JP2009010416A - Circuit device - Google Patents

Circuit device Download PDF

Info

Publication number
JP2009010416A
JP2009010416A JP2008223923A JP2008223923A JP2009010416A JP 2009010416 A JP2009010416 A JP 2009010416A JP 2008223923 A JP2008223923 A JP 2008223923A JP 2008223923 A JP2008223923 A JP 2008223923A JP 2009010416 A JP2009010416 A JP 2009010416A
Authority
JP
Japan
Prior art keywords
conductive
separation groove
conductive foil
conductive pattern
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008223923A
Other languages
Japanese (ja)
Other versions
JP4832486B2 (en
Inventor
Ryosuke Usui
良輔 臼井
Hideki Mizuhara
秀樹 水原
Yuusuke Igarashi
優助 五十嵐
Noriaki Sakamoto
則明 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Sanyo Semiconductors Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Kanto Sanyo Semiconductors Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Sanyo Semiconductors Co Ltd, Sanyo Electric Co Ltd filed Critical Kanto Sanyo Semiconductors Co Ltd
Priority to JP2008223923A priority Critical patent/JP4832486B2/en
Publication of JP2009010416A publication Critical patent/JP2009010416A/en
Application granted granted Critical
Publication of JP4832486B2 publication Critical patent/JP4832486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a circuit device for cleaning and roughening a surface of conductive foil by irradiation with plasma, and a manufacturing method of a circuit device that solves a problem that a semiconductor element is broken etc., when contaminants sticking on a surface of a conductive material are removed using plasma. <P>SOLUTION: A separation groove 11 is formed by selectively etching the conductive foil 10 to form a conductive pattern 21. A circuit element such as a semiconductor element 22A is mounted at a desired place on the conductive pattern 21 and electrically connected to the conductive pattern 21. The conductive foil 10 is irradiated with plasma 33 from above the conductive foil to roughen a surface of the separation groove 11. Eventually, the adhesion strength between sealing resin filling the separation groove 11 and the conductive pattern 21 is improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は回路装置の製造方法に関し、特に、導電箔にプラズマを照射することにより、その表面に付着した残査を除去する回路装置に関する。   The present invention relates to a method of manufacturing a circuit device, and more particularly to a circuit device that removes residues adhered to a surface of a conductive foil by irradiating with plasma.

従来、電子機器にセットされる回路装置は、携帯電話、携帯用のコンピュータ等に採用されるために小型化・薄型化・軽量化が求められている。例えば、回路装置としての半導体装置では、このような要求を満たすために、CSP(Chip size package)と呼ばれる
、チップサイズと同等若しくは若干大きいサイズの半導体装置が開発されている。しかしながら一般的なCSPでは、装置全体を支持するために、ガラスエポキシ基板やセラミック基板等の支持基板が必須の構成要素であった。このことから、支持基板が厚い部材であるために半導体装置全体のサイズが大きくなってしまう等の問題があった。
2. Description of the Related Art Conventionally, a circuit device set in an electronic device is required to be reduced in size, thickness, and weight in order to be used in a mobile phone, a portable computer, and the like. For example, in a semiconductor device as a circuit device, in order to satisfy such a requirement, a semiconductor device called a CSP (Chip size package) having a size equal to or slightly larger than the chip size has been developed. However, in a general CSP, a support substrate such as a glass epoxy substrate or a ceramic substrate is an essential component in order to support the entire apparatus. For this reason, since the support substrate is a thick member, there is a problem that the size of the entire semiconductor device is increased.

上記のような問題を鑑みて、支持基板を不要にした回路装置が開発された(例えば、特許文献1を参照)。以下にてその回路装置の製造方法を説明する。   In view of the above problems, a circuit device that does not require a support substrate has been developed (see, for example, Patent Document 1). A method for manufacturing the circuit device will be described below.

図10(A)を参照して、銅等の金属から成る導電箔100を用意し、所定の電気回路が実現されるような導電パターン100Aを形成する。分離溝を形成する手法としては、耐エッチングマスクを用いた公知のエッチング工程で行うことができる。   Referring to FIG. 10A, a conductive foil 100 made of a metal such as copper is prepared, and a conductive pattern 100A that realizes a predetermined electric circuit is formed. As a method for forming the separation groove, a known etching process using an etching resistant mask can be used.

図10(B)を参照して、導電パターン100Aの表面に回路素子を固着する。回路素子としては、コンデンサや抵抗等のチップ部品103および半導体素子102等が固着される。更に、半導体素子102の電極と導電パターン100Aとは、金属細線を介して電気的に接続される。   Referring to FIG. 10B, a circuit element is fixed to the surface of conductive pattern 100A. As circuit elements, a chip component 103 such as a capacitor and a resistor, a semiconductor element 102, and the like are fixed. Furthermore, the electrode of the semiconductor element 102 and the conductive pattern 100A are electrically connected through a fine metal wire.

図10(C)を参照して、封止樹脂105による被覆を行う。前工程で固着された回路素子は被覆され、導電箔100の分離溝101にも封止樹脂105が充填される。   With reference to FIG. 10C, coating with the sealing resin 105 is performed. The circuit element fixed in the previous process is covered, and the separation groove 101 of the conductive foil 100 is also filled with the sealing resin 105.

図10(D)を参照して、導電箔100を裏面からエッチングを行い、分離溝101に充填された封止樹脂105が露出するまで、導電箔100の除去を行う。このことにより、各導電パターン100Aは電気的に分離される。更に、ソルダーレジストの形成、外部電極の形成等を行う。最後に、一点鎖線の箇所で封止樹脂105をダイシングすることにより、各回路装置を分離する。上記のような工程で、支持基板を不要にした回路装置が製造されていた。   Referring to FIG. 10D, the conductive foil 100 is etched from the back surface, and the conductive foil 100 is removed until the sealing resin 105 filled in the separation groove 101 is exposed. As a result, the conductive patterns 100A are electrically separated. Further, solder resist formation, external electrode formation, and the like are performed. Finally, each circuit device is separated by dicing the sealing resin 105 at the dot-and-dash line. In the process as described above, a circuit device that does not require a support substrate has been manufactured.

