷媒タンク6b、冷媒ポンプ6cを主要構成として備えている。また、AHU7は、蒸発器7a及び吹出ファン7bを備えている。蒸発器7a下方には、熱交換により発生する結露水を受けて外部に排出するための、ドレンパン7e及びドレン配管7dを備えている。さらに、AHU7の吸込口7c近傍には吸込み空気露点温度Td検出用センサS1が、また、蒸発器7aの冷媒管内には冷媒圧力Pa検出用の圧力センサS2が、それぞれ配設されている。
以上の構成により、二次側冷媒回路3は、凝縮器6aで冷水と熱交換して凝縮した冷媒を冷媒タンク6bに一旦蓄えた後、冷媒ポンプ6cで蒸発器7aに搬送し、ここで室内吸込み空気を冷却して蒸発した冷媒を凝縮器6aに戻すという冷凍サイクルを構成している。
Moreover, the secondary side refrigerant circuit 3 is provided with the refrigerant | coolant unit 6, AHU7, and the refrigerant | coolant piping 8 which connects these as main structures. The refrigerant unit 6 includes, as main components, a condenser 6a, a refrigerant tank 6b, and a refrigerant pump 6c for exchanging heat between the cold water supplied via the branch cold water pipe 5a and the refrigerant. Moreover, AHU7 is provided with the evaporator 7a and the blowing fan 7b. Below the evaporator 7a, a drain pan 7e and a drain pipe 7d are provided for receiving condensed water generated by heat exchange and discharging it to the outside. Further, a suction air dew point temperature Td detection sensor S1 is disposed in the vicinity of the suction port 7c of the AHU 7, and a pressure sensor S2 for detection of the refrigerant pressure Pa is disposed in the refrigerant pipe of the evaporator 7a.
With the above configuration, the secondary refrigerant circuit 3 temporarily stores the refrigerant condensed by exchanging heat with cold water in the condenser 6a in the refrigerant tank 6b, and then conveys the refrigerant to the evaporator 7a with the refrigerant pump 6c. A refrigeration cycle is configured in which the refrigerant that has evaporated by cooling the intake air is returned to the condenser 6a.

次に、補助冷媒回路4は、一次側冷水回路2の凝縮器6a出側冷水と熱交換する補助凝縮器4aと、二次側冷媒回路3の凝縮器6a出側冷媒と熱交換する補助蒸発器4bと、補助蒸発器4の入り側に膨張弁4eと、圧縮機4cと、これらを結ぶ補助冷媒配管4dを主要構成として備えている。以上の構成により補助冷媒回路4において、圧縮機4cで高圧とした冷媒ガスは補助凝縮器4aに搬送され、ここで熱源機10に戻る冷水に放熱して自らは凝縮して高圧冷媒液となる。さらに膨張弁4eにおいて断熱膨張により自己蒸発しつつ補助蒸発器4bに搬送され、ここで二次側冷媒回路3の冷媒から吸熱して蒸発し、冷媒ガスとなって圧縮機4cに戻る。このように二次側冷媒回路と補助冷媒回路により、全体として凝縮器6aで冷却した二次側冷媒を、補助蒸発器4bでさらに冷却してAHU7に供給するというシステムが構築されている。   Next, the auxiliary refrigerant circuit 4 has an auxiliary condenser 4a that exchanges heat with the outlet side cold water of the condenser 6a of the primary side chilled water circuit 2, and an auxiliary evaporation that exchanges heat with the outlet side refrigerant of the condenser 6a of the secondary side refrigerant circuit 3. An expansion valve 4e, a compressor 4c, and an auxiliary refrigerant pipe 4d connecting them are provided as main components on the inlet side of the auxiliary unit 4b and the auxiliary evaporator 4. With the above configuration, in the auxiliary refrigerant circuit 4, the refrigerant gas whose pressure has been increased by the compressor 4 c is conveyed to the auxiliary condenser 4 a, where it dissipates heat to the cold water returning to the heat source unit 10 and condenses itself into a high-pressure refrigerant liquid. . Further, the refrigerant is conveyed to the auxiliary evaporator 4b while being self-evaporated by adiabatic expansion in the expansion valve 4e, where it absorbs heat from the refrigerant in the secondary refrigerant circuit 3 and evaporates to return to the compressor 4c as refrigerant gas. As described above, a system is constructed in which the secondary refrigerant cooled as a whole by the condenser 6a is further cooled by the auxiliary evaporator 4b and supplied to the AHU 7 by the secondary refrigerant circuit and the auxiliary refrigerant circuit.

