JP2009010180A - Soft magnetic powder, soft magnetic formed object, and method of manufacturing them - Google Patents

Soft magnetic powder, soft magnetic formed object, and method of manufacturing them Download PDF

Info

Publication number
JP2009010180A
JP2009010180A JP2007170387A JP2007170387A JP2009010180A JP 2009010180 A JP2009010180 A JP 2009010180A JP 2007170387 A JP2007170387 A JP 2007170387A JP 2007170387 A JP2007170387 A JP 2007170387A JP 2009010180 A JP2009010180 A JP 2009010180A
Authority
JP
Japan
Prior art keywords
soft magnetic
powder
magnetic powder
oxide
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007170387A
Other languages
Japanese (ja)
Other versions
JP4971886B2 (en
Inventor
Hiroyuki Mitani
宏幸 三谷
Nobuaki Akagi
宣明 赤城
Takafumi Hojo
啓文 北条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007170387A priority Critical patent/JP4971886B2/en
Priority to PCT/JP2008/059739 priority patent/WO2009001641A1/en
Publication of JP2009010180A publication Critical patent/JP2009010180A/en
Application granted granted Critical
Publication of JP4971886B2 publication Critical patent/JP4971886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soft magnetic powder which is excellent in a magnetic property and specifically has small iron loss, and provide a soft magnetic formed object and a method of manufacturing them. <P>SOLUTION: The soft magnetic powder 1 comprises Al, Si or the like, and B, and is characterized in that the remaining portion consists of Fe and an inevitable impurity. Moreover, a soft magnetic powder 1a comprises Al, Si or the like, and B, and is characterized in that the remaining portion comprises a powder main body 2a consisting of Fe and an inevitable impurity, and an oxide coat 3a consisting of an oxide of Al, Si or the like which covers the surface of the powder main body 2a. Further, a soft magnetic powder 1b comprises Al, and Si or the like, and is characterized in that the remaining portion comprises a powder main body 2b consisting of Fe and an inevitable impurity, an oxide coat 3a consisting of an oxide of Al, Si or the like, and an oxide coat 3b consisting of an oxide of B, both coats of which cover the surface of the powder main body 2b. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧粉磁心等に用いられる軟磁性粉体、軟磁性成形体およびそれらの製造方法に関するものである。   The present invention relates to a soft magnetic powder used for a dust core and the like, a soft magnetic molded body, and a method for producing the same.

一般に、圧粉磁心には軟磁性成形体が用いられ、軟磁性成形体は軟磁性粉体を成形することによって製造されている。そして、軟磁性粉体としては、一般的には鉄粉体が用いられ、特許文献1では、鉄粉体の例として、純鉄以外のFe合金粒体(文献では合金粉末)が記載されている。なお、Fe合金粒体としては、FeにAl、Si、Ti、Cr等の元素を添加したものが記載されている。   Generally, a soft magnetic molded body is used for the dust core, and the soft magnetic molded body is manufactured by molding a soft magnetic powder. As the soft magnetic powder, iron powder is generally used. In Patent Document 1, Fe alloy particles other than pure iron (in the literature, alloy powder) are described as examples of iron powder. Yes. In addition, as an Fe alloy grain, what added elements, such as Al, Si, Ti, and Cr, to Fe is indicated.

また、特許文献2では、軟磁性粉体の例として、金属粒子(Fe、Fe−Al、Fe−Si等)と、金属粒子の表面を被覆する高抵抗物質(Al、SiO等)と、高抵抗物質の破壊を防止するリン酸系化成処理被膜とよりなる軟磁性粒子が記載されている。なお、このリン酸系化成処理被膜は、高抵抗物質の表面にリン酸系処理液を塗布、乾燥することによって形成することが記載されている。さらに、非特許文献1、2では、このような軟磁性粉体を焼鈍することによって、軟磁性粉体の結晶粒を粗大化して磁気特性を向上させることが記載されている。
特公平6−82577号公報 特開2001−85211号公報 The International Journal of Powder Metallurgy,vol.22,No.2,1986,p.81 門間改三、須藤一著,「構成金属材料とその熱処理」,日本金属学会,昭和52年7月20日初版発行,p.97〜98
In Patent Document 2, as an example of soft magnetic powder, metal particles (Fe, Fe—Al, Fe—Si, etc.) and high resistance substances (Al 2 O 3 , SiO 2 etc.) covering the surface of the metal particles are used. ) And a phosphoric acid-based chemical conversion coating that prevents the destruction of the high-resistance substance. It is described that the phosphoric acid-based chemical conversion coating is formed by applying and drying a phosphoric acid-based treatment liquid on the surface of a high resistance substance. Furthermore, Non-Patent Documents 1 and 2 describe that by annealing such soft magnetic powder, the crystal grains of the soft magnetic powder are coarsened to improve the magnetic characteristics.
Japanese Patent Publication No. 6-82577 JP 2001-85211 A The International Journal of Powder Metallurgy, vol.22, No.2, 1986, p.81 Kazama Kaizo, Sudo Kazu, “Constituent Metal Materials and Heat Treatment”, The Japan Institute of Metals, July 20, 1977, first edition, p. 97-98

しかしながら、特許文献1に記載されているFe合金粉体は、Al、Si等が添加されているため、純鉄に比較して高硬度で、成形性が悪いものであった。また、磁気特性も圧粉磁心用として十分なものとはいえなかった。また、特許文献2に記載されている軟磁性粒子も、金属粒子としてAl、Si等が添加されたFe合金を使用したものは、高硬度で、成形性が悪いものであった。さらに、金属粒子が高硬度であるため、成形の際に被膜(高抵抗物質、リン酸系化成被膜)が破れ、軟磁性粒子の比抵抗が低下し、渦電流損(鉄損)の増加、すなわち、磁気特性の低下が見られた。   However, since the Fe alloy powder described in Patent Document 1 has Al, Si, and the like added thereto, it has higher hardness than pure iron and has poor moldability. Also, the magnetic properties were not sufficient for dust cores. Also, the soft magnetic particles described in Patent Document 2 that use an Fe alloy to which Al, Si, etc. are added as metal particles have high hardness and poor moldability. Furthermore, since the metal particles have high hardness, the coating (high resistance material, phosphoric acid-based chemical conversion coating) is broken during molding, the specific resistance of the soft magnetic particles is reduced, and eddy current loss (iron loss) is increased. That is, a decrease in magnetic properties was observed.

加えて、特許文献2に記載されている軟磁性粒子は、金属粒子(高抵抗物質)を被覆するリン酸系化成処理被膜が600℃程度で熱分解し耐熱性が低いものであった。したがって、特許文献2に記載されている軟磁性粒子は、非特許文献1および非特許文献2に記載された磁気特性向上のための焼鈍において、その上限温度を約800℃以上、具体的には金属粒子を構成するFeのα−γ変態温度(910℃)を超える温度に上げることができなかった。その結果、金属粒子(軟磁性粒子)の結晶粒が粗大化せず、磁気特性を向上させることができなかった。   In addition, in the soft magnetic particles described in Patent Document 2, the phosphoric acid-based chemical conversion coating film covering the metal particles (high resistance substance) is thermally decomposed at about 600 ° C. and has low heat resistance. Therefore, the soft magnetic particles described in Patent Document 2 have an upper limit temperature of about 800 ° C. or higher in annealing for improving magnetic properties described in Non-Patent Document 1 and Non-Patent Document 2, specifically, It could not be raised to a temperature exceeding the α-γ transformation temperature (910 ° C.) of Fe constituting the metal particles. As a result, the crystal grains of the metal particles (soft magnetic particles) were not coarsened and the magnetic properties could not be improved.

そこで、本発明は、このような問題を解決すべく創案されたもので、その目的は、磁気特性に優れた、具体的には鉄損が小さい軟磁性粉体、軟磁性成形体およびそれらの製造方法を提供することにある。   Therefore, the present invention was devised to solve such problems, and the purpose thereof is a soft magnetic powder excellent in magnetic properties, specifically with low iron loss, a soft magnetic molded body, and their It is to provide a manufacturing method.

前記課題を解決するために、請求項1に係る軟磁性粉体は、鉄を主成分とする鉄合金からなる軟磁性粉体であって、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素と、Bとを含み、残部がFeおよび不可避的不純物からなることを特徴とする。   In order to solve the above problem, the soft magnetic powder according to claim 1 is a soft magnetic powder made of an iron alloy containing iron as a main component, and made of Al, Si, Ti, Cr, Mo, and Ge. It contains at least one element selected from the group and B, and the balance consists of Fe and inevitable impurities.

前記構成によれば、軟磁性粉体がAl、Si、Ti、Cr、MoおよびGeからなる群から選択された少なくとも一種の元素(以下、Al、Si等と称することがある)を含むことによって、軟磁性粉体の結晶磁気異方性定数が低下し、保磁力が低減する。その結果、この軟磁性粉体から製造された軟磁性成形体(圧粉磁心等)のヒステリシス損が抑制される。   According to the above configuration, the soft magnetic powder contains at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo, and Ge (hereinafter sometimes referred to as Al, Si, etc.). The crystal magnetic anisotropy constant of the soft magnetic powder is lowered, and the coercive force is reduced. As a result, the hysteresis loss of a soft magnetic molded body (such as a dust core) manufactured from the soft magnetic powder is suppressed.

また、軟磁性粉体がBを含むことによって、軟磁性粉体を用いて軟磁性成形体を製造(成形、液相焼結)する際、液相焼結によって軟磁性粉体の内部からBが液相状態で染み出す。染み出したBは、軟磁性粉体の表面を被覆すると共に、軟磁性粉体同士を接合させる成形酸化物被膜(Al、Si等の酸化物とBの酸化物との混合物)の構成成分の1つ(Bの酸化物)となる。そして、酸化物被膜(Al、Si等の酸化物とBの酸化物との混合物)が絶縁被膜として機能するため、軟磁性成形体の比抵抗が高くなり、渦電流損が抑制される。   In addition, since the soft magnetic powder contains B, when a soft magnetic molded body is manufactured (molded, liquid phase sintered) using the soft magnetic powder, B is generated from the inside of the soft magnetic powder by liquid phase sintering. Oozes out in liquid phase. The exuded B covers the surface of the soft magnetic powder and is a component of a molded oxide film (a mixture of an oxide such as Al or Si and an oxide of B) that joins the soft magnetic powders together. One (B oxide). And since an oxide film (mixture of oxides, such as Al and Si, and the oxide of B) functions as an insulating film, the specific resistance of a soft-magnetic molded object becomes high and eddy current loss is suppressed.

また、軟磁性粉体がBを含むことによって、軟磁性粉体を用いて軟磁性成形体を製造する際の焼結温度をα−γ変態温度を超える温度に設定することが可能となる。変態温度を超える温度で液相焼結することによって、軟磁性成形体の結晶粒が粗大化し、ヒステリシス損(鉄損)が抑制される。
なお、軟磁性材料において、(鉄損)=(ヒステリシス損)+(渦電流損)である。
In addition, when the soft magnetic powder contains B, the sintering temperature at the time of producing a soft magnetic molded body using the soft magnetic powder can be set to a temperature exceeding the α-γ transformation temperature. By liquid phase sintering at a temperature exceeding the transformation temperature, the crystal grains of the soft magnetic compact are coarsened, and hysteresis loss (iron loss) is suppressed.
In the soft magnetic material, (iron loss) = (hysteresis loss) + (eddy current loss).

請求項2に係る軟磁性粉体は、鉄を主成分とする鉄合金からなる軟磁性粉体であって、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素と、Bとを含み、残部がFeおよび不可避的不純物からなる粉体本体部と、前記粉体本体部の表面を被覆する前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素の酸化物からなる酸化物被膜とを備えることを特徴とする。   The soft magnetic powder according to claim 2 is a soft magnetic powder made of an iron alloy containing iron as a main component, and is at least one selected from the group consisting of Al, Si, Ti, Cr, Mo, and Ge. Selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge covering the surface of the powder main body part and the powder main body part containing the element and B, the balance being Fe and inevitable impurities And an oxide film made of an oxide of at least one element.