また、金属から成るパターンの表面に付着した汚染物質の除去等を行う技術として、プラズマ照射の技術がある。図11を参照して、半導体装置が実装されたリードフレームにプラズマを照射して、表面に付着した汚染物質を除去する方法を説明する。   Further, there is a plasma irradiation technique as a technique for removing contaminants attached to the surface of a pattern made of metal. With reference to FIG. 11, a method of removing contaminants attached to the surface by irradiating plasma to a lead frame on which a semiconductor device is mounted will be described.

図11(A)を参照して、リードフレームの加工を行う工程および素子の実装工程等を経たリードフレーム110の構成を説明する。ランド状に形成されたアイランド114には半導体素子112が実装され、アイランド114を囲むように多数個のリード111が設けられている。また、リード111は半導体素子112の表面に設けた電極に対応しており、金属細線113を介して各電極はリード111と電気的に接続されている。   With reference to FIG. 11A, the structure of the lead frame 110 that has undergone a lead frame processing step, an element mounting step, and the like will be described. A semiconductor element 112 is mounted on the island 114 formed in a land shape, and a large number of leads 111 are provided so as to surround the island 114. The lead 111 corresponds to an electrode provided on the surface of the semiconductor element 112, and each electrode is electrically connected to the lead 111 through a fine metal wire 113.

図11(B)を参照して、プラズマ照射を行う工程を説明する。先ず、密閉された容器内部にリードフレーム110を載置する。次に、容器内部にガスを導入して、放電により
プラズマガスを生成する。そしてプラズマガス中に存在するラジカルまたはイオンが、リードフレーム110の表面に衝突することによりリードフレーム110表面の洗浄が行われる。
特開2002−076246号公報(第7頁、第1図)
With reference to FIG. 11B, a step of performing plasma irradiation will be described. First, the lead frame 110 is placed inside a sealed container. Next, a gas is introduced into the container, and plasma gas is generated by discharge. Then, radicals or ions present in the plasma gas collide with the surface of the lead frame 110, whereby the surface of the lead frame 110 is cleaned.
JP 2002-076246 A (page 7, FIG. 1)

しかしながら、上記した回路装置の製造方法では、樹脂封止を行うまでの工程等の為に、導電箔100の表面が汚染されてしまう問題があった。この汚染物質としては、分離溝101の形成工程で使用するエッチャントに含まれる有機性の残査や、空気中の埃等が考えられる。更に、上記のような汚染物質が導電箔100の表面に付着したまま封止樹脂105の封止を行うと、封止樹脂105と導電箔100との付着力が低下してしまう恐れがあった。   However, the above-described method for manufacturing a circuit device has a problem that the surface of the conductive foil 100 is contaminated due to a process until resin sealing is performed. As this contaminant, the organic residue contained in the etchant used in the step of forming the separation groove 101, dust in the air, and the like can be considered. Furthermore, if the sealing resin 105 is sealed while the contaminants as described above are attached to the surface of the conductive foil 100, the adhesion between the sealing resin 105 and the conductive foil 100 may be reduced. .

また、図11に示したようなプラズマ照射によるリードフレームの洗浄方法では、アイランド114やリード111が形成されるように複雑な形状に加工されているため、プラズマ照射によりリードフレーム110に局所的な電位の増加が発生する。このことから、リードフレームの局所的な電位差により、金属細線113を介して半導体素子112に電流が流れ込み、半導体素子表面に形成されたCMOS等の素子が破壊されてしまう問題があった。更に、プラズマ照射の工程でリードフレーム110が高温となることから、リードが変形して、金属細線113が断線してしまう問題があった。   Further, in the lead frame cleaning method by plasma irradiation as shown in FIG. 11, since the island 114 and the lead 111 are processed into a complicated shape, the lead frame 110 is locally exposed to the plasma irradiation. An increase in potential occurs. For this reason, there is a problem that a current flows into the semiconductor element 112 through the fine metal wire 113 due to a local potential difference of the lead frame, and an element such as a CMOS formed on the surface of the semiconductor element is destroyed. Further, since the lead frame 110 becomes high temperature in the plasma irradiation process, there is a problem that the lead is deformed and the metal thin wire 113 is disconnected.

本発明はこのような問題を鑑みて成されたものであり、本発明の主な目的は、導電箔の表面にプラズマを照射することにより導電箔表面の洗浄および粗化を行う回路装置の製造方法を提供することにある。更に、本発明の主な目的は、プラズマを用いて導電性材料の表面に付着した汚染物質を除去する際に発生する半導体素子の破壊等の問題を解決する回路装置の製造方法を提供することにある。   The present invention has been made in view of such problems, and the main object of the present invention is to manufacture a circuit device that cleans and roughens the surface of the conductive foil by irradiating the surface of the conductive foil with plasma. It is to provide a method. Furthermore, the main object of the present invention is to provide a method of manufacturing a circuit device that solves problems such as destruction of semiconductor elements that occur when removing contaminants attached to the surface of a conductive material using plasma. It is in.

本発明の回路装置の製造方法は、表面から分離溝が形成されることにより凸状の導電パターンが設けられた導電箔を導電部材の材料として用いる回路装置の製造方法に於いて、前記導電箔の上方から前記分離溝を含む前記導電箔の表面にプラズマを照射して、前記分離溝の側面を粗化することを特徴とする。   The method for manufacturing a circuit device according to the present invention is the method for manufacturing a circuit device in which a conductive foil provided with a convex conductive pattern by forming a separation groove from the surface is used as a material for a conductive member. The surface of the conductive foil including the separation groove is irradiated with plasma from above to roughen the side surface of the separation groove.

更に、本発明の回路装置の製造方法は、導電箔に表面から分離溝を形成して凸状の導電パターンを形成する工程と、前記導電パターンに回路素子を電気的に接続する工程と、前記導電箔の上方から前記分離溝を含む前記導電箔の表面にプラズマを照射して、前記分離溝の側面を粗化する工程と、前記回路素子を被覆し且つ前記分離溝に充填されるように封止樹脂で封止する工程とを具備することを特徴とする。   Furthermore, the method for manufacturing a circuit device of the present invention includes a step of forming a separation groove from the surface of the conductive foil to form a convex conductive pattern, a step of electrically connecting a circuit element to the conductive pattern, A step of irradiating the surface of the conductive foil including the separation groove with plasma from above the conductive foil to roughen the side surface of the separation groove; and covering the circuit element and filling the separation groove And a step of sealing with a sealing resin.