二次冷媒循環型空気調和システム1は以上のように構成されており、次に図2をも参照して、二次冷媒循環型空気調和システム1における湿度制御運転フローについて説明する。なお、制御に必要な指令等はシステム内に設けられた制御部(図示せず)により行われる。
制御開始に伴い、露点温度センサS1により吸込空気の露点温度Tdを計測する(S101)。次いで、露点温度Tdと目標露点温度T0を比較する(S102)。ここに、目標露点温度T0は、室温及び目標相対湿度に対応して一定時間ごとに更新される数値である。
The secondary refrigerant circulation air conditioning system 1 is configured as described above. Next, the humidity control operation flow in the secondary refrigerant circulation air conditioning system 1 will be described with reference to FIG. A command necessary for control is performed by a control unit (not shown) provided in the system.
With the start of control, the dew point temperature Td of the intake air is measured by the dew point temperature sensor S1 (S101). Next, the dew point temperature Td is compared with the target dew point temperature T0 (S102). Here, the target dew point temperature T0 is a numerical value that is updated at regular intervals corresponding to the room temperature and the target relative humidity.

Td≦T0、すなわち目標露点温度以下のときは、これ以上の除湿を回避するためファン風量をデフォルト値に戻す(S115)。Td>T0、すなわち現在露点温度の方が目標露点温度より高いときは、除湿制御を継続(又は移行)する。まず、ファン風量が既に下限値となっているか否かを判定し(S103)、下限値に至っていないときはファン風量を1段階ダウンする(S105)。これにより循環空気量が減少して蒸発器温度が下がり、顕熱比が低下するため、結露条件に近づけることができる。   When Td ≦ T0, that is, below the target dew point temperature, the fan air volume is returned to the default value to avoid further dehumidification (S115). When Td> T0, that is, when the current dew point temperature is higher than the target dew point temperature, the dehumidification control is continued (or shifted). First, it is determined whether or not the fan air volume has already reached the lower limit (S103). If the fan air volume has not reached the lower limit, the fan air volume is decreased by one step (S105). As a result, the amount of circulating air is reduced, the evaporator temperature is lowered, and the sensible heat ratio is lowered, so that it is possible to approach the dew condensation condition.

ファン風量が既に下限値に至っているときは下限回転数を維持する(S104)。さらに圧力センサS2により冷媒圧力Paを計測し(S106)、計測値に基づいて冷媒蒸発温度Tvを演算する(S107)。次いで、冷媒蒸発温度Tvと目標露点温度Tdを比較する(S108)。Tv<Tdのときは除湿条件に該当しているため、そのまま運転を継続する(S108においてYES)。 When the fan air volume has already reached the lower limit, the lower limit rotational speed is maintained (S104). Further, the refrigerant pressure Pa is measured by the pressure sensor S2 (S106), and the refrigerant evaporation temperature Tv is calculated based on the measured value (S107). Next, the refrigerant evaporation temperature Tv and the target dew point temperature Td are compared (S108). When Tv <Td, it corresponds to the dehumidifying condition, so the operation is continued as it is (YES in S108).

Tv≧Tdのときは蒸発温度を下げて除湿条件に適合させるため、圧縮機4cを運転開始して補助冷媒回路4を稼動させる(S109)。運転開始後、所定の時間ごとに吸込空気の露点温度Tdを計測する(S110)。次いで、現在露点温度と目標露点温度T0を比較する(S111)。Td>T0のときは、さらに所定時間、補助冷媒回路4の稼動を続ける(S114)。Td≦T0、すなわち目標露点温度以下となったときは、圧縮機4cの運転を停止して二次側冷媒回路のみの運転に戻る(S112)。
以上の制御を適当なインターバルで行うことにより、除湿をしつつ室内湿度を目標湿度に維持することができる。
When Tv ≧ Td, the compressor 4c is started to operate and the auxiliary refrigerant circuit 4 is operated in order to lower the evaporation temperature and adapt to the dehumidifying conditions (S109). After starting the operation, the dew point temperature Td of the intake air is measured every predetermined time (S110). Next, the current dew point temperature and the target dew point temperature T0 are compared (S111). When Td> T0, the auxiliary refrigerant circuit 4 continues to operate for a predetermined time (S114). When Td ≦ T0, that is, when the temperature is equal to or lower than the target dew point temperature, the operation of the compressor 4c is stopped and the operation returns to the operation of only the secondary side refrigerant circuit (S112).
By performing the above control at appropriate intervals, the room humidity can be maintained at the target humidity while dehumidifying.