前記構成によれば、粉体本体部のAl、Si等およびBによる、軟磁性粉体から製造される軟磁性成形体のヒステリシス損(鉄損)の抑制に加えて、粉体本体部を被覆するAl、Si等の酸化物からなる酸化物被膜を備えることによって、この酸化物被膜(Al、Si等の酸化物)が、軟磁性粉体を用いて製造(成形、液相焼結)された軟磁性成形体において、成形本体部同士を接合させる成形酸化物被膜(Al、Si等の酸化物とBの酸化物との混合物)の構成成分の1つとなる。そして、酸化物被膜(Al、Si等の酸化物とBの酸化物との混合物)が絶縁被膜として機能するため、軟磁性成形体の成形本体部間の電気的絶縁性が向上し、軟磁性成形体の比抵抗が高くなり、渦電流損がさらに抑制される。   According to the above configuration, in addition to suppressing the hysteresis loss (iron loss) of the soft magnetic molded body produced from the soft magnetic powder due to Al, Si, and B in the powder main body, the powder main body is covered. By providing an oxide film made of an oxide such as Al or Si, the oxide film (oxide such as Al or Si) is manufactured (molded, liquid phase sintered) using soft magnetic powder. In the soft magnetic molded body, it becomes one of the constituent components of a molded oxide film (a mixture of an oxide such as Al and Si and an oxide of B) that joins the molded body portions. And since the oxide film (mixture of oxides such as Al and Si and oxides of B) functions as an insulating film, the electrical insulation between the molded body portions of the soft magnetic molded body is improved, and the soft magnetism is improved. The specific resistance of the molded body is increased, and eddy current loss is further suppressed.

また、この酸化物被膜(Al、Si等の酸化物)は高硬度であるため、成形によって酸化物被膜(Al、Si等の酸化物)が破れやすい。しかしながら、成形後の液相焼結において、この酸化物被膜(Al、Si等の酸化物)の破れたところから、粉体本体部に含まれているBが染み出して酸化物被膜を形成する。そして、この酸化物被膜(Bの酸化物)は、あたかも破れた酸化物被膜(Al、Si等の酸化物)を補修するかのごとく振舞うため、破れのない成形酸化物被膜(Al、Si等の酸化物とBの酸化物との混合物)が形成され、軟磁性成形体の比抵抗がさらに高くなり、渦電流損(鉄損)がさらに抑制される。   Further, since this oxide film (oxide such as Al and Si) has high hardness, the oxide film (oxide such as Al and Si) is easily broken by molding. However, in the liquid phase sintering after molding, B contained in the powder body part oozes out from the broken portion of the oxide film (oxide of Al, Si, etc.) to form an oxide film. . And this oxide film (B oxide) behaves as if it repaired a broken oxide film (oxide of Al, Si, etc.), so a molded oxide film (Al, Si, etc.) without breakage A mixture of the oxide of B and the oxide of B) is formed, the specific resistance of the soft magnetic molded body is further increased, and eddy current loss (iron loss) is further suppressed.

請求項3に係る軟磁性粉体は、鉄を主成分とする鉄合金からなる軟磁性粉体であって、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素を含み、残部がFeおよび不可避的不純物からなる粉体本体部と、前記粉体本体部の表面を被覆する前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素の酸化物からなる酸化物被膜およびBの酸化物からなる酸化物被膜とを備えることを特徴とする。   The soft magnetic powder according to claim 3 is a soft magnetic powder made of an iron alloy containing iron as a main component, and is at least one selected from the group consisting of Al, Si, Ti, Cr, Mo, and Ge. At least one selected from the group consisting of a powder main body portion containing an element, the balance being Fe and inevitable impurities, and the Al, Si, Ti, Cr, Mo and Ge covering the surface of the powder main body portion And an oxide film composed of an oxide of B and an oxide film composed of an oxide of B.

前記構成によれば、粉体本体部のAl、Si等による、軟磁性粉体から製造される軟磁性成形体のヒステリシス損(鉄損)の抑制に加えて、粉体本体部を被覆するAl、Si等の酸化物からなる酸化物被膜と、Bの酸化物からなる酸化物被膜とを備えることによって、高硬度の酸化物被膜(Al、Si等の酸化物)があらかじめ酸化物被膜(Bの酸化物)によって補修されている。そのため、軟磁性成形体の製造(成形、液相焼結)において、成形の際に酸化物被膜(Al、Si等の酸化物)に破れが発生しにくくなる。また、液相焼結によって形成される成形本体部を被覆する成形酸化物被膜(Al、Si等の酸化物とBの酸化物との混合物)にも破れが発生しにくくなる。その結果、軟磁性成形体の比抵抗がさらに高くなり、渦電流損(鉄損)がさらに抑制される。   According to the above configuration, in addition to suppressing the hysteresis loss (iron loss) of the soft magnetic molded body produced from the soft magnetic powder due to Al, Si, etc. of the powder main body, Al covering the powder main body By providing an oxide film made of an oxide such as Si and an oxide film made of an oxide of B, a high-hardness oxide film (oxide of Al, Si, etc.) is previously formed into an oxide film (B Oxide). Therefore, in the production (molding, liquid phase sintering) of the soft magnetic molded body, the oxide film (oxide such as Al or Si) is hardly broken during molding. In addition, the formed oxide film (mixture of oxides such as Al and Si and B oxide) covering the formed main body formed by liquid phase sintering is not easily broken. As a result, the specific resistance of the soft magnetic molded body is further increased, and eddy current loss (iron loss) is further suppressed.

請求項4に係る軟磁性粉体は、請求項1ないし請求項3のいずれか一項に記載の軟磁性粉体において、前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素の総含有量が1〜15at%であり、前記Bの含有量が0.1〜4at%であることを特徴とする。   The soft magnetic powder according to claim 4 is selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge in the soft magnetic powder according to any one of claims 1 to 3. The total content of at least one element is 1 to 15 at%, and the B content is 0.1 to 4 at%.

前記構成によれば、Al、Si等の総含有量、および、Bの含有量を所定範囲とすることによって、軟磁性粉体の結晶磁気異方性定数を低下させることにより透磁率を向上させ、磁束密度が向上する。また、軟磁性粉体を用いて製造される軟磁性成形体において、成形本体部同士を接合する成形酸化物被膜(Al、Si等の酸化物とBの酸化物との混合物)が均一なものとなる。   According to the above configuration, the permeability is improved by reducing the crystal magnetic anisotropy constant of the soft magnetic powder by setting the total content of Al, Si and the like and the content of B within a predetermined range. , Magnetic flux density is improved. In addition, in a soft magnetic molded body manufactured using soft magnetic powder, a molded oxide film (a mixture of an oxide such as Al or Si and an oxide of B) that joins the molded body portions to each other is uniform. It becomes.

請求項5に係る軟磁性成形体は、請求項1ないし請求項4のいずれか一項に記載の軟磁性粉体から製造された軟磁性成形体であって、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素を含み、残部がFeおよび不可避的不純物からなる成形本体部と、前記成形本体部の表面を被覆し、前記成形本体部同士を接合する成形酸化物被膜とを備え、前記成形酸化物被膜が、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素の酸化物とBの酸化物との混合物とからなることを特徴とする。   A soft magnetic molded body according to claim 5 is a soft magnetic molded body manufactured from the soft magnetic powder according to any one of claims 1 to 4, wherein Al, Si, Ti, Cr, Molding that includes at least one element selected from the group consisting of Mo and Ge, with the balance being formed of Fe and inevitable impurities, covering the surface of the molded body, and joining the molded bodies An oxide film, and the molded oxide film is made of a mixture of an oxide of at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo, and Ge and an oxide of B It is characterized by that.

前記構成によれば、成形本体部がAl、Si等を含むため、これから製造される軟磁性成形体の結晶磁気異方性定数を低下させることにより透磁率を向上させ、磁束密度が向上する。また、成形酸化物被膜がAl、Si等の酸化物とBの酸化物との混合物からなることによって、絶縁性の高いものとなり、軟磁性成形体の比抵抗が高くなり、渦電流損(鉄損)が抑制される。   According to the said structure, since a shaping | molding main-body part contains Al, Si, etc., magnetic permeability is improved by reducing the crystal magnetic anisotropy constant of the soft magnetic molded object manufactured from now, and magnetic flux density improves. Further, since the molded oxide film is made of a mixture of an oxide such as Al and Si and an oxide of B, the insulating film has high insulation, the specific resistance of the soft magnetic molded body is increased, and eddy current loss (iron Loss) is suppressed.

請求項6に係る軟磁性粉体の製造方法は、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素と、Bとを含み、残部がFeおよび不可避的不純物からなる金属原料を使用し、アトマイズ法を用いて前記金属原料を粉体化したことを特徴とする。   The method for producing a soft magnetic powder according to claim 6 includes at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge, and B, with the balance being Fe and inevitable impurities. It is characterized in that the metal raw material is made into a powder using an atomizing method.

前記手順によれば、アトマイズ法を用いることによって、圧縮性に優れ、かつ反磁場係数の小さい軟磁性粉体を製造することが可能となる。また、金属原料がAl、Si等およびBを含むことによって、ヒステリシス損および渦電流損が抑制された軟磁性粉体を製造することが可能となる。   According to the above procedure, by using the atomizing method, it is possible to produce a soft magnetic powder having excellent compressibility and a small demagnetizing factor. Further, when the metal raw material contains Al, Si, etc. and B, it is possible to produce a soft magnetic powder in which hysteresis loss and eddy current loss are suppressed.

請求項7に係る軟磁性粉体の製造方法は、前記金属原料が、前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素の総含有量が1〜15at%であり、前記Bの含有量が0.1〜4at%であることを特徴とする。   The method for producing a soft magnetic powder according to claim 7 is characterized in that the metal raw material has a total content of at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge of 1 to 15 at. %, And the B content is 0.1 to 4 at%.

前記手順によれば、金属原料が所定量のAl、Si等およびBを含有することによって、ヒステリシス損および渦電流損がさらに抑制された軟磁性粉体を製造することが可能となる。   According to the above procedure, it is possible to produce a soft magnetic powder in which hysteresis loss and eddy current loss are further suppressed when the metal raw material contains a predetermined amount of Al, Si, etc. and B.

請求項8に係る軟磁性粉体の製造方法は、請求項6または請求項7で製造された軟磁性粉体に、前記Feに対しては還元性雰囲気であると共に、前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素に対しては酸化性雰囲気である雰囲気下で、600〜800℃の熱処理を施すことを特徴とする。   A method for producing a soft magnetic powder according to an eighth aspect is the same as the soft magnetic powder produced in the sixth or seventh aspect, wherein the Fe, the reducing atmosphere, and the Al, Si, Ti are used. At least one element selected from the group consisting of Cr, Mo and Ge is subjected to heat treatment at 600 to 800 ° C. in an oxidizing atmosphere.

前記手順によれば、軟磁性粉体に所定の熱処理を施すことによって、Al、Si等の酸化物からなり、粉体本体部の表面を被覆する酸化物被膜を形成させることができる。   According to the above procedure, by applying a predetermined heat treatment to the soft magnetic powder, it is possible to form an oxide film made of an oxide such as Al or Si and covering the surface of the powder body.

請求項9に係る軟磁性粉体の製造方法は、請求項6または請求項7で製造された軟磁性粉体に、前記Feに対しては還元性雰囲気であると共に、前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素およびBに対しては酸化性雰囲気である雰囲気下で、1150〜1200℃の熱処理を施すことを特徴とする。   According to a ninth aspect of the present invention, there is provided a method for producing a soft magnetic powder, wherein the soft magnetic powder produced in the sixth or seventh aspect has a reducing atmosphere for the Fe and the Al, Si, Ti. At least one element selected from the group consisting of Cr, Mo and Ge and B are subjected to heat treatment at 1150 to 1200 ° C. in an oxidizing atmosphere.

前記手順によれば、軟磁性粉体に所定の熱処理を施すことによって、Al、Si等の酸化物からなり、粉体本体部の表面を被覆する酸化物被膜と、Bの酸化物からなり、粉体本体部および酸化物被膜(Al、Si等の酸化物)の表面を被覆する酸化物被膜を形成させることができる。   According to the above procedure, by applying a predetermined heat treatment to the soft magnetic powder, it consists of an oxide such as Al, Si, an oxide film that covers the surface of the powder body, and an oxide of B. An oxide film that covers the surface of the powder body and the surface of the oxide film (oxide of Al, Si, etc.) can be formed.

請求項10に係る軟磁性成形体の製造方法は、請求項6ないし請求項9のいずれか一項で製造された軟磁性粉体を加熱加圧成形し、その後、前記Feに対しては還元性雰囲気であると共に、前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素およびBに対しては酸化性雰囲気であり、かつ、1150〜1300℃である雰囲気下で、液相焼結すること特徴とする。   The method for producing a soft magnetic molded body according to claim 10 is a method of heat-pressing the soft magnetic powder produced in any one of claims 6 to 9 and then reducing the Fe. And an atmosphere that is an oxidizing atmosphere for B and at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo, and Ge, and is 1150 to 1300 ° C. Below, it is characterized by liquid phase sintering.

前記手順によれば、軟磁性粉体を加熱加圧成形後に、所定の液相焼結を施すことによって、成形本体部同士の間に絶縁性の高い成形酸化物被膜(Al、Si等の酸化物とBの酸化物との混合物)を形成させることができる。また、成形時に導入された歪が解放されると共に、結晶構造がα相からγ相に変態して結晶粒が粗大化するため、ヒステリシス損(鉄損)が抑制される。   According to the above procedure, after forming the soft magnetic powder by heating and pressing, a predetermined liquid phase sintering is performed, so that a molded oxide film (Al, Si, etc.) having a high insulating property is formed between the molded body portions. Mixture of the product and the oxide of B). In addition, the strain introduced at the time of molding is released, and the crystal structure is transformed from the α phase to the γ phase and the crystal grains are coarsened, so that hysteresis loss (iron loss) is suppressed.

本発明の軟磁性粉体によれば、Al、Si等とBとを含むことによって、この軟磁性粉体から製造される軟磁性成形体の磁気特性が優れたものとなる。特に、軟磁性成形体の鉄損が小さくなる。また、粉体本体部を被覆するAl、Si等の酸化物からなる酸化物被膜、または、粉体本体部を被覆するAl、Si等の酸化物からなる酸化物被膜とBの酸化物からなる酸化物被膜を備えることによって、軟磁性成形体の磁気特性がさらに優れたものとなる。さらに、軟磁性粉体に含有されるAl、Si等の総含有量、および、Bの含有量を所定範囲とすることによって、軟磁性成形体の磁気特性がさらに優れたものとなる。   According to the soft magnetic powder of the present invention, by including Al, Si, etc. and B, the magnetic properties of the soft magnetic molded body produced from the soft magnetic powder are excellent. In particular, the iron loss of the soft magnetic molded body is reduced. Moreover, it consists of an oxide film made of an oxide such as Al or Si covering the powder body part, or an oxide film made of an oxide such as Al or Si and B oxide covering the powder body part. By providing the oxide film, the magnetic properties of the soft magnetic molded body are further improved. Furthermore, by setting the total content of Al, Si, and the like contained in the soft magnetic powder and the content of B within a predetermined range, the magnetic properties of the soft magnetic molded body are further improved.

本発明に係る軟磁性成形体によれば、Al,Si等を含む成形本体部と、その成形本体部の表面を被覆し、成形本体部同士を接合するAl、Si等の酸化物とBの酸化物との混合物からなる成形酸化物被膜とを備えることによって、磁気特性が優れたものとなる。特に、軟磁性成形体の鉄損が小さくなる。   According to the soft magnetic molded body according to the present invention, a molded main body portion containing Al, Si, and the like, a surface of the molded main body portion, and an oxide such as Al and Si that joins the molded main body portions to each other and B By providing a molded oxide film made of a mixture with an oxide, the magnetic properties are excellent. In particular, the iron loss of the soft magnetic molded body is reduced.

本発明に係る軟磁性粉体の製造方法によれば、Al,Si等およびBを含む金属原料をアトマイズ法で粉体化することによって、磁気特性に優れた、特に、鉄損が小さい軟磁性成形体を得ることが可能な軟磁性粉体が製造される。また、金属原料が所定量のAl、Si等およびBを含有すること、さらに、製造された軟磁性粉体に所定の熱処理を施すことによって、磁気特性がさらに優れた軟磁性成形体を得ることが可能な軟磁性粉体が製造される。   According to the method for producing a soft magnetic powder according to the present invention, a metal raw material containing Al, Si, etc. and B is pulverized by an atomizing method, thereby providing excellent magnetic properties, in particular, soft magnetism with low iron loss. A soft magnetic powder capable of obtaining a molded body is produced. In addition, the metal raw material contains a predetermined amount of Al, Si, etc. and B, and further, by subjecting the manufactured soft magnetic powder to a predetermined heat treatment, a soft magnetic molded article having further excellent magnetic properties can be obtained. Can be produced.

本発明に係る軟磁性成形体の製造方法によれば、加熱加圧成形後、所定条件で液相焼結することによって、磁気特性に優れた、特に、鉄損が小さい軟磁性成形体が製造される。また、本発明に係る軟磁性成形体の製造方法によれば、液相焼結によって絶縁性の高い酸化物被膜を形成させる。そのため、従来のように、絶縁性の高い被膜(高抵抗物質)の破壊防止のために、リン酸系処理液を塗布する必要がなくなる。また、軟磁性粉体の焼鈍時、または、軟磁性成形体の製造(液相焼結)時に絶縁性の高い被膜が破壊されることがない。その結果、軟磁性成形体の生産性が向上する。   According to the method for producing a soft magnetic molded body according to the present invention, a soft magnetic molded body having excellent magnetic properties, in particular, low iron loss, is manufactured by performing liquid phase sintering under predetermined conditions after hot pressing. Is done. In addition, according to the method for manufacturing a soft magnetic molded body according to the present invention, an oxide film having high insulation is formed by liquid phase sintering. Therefore, unlike the conventional case, it is not necessary to apply a phosphoric acid treatment liquid in order to prevent destruction of a highly insulating film (high resistance substance). In addition, the highly insulating coating is not broken during annealing of the soft magnetic powder or during the production (liquid phase sintering) of the soft magnetic compact. As a result, the productivity of the soft magnetic molded body is improved.

本発明に係る軟磁性粉体、軟磁性成形体およびそれらの製造方法について、図面を参照して詳細に説明する。図1(a)〜(c)は、軟磁性粉体の構成を示す模式図、図2(a)〜(c)は、軟磁性成形体の製造方法を模式的に説明する説明図である。   The soft magnetic powder, soft magnetic molded body, and production method thereof according to the present invention will be described in detail with reference to the drawings. 1 (a) to 1 (c) are schematic views showing the structure of soft magnetic powder, and FIGS. 2 (a) to 2 (c) are explanatory views schematically explaining a method for producing a soft magnetic molded body. .

<軟磁性粉体>
まず、軟磁性粉体の第1の実施形態について説明する。
図1(a)に示すように、軟磁性粉体(以下、粉体と称することがある)1は、鉄を主成分とする鉄合金からなる軟磁性粉体であって、Al、Si、Ti、Cr、MoおよびGeからなる群から選択された少なくとも一種の元素(以下、Al、Si等と称することがある)と、Bとを含み、残部がFeおよび不可避的不純物からなる。
<Soft magnetic powder>
First, a first embodiment of the soft magnetic powder will be described.
As shown in FIG. 1 (a), a soft magnetic powder (hereinafter sometimes referred to as powder) 1 is a soft magnetic powder made of an iron alloy containing iron as a main component, and includes Al, Si, It contains at least one element selected from the group consisting of Ti, Cr, Mo and Ge (hereinafter sometimes referred to as Al, Si, etc.) and B, with the balance being Fe and inevitable impurities.

粉体1は球状(丸い球形を指すばかりでなく、小さな粒子が凝集付着した異形状の球状粒子を含む)の粒子であって、その平均粒径は、この粉体1を用いて製造される軟磁性成形体(以下、成形体と称することがある。図2(c)参照)10の透磁率と保磁力、絶縁性に大きく影響し、45〜300μmであることが好ましい。平均粒径が45μm未満であると、成形体10の透磁率が低下しやすい。一方、平均粒径が300μmを超えると、粉体1が金型の細部に充填されにくくなるほか、粉体1から製造される成形本体部10a内での変形が大きく、成形本体部10a間に形成される成形酸化物被膜10bが破壊されやすくなり、成形体10の絶縁性が低下しやすい。   The powder 1 is a spherical particle (including not only a round spherical shape but also including irregularly shaped spherical particles in which small particles are agglomerated and adhered), and the average particle size thereof is produced using the powder 1. The magnetic permeability, coercive force, and insulation of the soft magnetic molded body (hereinafter sometimes referred to as a molded body, see FIG. 2C) 10 are greatly affected, and it is preferably 45 to 300 μm. When the average particle size is less than 45 μm, the magnetic permeability of the molded body 10 tends to decrease. On the other hand, if the average particle diameter exceeds 300 μm, the powder 1 is difficult to be filled in the details of the mold, and the deformation in the molded body portion 10a manufactured from the powder 1 is large, and between the molded body portions 10a. The formed molded oxide film 10b is easily destroyed, and the insulating property of the molded body 10 is likely to be lowered.

粉体1は、前記したAl、Si等の総含有量が1〜15at%、かつ、Bの含有量が0.1〜4at%であることが好ましい。そして、含有量の数値限定理由については以下のとおりである。   The powder 1 preferably has a total content of Al, Si, etc. of 1 to 15 at% and a content of B of 0.1 to 4 at%. And the reason for limiting the numerical value of the content is as follows.

Al、Si等は、Feの結晶磁気異方性定数を小さくする元素であって、この粉体1を用いて製造される成形体10の結晶磁気異方性定数を低下させ、透磁率が向上するほか保磁力低減によってヒステリシス損(鉄損)が低減する効果がある。   Al, Si, and the like are elements that reduce the crystal magnetic anisotropy constant of Fe, and lower the crystal magnetic anisotropy constant of the molded body 10 produced using this powder 1 to improve the magnetic permeability. Besides, there is an effect of reducing the hysteresis loss (iron loss) by reducing the coercive force.

そして、Al、Si等の総含有量が1at%未満であると、成形体10(粉体1)の結晶磁気異方性定数の低下が小さく、保磁力低減によるヒステリシス損(鉄損)低減の効果が小さくなりやすい。一方、Al、Si等の総含有量が15at%を超えると、粉体1において、磁性を担うFe原子の量が少なくなり、粉体1の磁束密度が低下しやすい。また、固溶強化により粉体1が硬くなるため、この粉体1を用いて製造される成形体10の密度の低下を引き起こし、成形体10の磁束密度が低下しやすい。したがって、Al、Si等の総含有量は、1〜15at%が好ましい。   When the total content of Al, Si, etc. is less than 1 at%, the decrease in the crystal magnetic anisotropy constant of the molded body 10 (powder 1) is small, and the hysteresis loss (iron loss) is reduced by reducing the coercive force. The effect tends to be small. On the other hand, if the total content of Al, Si, etc. exceeds 15 at%, the amount of Fe atoms responsible for magnetism decreases in the powder 1, and the magnetic flux density of the powder 1 tends to decrease. Moreover, since the powder 1 is hardened by solid solution strengthening, the density of the molded body 10 manufactured using the powder 1 is reduced, and the magnetic flux density of the molded body 10 is likely to be reduced. Therefore, the total content of Al, Si and the like is preferably 1 to 15 at%.

Bは、この粉体1を用いて成形体10を製造(成形、液相焼結)する際、焼結時に液相となって粉体1の内部から染み出し、図2(c)に示すように、成形本体部10aの表面を被覆し、成形本体部10a同士を接合する絶縁性の高い成形酸化物被膜10b(Al、Si等の酸化物とBの酸化物との混合物)の構成成分の1つとなる。成形酸化物被膜10bの形成によって、成形体10の比抵抗が高くなり、渦電流損(鉄損)が低減する効果がある。なお、成形体10が高磁気特性を発現するためには、絶縁性の高い成形酸化物被膜10bの量が少なく、かつ、成形本体部10aの表面に均一に被覆されていることが重要である。   B is a liquid phase during the production (molding, liquid phase sintering) of the powder 10 using the powder 1 and oozes out from the powder 1 as shown in FIG. 2 (c). As described above, the components of the molded oxide coating 10b (a mixture of an oxide of Al, Si, etc. and an oxide of B) that covers the surface of the molded body 10a and joins the molded bodies 10a together. It becomes one of. The formation of the molded oxide film 10b has an effect of increasing the specific resistance of the molded body 10 and reducing eddy current loss (iron loss). In order for the molded body 10 to exhibit high magnetic properties, it is important that the amount of the molded oxide film 10b with high insulation is small and the surface of the molded body 10a is uniformly coated. .

そして、Bの含有量が0.1at%未満であると、δ相の固溶限外となり、焼結時に液相となって染み出すB量が少なすぎるため、成形体10において成形本体部10aの表面を均一に被覆することが困難になりやすい。その結果、成形体10の比抵抗の増加が見られず、渦電流損(鉄損)が低減しにくい。一方、Bの含有量が4at%を超えると、液相となって染み出すB量が多すぎるため、均一被覆は十分に達成されるが、成形酸化物被膜10bの厚さが厚くなる。その結果、成形本体部10a間のギャップが大きくなるため、成形体10の透磁率が低下し、その結果として磁束密度が低下しやすい。また、成形本体部10aの内部に金属間化合物(FeB)が析出するため、成形体10の磁気特性が低下しやすい。したがって、Bの含有量は、0.1〜4at%が好ましい。 If the B content is less than 0.1 at%, the δ phase is out of the solid solubility limit, and the amount of B that becomes a liquid phase and oozes out during the sintering is too small. It tends to be difficult to uniformly coat the surface. As a result, the specific resistance of the molded body 10 is not increased, and eddy current loss (iron loss) is difficult to reduce. On the other hand, if the content of B exceeds 4 at%, the amount of B that exudes as a liquid phase is too large, so that uniform coating is sufficiently achieved, but the thickness of the molded oxide coating 10b is increased. As a result, the gap between the molded body portions 10a is increased, so that the magnetic permeability of the molded body 10 is lowered, and as a result, the magnetic flux density is likely to be lowered. In addition, since the intermetallic compound (Fe 2 B) is precipitated inside the molded body 10a, the magnetic properties of the molded body 10 are likely to deteriorate. Therefore, the content of B is preferably 0.1 to 4 at%.

粉体1は、不可避的不純物として、例えば、Mn,P,S,C,Cu等を含有してもよい。そして、その含有量としては0.1at%以下であれば、本発明に係る粉体1の磁気特性に影響を与えない。   The powder 1 may contain, for example, Mn, P, S, C, Cu, etc. as inevitable impurities. And if it is 0.1 at% or less as the content, it will not affect the magnetic characteristic of the powder 1 which concerns on this invention.

軟磁性粉体の第2の実施形態について説明する。
図1(b)に示すように、軟磁性粉体(粉体)1aは、鉄を主成分とする鉄合金からなる軟磁性粉体であって、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素と、Bとを含み、残部がFeおよび不可避的不純物からなる粉体本体部2aと、粉体本体部2aの表面を被覆し、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素の酸化物からなる酸化物被膜3aとを備える。なお、軟磁性粉体1aにおいて、粉体本体部2aについては、前記第1の実施形態(粉体1)と同様であるので、説明を省略する。
A second embodiment of the soft magnetic powder will be described.
As shown in FIG. 1B, a soft magnetic powder (powder) 1a is a soft magnetic powder made of an iron alloy containing iron as a main component, and is made of Al, Si, Ti, Cr, Mo and Ge. A powder body 2a containing at least one element selected from the group consisting of B and the balance of Fe and unavoidable impurities, and covering the surface of the powder body 2a, Al, Si, Ti And an oxide film 3a made of an oxide of at least one element selected from the group consisting of Cr, Mo and Ge. In the soft magnetic powder 1a, the powder main body 2a is the same as that in the first embodiment (powder 1), and a description thereof will be omitted.

酸化物被膜3aは、後記するように、第1の実施形態である粉体1に所定の熱処理、具体的には酸化性雰囲気で600〜800℃(10分〜2時間)の熱処理を施すことによって、形成される。そして、酸化物被膜3aは、粉体1を構成するAl、Si等の一部が酸化したもので、Al、SiO、TiO、Cr、MoO等である。 As will be described later, the oxide film 3a is subjected to a predetermined heat treatment on the powder 1 according to the first embodiment, specifically, a heat treatment at 600 to 800 ° C. (10 minutes to 2 hours) in an oxidizing atmosphere. Is formed by. The oxide film 3a is obtained by oxidizing a part of Al, Si, etc. constituting the powder 1, and is Al 2 O 3 , SiO 2 , TiO 2 , Cr 2 O 3 , MoO 2 or the like.

酸化物被膜3aは、その厚さが0.01〜0.5μmであることが好ましい。厚さが0.01μm未満であると、成形体10において成形酸化物被膜(Al、Si等の酸化物とBの酸化物との混合物)10bが成形本体部10aを均一に被覆することが困難になりやすい(図2(c)参照)。その結果、成形体10の比抵抗の増加が見られず、渦電流損(鉄損)が低減しにくい。一方、厚さが0.5μmを超えると、成形体10において成形本体部10a間のギャップが大きくなり、透磁率が低下しやすく、その結果として磁束密度が低下しやすい。   The oxide film 3a preferably has a thickness of 0.01 to 0.5 μm. If the thickness is less than 0.01 μm, it is difficult for the molded body 10 to uniformly cover the molded body 10 a with the molded oxide film (mixture of Al, Si, etc. and B oxide) 10 b. (See FIG. 2C). As a result, the specific resistance of the molded body 10 is not increased, and eddy current loss (iron loss) is difficult to reduce. On the other hand, when the thickness exceeds 0.5 μm, the gap between the molded body portions 10a in the molded body 10 is increased, and the magnetic permeability is likely to be lowered, and as a result, the magnetic flux density is likely to be lowered.

粉体1a、すなわち、粉体本体部2aおよび酸化物被膜3aに含まれるAl、Si等の含有量は、総含有量で1〜15at%であることが好ましい。また、粉体1a、すなわち、粉体本体部2aに含まれるBの含有量は、0.1〜4at%であることが好ましい。そして、含有量の数値限定理由については前記とおりである。   The content of Al, Si, etc. contained in the powder 1a, that is, the powder main body 2a and the oxide coating 3a is preferably 1 to 15 at% in total content. Moreover, it is preferable that content of B contained in the powder 1a, ie, the powder main-body part 2a, is 0.1-4 at%. And the reason for limiting the numerical value of the content is as described above.

軟磁性粉体の第3の実施形態について説明する。
図1(c)に示すように、軟磁性粉体(粉体)1bは、鉄を主成分とする鉄合金からなる軟磁性粉体であって、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素を含み、残部がFeおよび不可避的不純物からなる粉体本体部2bと、粉体本体部2bの表面を被覆し、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素の酸化物とからなる酸化物被膜3aと、Bの酸化物からなる酸化物被膜3bとを備える。なお、軟磁性粉体1bにおいて、粉体本体部2bは、基本的にBが含まれていないこと以外は、前記第1、2の実施形態(粉体1、粉体1aの粉体本体部2a)と同様であるので、説明を省略する。ただし、粉体本体部2bには少量のBが含まれている場合がある。すなわち、後記する酸化物被膜3aおよび酸化物被膜3bを形成するための熱処理において、熱処理条件(熱処理温度、処理時間)が下限に近い場合には、粉体1からほとんどのBが染み出て酸化物被膜3bを形成するが、粉体本体部2bに少量のBが固溶した状態で残存することがある。
A third embodiment of the soft magnetic powder will be described.
As shown in FIG. 1C, the soft magnetic powder (powder) 1b is a soft magnetic powder made of an iron alloy containing iron as a main component, and includes Al, Si, Ti, Cr, Mo, and Ge. A powder body portion 2b containing at least one element selected from the group consisting of Fe and unavoidable impurities and the surface of the powder body portion 2b, and Al, Si, Ti, Cr, Mo And an oxide film 3a made of an oxide of at least one element selected from the group consisting of Ge and an oxide film 3b made of an oxide of B. In the soft magnetic powder 1b, the powder body 2b is basically the same as the first and second embodiments (powder body of the powder 1 and powder 1a) except that B is not included. Since this is the same as 2a), the description is omitted. However, the powder body 2b may contain a small amount of B. That is, in the heat treatment for forming the oxide film 3a and the oxide film 3b described later, when the heat treatment conditions (heat treatment temperature and treatment time) are close to the lower limit, most of the B exudes from the powder 1 and is oxidized. Although the material coating 3b is formed, a small amount of B may remain in a solid solution state in the powder main body 2b.

酸化物被膜3aおよび酸化物被膜3bは、後記するように、第1の実施形態である軟磁性粉体1に所定の熱処理、具体的には酸化性雰囲気で1150〜1200℃(10分〜2時間)の熱処理を施すことによって、形成される。そして、酸化物被膜3aは、粉体1を構成するAl、Si等の一部が酸化したもので、Al、SiO、TiO、Cr、MoO等である。また、酸化物被膜3bは、粉体1から染み出したBが酸化したB等である。 As will be described later, the oxide coating 3a and the oxide coating 3b are applied to the soft magnetic powder 1 according to the first embodiment with a predetermined heat treatment, specifically, 1150 to 1200 ° C. (10 minutes to 2 in an oxidizing atmosphere). Time) heat treatment. The oxide film 3a is obtained by oxidizing a part of Al, Si, etc. constituting the powder 1, and is Al 2 O 3 , SiO 2 , TiO 2 , Cr 2 O 3 , MoO 2 or the like. Further, the oxide coating 3b is B 2 O 3 or the like obtained by oxidation of B that has exuded from the powder 1.

酸化物被膜3bは、その厚さが0.01〜0.5μmであることが好ましい。厚さが0.01μm未満であると、成形体10において成形酸化物被膜(Al、Si等の酸化物とBの酸化物との混合物)10bが成形本体部10aを均一に被覆することが困難になりやすい(図2(c)参照)。その結果、成形体10の比抵抗の増加が見られず、渦電流損(鉄損)が低減しにくい。一方、厚さが0.5μmを超えると、成形体10において成形本体部10a間のギャップが大きくなり、透磁率が低下しやすく、その結果として磁束密度が低下しやすい。なお、酸化物被膜3aの厚さは前記軟磁性粉体1aと同様である。   The oxide film 3b preferably has a thickness of 0.01 to 0.5 μm. If the thickness is less than 0.01 μm, it is difficult for the molded body 10 to uniformly cover the molded body 10 a with the molded oxide film (mixture of Al, Si, etc. and B oxide) 10 b. (See FIG. 2C). As a result, the specific resistance of the molded body 10 is not increased, and eddy current loss (iron loss) is difficult to reduce. On the other hand, when the thickness exceeds 0.5 μm, the gap between the molded body portions 10a in the molded body 10 is increased, and the magnetic permeability is likely to be lowered, and as a result, the magnetic flux density is likely to be lowered. The thickness of the oxide film 3a is the same as that of the soft magnetic powder 1a.

粉体1b、すなわち、粉体本体部2bおよび酸化物被膜3aに含まれるAl、Si等の含有量は、総含有量で1〜15at%であることが好ましい。また、粉体1b、すなわち、酸化物被膜3bに含まれるBの含有量は、0.1〜4at%であることが好ましい。そして、含有量の数値限定理由については前記とおりである。   The content of Al, Si and the like contained in the powder 1b, that is, the powder main body 2b and the oxide coating 3a is preferably 1 to 15 at% in total content. Moreover, it is preferable that content of B contained in the powder 1b, ie, the oxide film 3b, is 0.1 to 4 at%. And the reason for limiting the numerical value of the content is as described above.

<軟磁性成形体>
次に、軟磁性成形体について説明する。
図2(a)〜(c)に示すように、軟磁性成形体10は、前記軟磁性粉体1、1a、1bから製造されたものであって、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素を含み、残部がFeおよび不可避的不純物からなる成形本体部10aと、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素の酸化物とBの酸化物との混合物とからなる成形酸化物被膜10bとを備える。なお、成形本体部10aは、前記軟磁性粉体1、粉体本体部2a(軟磁性粉体1a)または粉体本体部2b(軟磁性粉体1b)から後記する加圧成形、液相焼結によって製造され、実質的にBを含まないこと以外は、軟磁性粉体1、粉体本体部2aと構成において同一であるため説明を省略するが、その結晶粒径は、後記する液相焼結によって、粗大化している。
<Soft magnetic compact>
Next, the soft magnetic molded body will be described.
As shown in FIGS. 2 (a) to 2 (c), a soft magnetic molded body 10 is manufactured from the soft magnetic powders 1, 1a, 1b, and includes Al, Si, Ti, Cr, Mo, and At least one element selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge, and a molded body portion 10a containing at least one element selected from the group consisting of Ge, the balance being Fe and inevitable impurities And a shaped oxide film 10b made of a mixture of the oxide of B and the oxide of B. The molded body portion 10a is formed by pressure molding, liquid phase firing described later from the soft magnetic powder 1, powder body portion 2a (soft magnetic powder 1a) or powder body portion 2b (soft magnetic powder 1b). Except for the fact that it is manufactured by ligation and does not substantially contain B, the structure is the same as that of the soft magnetic powder 1 and the powder main body 2a. It is coarsened by sintering.

成形酸化物被膜10bは、成形本体部10aの表面を均一に被覆し、成形本体部10a同士を接合するもので、前記2種の酸化物の混合物からなることによって、高い絶縁性を有するものである。この絶縁被膜として機能する成形酸化物被膜10bが形成されることによって、軟磁性成形体10の比抵抗が高くなり、渦電流損(鉄損)が小さくなる。そして、成形酸化物被膜10bは、後記する液相焼結によって形成される。   The molded oxide film 10b uniformly covers the surface of the molded body 10a and joins the molded bodies 10a to each other. The molded oxide film 10b is made of a mixture of the two kinds of oxides and has high insulation. is there. By forming the molded oxide film 10b functioning as the insulating film, the specific resistance of the soft magnetic molded body 10 is increased and the eddy current loss (iron loss) is reduced. And the shaping | molding oxide film 10b is formed by the liquid phase sintering mentioned later.

成形酸化物被膜10bは、その厚さが0.01〜0.5μmであることが好ましい。厚さが0.01μm未満であると、成形体10において成形酸化物被膜10bが成形本体部10aを均一に被覆することが困難になりやすい。その結果、成形体10の比抵抗の増加が見られず、渦電流損(鉄損)が低減しにくい。一方、厚さが0.5μmを超えると、成形体10において成形本体部10a間のギャップが大きくなり、透磁率が低下しやすく、その結果として磁束密度が低下しやすい。   The thickness of the molded oxide film 10b is preferably 0.01 to 0.5 μm. When the thickness is less than 0.01 μm, it becomes difficult for the molded oxide film 10b in the molded body 10 to uniformly cover the molded main body portion 10a. As a result, the specific resistance of the molded body 10 is not increased, and eddy current loss (iron loss) is difficult to reduce. On the other hand, when the thickness exceeds 0.5 μm, the gap between the molded body portions 10a in the molded body 10 is increased, and the magnetic permeability is likely to be lowered, and as a result, the magnetic flux density is likely to be lowered.

<軟磁性粉体の製造方法>
次に、本発明に係る軟磁性粉体の製造方法について説明する。
軟磁性粉体の製造方法において、第1の方法は、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素と、Bとを含み、残部がFeおよび不可避的不純物からなる金属原料を使用し、アトマイズ法、好ましくは水アトマイズ法またはガスアトマイズ法を用いて粉体化するものである。なお、金属原料は、Al、Si等を1〜15at%、Bを0.1〜4at%含むものが好ましい。なお、この製造方法によって、図1(a)に示す軟磁性粉体1が製造される。
<Method for producing soft magnetic powder>
Next, a method for producing the soft magnetic powder according to the present invention will be described.
In the method for producing a soft magnetic powder, the first method includes at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge, and B, with the balance being Fe and inevitable A metal raw material composed of impurities is used and pulverized using an atomizing method, preferably a water atomizing method or a gas atomizing method. The metal raw material preferably contains 1-15 at% of Al, Si, etc. and 0.1-4 at% of B. In addition, the soft magnetic powder 1 shown to Fig.1 (a) is manufactured by this manufacturing method.

アトマイズ法は、金属原料を溶解し、その溶融金属を直径2〜20mmのノズルより溶融金属流として流下させ、それに50〜800kg/cmの高圧媒体を噴霧ノズルより噴射させて溶融金属流を粒滴化し、粉体として固化させるものである。水アトマイズ法は高圧媒体として水を用いるもの、ガスアトマイズ法は高圧媒体として、例えば、アルゴン等の不活性ガスを用いるものである。このアトマイズ法により得られる粉体は、成分組成の制御が容易で希望する成分のものがつくれること、さらに高圧媒体によって急冷されるために、粉体の形状が不規則状となり圧縮性に優れ、かつ反磁場係数が小さいものができる。そのため、圧粉磁心用に適した粉体を製造することができる。 In the atomization method, a metal raw material is melted, the molten metal is caused to flow down as a molten metal stream from a nozzle having a diameter of 2 to 20 mm, and a high-pressure medium of 50 to 800 kg / cm 2 is sprayed from the spray nozzle to form a molten metal stream. It drops and solidifies as a powder. The water atomizing method uses water as a high-pressure medium, and the gas atomizing method uses an inert gas such as argon as the high-pressure medium. The powder obtained by this atomization method is easy to control the composition of the component and can produce the desired component. Further, since it is rapidly cooled by a high-pressure medium, the powder has an irregular shape and excellent compressibility. And a thing with a small demagnetizing factor is made. Therefore, a powder suitable for a dust core can be produced.

第2の方法は、前記第1の方法で製造された軟磁性粉体1に、Feに対しては還元性雰囲気であると共に、Al、Si等に対しては酸化性雰囲気である雰囲気下で600〜800℃の熱処理を施すものである。なお、この製造方法によって、図1(b)に示す軟磁性粉体1aが製造される。   In the second method, the soft magnetic powder 1 manufactured by the first method is in a reducing atmosphere for Fe and in an oxidizing atmosphere for Al, Si, and the like. A heat treatment at 600 to 800 ° C. is performed. In addition, the soft magnetic powder 1a shown in FIG.1 (b) is manufactured by this manufacturing method.

熱処理温度の数値限定理由は以下のとおりである。熱処理温度が600℃未満では、Al、Si等の酸化速度が遅く、十分な酸化物被膜3a(Al、Si等の酸化物)が形成されない。一方、800℃を超えると、軟磁性粉体1aが焼結し始めるため、酸化物被膜3aの形成後の解砕時の剥離により酸化被膜3aのダメージが大きくなる。したがって、熱処理温度は600〜800℃で行う必要がある。   The reason for limiting the numerical value of the heat treatment temperature is as follows. When the heat treatment temperature is less than 600 ° C., the oxidation rate of Al, Si, etc. is slow and sufficient oxide film 3a (oxide of Al, Si, etc.) is not formed. On the other hand, when the temperature exceeds 800 ° C., the soft magnetic powder 1a starts to sinter, so that damage to the oxide film 3a increases due to peeling at the time of crushing after the formation of the oxide film 3a. Therefore, the heat treatment temperature must be 600 to 800 ° C.

軟磁性粉体1を、Feに対しては還元性雰囲気下で熱処理することによって、Feの酸化を抑制することができ、製造される軟磁性粉体1aの磁気特性が維持される。また、Al、Si等に対しては酸化性雰囲気下で熱処理することによって、軟磁性粉体1を構成するAl、Si等を酸化することができ、粉体本体部2aの表面を被覆する絶縁性の高い酸化物被膜3aが形成される。このような雰囲気の好ましい条件としては、酸素分圧が10−32〜10−26atm、(水素分圧/水蒸気分圧)=1〜10、または、(一酸化炭素分圧/二酸化炭素分圧)=1〜10である。 By heat-treating the soft magnetic powder 1 with respect to Fe in a reducing atmosphere, the oxidation of Fe can be suppressed, and the magnetic characteristics of the manufactured soft magnetic powder 1a are maintained. In addition, Al, Si, etc. can be oxidized by heat-treating in an oxidizing atmosphere to oxidize Al, Si, etc. constituting the soft magnetic powder 1, and insulation covering the surface of the powder body 2a. A highly oxide film 3a is formed. Preferred conditions for such an atmosphere include an oxygen partial pressure of 10 −32 to 10 −26 atm, (hydrogen partial pressure / water vapor partial pressure) = 1 to 10 8 , or (carbon monoxide partial pressure / carbon dioxide content). Pressure) = 1 to 10 < 8 >.

熱処理は、生産性の観点から圧力は大気圧で施すことが好ましい。また、処理時間は10分〜2時間が好ましく、30分〜1時間がさらに好ましい。さらに、処理プロセスは、軟磁性粉体1を攪拌しながら熱処理することが好ましい。軟磁性粉体1を攪拌することで、粉体1の表面が均一に雰囲気と接触するため、酸化物被膜3aが均一形成しやすくなる。   The heat treatment is preferably performed at atmospheric pressure from the viewpoint of productivity. The treatment time is preferably 10 minutes to 2 hours, more preferably 30 minutes to 1 hour. Furthermore, it is preferable to heat-process the processing process, stirring the soft magnetic powder 1. FIG. By stirring the soft magnetic powder 1, the surface of the powder 1 is in uniform contact with the atmosphere, so that the oxide coating 3 a can be easily formed uniformly.

第3の方法は、前記第1の方法で製造された軟磁性粉体1に、Feに対しては還元性雰囲気であると共に、Al、Si等およびBには酸化性雰囲気である雰囲気下で1150〜1200℃の熱処理を施すものである。なお、この製造方法によって、図1(c)に示す軟磁性粉体1bが製造される。   In the third method, the soft magnetic powder 1 manufactured by the first method is in a reducing atmosphere for Fe, and in an atmosphere that is an oxidizing atmosphere for Al, Si, etc. and B. Heat treatment at 1150 to 1200 ° C. is performed. In addition, the soft magnetic powder 1b shown in FIG.1 (c) is manufactured by this manufacturing method.

熱処理温度の数値限定理由は以下のとおりである。熱処理温度が1150℃未満では、共晶温度(1150℃)未満であるため、Bが粉体本体部2bの表面に液相として染み出さず、十分な酸化物被膜3b(Bの酸化物)が形成されない。一方、1200℃を超えると、軟磁性粉体1b同士の焼結が進み、液相として染み出したBの酸化物被膜3bによる粉体本体部2bの被覆が不十分になる。したがって、熱処理温度は1150〜1200℃で行う必要がある。   The reason for limiting the numerical value of the heat treatment temperature is as follows. When the heat treatment temperature is less than 1150 ° C., it is less than the eutectic temperature (1150 ° C.), so that B does not ooze out as a liquid phase on the surface of the powder body 2b, and a sufficient oxide coating 3b (B oxide) is formed. Not formed. On the other hand, when the temperature exceeds 1200 ° C., the sintering of the soft magnetic powders 1b progresses, and the coating of the powder main body 2b with the B oxide coating 3b that oozes out as a liquid phase becomes insufficient. Therefore, the heat treatment temperature must be 1150 to 1200 ° C.

軟磁性粉体1を、Feに対しては還元性雰囲気下で熱処理することによって、Feの酸化を抑制することができ、製造される軟磁性粉体1bの磁気特性が維持される。また、Al、Si等およびBに対しては酸化性雰囲気下で熱処理することによって、軟磁性粉体1を構成するAl、Si等およびBを酸化することができ、粉体本体部2bの表面を被覆する絶縁性の高い酸化物被膜(Al、Si等の酸化物)3aおよび酸化物被膜(Bの酸化物)3bが形成される。このような雰囲気の好ましい条件としては、酸素分圧が10−32〜10−26atm、(水素分圧/水蒸気分圧)=1〜10、または、(一酸化炭素分圧/二酸化炭素分圧)=1〜10である。 By heat-treating the soft magnetic powder 1 with respect to Fe in a reducing atmosphere, oxidation of Fe can be suppressed, and the magnetic characteristics of the manufactured soft magnetic powder 1b are maintained. Further, Al, Si, etc. and B can be oxidized by heat treatment in an oxidizing atmosphere to oxidize Al, Si, etc. and B constituting the soft magnetic powder 1, and the surface of the powder main body 2b. Oxide film (oxide of Al, Si, etc.) 3a and oxide film (oxide of B) 3b are formed. Preferred conditions for such an atmosphere include an oxygen partial pressure of 10 −32 to 10 −26 atm, (hydrogen partial pressure / water vapor partial pressure) = 1 to 10 8 , or (carbon monoxide partial pressure / carbon dioxide content). Pressure) = 1 to 10 < 8 >.

熱処理は、生産性の観点から圧力は大気圧で施すことが好ましい。また、処理時間は10分〜2時間が好ましく、30分〜1時間がさらに好ましい。さらに、処理プロセスは、軟磁性粉体1を攪拌しながら熱処理することが好ましい。軟磁性粉体1を攪拌することで、粉体本体部2bの表面が均一に雰囲気と接触するため、酸化物被膜3aおよび酸化物被膜3bが均一形成しやすくなる。   The heat treatment is preferably performed at atmospheric pressure from the viewpoint of productivity. The treatment time is preferably 10 minutes to 2 hours, more preferably 30 minutes to 1 hour. Furthermore, it is preferable to heat-process the processing process, stirring the soft magnetic powder 1. FIG. By agitating the soft magnetic powder 1, the surface of the powder main body 2b is in uniform contact with the atmosphere, so that the oxide coating 3a and the oxide coating 3b are easily formed uniformly.

<軟磁性成形体の製造方法>
次に、本発明に係る軟磁性成形体の製造方法について説明する。
軟磁性成形体の製造方法は、図2(a)〜(c)に示すように、前記製造方法で製造された軟磁性粉体1、1a、1bを加圧成形して成形中間体9を製造し、その後、成形中間体9を液相焼結するものである。
<Method for producing soft magnetic compact>
Next, the manufacturing method of the soft magnetic molded body according to the present invention will be described.
As shown in FIGS. 2 (a) to 2 (c), the soft magnetic molded body is produced by press-molding the soft magnetic powders 1, 1a, 1b produced by the production method to form the molded intermediate body 9. After that, the molding intermediate 9 is liquid phase sintered.

加熱加圧成形の成形条件は、製造される成形体10の形状、特性に応じて適宜選択されるが、例えば、圧粉磁心(軟磁性成形体)を製造する際には、成形温度150〜600℃、成形圧力1〜15ton/cmで行うことが好ましい。 The molding conditions for heat and pressure molding are appropriately selected according to the shape and characteristics of the molded body 10 to be manufactured. For example, when manufacturing a dust core (soft magnetic molded body), a molding temperature of 150 to It is preferable to carry out at 600 ° C. and a molding pressure of 1 to 15 ton / cm 2 .

液相焼結は、Feに対しては還元性雰囲気であると共に、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素およびBに対しては酸化性雰囲気であり、かつ、1150〜1300℃である雰囲気下で行う。   Liquid phase sintering is a reducing atmosphere for Fe and at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo, and Ge and an oxidizing atmosphere for B. Yes and in an atmosphere of 1150 to 1300 ° C.

このような雰囲気下で液相焼結を行うことによって、軟磁性粉体1、1a、1bを構成するFeの酸化が抑制されるため、製造される成形体10の磁気特性が維持される。また、軟磁性粉体1、1a、1bを構成するAl、Si等およびBが酸化される。そして、それぞれの酸化物の混合物からなり、成形本体部10aの表面を均一に被覆して成形本体部10a同士を接合する絶縁性の高い成形酸化物被膜10bを形成する。また、このような雰囲気の好ましい条件としては、酸素分圧10−25〜10−16atm、(水素分圧/水蒸気分圧)=1〜10、または、(一酸化炭素分圧/二酸化炭素分圧)=1〜10である。 By performing liquid phase sintering in such an atmosphere, oxidation of Fe constituting the soft magnetic powders 1, 1 a, 1 b is suppressed, so that the magnetic characteristics of the manufactured molded body 10 are maintained. Further, Al, Si, etc. and B constituting the soft magnetic powders 1, 1a, 1b are oxidized. And it forms from the mixture of each oxide, the surface of the shaping | molding main-body part 10a is coat | covered uniformly, and the shaping | molding oxide film 10b with high insulation which joins the shaping | molding main-body parts 10a mutually is formed. Moreover, as preferable conditions of such an atmosphere, oxygen partial pressure 10 −25 to 10 −16 atm, (hydrogen partial pressure / water vapor partial pressure) = 1 to 10 5 , or (carbon monoxide partial pressure / carbon dioxide (Partial pressure) = 1-6 .

焼結温度の数値限定理由は以下のとおりである。焼結温度が1150℃未満であると、焼結温度が共晶温度(1150℃)未満となるため、軟磁性粉体1、1a、1bを構成するBが液相となって出現せず、成形酸化物被膜10bが形成されない。また、焼結温度がFe合金のα−γ変態温度を超えないため、成形体10の結晶粒が粗大化しない。なお、Fe合金は、α−γ変態温度を超えるとγ相でその結晶構造は面心立方(FCC)構造となり、α−γ変態温度未満ではα相でその結晶構造は体心立方(BCC)構造となる。α−γ変態では、結晶構造が大きく変わるので、原子の移動が大きく、結晶粒を粗大化させることが可能となる。
一方、焼結温度が1300℃を超えると、成形本体部10a同士の焼結が進み、金属結合が形成され、電気的に導通するため、渦電流損(鉄損)が大きくなる。
したがって、液相焼結は1150〜1300℃で行う必要がある。
The reasons for limiting the numerical value of the sintering temperature are as follows. When the sintering temperature is less than 1150 ° C., the sintering temperature is less than the eutectic temperature (1150 ° C.), so that B constituting the soft magnetic powder 1, 1a, 1b does not appear as a liquid phase, The molded oxide film 10b is not formed. Moreover, since the sintering temperature does not exceed the α-γ transformation temperature of the Fe alloy, the crystal grains of the compact 10 do not become coarse. Note that the Fe alloy has a face-centered cubic (FCC) structure in the γ phase when the α-γ transformation temperature is exceeded, and the crystal structure is in the α-phase and body-centered cubic (BCC) at less than the α-γ transformation temperature. It becomes a structure. In the α-γ transformation, since the crystal structure is greatly changed, the movement of atoms is large and the crystal grains can be coarsened.
On the other hand, when the sintering temperature exceeds 1300 ° C., sintering of the molded body portions 10a proceeds, metal bonds are formed, and electrical conduction is made, so eddy current loss (iron loss) increases.
Therefore, it is necessary to perform liquid phase sintering at 1150 to 1300 ° C.

また、焼結条件としては、粉末冶金における一般的な焼結条件と同一で、焼結時間は30分〜2時間程度、焼結圧力は大気圧で実施することが好ましい。   The sintering conditions are the same as the general sintering conditions in powder metallurgy, and the sintering time is preferably about 30 minutes to 2 hours, and the sintering pressure is preferably atmospheric pressure.

(実施例No.1〜9)
表1に示す組成の金属原料(No.1〜9)を用いてガスアトマイズ法で表2に示す組成の軟磁性粉体(平均粒径約100μm、No.1〜9)を製造した。そして、これらの軟磁性粉体を表2に示す成形温度、成形圧力で成形し、成形中間体を製造した。その後、これらの成形中間体を、表2に示す熱処理雰囲気下で、表2に示す温度、時間で液相焼結を行い、直径30mm×厚さ15mmの軟磁性成形体(No.1〜9)を製造した。ここで、表1、表2の組成において、Fe−1at%Al−0.2at%Bは、Alを1at%、Bを0.2at%含有し、残部がFeである鉄合金を意味する。
(Example Nos. 1 to 9)
Soft magnetic powders (average particle size of about 100 μm, Nos. 1 to 9) having the compositions shown in Table 2 were produced by gas atomization using metal raw materials (Nos. 1 to 9) having the compositions shown in Table 1. These soft magnetic powders were molded at the molding temperatures and pressures shown in Table 2 to produce molded intermediates. Thereafter, these molded intermediates were subjected to liquid phase sintering in the heat treatment atmosphere shown in Table 2 at the temperature and time shown in Table 2, and a soft magnetic molded body (No. 1-9 having a diameter of 30 mm and a thickness of 15 mm). ) Was manufactured. Here, in the compositions of Tables 1 and 2, Fe-1 at% Al-0.2 at% B means an iron alloy containing 1 at% Al and 0.2 at% B, with the balance being Fe.

(比較例No.10〜17)
表1に示す組成の金属原料(No.10〜17)を用いてガスアトマイズ法で粉体(粒径平均粒径約100μm、No.10〜17)を製造した。そして、これらの粉体に、650℃×30分間の熱処理を施し、粉体表面にAl、Siの酸化物からなる酸化物被膜を形成させた表2に示す組成の軟磁性粉体(No.10〜17)を製造した。ただし、軟磁性粉体(No.12、13、16、17)については、酸化物被膜の表面にリン酸処理液を塗布、乾燥して、軟磁性粉体の最表面にリン酸系処理被膜を形成させた。これらの軟磁性粉体(No.10〜17)を表2に示す成形温度、成形圧力で成形し、直径30mm×厚さ15mmの軟磁性成形体(No.10〜17)を製造した。
(Comparative Example No. 10-17)
Powders (particle size average particle size of about 100 μm, Nos. 10 to 17) were produced by a gas atomization method using metal raw materials (Nos. 10 to 17) having the compositions shown in Table 1. These powders were subjected to a heat treatment at 650 ° C. for 30 minutes to form an oxide film composed of an oxide of Al and Si on the surface of the powder. 10-17) were produced. However, for soft magnetic powders (Nos. 12, 13, 16, and 17), a phosphating solution was applied to the surface of the oxide coating and dried, and a phosphoric acid processing coating was applied to the outermost surface of the soft magnetic powder. Formed. These soft magnetic powders (Nos. 10 to 17) were molded at the molding temperatures and pressures shown in Table 2 to produce soft magnetic compacts (Nos. 10 to 17) having a diameter of 30 mm and a thickness of 15 mm.

次に、製造した軟磁性成形体(No.1〜17)の密度、磁束密度、比抵抗および鉄損を、以下の方法で測定した。その結果を表2に示す。   Next, the density, magnetic flux density, specific resistance, and iron loss of the produced soft magnetic molded bodies (Nos. 1 to 17) were measured by the following methods. The results are shown in Table 2.

(密度)
各軟磁性成形体の質量を電子上皿天秤により測定すると共に、軟磁性成形体の寸法をマイクロメータにて測定し体積を求めた。そして、密度=質量/体積を算出した。
(density)
The mass of each soft magnetic compact was measured with an electronic pan balance, and the dimensions of the soft magnetic compact were measured with a micrometer to determine the volume. Then, density = mass / volume was calculated.

(磁束密度)
各軟磁性成形体から直径φ10mm×長さ10mmの円柱形の試料をワイヤーカットにより作製した。これを直流磁化特性自動記録装置(理研電子(株)製,BHU-60)の電磁石に挟んで、印加磁場625Oe(エルステッド)を負荷し、そのときの磁束密度を測定した。
(Magnetic flux density)
A cylindrical sample having a diameter of 10 mm and a length of 10 mm was prepared from each soft magnetic molded body by wire cutting. This was sandwiched between electromagnets of a direct current magnetization characteristic automatic recording device (BHU-60, manufactured by Riken Denshi Co., Ltd.), an applied magnetic field 625 Oe (Oersted) was loaded, and the magnetic flux density at that time was measured.

(比抵抗)
各軟磁性成形体から厚み(a)が2mm、幅(b)が3mm、長さ(c)が12mmの直方体形状の試料20(図3参照)をマイクロカッターにより作製した。この表面をバフ研磨により鏡面仕上げした後,4端子法により測定した。4端子法は、図4に示すごとく、試料20に所定の電流を流し,その先端面20Aと後端面20Bとの間の電流値と,上面20Cの中央において間隔(d)=1mmの間の電圧値とを求め,これらの値から算出した。
(Specific resistance)
A rectangular parallelepiped sample 20 (see FIG. 3) having a thickness (a) of 2 mm, a width (b) of 3 mm, and a length (c) of 12 mm was produced from each soft magnetic molded body using a microcutter. This surface was mirror-finished by buffing and then measured by the 4-terminal method. In the 4-terminal method, as shown in FIG. 4, a predetermined current is passed through the sample 20, and the current value between the front end face 20A and the rear end face 20B and the distance (d) = 1 mm at the center of the upper face 20C. The voltage value was obtained and calculated from these values.

(鉄損)
各軟磁性成形体から内径φ11mm×外径φ15mm×長さ2mmのリング状の試料をワイヤーカットにより作製し、これに1次側、2次側共に50ターンのコイルを巻いた。この試料を用いて、交流磁気特性測定装置(岩崎通信機(株)製,B−Hanalyzer SY−8232)で、10kHz,50mTの場合についての体積鉄損(鉄損)を測定した。
(Iron loss)
A ring-shaped sample having an inner diameter of φ11 mm, an outer diameter of φ15 mm, and a length of 2 mm was prepared from each soft magnetic compact by wire cutting, and a coil of 50 turns was wound around the primary side and the secondary side. Using this sample, the volumetric iron loss (iron loss) in the case of 10 kHz and 50 mT was measured with an AC magnetic property measurement apparatus (Iwasaki Tsushinki Co., Ltd., B-Hanalyzer SY-8232).

Figure 2009010180
Figure 2009010180

Figure 2009010180
Figure 2009010180

表2の結果から、実施例(No1〜9)の軟磁性成形体は、比較例(No.10〜17)の軟磁性成形体に比べて、比抵抗が高く、鉄損が小さいことが確認された。   From the results of Table 2, it is confirmed that the soft magnetic molded bodies of Examples (No. 1 to 9) have higher specific resistance and lower iron loss than the soft magnetic molded bodies of Comparative Examples (No. 10 to 17). It was done.

(実施例No.18〜26)
表2に示す組成の軟磁性粉体(No.1〜9)に、650℃×30分間の熱処理(水素分圧/水蒸気分圧=10雰囲気下)を施し、粉体表面にAl、Si、Ti、CrまたはMoの酸化物からなる酸化物被膜を形成させた表3に示す組成の軟磁性粉体(平均粒径約100μm、No.18〜26)を製造した。そして、これらの酸化物被膜が形成された軟磁性粉体を表3に示す成形温度、成形圧力で成形し、成形中間体を製造した。その後、これらの成形中間体を、表3に示す熱処理雰囲気下で、表3に示す熱処理温度、時間で液相焼結を行い、直径30mm×厚さ15mmの軟磁性成形体(No.18〜26)を製造した。
(Example Nos. 18 to 26)
Table 2 shows the soft magnetic powder composition (Nanba1~9), heat treatment at 650 ° C. × 30 minutes (hydrogen partial pressure / water vapor partial pressure = 10 3 atmosphere) subjected, Al on the powder surface, Si A soft magnetic powder (average particle diameter of about 100 μm, No. 18 to 26) having the composition shown in Table 3 on which an oxide film made of an oxide of Ti, Cr or Mo was formed was produced. And the soft magnetic powder in which these oxide films were formed was shape | molded with the shaping | molding temperature and shaping | molding pressure which are shown in Table 3, and the shaping | molding intermediate body was manufactured. Thereafter, these molded intermediates were subjected to liquid phase sintering under the heat treatment atmosphere shown in Table 3 at the heat treatment temperature and time shown in Table 3, and a soft magnetic molded body (No. 18 to 30 mm in diameter x 15 mm in thickness). 26) was produced.

次に、製造した軟磁性成形体(No.18〜26)の密度、磁束密度、比抵抗および鉄損を前記の方法で測定した。その結果を表3に示す。   Next, the density, magnetic flux density, specific resistance, and iron loss of the produced soft magnetic molded body (Nos. 18 to 26) were measured by the above methods. The results are shown in Table 3.

Figure 2009010180
Figure 2009010180

表3の結果から、実施例(No18〜26)の軟磁性成形体は、表2に記載された比較例(No.10〜17)の軟磁性成形体に比べて、比抵抗が高く、鉄損が小さいことが確認された。   From the results of Table 3, the soft magnetic molded bodies of Examples (No. 18 to 26) have higher specific resistance than the soft magnetic molded bodies of Comparative Examples (No. 10 to 17) described in Table 2, and iron. It was confirmed that the loss was small.

(実施例No.27〜35)
表2に示す組成の軟磁性粉体(No.1〜9)に、1150℃×30分間の熱処理(水素分圧/水蒸気分圧=10雰囲気下)を施し、粉体表面にAl、Si、Ti、CrまたはMoの酸化物からなる酸化物被膜と、Bの酸化物からなる酸化物被膜とを形成させた表4に示す組成の軟磁性粉体(平均粒径約100μm、No.27〜35)を製造した。そして、これらの酸化物被膜が形成された軟磁性粉体を表4に示す成形温度、成形圧力で成形し、成形中間体を製造した。その後、これらの成形中間体を、表4に示す熱処理雰囲気下で、表4に示す熱処理温度、時間で液相焼結を行い、直径30mm×厚さ15mmの軟磁性成形体(No.27〜35)を製造した。
(Example Nos. 27 to 35)
Table 2 shows the soft magnetic powder composition (Nanba1~9), heat treatment at 1150 ° C. × 30 minutes (hydrogen partial pressure / water vapor partial pressure = 10 3 atmosphere) subjected, Al on the powder surface, Si , Soft magnetic powders having the composition shown in Table 4 (average particle diameter of about 100 μm, No. 27) formed with an oxide film made of an oxide of Ti, Cr or Mo and an oxide film made of an oxide of B To 35). And the soft magnetic powder in which these oxide films were formed was shape | molded with the shaping | molding temperature and shaping | molding pressure which are shown in Table 4, and the shaping | molding intermediate body was manufactured. Thereafter, these molded intermediates were subjected to liquid phase sintering under the heat treatment atmosphere shown in Table 4 at the heat treatment temperature and time shown in Table 4, and a soft magnetic molded body (No. 27 to 30 mm in diameter x 15 mm in thickness). 35) was produced.

次に、製造した軟磁性成形体(No.27〜35)の密度、磁束密度、比抵抗および鉄損を前記の方法で測定した。その結果を表4に示す。   Next, the density, magnetic flux density, specific resistance, and iron loss of the produced soft magnetic molded body (Nos. 27 to 35) were measured by the above methods. The results are shown in Table 4.

Figure 2009010180
Figure 2009010180

表4の結果から、実施例(No27〜35)の軟磁性成形体は、表2に記載された比較例(No.10〜17)の軟磁性成形体に比べて、比抵抗が高く、鉄損が小さいことが確認された。   From the results of Table 4, the soft magnetic molded bodies of the examples (No. 27 to 35) have higher specific resistance than the soft magnetic molded bodies of the comparative examples (No. 10 to 17) described in Table 2, and iron. It was confirmed that the loss was small.

(a)〜(c)は、本発明に係る軟磁性粉体の構成を示す模式図である。(A)-(c) is a schematic diagram which shows the structure of the soft-magnetic powder which concerns on this invention. (a)〜(c)は、軟磁性成形体の製造方法を模式的に説明する説明図である。(A)-(c) is explanatory drawing which illustrates typically the manufacturing method of a soft-magnetic molded object. 比抵抗を測定する試料の斜視図である。It is a perspective view of the sample which measures specific resistance. 比抵抗の測定方法(4端子法)を説明する説明図である。It is explanatory drawing explaining the measuring method (4-terminal method) of a specific resistance.

符号の説明Explanation of symbols

1、1a、1b 軟磁性粉体(粉体)
2a、2b 粉体本体部
3a、3b 酸化物被膜
10 軟磁性成形体(成形体)
10a 成形本体部
10b 成形酸化物被膜
1, 1a, 1b Soft magnetic powder (powder)
2a, 2b Powder body 3a, 3b Oxide coating 10 Soft magnetic molded body (molded body)
10a molded body 10b molded oxide coating

Claims (10)

鉄を主成分とする鉄合金からなる軟磁性粉体であって、
Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素と、Bとを含み、残部がFeおよび不可避的不純物からなることを特徴とする軟磁性粉体。
A soft magnetic powder made of an iron alloy containing iron as a main component,
A soft magnetic powder comprising at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo, and Ge, and B, with the balance being Fe and inevitable impurities.
鉄を主成分とする鉄合金からなる軟磁性粉体であって、
Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素と、Bとを含み、残部がFeおよび不可避的不純物からなる粉体本体部と、
前記粉体本体部の表面を被覆する前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素の酸化物からなる酸化物被膜とを備えることを特徴とする軟磁性粉体。
A soft magnetic powder made of an iron alloy containing iron as a main component,
A powder main body comprising at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge, and B, the balance being Fe and inevitable impurities;
A soft film comprising an oxide film made of an oxide of at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge covering the surface of the powder body. Magnetic powder.
鉄を主成分とする鉄合金からなる軟磁性粉体であって、
Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素を含み、残部がFeおよび不可避的不純物からなる粉体本体部と、
前記粉体本体部の表面を被覆する前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素の酸化物からなる酸化物被膜およびBの酸化物からなる酸化物被膜とを備えることを特徴とする軟磁性粉体。
A soft magnetic powder made of an iron alloy containing iron as a main component,
A powder main body comprising at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge, the balance being Fe and inevitable impurities;
An oxide film made of an oxide of at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo, and Ge and an oxide made of B oxide covering the surface of the powder main body A soft magnetic powder comprising a coating.
請求項1ないし請求項3のいずれか一項に記載の軟磁性粉体において、前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素の総含有量が1〜15at%であり、前記Bの含有量が0.1〜4at%であることを特徴とする軟磁性粉体。   The soft magnetic powder according to any one of claims 1 to 3, wherein the total content of at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge is 1 Soft magnetic powder, characterized in that the content of B is 0.1 to 4 at%. 請求項1ないし請求項4のいずれか一項に記載の軟磁性粉体から製造された軟磁性成形体であって、
Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素を含み、残部がFeおよび不可避的不純物からなる成形本体部と、
前記成形本体部の表面を被覆し、前記成形本体部同士を接合する成形酸化物被膜とを備え、
前記成形酸化物被膜が、Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素の酸化物とBの酸化物との混合物とからなることを特徴とする軟磁性成形体。
A soft magnetic molded body produced from the soft magnetic powder according to any one of claims 1 to 4,
A molded main body comprising at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge, with the balance being Fe and inevitable impurities;
Covering the surface of the molded body part, comprising a molded oxide film that joins the molded body parts together,
The soft oxide characterized in that the molded oxide film is composed of a mixture of an oxide of at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge and an oxide of B Molded body.
Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素と、Bとを含み、残部がFeおよび不可避的不純物からなる金属原料を使用し、アトマイズ法を用いて前記金属原料を粉体化したことを特徴とする軟磁性粉体の製造方法。   Using at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo, and Ge, and a metal raw material containing B and the balance consisting of Fe and inevitable impurities, and using the atomization method A method for producing a soft magnetic powder, characterized in that a metal raw material is powdered. 前記金属原料において、前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素の総含有量が1〜15at%であり、前記Bの含有量が0.1〜4at%であることを特徴とする請求項6に記載の軟磁性粉体の製造方法。   In the metal raw material, the total content of at least one element selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge is 1 to 15 at%, and the content of B is 0.1 to 0.1%. It is 4 at%, The manufacturing method of the soft-magnetic powder of Claim 6 characterized by the above-mentioned. 請求項6または請求項7で製造された軟磁性粉体に、前記Feに対しては還元性雰囲気であると共に、前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素に対しては酸化性雰囲気である雰囲気下で、600〜800℃の熱処理を施すことを特徴とする軟磁性粉体の製造方法。   The soft magnetic powder produced in claim 6 or 7, wherein the Fe is a reducing atmosphere with respect to Fe and at least selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge. A method for producing a soft magnetic powder, wherein a heat treatment is performed at 600 to 800 ° C. in an atmosphere that is an oxidizing atmosphere for one kind of element. 請求項6または請求項7で製造された軟磁性粉体に、前記Feに対しては還元性雰囲気であると共に、前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素およびBに対しては酸化性雰囲気である雰囲気下で、1150〜1200℃の熱処理を施すことを特徴とする軟磁性粉体の製造方法。   The soft magnetic powder produced in claim 6 or 7, wherein the Fe is a reducing atmosphere with respect to Fe and at least selected from the group consisting of Al, Si, Ti, Cr, Mo and Ge. A method for producing a soft magnetic powder, characterized in that a heat treatment is performed at 1150 to 1200 ° C. in an atmosphere that is an oxidizing atmosphere for one kind of element and B. 請求項6ないし請求項9のいずれか一項で製造された軟磁性粉体を加熱加圧成形し、その後、前記Feに対しては還元性雰囲気であると共に、前記Al、Si、Ti、Cr、MoおよびGeからなる群から選択される少なくとも一種の元素およびBに対しては酸化性雰囲気であり、かつ、1150〜1300℃である雰囲気下で、液相焼結すること特徴とする軟磁性成形体の製造方法。   The soft magnetic powder produced in any one of claims 6 to 9 is heat-pressed, and then the reducing atmosphere is applied to the Fe, and the Al, Si, Ti, Cr Soft magnetism characterized in that liquid phase sintering is performed in an atmosphere of 1150 to 1300 ° C. in an oxidizing atmosphere for at least one element selected from the group consisting of Mo and Ge and B Manufacturing method of a molded object.
JP2007170387A 2007-06-28 2007-06-28 Soft magnetic powder, soft magnetic molded body, and production method thereof Active JP4971886B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007170387A JP4971886B2 (en) 2007-06-28 2007-06-28 Soft magnetic powder, soft magnetic molded body, and production method thereof
PCT/JP2008/059739 WO2009001641A1 (en) 2007-06-28 2008-05-27 Soft magnetic powders, soft magnetic compacts, processes for production of both

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007170387A JP4971886B2 (en) 2007-06-28 2007-06-28 Soft magnetic powder, soft magnetic molded body, and production method thereof

Publications (2)

Publication Number Publication Date
JP2009010180A true JP2009010180A (en) 2009-01-15
JP4971886B2 JP4971886B2 (en) 2012-07-11

Family

ID=40185463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007170387A Active JP4971886B2 (en) 2007-06-28 2007-06-28 Soft magnetic powder, soft magnetic molded body, and production method thereof

Country Status (2)

Country Link
JP (1) JP4971886B2 (en)
WO (1) WO2009001641A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222637A (en) * 2009-03-23 2010-10-07 Aisin Seiki Co Ltd Method for producing powder for magnetic core
WO2012146967A1 (en) * 2011-04-25 2012-11-01 Toyota Jidosha Kabushiki Kaisha Magnetic core powder, dust core, and manufacturing method for dust core
WO2012147576A1 (en) * 2011-04-27 2012-11-01 太陽誘電株式会社 Magnetic material and coil component
JP2013055078A (en) * 2011-08-25 2013-03-21 Taiyo Yuden Co Ltd Winding type inductor
US20140225703A1 (en) * 2011-08-26 2014-08-14 Taiyo Yuden Co., Ltd. Magnetic material and coil component
US8896405B2 (en) 2011-10-28 2014-11-25 Taiyo Yuden Co., Ltd. Coil-type electronic component
US9030285B2 (en) 2011-04-27 2015-05-12 Taiyo Yuden Co., Ltd. Magnetic material and coil component using same
US9165705B2 (en) 2011-08-05 2015-10-20 Taiyo Yuden Co., Ltd. Laminated inductor
JP2016025152A (en) * 2014-07-17 2016-02-08 日立金属株式会社 Laminated component and method for manufacturing the same
JP5908647B2 (en) * 2013-11-07 2016-04-26 株式会社東芝 Magnet materials, permanent magnets, motors, and generators
JP2017092162A (en) * 2015-11-06 2017-05-25 トヨタ自動車株式会社 Method of manufacturing dust core
WO2017086148A1 (en) * 2015-11-19 2017-05-26 アルプス電気株式会社 Dust core and method for producing same
US9892834B2 (en) 2011-07-05 2018-02-13 Taiyo Yuden Co., Ltd. Magnetic material and coil component employing same
JP2021072336A (en) * 2019-10-30 2021-05-06 セイコーエプソン株式会社 Insulator coated magnetic alloy powder particles, powder magnetic core, and coil component
KR20210133165A (en) 2020-04-28 2021-11-05 티디케이가부시기가이샤 Element body, core, and electronic device
KR20210133164A (en) 2020-04-28 2021-11-05 티디케이가부시기가이샤 Composite particle, core, and electronic device
JP7413484B1 (en) 2022-10-31 2024-01-15 太陽誘電株式会社 A magnetic substrate, a coil component including a magnetic substrate, a circuit board including a coil component, and an electronic device including a circuit board
US11972885B2 (en) 2011-08-26 2024-04-30 Taiyo Yuden Co., Ltd Magnetic material and coil component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5833983B2 (en) * 2012-07-20 2015-12-16 株式会社神戸製鋼所 Powder for dust core and dust core
JP7045905B2 (en) * 2018-03-30 2022-04-01 山陽特殊製鋼株式会社 Soft magnetic powder and its manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375342A (en) * 1989-05-27 1991-03-29 Tdk Corp Soft magnetic alloy and its manufacture
JPH049401A (en) * 1990-04-26 1992-01-14 Tdk Corp Fine crystalline soft magnetic alloy powder and manufacture thereof
JP2003068514A (en) * 2001-08-28 2003-03-07 Daido Steel Co Ltd Powder magnetic core and method for manufacturing the same
JP2005332930A (en) * 2004-05-19 2005-12-02 Mitsubishi Materials Corp Manufacturing method of composite soft magnetic sintered material having high density, high strength, high specific resistance, and high magnetic flux density
JP2006245183A (en) * 2005-03-02 2006-09-14 Mitsubishi Materials Pmg Corp Iron powder covered with laminated oxide film
JP2007012745A (en) * 2005-06-29 2007-01-18 Sumitomo Electric Ind Ltd Dust core and manufacturing method thereof
JP2007013069A (en) * 2005-05-31 2007-01-18 Mitsubishi Materials Pmg Corp METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP2007048902A (en) * 2005-08-09 2007-02-22 Sumitomo Electric Ind Ltd Powder magnetic core and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375342A (en) * 1989-05-27 1991-03-29 Tdk Corp Soft magnetic alloy and its manufacture
JPH049401A (en) * 1990-04-26 1992-01-14 Tdk Corp Fine crystalline soft magnetic alloy powder and manufacture thereof
JP2003068514A (en) * 2001-08-28 2003-03-07 Daido Steel Co Ltd Powder magnetic core and method for manufacturing the same
JP2005332930A (en) * 2004-05-19 2005-12-02 Mitsubishi Materials Corp Manufacturing method of composite soft magnetic sintered material having high density, high strength, high specific resistance, and high magnetic flux density
JP2006245183A (en) * 2005-03-02 2006-09-14 Mitsubishi Materials Pmg Corp Iron powder covered with laminated oxide film
JP2007013069A (en) * 2005-05-31 2007-01-18 Mitsubishi Materials Pmg Corp METHOD FOR PRODUCING SOFT MAGNETIC POWDER COATED WITH OXIDE CONTAINING Mg AND Si
JP2007012745A (en) * 2005-06-29 2007-01-18 Sumitomo Electric Ind Ltd Dust core and manufacturing method thereof
JP2007048902A (en) * 2005-08-09 2007-02-22 Sumitomo Electric Ind Ltd Powder magnetic core and its manufacturing method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222637A (en) * 2009-03-23 2010-10-07 Aisin Seiki Co Ltd Method for producing powder for magnetic core
WO2012146967A1 (en) * 2011-04-25 2012-11-01 Toyota Jidosha Kabushiki Kaisha Magnetic core powder, dust core, and manufacturing method for dust core
US9472341B2 (en) 2011-04-27 2016-10-18 Taiyo Yuden Co., Ltd. Method for manufacturing magnetic grain compact
US9030285B2 (en) 2011-04-27 2015-05-12 Taiyo Yuden Co., Ltd. Magnetic material and coil component using same
WO2012147576A1 (en) * 2011-04-27 2012-11-01 太陽誘電株式会社 Magnetic material and coil component
US9287026B2 (en) 2011-04-27 2016-03-15 Taiyo Yuden Co., Ltd. Magnetic material and coil component
US9287033B2 (en) 2011-04-27 2016-03-15 Taiyo Yuden Co., Ltd. Magnetic material and coil component using same
US9892834B2 (en) 2011-07-05 2018-02-13 Taiyo Yuden Co., Ltd. Magnetic material and coil component employing same
US9165705B2 (en) 2011-08-05 2015-10-20 Taiyo Yuden Co., Ltd. Laminated inductor
JP2013055078A (en) * 2011-08-25 2013-03-21 Taiyo Yuden Co Ltd Winding type inductor
US20140225703A1 (en) * 2011-08-26 2014-08-14 Taiyo Yuden Co., Ltd. Magnetic material and coil component
CN106158222A (en) * 2011-08-26 2016-11-23 太阳诱电株式会社 Magnetic material and coil component
US11972885B2 (en) 2011-08-26 2024-04-30 Taiyo Yuden Co., Ltd Magnetic material and coil component
US8896405B2 (en) 2011-10-28 2014-11-25 Taiyo Yuden Co., Ltd. Coil-type electronic component
JP5908647B2 (en) * 2013-11-07 2016-04-26 株式会社東芝 Magnet materials, permanent magnets, motors, and generators
JP2016025152A (en) * 2014-07-17 2016-02-08 日立金属株式会社 Laminated component and method for manufacturing the same
JP2017092162A (en) * 2015-11-06 2017-05-25 トヨタ自動車株式会社 Method of manufacturing dust core
WO2017086148A1 (en) * 2015-11-19 2017-05-26 アルプス電気株式会社 Dust core and method for producing same
JPWO2017086148A1 (en) * 2015-11-19 2018-08-30 アルプス電気株式会社 Powder magnetic core and manufacturing method thereof
US11948730B2 (en) 2019-10-30 2024-04-02 Seiko Epson Corporation Insulator-coated magnetic alloy powder particle, powder magnetic core, and coil part
JP7375469B2 (en) 2019-10-30 2023-11-08 セイコーエプソン株式会社 Insulator-coated magnetic alloy powder particles, powder magnetic cores, and coil parts
JP2021072336A (en) * 2019-10-30 2021-05-06 セイコーエプソン株式会社 Insulator coated magnetic alloy powder particles, powder magnetic core, and coil component
KR20210133164A (en) 2020-04-28 2021-11-05 티디케이가부시기가이샤 Composite particle, core, and electronic device
KR20210133165A (en) 2020-04-28 2021-11-05 티디케이가부시기가이샤 Element body, core, and electronic device
JP7459639B2 (en) 2020-04-28 2024-04-02 Tdk株式会社 Composite particles, cores and electronic components
JP7413484B1 (en) 2022-10-31 2024-01-15 太陽誘電株式会社 A magnetic substrate, a coil component including a magnetic substrate, a circuit board including a coil component, and an electronic device including a circuit board

Also Published As

Publication number Publication date
JP4971886B2 (en) 2012-07-11
WO2009001641A1 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP4971886B2 (en) Soft magnetic powder, soft magnetic molded body, and production method thereof
TWI294321B (en) Method for manufacturing of insulated soft magnetic metal powder formed body
KR101702862B1 (en) Soft magnetic metal powder and soft magnetic metal powder core using the same
EP2680281B1 (en) Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
JP6511832B2 (en) Soft magnetic metal powder and soft magnetic metal powder core using the powder
JP5682723B1 (en) Soft magnetic metal powder and soft magnetic metal powder core
EP2589450B1 (en) Composite magnetic material and process for production thereof
JP2008028162A (en) Soft magnetic material, manufacturing method therefor, and dust core
JP6511831B2 (en) Soft magnetic metal powder and soft magnetic metal powder core using the powder
JP2006233295A (en) Soft magnetic metallic powder for powder magnetic core and powder magnetic core
JP2014060183A (en) Soft magnetic material and method for manufacturing the same
JP2009302420A (en) Dust core and manufacturing method thereof
JP2007092162A (en) Highly compressive iron powder, iron powder for dust core using the same and dust core
JP2006237153A (en) Composite dust core and manufacturing method thereof
JP2013098384A (en) Dust core
JP2019178402A (en) Soft magnetic powder
JPH02290002A (en) Fe-si based alloy dust core and its manufacture
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP2007251125A (en) Soft magnetic alloy consolidation object and method for fabrication thereof
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
WO2017047761A1 (en) Dust core
JP6563348B2 (en) Soft magnetic powder, soft magnetic body molded with soft magnetic powder, and soft magnetic powder and method for producing soft magnetic body
WO2017047764A1 (en) Method for manufacturing dust core
JP3848217B2 (en) Sintered soft magnetic material and manufacturing method thereof
JP2002075721A (en) Dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150