本発明によれば、導電箔の上方から進入するプラズマのイオンにより、分離溝の側面を粗化することができる。従って、この導電箔から形成される導電パターンと封止樹脂との密着強度を向上させて、品質に優れた回路装置を製造することができる。   According to the present invention, the side surface of the separation groove can be roughened by plasma ions entering from above the conductive foil. Therefore, it is possible to improve the adhesion strength between the conductive pattern formed from the conductive foil and the sealing resin, and to manufacture a circuit device with excellent quality.

本発明の回路装置の製造方法は、導電箔10に表面から分離溝11を形成して底部で一体に連結された導電パターン21を形成する工程と、導電パターン21の所望の箇所に回路素子22を実装する工程と、回路素子22を被覆し且つ分離溝11に充填されるように封止樹脂28で封止する工程とを有し、導電箔10の表面にプラズマを照射することによ
り回路装置を製造する。プラズマの照射には2つの方法があり、第1の方法は回路素子22の実装を行う前にプラズマ照射を行う方法であり、第2の方法は回路素子22の実装を行った後にプラズマ照射を行う方法である。以下に上記した各工程の詳細を説明する。
The method for manufacturing a circuit device according to the present invention includes a step of forming a separation groove 11 on the conductive foil 10 from the surface and forming a conductive pattern 21 integrally connected at the bottom, and a circuit element 22 at a desired location of the conductive pattern 21. A circuit device by covering the circuit element 22 and sealing with a sealing resin 28 so as to fill the separation groove 11 and irradiating the surface of the conductive foil 10 with plasma. Manufacturing. There are two methods for plasma irradiation. The first method is a method in which plasma irradiation is performed before the circuit element 22 is mounted. The second method is a method in which plasma irradiation is performed after the circuit element 22 is mounted. How to do it. Details of each of the above steps will be described below.

本発明の第1の工程は、図1から図3に示すように、導電箔10に表面から分離溝11を形成して底部で一体に連結された導電パターン21を形成する工程である。   As shown in FIGS. 1 to 3, the first step of the present invention is a step of forming a conductive pattern 21 integrally formed at the bottom by forming a separation groove 11 on the conductive foil 10 from the surface.

本工程では、まず図1(A)の如く、シート状の導電箔10を用意する。この導電箔10は、ロウ材の付着性、ボンディング性、メッキ性が考慮されてその材料が選択され、材料としては、Cuを主材料とした導電箔、Alを主材料とした導電箔またはFe−Ni等の合金から成る導電箔等が採用される。   In this step, first, a sheet-like conductive foil 10 is prepared as shown in FIG. This conductive foil 10 is selected in consideration of the adhesiveness, bonding property, and plating property of the brazing material. As the material, a conductive foil mainly composed of Cu, a conductive foil mainly composed of Al, or Fe is used. A conductive foil made of an alloy such as Ni is employed.

具体的には、図1(B)に示す如く、短冊状の導電箔10に多数の搭載部が形成されるブロック12が4〜5個離間して並べられる。各ブロック12間にはスリット13が設けられ、モールド工程等での加熱処理で発生する導電箔10の応力を吸収する。また導電箔10の上下周端にはインデックス孔14が一定の間隔で設けられ、各工程での位置決めに用いられる。続いて、ブロック毎の導電パターン21を形成する。   Specifically, as shown in FIG. 1B, 4 to 5 blocks 12 in which a large number of mounting portions are formed are arranged on the strip-shaped conductive foil 10 so as to be spaced apart. A slit 13 is provided between each block 12 to absorb the stress of the conductive foil 10 generated by heat treatment in a molding process or the like. In addition, index holes 14 are provided at regular intervals at the upper and lower peripheral ends of the conductive foil 10 and are used for positioning in each step. Subsequently, a conductive pattern 21 for each block is formed.

まず、図2に示す如く、導電箔10の上に、ホトレジスト(耐エッチングマスク)PRを形成し、導電パターン21となる領域を除いた導電箔10が露出するようにホトレジストPRをパターニングする。そして、図3(A)に示す如く、ホトレジストPRを介して導電箔10を選択的にエッチングする。エッチングにより形成された分離溝11の深さは、例えば50μmであり、その側面は、粗面となるため封止樹脂28との接着性が向上される。   First, as shown in FIG. 2, a photoresist (etching resistant mask) PR is formed on the conductive foil 10, and the photoresist PR is patterned so that the conductive foil 10 excluding the region to be the conductive pattern 21 is exposed. Then, as shown in FIG. 3A, the conductive foil 10 is selectively etched through the photoresist PR. The depth of the separation groove 11 formed by etching is, for example, 50 μm, and its side surface is a rough surface, so that the adhesiveness with the sealing resin 28 is improved.

またこの分離溝11の側壁は、除去方法により異なる構造となる。この除去工程は、ウェットエッチング、ドライエッチング、レーザによる蒸発、ダイシングが採用できる。ウェットエッチングの場合、エッチャントは、塩化第二鉄または塩化第二銅が主に採用され、導電箔10は、このエッチャントの中にディッピングされるか、このエッチャントでシャワーリングされる。ここでウェットエッチングは、一般に非異方性にエッチングされるため、側面は湾曲構造になる。   Further, the side walls of the separation groove 11 have different structures depending on the removing method. This removal process can employ wet etching, dry etching, laser evaporation, and dicing. In the case of wet etching, ferric chloride or cupric chloride is mainly used as the etchant, and the conductive foil 10 is dipped in the etchant or showered with the etchant. Since wet etching is generally non-anisotropic, the side surface has a curved structure.