<第二の実施形態>
次に、図3、4を参照して、本発明の他の実施形態について説明する。本実施形態は、一次側冷水温度異常時に、緊急避難的に二次側冷媒回路と補助冷媒回路のみで、最低限の空調を担保するものである。本実施形態は気液2相戻りまたは過熱度制御によって気相戻りに制御している条件で適用可能である。図3を参照して、本実施形態に係る二次冷媒循環型空気調和システム20の構成が上述の二次冷媒循環型空気調和システム1と異なる点は、一次側冷水回路の冷水供給温度Tc計測のための温度センサS3を備えていることである。その他の構成については、二次冷媒循環型空気調和システム1と同一であるので、重複説明を省略する。
<Second Embodiment>
Next, another embodiment of the present invention will be described with reference to FIGS. In the present embodiment, when the primary side cold water temperature is abnormal, the minimum air conditioning is ensured by only the secondary side refrigerant circuit and the auxiliary refrigerant circuit for emergency evacuation. This embodiment can be applied under the condition where the gas-liquid two-phase return or the superheat degree control is used to control the gas-phase return. Referring to FIG. 3, the configuration of the secondary refrigerant circulation air conditioning system 20 according to the present embodiment is different from the above-described secondary refrigerant circulation air conditioning system 1 in that the chilled water supply temperature Tc of the primary chilled water circuit is measured. Temperature sensor S3 is provided. About another structure, since it is the same as the secondary refrigerant circulation type air conditioning system 1, duplication description is abbreviate | omitted.

次に図4を参照して、本実施形態における運転制御フローについて説明する。制御開始に伴い、冷水温度Ta及び二次側冷媒回路の冷媒蒸発圧力Paを計測する(S201)。次いで、現在冷水温度Taと限界冷水温度Tc、及び現在蒸発圧力Paと限界蒸発圧力Pcを比較する。Ta>Tc、かつPa>Pc、すなわちいずれも限界値を超えたときは(S202においてYES)、圧縮機4cの運転を開始して補助冷媒回路を稼動(既に稼動しているときは継続)させる(S203)。Ta≦Tc、又はPa≦Pc、すなわちいずれかの値が限界値以下となったときは(S202においてNO)、圧縮機4cの運転を停止して補助冷媒回路を停止(既に停止しているときは、停止継続)させる(S204)。   Next, the operation control flow in the present embodiment will be described with reference to FIG. With the start of control, the cold water temperature Ta and the refrigerant evaporation pressure Pa of the secondary refrigerant circuit are measured (S201). Next, the current cold water temperature Ta and the limit cold water temperature Tc, and the current evaporation pressure Pa and the limit evaporation pressure Pc are compared. When Ta> Tc and Pa> Pc, i.e., both exceed the limit values (YES in S202), the compressor 4c is started to operate the auxiliary refrigerant circuit (continue if already operating). (S203). When Ta ≦ Tc or Pa ≦ Pc, that is, when any value is below the limit value (NO in S202), the operation of the compressor 4c is stopped and the auxiliary refrigerant circuit is stopped (already stopped). (S204).

なお、本実施形態ではS202以下において、補助冷媒回路稼動条件としてTa>Tc、かつPa>Pcとしたが、判定基準としてTa>Tc 又は Pa>Pcとすることもできる。さらに、冷水温度Ta又は蒸発圧力Paの一方のみを判定基準として制御することもできる。   In the present embodiment, Ta> Tc and Pa> Pc are set as the auxiliary refrigerant circuit operating condition in S202 and the following, but Ta> Tc or Pa> Pc may be set as the criterion. Furthermore, it is possible to control only one of the cold water temperature Ta and the evaporation pressure Pa as a criterion.

また、本実施形態では2つの冷媒循環系統を備えた空調機を用いる形態としたが、3以上の冷媒循環系統を備えたものとしてもよい。さらに複数の空調機を連携制御する形態としてもよい。   In this embodiment, an air conditioner having two refrigerant circulation systems is used. However, three or more refrigerant circulation systems may be provided. Furthermore, it is good also as a form which carries out cooperation control of several air conditioners.

本発明は、熱源方式、冷媒、空調方式、建築構造等を問わず、二次冷媒循環型空気調和システムに広く適用可能である。   The present invention can be widely applied to a secondary refrigerant circulation type air conditioning system regardless of a heat source system, a refrigerant, an air conditioning system, a building structure, and the like.

第一の実施形態に係る二次冷媒循環型空気調和システム1を示す図である。It is a figure showing secondary refrigerant circulation type air harmony system 1 concerning a first embodiment. 第一の実施形態における湿度制御運転フローを示す図である。It is a figure which shows the humidity control operation | movement flow in 1st embodiment. 第二の実施形態に係る二次冷媒循環型空気調和システム20を示す図である。It is a figure which shows the secondary refrigerant | coolant circulation type air conditioning system 20 which concerns on 2nd embodiment. 第二の実施形態における能力補償運転制御フローを示す図である。It is a figure which shows the capability compensation driving | operation control flow in 2nd embodiment. 冷媒流量と冷房能力の関係を示す図である。It is a figure which shows the relationship between a refrigerant | coolant flow volume and cooling capacity. 補助冷媒回路稼動が二次側冷媒回路に与える効果を説明する図である。It is a figure explaining the effect which an auxiliary refrigerant circuit operation gives to a secondary side refrigerant circuit. 従来の二次冷媒循環型空気調和システム100を示す図である。It is a figure which shows the conventional secondary refrigerant circulation type air conditioning system.

符号の説明Explanation of symbols

1、20・・・・二次冷媒循環型空気調和システム
2・・・・・一次側冷水回路
3・・・・・二次側冷媒回路
4・・・・・補助冷媒回路
4a・・・・補助凝縮器
4b・・・・補助蒸発器
4c・・・・圧縮機
4d・・・・補助冷媒配管
5・・・・・一次側冷水配管
6・・・・・冷媒ユニット
6a・・・・凝縮器
6b・・・・冷媒タンク
6c・・・・冷媒ポンプ
7a・・・・蒸発器
7b・・・・吹出ファン
7c・・・・吸込口
7d・・・・ドレン配管
7e・・・・ドレンパン
8・・・・・冷媒配管
10・・・・熱源機
S1・・・・露点温度センサ
S2・・・・圧力センサ
S3・・・・温度センサ
1, 20... Secondary refrigerant circulation air conditioning system 2... Primary side chilled water circuit 3... Secondary side refrigerant circuit 4. Auxiliary condenser 4b ... Auxiliary evaporator 4c ... Compressor 4d ... Auxiliary refrigerant piping 5 ... Primary cold water piping 6 ... Refrigerant unit 6a ... Condensation ··· Refrigerant tank 6c ··· Refrigerant pump 7a ··· Evaporator 7b ··· Blowing fan 7c ··· Suction port 7d ··· Drain pipe 7e ··· Drain pan 8 ... Refrigerant piping 10 ... Heat source machine S1 ... Dew point temperature sensor S2 ... Pressure sensor S3 ... Temperature sensor

Claims (7)

熱源機と、
熱源機で発生する冷水を建築物内で循環する一次側冷水回路と、
一次側冷水回路の冷水と熱交換する第一の凝縮器と、冷媒タンクと、冷媒ポンプと、第一の蒸発器と吹出ファンを含む空調機(AHU)と、これらを結ぶ第一の冷媒配管と、を備えた二次側冷媒回路と、
第一の凝縮器出側の冷媒と熱交換する第二の蒸発器と、第二の蒸発器入り側に膨張弁と、第一の凝縮器出側の冷水と熱交換する第二の凝縮器と、圧縮機と、これらを結ぶ第二の冷媒配管と、を備えた補助冷媒回路と、
を備えて成ることを特徴とする空気調和システム。
A heat source machine,
A primary-side chilled water circuit that circulates cold water generated in the heat source machine in the building;
A first condenser that exchanges heat with the cold water in the primary chilled water circuit, a refrigerant tank, a refrigerant pump, an air conditioner (AHU) that includes a first evaporator and a blower fan, and a first refrigerant pipe that connects them. A secondary side refrigerant circuit comprising:
A second evaporator for exchanging heat with the refrigerant on the outlet side of the first condenser, an expansion valve on the inlet side of the second evaporator, and a second condenser for exchanging heat with cold water on the outlet side of the first condenser And an auxiliary refrigerant circuit comprising a compressor and a second refrigerant pipe connecting them,
An air conditioning system comprising:
AHUの吹出空気温度、除湿量、又は第一の蒸発器熱交換量のいずれか一以上を制御するための、AHUファン風量制御手段及び圧縮機回転数制御手段を、さらに備えて成ることを特徴とする請求項1に記載の空気調和システム。 AHU fan air volume control means and compressor rotation speed control means for controlling any one or more of the AHU blown air temperature, dehumidification amount, or first evaporator heat exchange amount are further provided. The air conditioning system according to claim 1. 請求項1又は2に記載の空気調和システムにおいて、
AHUファン風量の増減又は圧縮機回転数の増減のいずれか一方又は両方を行うことにより、AHUの吹出空気温度、除湿量、又は蒸発器熱交換量のいずれか一以上を目標範囲に制御することを特徴とする空気調和システムの運転方法。
In the air conditioning system according to claim 1 or 2,
Control one or more of the AHU blown air temperature, dehumidification amount, or evaporator heat exchange amount within the target range by either increasing or decreasing the AHU fan air volume or increasing or decreasing the compressor speed. A method of operating an air conditioning system characterized by the above.
請求項3において、さらに第一の蒸発器出口において気液二相状態を維持するように、二次側冷媒回路の冷媒流量を制御することを特徴とする空気調和システムの運転方法。 4. The method of operating an air conditioning system according to claim 3, further comprising controlling the refrigerant flow rate of the secondary refrigerant circuit so as to maintain a gas-liquid two-phase state at the outlet of the first evaporator. 請求項3において、さらに第一の蒸発器出口において気相状態となるように、二次側冷媒回路の冷媒流量を制御することを特徴とする空気調和システムの運転方法。 4. The method of operating an air conditioning system according to claim 3, wherein the refrigerant flow rate of the secondary refrigerant circuit is further controlled so as to be in a gas phase state at the outlet of the first evaporator. 請求項1又は2に記載の空気調和システムにおいて、
AHU吸込空気の露点温度計測値と、目標露点温度とを比較し、
露点温度計測値が目標露点温度より高いときは、AHUファン風量を減少させ、
AHUファン風量が下限値に至ったときに、なお第一の蒸発器における冷媒蒸発温度が目標露点温度より高いときは、補助冷媒回路の運転を開始し、
その後、AHU吸込空気の露点温度計測値が目標露点温度を下回ったときは、補助冷媒回路の運転を停止し、AHUファン風量をデフォルト値に戻す、
ことを特徴とする空気調和システムの湿度制御運転方法。
In the air conditioning system according to claim 1 or 2,
Compare the measured dew point temperature of the AHU intake air with the target dew point temperature.
When the measured dew point temperature is higher than the target dew point temperature, reduce the AHU fan air volume,
When the AHU fan air volume reaches the lower limit, and the refrigerant evaporation temperature in the first evaporator is higher than the target dew point temperature, the operation of the auxiliary refrigerant circuit is started.
Thereafter, when the measured dew point temperature of the AHU intake air falls below the target dew point temperature, the operation of the auxiliary refrigerant circuit is stopped, and the AHU fan air volume is returned to the default value.
A humidity control operation method for an air conditioning system.
請求項1乃至3に記載の空気調和システムにおいて、
一次側冷水温度又は第一の蒸発器の冷媒蒸発圧力の少なくとも一方が、設定温度以上又は設定圧力以上となったときは、前記補助冷媒回路の運転を開始し、
その後、一次側冷水温度が設定温度を下回り、かつ、蒸発圧力が設定圧力を下回ったとき、又は一定時間以上、設定温度及び設定圧力を下回らないとき、は補助冷媒回路の運転を停止する、
ことを特徴とする空気調和システムの能力補償運転方法。
The air conditioning system according to any one of claims 1 to 3,
When at least one of the primary side cold water temperature or the refrigerant evaporation pressure of the first evaporator is equal to or higher than a set temperature or a set pressure, the operation of the auxiliary refrigerant circuit is started,
Thereafter, when the primary chilled water temperature falls below the set temperature and the evaporation pressure falls below the set pressure, or when it does not fall below the set temperature and set pressure for a certain period of time, the operation of the auxiliary refrigerant circuit is stopped.
A capability-compensated operation method for an air-conditioning system.
JP2007179583A 2007-07-09 2007-07-09 Air conditioning system and operation method thereof Expired - Fee Related JP4970170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007179583A JP4970170B2 (en) 2007-07-09 2007-07-09 Air conditioning system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007179583A JP4970170B2 (en) 2007-07-09 2007-07-09 Air conditioning system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2009014318A true JP2009014318A (en) 2009-01-22
JP4970170B2 JP4970170B2 (en) 2012-07-04

Family

ID=40355430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007179583A Expired - Fee Related JP4970170B2 (en) 2007-07-09 2007-07-09 Air conditioning system and operation method thereof

Country Status (1)

Country Link
JP (1) JP4970170B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263668A (en) * 2009-04-30 2010-11-18 Ntt Facilities Inc Power feed system for information communication machine room and power feed control method therefor
KR101139341B1 (en) 2009-06-02 2012-04-26 현우산기주식회사 Heat pump apparatus
KR20130046804A (en) * 2011-10-28 2013-05-08 엘지전자 주식회사 Air conditioner and method for controlling the same
CN107920450A (en) * 2016-10-10 2018-04-17 南京南瑞集团公司 A kind of cooling system for extra-high voltage direct-current transmission converter valve
CN107949234A (en) * 2016-10-10 2018-04-20 南京南瑞集团公司 A kind of cooling system for flexible direct current transmission converter valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183086A (en) * 1997-09-16 1999-03-26 Daikin Ind Ltd Refrigerator
JP2005308313A (en) * 2004-04-22 2005-11-04 Toyo Eng Works Ltd Air conditioning system using ocean deep water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183086A (en) * 1997-09-16 1999-03-26 Daikin Ind Ltd Refrigerator
JP2005308313A (en) * 2004-04-22 2005-11-04 Toyo Eng Works Ltd Air conditioning system using ocean deep water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263668A (en) * 2009-04-30 2010-11-18 Ntt Facilities Inc Power feed system for information communication machine room and power feed control method therefor
KR101139341B1 (en) 2009-06-02 2012-04-26 현우산기주식회사 Heat pump apparatus
KR20130046804A (en) * 2011-10-28 2013-05-08 엘지전자 주식회사 Air conditioner and method for controlling the same
KR101965182B1 (en) * 2011-10-28 2019-04-03 엘지전자 주식회사 Air conditioner and method for controlling the same
CN107920450A (en) * 2016-10-10 2018-04-17 南京南瑞集团公司 A kind of cooling system for extra-high voltage direct-current transmission converter valve
CN107949234A (en) * 2016-10-10 2018-04-20 南京南瑞集团公司 A kind of cooling system for flexible direct current transmission converter valve

Also Published As

Publication number Publication date
JP4970170B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4497234B2 (en) Air conditioner
JP5674572B2 (en) Air conditioner
JP4173880B2 (en) Dehumidification control method for air conditioning system
JP5430888B2 (en) Air conditioning system and operation method thereof
JP4652371B2 (en) Air conditioning system and operation method thereof
JP2007218532A (en) Air conditioner
JP2010127531A (en) Refrigeration air conditioner
US20150369498A1 (en) Air-conditioning apparatus
CN112797587B (en) Air conditioner control method and air conditioner system
AU2011309325A1 (en) Outdoor unit of refrigeration apparatus
JP4970170B2 (en) Air conditioning system and operation method thereof
JP4274326B2 (en) Dehumidification control method for air conditioning system
WO2019003306A1 (en) Air conditioning device
JP5041342B2 (en) Electronic equipment cooling system
JP4503630B2 (en) Air conditioning system and control method thereof
JP2010164270A (en) Multiple chamber type air conditioner
WO2012096078A1 (en) Cooling system and method for operating same
JP2008025901A (en) Air conditioner
JP2009264718A (en) Heat pump hot water system
JP4074422B2 (en) Air conditioner and its control method
JP2005156030A (en) Heat pump apparatus
JP2011027347A (en) Air conditioner
JP2011242097A (en) Refrigerating apparatus
WO2021224962A1 (en) Air conditioning device
JP5890224B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees