JP2009010147A - Coating film forming method - Google Patents

Coating film forming method Download PDF

Info

Publication number
JP2009010147A
JP2009010147A JP2007169841A JP2007169841A JP2009010147A JP 2009010147 A JP2009010147 A JP 2009010147A JP 2007169841 A JP2007169841 A JP 2007169841A JP 2007169841 A JP2007169841 A JP 2007169841A JP 2009010147 A JP2009010147 A JP 2009010147A
Authority
JP
Japan
Prior art keywords
substrate surface
solvent
coating solution
coating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007169841A
Other languages
Japanese (ja)
Other versions
JP5325399B2 (en
Inventor
Akihiko Nakamura
彰彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Priority to JP2007169841A priority Critical patent/JP5325399B2/en
Publication of JP2009010147A publication Critical patent/JP2009010147A/en
Application granted granted Critical
Publication of JP5325399B2 publication Critical patent/JP5325399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating film forming method not allowing generation of bubbles even when wiring patterns have stepped regions with a large difference and the resist coated within the relevant stepped regions is baked. <P>SOLUTION: In the coated film forming method, a solvent is coated to a substrate surface to which a wiring pattern is formed, a coating liquid is then coated to the substrate surface, and an insulated coating film fills the stepped regions between wiring patterns through heat treatment. After the coating liquid is coated to the substrate surface, atmosphere is evacuated before heat treatment, and air sealed within the stepped regions and/or gas existing within the coating liquid is evacuated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高段差のパターン(ハイバンプも含む)を形成した基板の表面にフォトレジスト、SOG等の塗膜を形成する方法に関する。   The present invention relates to a method of forming a coating film such as a photoresist or SOG on the surface of a substrate on which a high step pattern (including high bumps) is formed.

半導体素子を形成するシリコンウエーハなどの基板にフォトレジスト、SOG等塗布液の塗膜を形成するには、スピンナーを用いた回転塗布法が典型的に用いられている。この回転塗布法は、ノズルから基板中心に塗布液を滴下し、基板を回転させた後、基板をベークし塗膜を形成するものである。   In order to form a coating film of a coating solution such as a photoresist or SOG on a substrate such as a silicon wafer on which a semiconductor element is formed, a spin coating method using a spinner is typically used. In this spin coating method, a coating solution is dropped from the nozzle to the center of the substrate, the substrate is rotated, and then the substrate is baked to form a coating film.

ところで、特開2006−15288号公報(特許文献1)には、高段差基板に高粘度厚膜有機樹脂を塗布する工程において、塗布中に減圧し段差部で気泡の混入を防止する方法が記載されている。   By the way, Japanese Patent Application Laid-Open No. 2006-15288 (Patent Document 1) describes a method of preventing air bubbles from being mixed at a step portion by reducing pressure during application in a step of applying a high viscosity thick film organic resin to a high step substrate. Has been.

また、特開2006−108374号公報(特許文献2)には、高粘度のレジストを回転塗布したときの気泡の巻き込みを防止するため、塗布膜に空気を吹き付けることが記載されている。   Japanese Patent Laid-Open No. 2006-108374 (Patent Document 2) describes that air is blown onto a coating film to prevent entrainment of bubbles when a high-viscosity resist is spin-coated.

特開2000−288458号公報(特許文献3)には、配線パターン間の段差に塗布液を馴染ませ、より均一な塗膜を得るために、塗布液の溶剤を基板へ滴下するプリウェット処理を行い、次いで塗布液を塗布し、この後ベークする先行技術も提案されている。   Japanese Patent Laid-Open No. 2000-288458 (Patent Document 3) describes a pre-wet treatment in which a coating solution is dripped onto a substrate in order to adjust the coating solution to steps between wiring patterns and obtain a more uniform coating film. Prior art has also been proposed in which a coating liquid is applied, followed by baking.

特開2006−15288号公報JP 2006-15288 A 特開2006−108374号公報JP 2006-108374 A 特開2000−288458号公報JP 2000-288458 A

配線パターン高さが30ミクロン以上の高段差の場合に、ベークの際の収縮が大きいと段差を埋めることができなくなるので、フォトレジスト、SOG等の高濃度の塗布液を用いている。高濃度の塗布液を基板表面に塗布した場合、配線パターン間の段差が大きいと段差内にエアを残したまま塗布液で基板の表面を覆ってしまうことがあり、この場合に、そのままベークすると、段差内にエアの部分を残したまま塗膜が形成されてしまう。この課題は、上記特許文献によっても解決されていない。   When the wiring pattern height is a high step of 30 microns or more, if the shrinkage during baking is large, the step cannot be filled. Therefore, a high-concentration coating solution such as photoresist or SOG is used. When a high concentration coating solution is applied to the substrate surface, if the step between the wiring patterns is large, the substrate surface may be covered with the coating solution while leaving air in the step. The coating film is formed while leaving the air portion in the step. This problem is not solved by the above-mentioned patent document.

また、高濃度の塗布液の場合、予め脱気装置にて塗布液中に溶解しているガスを取り除くようにしているが、簡単には十分に取り除くことができない。そして、塗布液中に溶解しているガスがベークの際に気泡となって顕在化し、基板表面に残ってしまう。   In the case of a high-concentration coating solution, the gas dissolved in the coating solution is previously removed by a deaeration device, but it cannot be easily removed sufficiently. Then, the gas dissolved in the coating liquid becomes air bubbles during baking and remains on the substrate surface.

上記課題を解決するため本発明は、配線パターンが形成された基板表面に溶剤を塗布する第1工程と、溶剤が塗布された基板表面に塗布液を塗布し配線パターン間の段差に塗布液を充填する第2工程と、塗布液が塗布された基板を減圧雰囲気に置いて、前記配線パターン間の段差内に封じ込められたエア、塗布液中に溶存しているガス又はこれらエア及びガスの両方を脱気する第3工程と、脱気が終了した基板を加熱して配線パターン間の段差を塗膜で埋設する第4工程とからなる。   In order to solve the above problems, the present invention includes a first step of applying a solvent to a substrate surface on which a wiring pattern is formed, a coating solution applied to the substrate surface on which the solvent is applied, and applying the coating solution to a step between the wiring patterns. The second step of filling, and the substrate coated with the coating solution placed in a reduced-pressure atmosphere, the air enclosed in the step between the wiring patterns, the gas dissolved in the coating solution, or both of these air and gas And a fourth step of heating the substrate after the deaeration and embedding a step between the wiring patterns with a coating film.

基板表面に塗布される溶剤としては、塗布液を構成する溶剤と同一の溶剤が好ましい。   As the solvent applied to the substrate surface, the same solvent as the solvent constituting the coating liquid is preferable.

また、基板表面に溶剤を予め塗布しておくことで、この後に塗布する塗布液の濃度が濃くても配線パターン間の段差に侵入しやすくなる。塗布液の濃度を濃くすることで加熱時の収縮を抑えることができる。   In addition, by applying a solvent to the substrate surface in advance, even if the concentration of the coating solution to be applied thereafter is high, it becomes easy to enter the steps between the wiring patterns. Shrinkage during heating can be suppressed by increasing the concentration of the coating solution.

更に、基板表面と溶剤とのなじみを良くするために、予め基板表面を親水化処理しておくことが好ましい。親水化処理の手段としては紫外線の照射或いは酸素ガスプラズマに基板表面を曝す方法などが考えられる。   Furthermore, in order to improve the compatibility between the substrate surface and the solvent, it is preferable to hydrophilize the substrate surface in advance. As a means for hydrophilization treatment, a method of exposing the substrate surface to ultraviolet irradiation or oxygen gas plasma can be considered.

また、配線パターン間の段差が大きいときには、塗布液の塗布を2段階以上で行うことが好ましい。この場合は、各段階でプリベークを行うとともにプリベークの前に減圧雰囲気として段差内に封じ込められたエア、塗布液中に溶存しているガス又はこれらのエア及びガスの両方を気泡にして脱気し、この後、最終的なベークを行う。   Moreover, when the level | step difference between wiring patterns is large, it is preferable to apply | coat a coating liquid in two steps or more. In this case, pre-baking is performed at each stage, and the air enclosed in the step as a decompressed atmosphere before pre-baking, the gas dissolved in the coating solution, or both of these air and gas are deaerated. After this, the final baking is performed.

本発明に係る塗膜形成方法によれば、基板表面に溶剤を塗布して基板に形成された配線パターン間の段差に塗布液を充填するにあたり、予め基板表面に溶剤を塗布しておくことで、段差内に塗布液が侵入しやすくなり、高濃度の塗布液を用いて高段差の配線パターンに塗布しても、段差内にエアが残りにくい。   According to the method for forming a coating film according to the present invention, when a solvent is applied to the substrate surface and the coating liquid is filled in the steps between the wiring patterns formed on the substrate, the solvent is applied to the substrate surface in advance. The coating liquid easily enters the step, and even if it is applied to the wiring pattern with a high step using a high concentration coating liquid, it is difficult for air to remain in the step.

また、高濃度の塗布液であっても、僅かな時間内で、即ち塗布液を乾燥させない時間内で、塗布液中の溶存ガスを除去することができる。   Further, even in the case of a high concentration coating solution, dissolved gas in the coating solution can be removed within a short time, that is, within a time during which the coating solution is not dried.

更に、溶剤を塗布する前に基板表面を親水化しておけば、溶剤自体の基板に対するなじみがよくなり、溶剤が薄く且つ均一に広がるため、段差内への塗布液の充填がスムーズに行われる。   Further, if the surface of the substrate is made hydrophilic before the solvent is applied, the familiarity of the solvent itself with the substrate is improved, and the solvent is thin and spreads uniformly, so that the coating liquid can be smoothly filled in the steps.

以下に本発明の好適な実施例を添付図面に基づいて説明する。図1は本発明に係る塗膜形成方法の工程を示すブロック図であり、本発明にあっては、配線パターンが形成された基板(半導体ウェーハ)の表面に溶剤を塗布する。溶剤としては、続く工程で塗布液を塗布したとき、析出物を発生させない溶剤であることが好ましく、例えば塗布液を構成する溶剤と同一の溶剤を用いることができる。このような溶剤としては特に限定はされないが、例えば、種々のアルコール系溶剤、エーテル系溶剤、エステル系溶剤、ケトン系溶剤などを挙げることができ、具体的には、メタノール、エタノール、プロパノール、ブタノール、エチルセロソルブアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、γ−ブチロラクトン、2−ヘプタノン、シクロヘキサノン、3−メトキシブチルアセテート、3−メトキシ−1−ブタノール、メチル−3−メトキシプロピオネート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、エチル−3−エトキシプロピオネート、3−メトキシ−3−メチルブタノールなどを挙げることができる。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a block diagram showing the steps of a coating film forming method according to the present invention. In the present invention, a solvent is applied to the surface of a substrate (semiconductor wafer) on which a wiring pattern is formed. The solvent is preferably a solvent that does not generate a precipitate when the coating liquid is applied in the subsequent step. For example, the same solvent as the solvent constituting the coating liquid can be used. Examples of such solvents include, but are not limited to, various alcohol solvents, ether solvents, ester solvents, ketone solvents and the like. Specifically, methanol, ethanol, propanol, butanol , Ethyl cellosolve acetate, ethyl lactate, ethyl pyruvate, butyl acetate, γ-butyrolactone, 2-heptanone, cyclohexanone, 3-methoxybutyl acetate, 3-methoxy-1-butanol, methyl-3-methoxypropionate, propylene glycol Monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether, ethyl-3-ethoxypropylene Sulfonates, such as 3-methoxy-3-methyl butanol.

次いで基板表面に塗布液(固形分濃度30〜60重量%のフォトレジスト)を塗布し、500〜1300rpm、好ましくは1000rpm程度で回転せしめて該塗布液表面を平坦にした後、2000Pa以下、好ましくは500〜1500Paの減圧下で1〜3分間保持し、段差内に封じ込められたエア及び塗布液に溶存しているガスを脱気する。   Next, a coating liquid (photoresist having a solid content concentration of 30 to 60% by weight) is applied to the substrate surface, and rotated at 500 to 1300 rpm, preferably about 1000 rpm, to flatten the surface of the coating liquid, and then 2000 Pa or less, preferably It hold | maintains for 1 to 3 minutes under reduced pressure of 500-1500 Pa, and the gas dissolved in the air and coating liquid which were enclosed in the level | step difference is deaerated.

段差が高段差の場合や段差のアスペクト比が大きい場合には、該塗布液を複数回に分けて塗布することが好ましい。この場合、各塗布工程ごとに減圧処理とプリベークを行う。プリベークを2回に分けて塗布する場合には、1回目の塗布のプリベークの温度を2回目の塗布のプリベークの温度よりも低くする。1回目の温度と時間は、50〜100℃、好ましくは60〜80℃で1〜5分、例えば70℃/3分、2回目の温度と時間は、100〜150℃、好ましくは100〜130℃で1〜60分、例えば120℃/30分とする。   When the step is a high step or the aspect ratio of the step is large, it is preferable to apply the coating solution in a plurality of times. In this case, a decompression process and pre-baking are performed for each coating process. When the pre-bake is applied in two steps, the pre-bake temperature for the first application is set lower than the pre-bake temperature for the second application. The first temperature and time are 50 to 100 ° C., preferably 60 to 80 ° C. for 1 to 5 minutes, for example 70 ° C./3 minutes, and the second temperature and time are 100 to 150 ° C., preferably 100 to 130 ° C. 1 to 60 minutes at, for example, 120 ° C./30 minutes.

この後、最終的なベークを行って、段差内に塗膜を形成する。最終的なベークの条件としては、100〜200℃で1〜15分、例えば150℃/3分とする。
高段差とは、配線パターンの段差が30〜400ミクロン、好適には30〜100ミクロンである。また、そのような高段差を有する基板に用いる塗布液としては、フォトレジスト、SOG等であり、その固形分濃度が30〜60重量%、好適には、40〜55重量%のフォトレジストである。
Thereafter, final baking is performed to form a coating film in the step. The final baking condition is 100 to 200 ° C. for 1 to 15 minutes, for example, 150 ° C./3 minutes.
The high step means that the step of the wiring pattern is 30 to 400 microns, preferably 30 to 100 microns. The coating solution used for the substrate having such a high step is a photoresist, SOG, or the like, and the photoresist has a solid concentration of 30 to 60% by weight, preferably 40 to 55% by weight. .

図2は別実施例に係る塗膜形成方法の工程を示すブロック図であり、この実施例にあっては、溶剤塗布の前工程として、基板表面をUV照射またはOプラズマに曝すことで親水化するようにしている。 FIG. 2 is a block diagram showing the steps of a coating film forming method according to another embodiment. In this embodiment, as a pre-process for solvent coating, the substrate surface is exposed to UV irradiation or O 2 plasma to make it hydrophilic. It tries to become.

以下に具体的な実施例と比較例を挙げて説明する。
実施例1
400ミクロンの配線パターンの段差が設けられたシリコンウエーハ(基板)にプロピレングリコールモノメチルエーテルアセテート(PGMEA)溶剤を塗布し、60秒間静止させ、次いで上記溶剤が乾燥する前に、シリコンウエーハ表面にPGMEAを溶剤とする固形分濃度55重量%のフォトレジスト塗布液(製品名:PMER P−CA1000PM(東京応化工業社製))を回転数1000rpmにて回転塗布した後、1300Paの減圧雰囲気下に上記塗布された基板を60秒間処理した。次いで70℃で3分間及び120℃で3分間のプリベーク処理した(1回目の塗布・減圧雰囲気下処理・プリベークの一連の処理)。次いで、同固形分濃度の同フォトレジスト塗布液を用い、1回目の塗布・減圧雰囲気下処理・プリベークの一連の処理と同じ条件で2回目の一連の処理を行った。この後最終的なベークとして150℃で15分間の加熱を行った。
その結果、400ミクロンの段差の埋め込み性は良好で、段差内の発泡・表面荒れもなく基板全体にわたり均一な塗膜が形成されていた。
Hereinafter, specific examples and comparative examples will be described.
Example 1
Apply a propylene glycol monomethyl ether acetate (PGMEA) solvent to a silicon wafer (substrate) with a 400 micron wiring pattern step, let it stand for 60 seconds, and then dry the PGMEA on the silicon wafer surface before the solvent dries. A photoresist coating solution (product name: PMER P-CA1000PM (manufactured by Tokyo Ohka Kogyo Co., Ltd.)) having a solid content concentration of 55% by weight as a solvent is spin-coated at a rotation speed of 1000 rpm, and the above-mentioned coating is applied in a reduced pressure atmosphere of 1300 Pa. The substrate was treated for 60 seconds. Next, pre-baking treatment was performed at 70 ° C. for 3 minutes and 120 ° C. for 3 minutes (a series of treatments of first application, treatment under reduced pressure atmosphere, and pre-baking). Next, using the same photoresist coating solution with the same solid content concentration, a second series of treatments was performed under the same conditions as the first series of coating, treatment under reduced pressure atmosphere, and pre-baking. Thereafter, heating was performed at 150 ° C. for 15 minutes as a final bake.
As a result, the embedding property of the step of 400 microns was good, and a uniform coating film was formed over the entire substrate without foaming and surface roughness in the step.

実施例2
400ミクロンの配線パターンの段差が設けられたシリコンウエーハ(基板)の表面に172nmの波長の光を出力するUVランプを用いて60秒間のUV照射を行った。次いでシリコンウエーハ表面にPGMEA溶剤を塗布し、更に上記溶剤が乾燥する前に、シリコンウエーハ表面にPGMEAを溶剤とする固形分濃度55重量%のフォトレジスト塗布液(製品名:PMER P−CA1000PM(東京応化工業社製))を回転数500rpmにて回転塗布した後、1300Paの減圧雰囲気下に上記塗布された基板を60秒間処理した。次いで70℃で3分間及び120℃で3分間のプリベーク処理した(1回目の塗布・減圧雰囲気下処理・プリベークの一連の処理)。次いで、同固形分濃度の同フォトレジスト塗布液を用い、1回目の塗布・減圧雰囲気下処理・プリベークの一連の処理と同じ条件で2回目の一連の処理を行った。この後最終的なベークとして150℃で15分間の加熱を行った。
その結果、400ミクロンの段差の埋め込み性は良好で、段差内の発泡・表面荒れもなく基板全体にわたり均一な塗膜が形成されていた。
Example 2
The surface of a silicon wafer (substrate) having a 400 micron wiring pattern step was irradiated with UV for 60 seconds using a UV lamp that output light having a wavelength of 172 nm. Next, a PGMEA solvent is applied to the surface of the silicon wafer, and before the solvent is further dried, a photoresist coating solution (product name: PMER P-CA1000PM having a solid content concentration of 55% by weight using PGMEA as a solvent on the surface of the silicon wafer (Tokyo) Oka Kogyo Co., Ltd.)) was spin-coated at 500 rpm, and the coated substrate was treated for 60 seconds in a reduced pressure atmosphere of 1300 Pa. Next, pre-baking treatment was performed at 70 ° C. for 3 minutes and 120 ° C. for 3 minutes (a series of treatments of first application, treatment under reduced pressure atmosphere, and pre-baking). Next, using the same photoresist coating solution with the same solid content concentration, a second series of treatments was performed under the same conditions as the first series of coating, treatment under reduced pressure atmosphere, and pre-baking. Thereafter, heating was performed at 150 ° C. for 15 minutes as a final bake.
As a result, the embedding property of the step of 400 microns was good, and a uniform coating film was formed over the entire substrate without foaming and surface roughness in the step.

比較例1
実施例1において、溶剤塗布を行わなかった以外は同様にして、塗膜を形成した。その結果、400ミクロンの段差の埋め込み性は十分ではなく、段差内の発泡・表面荒れも共に発生していた。
Comparative Example 1
In Example 1, a coating film was formed in the same manner except that the solvent application was not performed. As a result, the embedding property of the step of 400 microns was not sufficient, and both foaming and surface roughness in the step occurred.

比較例2
フォトレジスト塗布液の固形分濃度を37%に変え、フォトレジスト塗布前の溶剤塗布および減圧雰囲気下処理を行わず、その他は実施例1と同様にして塗膜を形成した。
その結果、400ミクロンの段差の埋め込み性は十分ではなく、段差内の発泡・表面荒れも共に発生していた。
Comparative Example 2
A coating film was formed in the same manner as in Example 1 except that the solid content concentration of the photoresist coating solution was changed to 37%, the solvent coating before the photoresist coating and the treatment under reduced pressure atmosphere were not performed.
As a result, the embedding property of the step of 400 microns was not sufficient, and both foaming and surface roughness in the step occurred.

本発明に係る塗膜形成方法の工程を示すブロック図The block diagram which shows the process of the coating-film formation method which concerns on this invention 別実施例に係る塗膜形成方法の工程を示すブロック図The block diagram which shows the process of the coating-film formation method which concerns on another Example.

Claims (3)

以下の(1)〜(4)の工程からなることを特徴とする塗膜形成方法。
(1)配線パターンが形成された基板表面に溶剤を塗布する工程
(2)溶剤が塗布された基板表面に塗布液を塗布し配線パターン間の段差に塗布液を充填する工程
(3)塗布液が塗布された基板を減圧雰囲気に置いて、前記配線パターン間の段差内に封じ込められたエア、塗布液中に溶存しているガス又はこれらエア及びガスの両方を脱気する工程
(4)脱気が終了した基板を加熱して配線パターン間の段差を塗膜で埋設する工程
A coating film forming method comprising the following steps (1) to (4).
(1) A step of applying a solvent to the substrate surface on which the wiring pattern is formed (2) A step of applying a coating solution to the substrate surface on which the solvent is applied and filling the step between the wiring patterns with the coating solution (3) A coating solution (4) Degassing step (4) in which the substrate coated with is placed in a reduced-pressure atmosphere and the air, the gas dissolved in the coating solution, or both of the air and the gas are encapsulated in the step between the wiring patterns. The process of heating the substrate that has been exhausted and embedding the steps between the wiring patterns with a coating film
以下の(1)〜(5)の工程からなることを特徴とする塗膜形成方法。
(1)配線パターンが形成された基板表面を親水化する工程
(2)親水化された基板表面に溶剤を塗布する工程
(3)溶剤が塗布された基板表面に塗布液を塗布し配線パターン間の段差に塗布液を充填する工程
(4)塗布液が塗布された基板を減圧雰囲気に置いて、前記配線パターン間の段差内に封じ込められたエア、塗布液中に溶存しているガス又はこれらエア及びガスの両方を脱気する工程
(5)脱気が終了した基板を加熱して配線パターン間の段差を塗膜で埋設する工程
A coating film forming method comprising the following steps (1) to (5).
(1) A step of hydrophilizing the substrate surface on which the wiring pattern is formed (2) A step of applying a solvent to the hydrophilicized substrate surface (3) A coating solution is applied to the substrate surface on which the solvent is applied, and between the wiring patterns (4) The substrate coated with the coating solution is placed in a reduced pressure atmosphere, and the air enclosed in the step between the wiring patterns, the gas dissolved in the coating solution, or these Step of degassing both air and gas (5) Step of heating the substrate after degassing and embedding a step between wiring patterns with a coating film
請求項2に記載の塗膜形成方法において、前記基板表面を親水化する手段は基板表面に紫外線を照射するか、酸素ガスプラズマに曝すことを特徴とする塗膜形成方法。
3. The method for forming a coating film according to claim 2, wherein the means for hydrophilizing the substrate surface irradiates the substrate surface with ultraviolet light or exposes it to oxygen gas plasma.
JP2007169841A 2007-06-28 2007-06-28 Coating method Active JP5325399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007169841A JP5325399B2 (en) 2007-06-28 2007-06-28 Coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169841A JP5325399B2 (en) 2007-06-28 2007-06-28 Coating method

Publications (2)

Publication Number Publication Date
JP2009010147A true JP2009010147A (en) 2009-01-15
JP5325399B2 JP5325399B2 (en) 2013-10-23

Family

ID=40324945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169841A Active JP5325399B2 (en) 2007-06-28 2007-06-28 Coating method

Country Status (1)

Country Link
JP (1) JP5325399B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015220442A (en) * 2014-05-21 2015-12-07 東レエンジニアリング株式会社 Sealing film formation method and photoelectric conversion module
US9278373B2 (en) 2012-09-07 2016-03-08 Kabushiki Kaisha Toshiba Spin coating apparatus and method
JP2017505534A (en) * 2013-12-17 2017-02-16 東京エレクトロン株式会社 System and method for spin-on coating of periodic organosilicate or self-assembled monolayer on a substrate
WO2023276578A1 (en) * 2021-06-30 2023-01-05 信越化学工業株式会社 Layered body, method for manufacturing layered body, and method for forming pattern

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150332A (en) * 1984-12-25 1986-07-09 Toshiba Corp Method of applying semiconductor resist
JPH05259052A (en) * 1992-03-10 1993-10-08 Kawasaki Steel Corp Spin coating on semiconductor substrate and device
JPH1147668A (en) * 1997-06-06 1999-02-23 Kansai Denshi Kk Substrate dryer
JP2000053868A (en) * 1998-08-04 2000-02-22 Toppan Printing Co Ltd Curable resin composition, method for surface roughening treatment of same and electronic equipment part using the same
JP2001205165A (en) * 1999-11-16 2001-07-31 Tokyo Electron Ltd Treating device and treating method for substrate
JP2002110664A (en) * 2000-09-27 2002-04-12 Toshiba Corp Method of manufacturing semiconductor device
JP2002307002A (en) * 2001-04-16 2002-10-22 Tokyo Electron Ltd Coating film forming method and coating film forming device
JP2003168638A (en) * 2001-11-29 2003-06-13 Matsushita Electric Ind Co Ltd Method of manufacturing electronic device and spin coater
JP2003211070A (en) * 2002-01-21 2003-07-29 Toshiba Corp Method for forming coating film, method for manufacturing semiconductor device and coating liquid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150332A (en) * 1984-12-25 1986-07-09 Toshiba Corp Method of applying semiconductor resist
JPH05259052A (en) * 1992-03-10 1993-10-08 Kawasaki Steel Corp Spin coating on semiconductor substrate and device
JPH1147668A (en) * 1997-06-06 1999-02-23 Kansai Denshi Kk Substrate dryer
JP2000053868A (en) * 1998-08-04 2000-02-22 Toppan Printing Co Ltd Curable resin composition, method for surface roughening treatment of same and electronic equipment part using the same
JP2001205165A (en) * 1999-11-16 2001-07-31 Tokyo Electron Ltd Treating device and treating method for substrate
JP2002110664A (en) * 2000-09-27 2002-04-12 Toshiba Corp Method of manufacturing semiconductor device
JP2002307002A (en) * 2001-04-16 2002-10-22 Tokyo Electron Ltd Coating film forming method and coating film forming device
JP2003168638A (en) * 2001-11-29 2003-06-13 Matsushita Electric Ind Co Ltd Method of manufacturing electronic device and spin coater
JP2003211070A (en) * 2002-01-21 2003-07-29 Toshiba Corp Method for forming coating film, method for manufacturing semiconductor device and coating liquid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9278373B2 (en) 2012-09-07 2016-03-08 Kabushiki Kaisha Toshiba Spin coating apparatus and method
US10549312B2 (en) 2012-09-07 2020-02-04 Toshiba Memory Corporation Spin coating apparatus and method
JP2017505534A (en) * 2013-12-17 2017-02-16 東京エレクトロン株式会社 System and method for spin-on coating of periodic organosilicate or self-assembled monolayer on a substrate
JP2015220442A (en) * 2014-05-21 2015-12-07 東レエンジニアリング株式会社 Sealing film formation method and photoelectric conversion module
WO2023276578A1 (en) * 2021-06-30 2023-01-05 信越化学工業株式会社 Layered body, method for manufacturing layered body, and method for forming pattern

Also Published As

Publication number Publication date
JP5325399B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
US5486424A (en) Silylated photoresist layer and planarizing method
US8940475B2 (en) Double patterning with inline critical dimension slimming
US8895234B2 (en) Immersion lithography watermark reduction
JP4192456B2 (en) Thin film forming method, thin film structure manufacturing apparatus, semiconductor device manufacturing method, and electro-optical device manufacturing method using the same
US20130171571A1 (en) Vapor treatment process for pattern smoothing and inline critical dimension slimming
JP6737991B2 (en) Subtractive method to create dielectric isolation structure in open features
US5756256A (en) Silylated photo-resist layer and planarizing method
US20110052883A1 (en) Methods of forming reversed patterns in a substrate and semiconductor structures formed during same
JP5325399B2 (en) Coating method
JP6816083B2 (en) Manufacturing method of semiconductor devices
US5952149A (en) Resist solution for photolithography including a base resin and an oxygen-free or low-oxygen solvent
WO2010073390A1 (en) Method for forming pattern, method for manufacturing semiconductor device, and material for forming coating layer of resist pattern
JP2006253207A (en) Method of coating, method of manufacturing semiconductor device
US20100247770A1 (en) Method for applying coating liquid, method for forming coated film, method for forming a pattern by using the same, and method for manufacturing semiconductor device
JP2016136200A (en) Semiconductor device and method for manufacturing semiconductor device
TWI515768B (en) Lithography patterning method and double patterning method
US7816070B2 (en) Substrate used for immersion lithography process, method of manufacturing substrate used for immersion lithography process, and immersion lithography
JPH0684787A (en) Formation of multilayered resist pattern
JPH07142344A (en) Method for developing photoresist
JP2008149283A (en) Coating forming method
JP2008066467A (en) Pattern forming method
TWI597578B (en) Method of fabricating conformal middle layer
JP2002043215A (en) Method for forming resist pattern, semiconductor manufacturing apparatus, semiconductor device, and portable information terminal
JP2604934B2 (en) Method of forming resist pattern
JPH11174684A (en) Pattern forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5325399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250