図3(B)に具体的な導電パターン21を示す。本図は図1(B)で示したブロック12の1個を拡大したものに対応する。点線で囲まれた部分の1個が1つの搭載部15であり、導電パターン21を構成し、1つのブロック12には5行10列のマトリックス状に多数の搭載部15が配列され、各搭載部15毎に同一の導電パターン21が設けられている。   A specific conductive pattern 21 is shown in FIG. This figure corresponds to an enlarged view of one of the blocks 12 shown in FIG. One of the parts surrounded by a dotted line is one mounting part 15, which constitutes a conductive pattern 21. A plurality of mounting parts 15 are arranged in a matrix of 5 rows and 10 columns in one block 12, and each mounting part 15 is mounted. The same conductive pattern 21 is provided for each portion 15.

本発明の第2の工程は、図4に示す如く、導電パターン21の所望の箇所に回路素子22を実装することにある。回路素子22としては、トランジスタ、ダイオード、ICチップ等の半導体素子、チップコンデンサ、チップ抵抗等の受動素子である。また厚みが厚くはなるが、CSP、BGA等のフェイスダウンの半導体素子も実装できる。   The second step of the present invention is to mount a circuit element 22 at a desired location of the conductive pattern 21 as shown in FIG. The circuit element 22 is a semiconductor element such as a transistor, a diode, or an IC chip, or a passive element such as a chip capacitor or a chip resistor. Although the thickness is increased, face-down semiconductor elements such as CSP and BGA can also be mounted.

ここでは、ベアの半導体素子22Aが導電パターン21にダイボンディングされ、半導体素子22Aの電極と導電パターン21とが金属細線を介して電気的に接続されている。また22Bは、チップコンデンサまたは受動素子等のチップ部品22Bであり、半田等のロウ材24等の導電ペーストで固着される。 本発明の第3の工程は、図5を参照して、導電箔10表面に回路素子22を含めてプラズマを照射することにより洗浄を行うことにある。図5(A)はプラズマ洗浄を行う概要を示す図であり、図5(B)は1つの搭載部15にプラズマ照射を行う様子を示す断面図である。   Here, the bare semiconductor element 22A is die-bonded to the conductive pattern 21, and the electrode of the semiconductor element 22A and the conductive pattern 21 are electrically connected through a fine metal wire. Reference numeral 22B denotes a chip component 22B such as a chip capacitor or a passive element, which is fixed with a conductive paste such as a brazing material 24 such as solder. The third step of the present invention is to perform cleaning by irradiating plasma on the surface of the conductive foil 10 including the circuit element 22 with reference to FIG. FIG. 5A is a view showing an outline of performing plasma cleaning, and FIG. 5B is a cross-sectional view showing a state in which plasma is applied to one mounting portion 15.

図5(A)を参照して、プラズマ照射による洗浄を説明する。プラズマ洗浄機30は、密閉容器34の内部に設けた上段電極31と、上段電極31に対向して設けられて上部に導電箔10が載置される下段電極32とを有している。また、ガスを容器内部に供給する注入口35と、その排気を行う排気口36が設けられている。上段電極31と下段電極32のどちらかは、高周波電源と接続されており、電源と接続されない電極は接地されている。   With reference to FIG. 5A, cleaning by plasma irradiation will be described. The plasma cleaner 30 has an upper electrode 31 provided inside the sealed container 34 and a lower electrode 32 provided opposite to the upper electrode 31 and on which the conductive foil 10 is placed. An inlet 35 for supplying gas into the container and an exhaust port 36 for exhausting the gas are provided. Either the upper electrode 31 or the lower electrode 32 is connected to a high frequency power source, and the electrode not connected to the power source is grounded.

導電箔表面の汚染物質を行うプラズマ洗浄は、化学的エッチングと物理的エッチングの2つの方法がある。化学的エッチングにはDP(Direct Plazma)またはPE(Plazma Etching)が含まれ、ガスとして酸素を使用することができる。物理・化学的エッチングにはRIE(Reactive Ion Etching)が含まれ、ガスとしてアルゴン、ネオンまたはヘリウムを使用することができる。化学的エッチングでは化学的効果を使用して有機物の汚染物質を除去することができ、物理的エッチングではスパッタ効果で有機物および無機物の汚染物質を除去することができる。本発明では、どちらの手法も用いることが可能である。   There are two methods of plasma cleaning for conducting contaminants on the surface of the conductive foil: chemical etching and physical etching. Chemical etching includes DP (Direct Plazma) or PE (Plazma Etching), and oxygen can be used as a gas. Physical / chemical etching includes RIE (Reactive Ion Etching), and argon, neon, or helium can be used as a gas. Chemical etching can remove organic contaminants using chemical effects, and physical etching can remove organic and inorganic contaminants using sputtering effects. In the present invention, either method can be used.

図5(B)を参照して、プラズマによる洗浄の詳細を説明する。本発明では、プラズマの照射は、導電箔10の全域に渡って行われる。具体的には、放電により生成されたプラズマ33の中のイオンを、導電箔10の表面全域に衝突させている。従って、導電パターン21の表面、分離溝11、回路素子22および金属細線25にイオンが衝突して、それらの表面に付着した有機性または無機性の汚染物質が除去される。   The details of cleaning with plasma will be described with reference to FIG. In the present invention, the plasma irradiation is performed over the entire area of the conductive foil 10. Specifically, ions in the plasma 33 generated by the discharge collide with the entire surface of the conductive foil 10. Accordingly, ions collide with the surface of the conductive pattern 21, the separation groove 11, the circuit element 22, and the fine metal wire 25, and organic or inorganic contaminants attached to these surfaces are removed.

分離溝11の側面には、エッチングの工程に用いたエッチャントの残査や空気中の埃等の汚染物質が付着しており、これらの汚染物質もプラズマ洗浄により除去される。また、分離溝11はエッチングにより形成されているのでその側面は曲面と成っている。従って、上方から進入したイオンは、分離溝11の側面で反射されるので、1つのイオンが幾度も分離溝11の側面に衝突する。このことから、分離溝11の側面では、イオンによる表面の洗浄の効果が大きいので、分離溝11の側面に付着した有機性および無機性の汚染物質は除去される。   Contaminants such as residual etchant used in the etching process and dust in the air adhere to the side surfaces of the separation groove 11 and these contaminants are also removed by plasma cleaning. Further, since the separation groove 11 is formed by etching, its side surface is a curved surface. Accordingly, ions entering from above are reflected by the side surface of the separation groove 11, so that one ion collides with the side surface of the separation groove 11 several times. From this, on the side surface of the separation groove 11, the effect of cleaning the surface by ions is great, so that organic and inorganic contaminants attached to the side surface of the separation groove 11 are removed.

また、各導電パターン21は、1枚の金属箔である導電箔10に浅い分離溝11を形成することによりパターン化されおり、一体に連結されている。従って、各導電パターン21は、電気的にも一体化した導電箔10の状態で保持されているので、プラズマの影響下に晒されても各導電パターンによる電位差の発生は抑制される。このことから、半導体素子22Aが電圧破壊し易いCMOS等であっても、半導体素子22Aに与えるダメージを最小に抑制することができる。   In addition, each conductive pattern 21 is patterned by forming a shallow separation groove 11 in the conductive foil 10 that is a single metal foil, and is integrally connected. Therefore, since each conductive pattern 21 is held in the state of the electrically conductive foil 10 that is electrically integrated, generation of a potential difference due to each conductive pattern is suppressed even when exposed to the influence of plasma. For this reason, even if the semiconductor element 22A is a CMOS or the like that is susceptible to voltage breakdown, damage to the semiconductor element 22A can be minimized.

更に、プラズマ洗浄により、分離溝11の側面は粗化される。従って、後の工程で形成される封止樹脂28と分離溝11の側面との密着性は向上される。ここで、分離溝11の側面は導電パターン21側面であるので、導電パターン21と封止樹脂28との密着性は向上し、導電パターン21の剥離等を防止することができる。   Further, the side surface of the separation groove 11 is roughened by plasma cleaning. Therefore, the adhesion between the sealing resin 28 formed in a later step and the side surface of the separation groove 11 is improved. Here, since the side surface of the separation groove 11 is the side surface of the conductive pattern 21, adhesion between the conductive pattern 21 and the sealing resin 28 is improved, and peeling of the conductive pattern 21 can be prevented.

更にまた、プラズマ洗浄により、導電パターン21は加熱されるが、導電パターン21は導電箔10として一体に成っているので、導電パターン21の局所的な熱膨張や変形は防止される。従って、導電パターン21の膨張や変形による金属細線25の折れ曲がりや断線を抑止することができる。   Furthermore, although the conductive pattern 21 is heated by the plasma cleaning, since the conductive pattern 21 is integrally formed as the conductive foil 10, local thermal expansion and deformation of the conductive pattern 21 are prevented. Therefore, bending or disconnection of the fine metal wire 25 due to expansion or deformation of the conductive pattern 21 can be suppressed.

更に、プラズマ洗浄行うためのガスに酸素を混入させることにより、導電箔10の表面を酸化させることができる。このように表面を酸化させることにより、封止樹脂28と導電パターン21との密着力を更に向上させることができる。   Furthermore, the surface of the conductive foil 10 can be oxidized by mixing oxygen into the gas for plasma cleaning. By oxidizing the surface in this way, the adhesion between the sealing resin 28 and the conductive pattern 21 can be further improved.

図5(C)を参照して、以上の本工程の説明では、回路素子22が実装された導電箔10に対してプラズマ照射を行ったが、回路素子22の実装を行う前に導電箔10に対してプラズマ照射を行うことも可能である。回路素子22が実装されていない状態でプラズマ照射を行うことにより、導電箔10の表面全域に渡ってプラズマの照射を行うことができる。即ち、図示されたような状態では、プラズマ照射を行う導電箔10の表面および分離溝11と、上段電極31との間にプラズマ照射を遮断するものがない。このことから、導電箔10の表面および分離溝11は全面的にプラズマ照射が行われ、それらの表面の汚染物質の除去および表面の粗化が行われる。   With reference to FIG. 5C, in the above description of this process, plasma irradiation was performed on the conductive foil 10 on which the circuit element 22 was mounted. However, before the circuit element 22 was mounted, the conductive foil 10 was It is also possible to irradiate plasma. By performing plasma irradiation in a state where the circuit element 22 is not mounted, it is possible to perform plasma irradiation over the entire surface of the conductive foil 10. In other words, in the state shown in the figure, there is nothing that blocks the plasma irradiation between the surface of the conductive foil 10 that performs plasma irradiation and the separation groove 11 and the upper electrode 31. Thus, the surface of the conductive foil 10 and the separation groove 11 are entirely irradiated with plasma, and contaminants on the surface are removed and the surface is roughened.

本発明の第4の工程は、図6を参照して、回路素子22を被覆し、分離溝11に封止樹脂28が充填されるように封止樹脂28による封止を行うことにある。   The fourth step of the present invention is to perform sealing with the sealing resin 28 so as to cover the circuit element 22 and fill the separation groove 11 with the sealing resin 28 with reference to FIG.

図6(A)を参照して、樹脂封止が行われた後の状態を説明する。封止樹脂28は回路素子22および複数の導電パターン21を被覆し、導電パターン21間の分離溝11には封止樹脂28が充填されて各導電パターン21の側面の湾曲構造と嵌合して強固に結合する。そして封止樹脂28により導電パターン21が支持されている。また本工程では、エポキシ樹脂等の熱硬化性樹脂を用いてトランスファーモールドを行うことができる。本工程によるメリットは、封止樹脂28を被覆するまでは、導電パターン21となる導電箔10が支持基板となることである。そのため、構成材料を極力省いて作業できるメリットを有し、コストの低下も実現できる。   With reference to FIG. 6 (A), the state after resin sealing is performed is demonstrated. The sealing resin 28 covers the circuit elements 22 and the plurality of conductive patterns 21, and the separation grooves 11 between the conductive patterns 21 are filled with the sealing resin 28 and are fitted to the curved structures on the side surfaces of the respective conductive patterns 21. Bond firmly. The conductive pattern 21 is supported by the sealing resin 28. In this step, transfer molding can be performed using a thermosetting resin such as an epoxy resin. The merit by this process is that the conductive foil 10 which becomes the conductive pattern 21 becomes a support substrate until the sealing resin 28 is covered. Therefore, there is a merit that the work can be performed with the constituent materials omitted as much as possible, and the cost can be reduced.

次に図7を参照して、分離溝11を設けていない厚み部分の導電箔10を除去することにより、各導電パターン21を電気的に分離する。具体的には、分離溝11を設けていない厚み部分の導電箔10のブロック12の少なくとも導電パターン21を設けた領域を除去する。本工程では、図7に示すように封止樹脂28が露出するまで、導電箔10の裏面を全面的にエッチングを行う。その結果、封止樹脂28に導電パターン21の裏面が露出する構造となる。   Next, referring to FIG. 7, each conductive pattern 21 is electrically separated by removing the thickness of the conductive foil 10 not provided with the separation groove 11. Specifically, at least the region provided with the conductive pattern 21 of the block 12 of the conductive foil 10 in the thickness portion where the separation groove 11 is not provided is removed. In this step, the entire back surface of the conductive foil 10 is etched until the sealing resin 28 is exposed as shown in FIG. As a result, the back surface of the conductive pattern 21 is exposed to the sealing resin 28.

本発明の第5の工程は、図8に示す如く、ブロック12の封止樹脂28を各搭載部15毎にダイシングにより分離することにある。   The fifth step of the present invention is to separate the sealing resin 28 of the block 12 by dicing for each mounting portion 15 as shown in FIG.

本工程では、粘着シートに貼り付けられた複数個のブロック12をダイシング装置の載置台に真空で吸着させ、ダイシングブレード41で各搭載部15間のダイシングライン40に沿って分離溝11の封止樹脂28をダイシングし、個別の回路装置に分離する。   In this step, the plurality of blocks 12 attached to the pressure-sensitive adhesive sheet are vacuum-adsorbed to the mounting table of the dicing apparatus, and the dicing blade 41 seals the separation grooves 11 along the dicing lines 40 between the mounting portions 15. The resin 28 is diced and separated into individual circuit devices.

図9を参照して、上記のような工程で製造される回路装置の構成を説明する。同図に示す回路装置は、導電パターン21と、導電パターン21上に固着された回路素子22と、半導体素子22Aと導電パターン21とを電気的に接続する金属細線25と、導電パターン21の裏面を露出させて全体の支持および封止を行う封止樹脂28とから構成されている。また、封止樹脂28の裏面から露出する導電パターン21はレジスト26で被覆され、所望の箇所には半田等のロウ材から成る外部電極27が形成されている。   With reference to FIG. 9, the structure of the circuit device manufactured by the above steps will be described. The circuit device shown in FIG. 1 includes a conductive pattern 21, a circuit element 22 fixed on the conductive pattern 21, a metal wire 25 that electrically connects the semiconductor element 22 </ b> A and the conductive pattern 21, and a back surface of the conductive pattern 21. And a sealing resin 28 that supports and seals the whole. The conductive pattern 21 exposed from the back surface of the sealing resin 28 is covered with a resist 26, and external electrodes 27 made of a brazing material such as solder are formed at desired locations.

本発明の回路装置の製造方法によると、以下に示すような効果を奏することができる。   According to the circuit device manufacturing method of the present invention, the following effects can be obtained.

第1に、導電パターン21を分離する分離溝11が形成された導電箔10の表面にプラズマの照射を行うので、表面に付着した汚染物質の除去および表面の粗化を行うことができる。このことから、導電パターン21と封止樹脂28との密着を向上させることができる。   First, since the surface of the conductive foil 10 on which the separation groove 11 for separating the conductive pattern 21 is formed is irradiated with plasma, contaminants attached to the surface can be removed and the surface can be roughened. For this reason, the adhesion between the conductive pattern 21 and the sealing resin 28 can be improved.

第2に、プラズマ照射を回路素子22の実装を行う前に行うことにより、導電箔10の表面および分離溝11に全面的にプラズマ照射を行うことが可能となり、汚染物質の除去および表面粗化の効果を更に向上させることができる。   Second, by performing plasma irradiation before mounting the circuit element 22, it is possible to perform plasma irradiation on the entire surface of the conductive foil 10 and the separation groove 11, thereby removing contaminants and roughening the surface. This effect can be further improved.

第3に、回路素子22の実装を行った後にプラズマ照射を行うことも可能である。導電パターン21が導電箔10として電気的にも一体化された状態でプラズマ洗浄を行うので、プラズマの影響により導電パターン21に局所的な電位差が発生するのを抑制することができる。従って、プラズマの影響で発生した電位差により半導体素子22Aに与えるダメージを抑制することができる。また、金属細線25および回路素子22の表面の洗浄および粗化を行うこともできる。   Third, it is also possible to perform plasma irradiation after the circuit element 22 is mounted. Since the plasma cleaning is performed in a state where the conductive pattern 21 is electrically integrated as the conductive foil 10, it is possible to suppress the occurrence of a local potential difference in the conductive pattern 21 due to the influence of plasma. Therefore, damage to the semiconductor element 22A due to the potential difference generated by the influence of plasma can be suppressed. Moreover, the surface of the metal fine wire 25 and the circuit element 22 can be cleaned and roughened.

第4に、導電箔10の上方から進入するイオンが、分離溝11の側面で反射するので、プラズマ照射による汚染物除去の効果を更に向上させることができる。   Fourth, since ions entering from above the conductive foil 10 are reflected by the side surfaces of the separation groove 11, the effect of removing contaminants by plasma irradiation can be further improved.

第5に、プラズマにより分離溝11の側面を粗化させることができるので、封止樹脂28と導電パターン21との密着性を更に向上させることができる。   Fifth, since the side surface of the separation groove 11 can be roughened by plasma, the adhesion between the sealing resin 28 and the conductive pattern 21 can be further improved.

第6に、分離溝11の表面の付着物をプラズマ照射により除去できることから、分離溝11に充填されて裏面に露出する封止樹脂28の露出面に付着物が除去しない。従って、分離溝11から露出する封止樹脂28とレジスト26との付着強度を強くすることができる。   Sixth, since the deposit on the surface of the separation groove 11 can be removed by plasma irradiation, the deposit is not removed on the exposed surface of the sealing resin 28 that is filled in the separation groove 11 and exposed on the back surface. Accordingly, the adhesion strength between the sealing resin 28 exposed from the separation groove 11 and the resist 26 can be increased.

尚、上記した実施の形態に含まれる本願発明は以下のものもある。   The present invention included in the above-described embodiments includes the following.

本発明は、導電箔に表面から分離溝を形成して底部で一体に連結された導電パターンを形成する工程と、前記導電パターンの所望の箇所に回路素子を実装する工程と、前記回路素子を被覆し且つ前記分離溝に充填されるように樹脂層で封止する工程とを有し、前記導電箔の表面にプラズマを照射する。導電箔の表面にプラズマを照射することにより、導電箔の表面に付着した汚染物質を除去することが可能となり、更に、導電箔の表面を粗化して絶縁性樹脂との密着を向上させることが可能となる。   The present invention includes a step of forming a separation pattern on the conductive foil from the surface and forming a conductive pattern integrally connected at the bottom, a step of mounting a circuit element at a desired location of the conductive pattern, and the circuit element Covering and sealing with a resin layer so as to fill the separation groove, and irradiating the surface of the conductive foil with plasma. By irradiating the surface of the conductive foil with plasma, it becomes possible to remove contaminants adhering to the surface of the conductive foil, and further, the surface of the conductive foil can be roughened to improve the adhesion with the insulating resin. It becomes possible.

更に本発明は、前記回路素子を実装する工程に先行して、前記プラズマの照射を行う。このように導電箔上に回路素子が実装されていない状態でプラズマ照射を行うことにより、導電箔全域に渡ってプラズマ照射を行うことができる。従って、回路素子が載置される予定の導電箔および分離溝の領域にプラズマ照射を行うことが可能となる。   In the present invention, the plasma irradiation is performed prior to the step of mounting the circuit element. Thus, by performing plasma irradiation in a state where no circuit element is mounted on the conductive foil, it is possible to perform plasma irradiation over the entire conductive foil. Accordingly, it is possible to perform plasma irradiation on the conductive foil and separation groove regions where circuit elements are to be placed.

更に、本発明は、導電箔に表面から分離溝を形成して底部で一体に連結された導電パターンを形成する工程と、前記導電パターンの所望の箇所に回路素子を実装する工程と、前記導電箔表面に前記回路素子を含めてプラズマを照射する工程と、前記回路素子を被覆し且つ前記分離溝に充填されるように樹脂層で封止する工程とを有する。本発明の導電パターンは、底部で連結されているので、プラズマを照射する工程に於いて局所的な電位差が発生せず、半導体素子等の回路素子が破壊されるのを抑制することができる。また、導電パターンが導電箔として一体に成っているので、プラズマ照射を行う工程で加熱されることによる変形が少ない。従って、回路素子と導電パターンとを接続する金属細線の変形・断線を抑制することができる。   Furthermore, the present invention includes a step of forming a separation groove on the conductive foil from the surface and forming a conductive pattern integrally connected at the bottom, a step of mounting a circuit element at a desired location of the conductive pattern, and the conductive There are a step of irradiating the foil surface with the plasma including the circuit element, and a step of covering the circuit element and sealing with a resin layer so as to fill the separation groove. Since the conductive patterns of the present invention are connected at the bottom, a local potential difference does not occur in the plasma irradiation step, and it is possible to suppress the destruction of circuit elements such as semiconductor elements. Moreover, since the conductive pattern is integrally formed as a conductive foil, there is little deformation due to heating in the process of plasma irradiation. Therefore, deformation and disconnection of the fine metal wire connecting the circuit element and the conductive pattern can be suppressed.

更に本発明は、前記プラズマにより、前記分離溝の表面に付着した汚染物質を除去する。照射されたプラズマは分離溝表面で反射するので、反射されたプラズマにより、その洗浄の効果は更に向上される。また、プラズマ照射により導電箔の表面は粗化され、導電パターンと絶縁性樹脂との密着性は向上される。   Furthermore, the present invention removes contaminants attached to the surface of the separation groove by the plasma. Since the irradiated plasma is reflected on the surface of the separation groove, the cleaning effect is further improved by the reflected plasma. Moreover, the surface of the conductive foil is roughened by plasma irradiation, and the adhesion between the conductive pattern and the insulating resin is improved.

本発明では、導電箔の表面にプラズマを照射することにより導電箔表面の洗浄および粗化を行うことができる。更に、プラズマを用いて導電性材料の表面に付着した汚染物質を除去する際に発生する半導体素子の破壊等の問題を解決することができる。   In the present invention, the surface of the conductive foil can be cleaned and roughened by irradiating the surface of the conductive foil with plasma. Furthermore, it is possible to solve problems such as destruction of a semiconductor element that occur when removing contaminants attached to the surface of the conductive material using plasma.

本発明の回路装置の製造方法を説明する断面図(A)、平面図(B)である。It is sectional drawing (A) and a top view (B) explaining the manufacturing method of the circuit apparatus of this invention. 本発明の回路装置の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the circuit apparatus of this invention. 本発明の回路装置の製造方法を説明する断面図(A)、平面図(B)である。It is sectional drawing (A) and a top view (B) explaining the manufacturing method of the circuit apparatus of this invention. 本発明の回路装置の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the circuit apparatus of this invention. 本発明の回路装置の製造方法を説明する断面図(A)、断面図(B)、断面図(C)である。It is sectional drawing (A), sectional drawing (B), and sectional drawing (C) explaining the manufacturing method of the circuit apparatus of this invention. 本発明の回路装置の製造方法を説明する断面図(A)、平面図(B)である。It is sectional drawing (A) and a top view (B) explaining the manufacturing method of the circuit apparatus of this invention. 本発明の回路装置の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the circuit apparatus of this invention. 本発明の回路装置の製造方法を説明する平面図である。It is a top view explaining the manufacturing method of the circuit device of this invention. 本発明の回路装置の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the circuit apparatus of this invention. 従来の回路装置の製造方法を説明する断面図(A)−(D)である。It is sectional drawing (A)-(D) explaining the manufacturing method of the conventional circuit device. 従来の回路装置の製造方法を説明する平面図(A)、断面図(B)である。It is the top view (A) and sectional drawing (B) explaining the manufacturing method of the conventional circuit device.

符号の説明Explanation of symbols

10 導電箔
11 分離溝
12 ブロック
22A 半導体素子
22B チップ部品
25 金属細線
30 プラズマ洗浄機
31 上段電極
32 下段電極
40 ダイシングライン
41 ブレード
DESCRIPTION OF SYMBOLS 10 Conductive foil 11 Separation groove 12 Block 22A Semiconductor element 22B Chip component 25 Metal thin wire 30 Plasma cleaning machine 31 Upper electrode 32 Lower electrode 40 Dicing line 41 Blade

Claims (4)

表面から分離溝を形成することにより半導体素子を実装する凸状の導電パターンが設けられた導電箔からなる導電部材を備えた回路装置において、
前記導電箔に設けられた前記分離溝の側面は粗化された表面であり、該分離溝には前記半導体素子を含む前記導電箔を封止する封止樹脂が充填されており、前記導電箔の裏面側において該分離溝内の前記封止樹脂が前記導電パターンから突出していることを特徴とする回路装置。
In a circuit device comprising a conductive member made of a conductive foil provided with a convex conductive pattern for mounting a semiconductor element by forming a separation groove from the surface,
A side surface of the separation groove provided in the conductive foil is a roughened surface, and the separation groove is filled with a sealing resin for sealing the conductive foil including the semiconductor element, and the conductive foil The circuit device, wherein the sealing resin in the separation groove protrudes from the conductive pattern on the back surface side of the substrate.
前記導電箔の裏面側において、レジストが、前記導電パターン及び前記導電パターンから突出した前記封止樹脂を被覆していることを特徴とする請求項1に記載の回路装置。 The circuit device according to claim 1, wherein a resist covers the conductive pattern and the sealing resin protruding from the conductive pattern on a back surface side of the conductive foil. 前記分離溝の断面は、上端部が内側にオーバーハングする湾曲形状であることを特徴とする請求項1または2に記載の回路装置。 The circuit device according to claim 1, wherein a cross section of the separation groove has a curved shape in which an upper end portion overhangs inward. 前記導電パターンから突出した封止樹脂の表面は凹凸形状であることを特徴とする請求項1〜3のうちいずれか1項に記載の回路装置。 The circuit device according to claim 1, wherein a surface of the sealing resin protruding from the conductive pattern has an uneven shape.
JP2008223923A 2008-09-01 2008-09-01 Circuit equipment Expired - Fee Related JP4832486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223923A JP4832486B2 (en) 2008-09-01 2008-09-01 Circuit equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223923A JP4832486B2 (en) 2008-09-01 2008-09-01 Circuit equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006194079A Division JP2006279085A (en) 2006-07-14 2006-07-14 Method of manufacturing circuit device

Publications (2)

Publication Number Publication Date
JP2009010416A true JP2009010416A (en) 2009-01-15
JP4832486B2 JP4832486B2 (en) 2011-12-07

Family

ID=40325111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223923A Expired - Fee Related JP4832486B2 (en) 2008-09-01 2008-09-01 Circuit equipment

Country Status (1)

Country Link
JP (1) JP4832486B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057173A (en) * 2000-08-09 2002-02-22 Sanyo Electric Co Ltd Manufacturing method of circuit device
JP2002076182A (en) * 2000-09-04 2002-03-15 Sanyo Electric Co Ltd Manufacturing method of circuit device
JP2002093847A (en) * 2000-09-20 2002-03-29 Sanyo Electric Co Ltd Semiconductor device and semiconductor module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057173A (en) * 2000-08-09 2002-02-22 Sanyo Electric Co Ltd Manufacturing method of circuit device
JP2002076182A (en) * 2000-09-04 2002-03-15 Sanyo Electric Co Ltd Manufacturing method of circuit device
JP2002093847A (en) * 2000-09-20 2002-03-29 Sanyo Electric Co Ltd Semiconductor device and semiconductor module

Also Published As

Publication number Publication date
JP4832486B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
KR100608186B1 (en) Method of manufacturing semiconductor device
US7364941B2 (en) Circuit device manufacturing method
JP2011166076A (en) Method of manufacturing semiconductor device
JP2010087490A (en) Semiconductor device and semiconductor device manufacturing method
KR20180107877A (en) Semiconductor package and method for manufacturing thereof
JP2002231854A (en) Semiconductor device and its manufacturing method
US7105384B2 (en) Circuit device manufacturing method including mounting circuit elements on a conductive foil, forming separation grooves in the foil, and etching the rear of the foil
JP2011014644A (en) Wiring board and manufacturing method thereof
KR101197189B1 (en) Chip package and method of manufacturing the same
JP4832486B2 (en) Circuit equipment
KR20150009667A (en) Semiconductor device and manufacturing method thereof
JP2006279085A (en) Method of manufacturing circuit device
JP6492286B2 (en) Device chip manufacturing method
KR102119142B1 (en) Method for fabriating Wafer Level Package&#39;s Carrier using lead frame
JP4642061B2 (en) Circuit device manufacturing method
JP2007281219A (en) Ceramic circuit board and its manufacturing method
JP6216157B2 (en) Electronic component device and manufacturing method thereof
JP2012182210A (en) Method for manufacturing lead frame substrate for led element
JP2005150221A (en) Semiconductor device, semiconductor wafer, and its manufacturing method
KR101898479B1 (en) Method of manufacturing printed circuit board using multi carrier substrates
JP2011086854A (en) Semiconductor device
US20180160533A1 (en) Multilayer printed circuit board
JPH11354473A (en) Semiconductor element substrate and its manufacture
CN115732337A (en) Method for forming semiconductor packaging element
JP2020102577A (en) Built-in semiconductor ic circuit board and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees