JP2009009708A - Organic el array - Google Patents

Organic el array Download PDF

Info

Publication number
JP2009009708A
JP2009009708A JP2007167193A JP2007167193A JP2009009708A JP 2009009708 A JP2009009708 A JP 2009009708A JP 2007167193 A JP2007167193 A JP 2007167193A JP 2007167193 A JP2007167193 A JP 2007167193A JP 2009009708 A JP2009009708 A JP 2009009708A
Authority
JP
Japan
Prior art keywords
organic
charge injection
injection layer
lower electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007167193A
Other languages
Japanese (ja)
Inventor
Koichi Ishige
剛一 石毛
Yojiro Matsuda
陽次郎 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007167193A priority Critical patent/JP2009009708A/en
Publication of JP2009009708A publication Critical patent/JP2009009708A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic EL array superior in drive voltage and luminance, and low in cost. <P>SOLUTION: The organic EL array is provided with a substrate, a lower electrode and an upper electrode which are on the substrate and at least one of which is divided at each pixel, an organic layer which is interposed between the upper electrode and the lower electrode and includes at least an organic luminous layer, an element separation film which is arranged around the pixel, and a charge injection layer which is located between the lower electrode and the organic layer and composed of a conductor or a semiconductor, and is formed of a plurality of pixels. The charge injection layer is formed throughout a display region including the lower electrode and the element separation film, and a high resistance region of the charge injection layer is formed at a tapered portion of the element separation film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電極間に形成された有機発光層を含む有機層に通電することにより光を放出する、有機EL素子に関し、特に、前記有機EL素子の複数画素を基板上に多数形成してなる、有機ELアレイに関する。   The present invention relates to an organic EL element that emits light by energizing an organic layer including an organic light emitting layer formed between electrodes, and in particular, a plurality of pixels of the organic EL element are formed on a substrate. The present invention relates to an organic EL array.

近年、フラットパネル対応の自発光型デバイスが注目されている。自発光型デバイスとしては、プラズマ発光表示素子、フィールドエミッション素子、エレクトロルミネセンス(EL)素子等がある。   In recent years, self-luminous devices compatible with flat panels have attracted attention. Examples of the self-luminous device include a plasma light-emitting display element, a field emission element, and an electroluminescence (EL) element.

この中で、特に有機EL素子に関しては、研究開発が精力的に進められており、緑単色や、青、赤等の色を加えたエリアカラータイプのアレイが製品化され、現在はフルカラー化への開発が活発化している。   In particular, organic EL elements are being researched and developed vigorously, and an area color type array with a single color such as green, blue, red, etc. has been commercialized and is now full color. Development is active.

一般的な有機EL素子の構造は、ガラス基板上にITO等の透明陽極、正孔輸送層、有機発光層、電子輸送層等からなる有機層、及び低仕事関数の上部反射電極が順次形成されてなる。この素子構造は一般にボトムエミッション型といわれ、素子からの発光光は、透明性を有する陽極及び基板を透過して基板裏面側から射出される。   The structure of a typical organic EL device is that a transparent anode such as ITO, an organic layer composed of a hole transport layer, an organic light emitting layer, an electron transport layer, and the like, and a low work function upper reflective electrode are sequentially formed on a glass substrate. It becomes. This element structure is generally referred to as a bottom emission type, and light emitted from the element is emitted from the back side of the substrate through a transparent anode and substrate.

このようなボトムエミッション型の有機EL素子を二次元アレイ状に配列してなる有機ELアレイをアクティブマトリクス方式により駆動する場合、ボトムエミッション型では、基板上のTFTや配線の為に開口率が狭くなるという問題がある。これを改善する試みとして、発光光を有機層の積層方向に射出させる、いわゆるトップエミッション型の有機EL素子が提案されている。   When an organic EL array in which such bottom emission type organic EL elements are arranged in a two-dimensional array is driven by an active matrix method, the bottom emission type has a narrow aperture ratio due to TFTs and wiring on the substrate. There is a problem of becoming. As an attempt to improve this, a so-called top emission type organic EL element that emits emitted light in the stacking direction of the organic layer has been proposed.

トップエミッション型の有機EL素子においては、基板側の下部電極として可視光の反射率が高いものを用い、上部電極として可視光の透過率の高いものを用いる。また、有機層の積層順序をボトムエミッション型と同様にして、下部電極を陽極、上部電極を陰極とする場合、下部電極として可視光の反射率が高いアルミニウムやアルミニウム合金を用いると、陽極としては仕事関数が比較的小さい。そのため、ホール(正孔)の注入障壁が高くなってしまう。これに対して、アルミニウム上に酸化インジウム錫(ITO)などの仕事関数の大きな透明電極を積層させて用いる方法が知られている。   In the top emission type organic EL element, a substrate having a high visible light reflectance is used as the lower electrode on the substrate side, and a material having a high visible light transmittance is used as the upper electrode. Also, when the organic layer is stacked in the same manner as the bottom emission type and the lower electrode is an anode and the upper electrode is a cathode, if the lower electrode is made of aluminum or aluminum alloy having a high visible light reflectivity, Work function is relatively small. Therefore, the hole (hole) injection barrier becomes high. On the other hand, a method is known in which a transparent electrode having a large work function such as indium tin oxide (ITO) is laminated on aluminum.

また、特許文献1では、透過率が低い金属や、リソグラフィ法ではパターニングし難い金属を電荷注入層として用いるために、これらの金属を電極上にマスク蒸着する技術が公開されている。   Patent Document 1 discloses a technique in which a metal having low transmittance or a metal that is difficult to be patterned by lithography is used as a charge injection layer, and these metals are mask-deposited on an electrode.

特開2002−198182号公報JP 2002-198182 A

しかしながら、特許文献1では、マスク蒸着で画素ごとに電荷注入層を分割する必要があるため、マスクコストの分だけコスト上昇要因になる。また、全画素に電荷注入層を形成する場合には開口部分の比率が大きくなり、マスク強度を保つことはより難しくなってくる。また、マスク強度が低下すると、繰り返し使用によるマスクの劣化も起こりやすくなるため、さらなるコストの上昇につながる懸念がある。   However, in Patent Document 1, since it is necessary to divide the charge injection layer for each pixel by mask vapor deposition, the cost increases due to the mask cost. Further, when the charge injection layer is formed in all the pixels, the ratio of the opening portion becomes large, and it becomes more difficult to maintain the mask strength. Further, when the mask strength is reduced, the mask is likely to deteriorate due to repeated use, which may lead to further cost increase.

本発明は上記課題に鑑みなされたものであり、駆動電圧及び輝度に優れ、低コストな有機ELアレイを提供するものである。   The present invention has been made in view of the above problems, and provides a low-cost organic EL array having excellent driving voltage and luminance.

上記課題を解決するための手段として、本発明は、
基板と、前記基板の上にあり、少なくとも一方が画素ごとに分割された下部電極及び上部電極と、前記上部電極と下部電極との間に挟まれ、有機発光層を少なくとも含む有機層と、前記画素の周囲に配置される素子分離膜と、前記下部電極と有機層との間に導電体又は半導体からなる電荷注入層とを備え、複数の画素からなる有機ELアレイにおいて、
前記電荷注入層は前記下部電極及び前記素子分離膜を含む表示領域全面に形成されており、前記素子分離膜のテーパー部に、前記電荷注入層の高抵抗領域が形成されていることを特徴とする。
As means for solving the above problems, the present invention provides:
A substrate, a lower electrode and an upper electrode at least one of which is divided for each pixel, the organic layer sandwiched between the upper electrode and the lower electrode, and including at least an organic light emitting layer; In an organic EL array comprising a plurality of pixels, comprising an element isolation film disposed around a pixel, and a charge injection layer made of a conductor or a semiconductor between the lower electrode and the organic layer,
The charge injection layer is formed over the entire display region including the lower electrode and the element isolation film, and a high resistance region of the charge injection layer is formed in a tapered portion of the element isolation film. To do.

本発明によれば、電荷注入層により駆動電圧が抑えられ、また、輝度の低下も抑制され、コスト上昇を抑えた有機ELアレイを提供できる。   According to the present invention, it is possible to provide an organic EL array in which a drive voltage is suppressed by the charge injection layer and a decrease in luminance is suppressed, thereby suppressing an increase in cost.

以下に、図1、図2を用いて本発明の一実施形態を説明するが、本発明はこの実施形態に限定されるものではない。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2, but the present invention is not limited to this embodiment.

図1は本発明の一実施形態を表す概略断面図である。図中には二つの画素について表示してあるが、もちろんこれに限定されるものではない。なお、図中の各部のサイズは説明のために一部強調してあり、必ずしも実物の形状を反映するものではない。   FIG. 1 is a schematic sectional view showing an embodiment of the present invention. Although two pixels are shown in the figure, of course, the present invention is not limited to this. In addition, the size of each part in the drawing is partly emphasized for explanation, and does not necessarily reflect the actual shape.

また、本実施形態においては、下部電極が反射電極であり、上部電極が透明電極であるトップエミッション型素子を用いて説明する。但し、これに限定されるものではなく、例えば下部電極が透明電極であり、上部電極が反射電極であるボトムエミッション型素子や両面発光素子、などにも適用できる。   In the present embodiment, description will be made using a top emission type element in which the lower electrode is a reflective electrode and the upper electrode is a transparent electrode. However, the present invention is not limited to this. For example, the present invention can be applied to a bottom emission type element or a double-sided light emitting element in which the lower electrode is a transparent electrode and the upper electrode is a reflective electrode.

図1に示すように、本実施形態は、基板1と、前記基板1上に各画素ごとに分割された下部電極2と、画素の周囲を囲み、かつ前記下部電極2の端部を覆うように配置された素子分離膜3とを備える。さらに、前記下部電極2、素子分離膜3を共に覆うように電荷注入層4を備える。その上に、有機発光層を少なくとも含む有機層5と、上部電極6とを備える。前記下部電極2、上部電極6はそれぞれ、不図示の電源及びスイッチに接続され、前記二つの電極間に電流を流すことで、前記有機発光層を発光せしめる。但し、上部電極6も各画素ごとに分割されていても良く、要するに一方の電極である下部電極2が各画素ごとに分割されていれば良い。   As shown in FIG. 1, in the present embodiment, a substrate 1, a lower electrode 2 divided for each pixel on the substrate 1, a periphery of the pixel, and an end portion of the lower electrode 2 are covered. And an element isolation film 3 disposed on the substrate. Further, a charge injection layer 4 is provided so as to cover both the lower electrode 2 and the element isolation film 3. On top of this, an organic layer 5 including at least an organic light emitting layer and an upper electrode 6 are provided. The lower electrode 2 and the upper electrode 6 are respectively connected to a power source and a switch (not shown), and a current is passed between the two electrodes to cause the organic light emitting layer to emit light. However, the upper electrode 6 may also be divided for each pixel. In short, it is only necessary that the lower electrode 2 as one electrode is divided for each pixel.

本発明は、前記電荷注入層4のうち、前記素子分離膜3のテーパー部上の電荷注入層4bが高抵抗領域とされていることを特徴とする。   The present invention is characterized in that the charge injection layer 4b on the tapered portion of the element isolation film 3 in the charge injection layer 4 is a high resistance region.

本実施形態における下部電極2は反射率が高い金属、例えばアルミニウムや銀、又はこれらの合金からなるが、陽極としては仕事関数が小さいため、正孔の注入障壁が大きい。この上に有機層5への正孔注入障壁が小さな電荷注入層4を設けることで、駆動電圧が低下する。これに限らず、下部電極2からの電荷注入障壁が大きい場合に、電荷注入層4を用いることで駆動電圧の低下を図れる。   The lower electrode 2 in the present embodiment is made of a metal having high reflectance, such as aluminum, silver, or an alloy thereof. However, since the work function is small as the anode, the hole injection barrier is large. By providing the charge injection layer 4 with a small hole injection barrier to the organic layer 5 thereon, the driving voltage is lowered. The drive voltage can be reduced by using the charge injection layer 4 when the charge injection barrier from the lower electrode 2 is large.

電荷注入層4として導電体又は半導体を用いる。ここで、導電体又は半導体とは、特別な分割手段を用いずに表示領域全面に成膜した場合に、画素間のリークにより表示の乱れを起こす程度の抵抗を持つ材料を指すものとする。   A conductor or a semiconductor is used as the charge injection layer 4. Here, the conductor or semiconductor refers to a material having a resistance that causes display disturbance due to leakage between pixels when a film is formed over the entire display region without using a special dividing means.

具体的に云うと、電荷注入層4としては、導電性があり、かつ下部電極2に比べて有機層5への注入電圧が低ければ何を用いても良い。例えば酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)などの金属酸化物や、金等の金属などを用いることができる。これらの材料を用いると、高抵抗な絶縁膜を用いる場合に比べ、膜厚方向の抵抗に基づく駆動電圧の上昇は小さい。   More specifically, any material may be used as the charge injection layer 4 as long as it is conductive and has a lower injection voltage to the organic layer 5 than the lower electrode 2. For example, a metal oxide such as indium tin oxide (ITO) or indium zinc oxide (IZO), or a metal such as gold can be used. When these materials are used, an increase in driving voltage based on the resistance in the film thickness direction is small as compared with the case where a high-resistance insulating film is used.

電荷注入層4の成膜方法としては、特に制限されない。マグネトロンスパッタ、イオンビームスパッタ、等のスパッタリング法に加え、真空蒸着等の異方性の強い成膜方法を用いても良く、これらの成膜方法を適宜、選択して、電荷注入層4が表示領域全面に形成されている。   A method for forming the charge injection layer 4 is not particularly limited. In addition to sputtering methods such as magnetron sputtering and ion beam sputtering, a highly anisotropic film forming method such as vacuum deposition may be used, and the charge injection layer 4 is displayed by appropriately selecting these film forming methods. It is formed over the entire area.

しかしながら、低抵抗材料が画素間で繋がっている場合、電流のリークにより所望の表示ができなくなるため、画素間で前記電荷注入層4を分割(分断)する必要がある。   However, when a low-resistance material is connected between pixels, a desired display cannot be performed due to current leakage. Therefore, it is necessary to divide (divide) the charge injection layer 4 between pixels.

そこで、本発明では、電荷注入層4の膜厚を極めて薄くし、かつ前記素子分離膜3のテーパー角度を急峻にする。これにより、前記下部電極2上の電荷注入層4aは電荷注入に充分な膜厚を有するが、前記素子分離膜3のテーパー部上の電荷注入層4bはその傾斜によって膜厚がさらに薄くなり、島状構造の不連続膜となる。つまり、傾斜面は平面に対して傾いている分だけ、面積が広くなるので、例えば異方性の強い成膜方法を用いて電荷注入層4を形成すると、素子分離膜3のテーパー部は下部電極2の平面部に比べて単位面積あたりの成膜密度が薄く、成膜状況が不十分となる。そのため、素子分離膜3のテーパー部上の電荷注入層4bは島状構造の不連続膜となるのである。このような島状構造の場合、連続膜に比べて電気抵抗は格段に増大する。   Therefore, in the present invention, the thickness of the charge injection layer 4 is made extremely thin, and the taper angle of the element isolation film 3 is made steep. As a result, the charge injection layer 4a on the lower electrode 2 has a film thickness sufficient for charge injection, but the charge injection layer 4b on the taper portion of the element isolation film 3 becomes thinner due to the inclination, It becomes an island-like discontinuous film. That is, since the inclined surface is increased in area by the amount inclined with respect to the plane, for example, when the charge injection layer 4 is formed by using a highly anisotropic film forming method, the taper portion of the element isolation film 3 is at the lower part. Compared with the flat part of the electrode 2, the film formation density per unit area is thin, and the film formation state becomes insufficient. Therefore, the charge injection layer 4b on the taper portion of the element isolation film 3 is a discontinuous film having an island structure. In the case of such an island structure, the electric resistance is remarkably increased as compared with the continuous film.

図2にその概念図を示す。導電体又は半導体の膜厚を薄くしていくと、バルクの電気抵抗に比べて徐々に電気抵抗が大きくなっていくが、あるところで膜が不連続な島状構造となるため、数桁の抵抗の上昇がある(図2のt1参照)。この際、例えば導電体の場合、連続膜(t1よりも厚い)の場合はその抵抗率は正の温度係数を持つが、島状構造(膜厚がt1以下)の場合、島間の負の温度係数を持つ、という特徴がある。なお、本明細書では、島状構造とは、薄膜が不連続な島からなり、島の平均直径が、島間の平均距離よりも小さいものを指す。素子分離膜3のテーパー部上の電荷注入層4bにおいては、この抵抗上昇が起こる膜厚以下の膜厚にすることで、画素間の電流のリークを防止する。これによって、予めテーパー部のある素子分離膜3を作り、その後に前記画素部と前記素子分離膜3からなる表示領域全面に電荷注入層4を成膜するだけで、隣接する画素間で電荷注入層4を実質的に分断することができる。そのため、電荷注入層4のパターニングが不要になり、コストの低減が図れる。特に、電荷注入層4の材料として、体積抵抗率が108Ωcm以下のものを用いる場合に、本発明を用いることで画素間のリークを抑制することができ、より好ましい。 The conceptual diagram is shown in FIG. When the thickness of the conductor or semiconductor is reduced, the electrical resistance gradually increases compared to the bulk electrical resistance, but the film has a discontinuous island structure in some places, so it has several digits of resistance. (See t 1 in FIG. 2). At this time, for example, in the case of a conductor, in the case of a continuous film (thicker than t 1 ), the resistivity has a positive temperature coefficient, but in the case of an island-like structure (thickness is equal to or less than t 1 ), it is negative between islands. It has the characteristic of having a temperature coefficient of. Note that in this specification, the island-shaped structure refers to a thin film made of discontinuous islands and having an average diameter smaller than the average distance between the islands. In the charge injection layer 4b on the taper portion of the element isolation film 3, the current leakage between the pixels is prevented by setting the film thickness to be equal to or less than the film thickness at which this resistance increase occurs. As a result, a device isolation film 3 having a taper portion is formed in advance, and then a charge injection layer 4 is formed on the entire display region composed of the pixel portion and the device isolation film 3, and charge injection is performed between adjacent pixels. Layer 4 can be substantially divided. Therefore, patterning of the charge injection layer 4 becomes unnecessary, and the cost can be reduced. In particular, when a material having a volume resistivity of 10 8 Ωcm or less is used as the material of the charge injection layer 4, the use of the present invention can suppress leakage between pixels, which is more preferable.

ちなみに、素子分離膜3の表面をラビングして凸凹形状を作製し、隣接する画素間で電荷注入層を実質的に分断することもできる。   Incidentally, the surface of the element isolation film 3 can be rubbed to produce an uneven shape, and the charge injection layer can be substantially divided between adjacent pixels.

電荷注入層4の膜厚としては、電荷注入特性に改善がみられ、かつ前記素子分離膜3のテーパー部において島状構造をとり、画素間で実質的に分断されるように設定する必要がある。具体的には膜厚0.1nm以上10nm以下が好ましく、2nm以上8nm以下がさらに好ましい。   The film thickness of the charge injection layer 4 needs to be set so that the charge injection characteristics are improved and an island structure is formed in the taper portion of the element isolation film 3 so that it is substantially divided between pixels. is there. Specifically, the film thickness is preferably 0.1 nm to 10 nm, and more preferably 2 nm to 8 nm.

素子分離膜3のテーパー部の角度は、テーパー部上で前記電荷注入層4が島状構造をとり、高抵抗化するようであればどのような角度でも良い。具体的には電荷注入層4の膜厚が0.1nm以上10nm以下の場合は、45度以上90度以下が好ましい。より好ましく電荷注入層4の膜厚を2nm以上8nm以下とした場合は、素子分離膜3のテーパー部の角度は60度以上90度以下が好ましい。一例を示すと、電荷注入層の膜厚にも依存するが、膜厚が3nm程度であれば50度程度で良い。   The angle of the taper portion of the element isolation film 3 may be any angle as long as the charge injection layer 4 has an island-like structure on the taper portion to increase the resistance. Specifically, when the thickness of the charge injection layer 4 is 0.1 nm or more and 10 nm or less, 45 degrees or more and 90 degrees or less are preferable. More preferably, when the thickness of the charge injection layer 4 is 2 nm or more and 8 nm or less, the angle of the tapered portion of the element isolation film 3 is preferably 60 degrees or more and 90 degrees or less. For example, although it depends on the film thickness of the charge injection layer, it may be about 50 degrees if the film thickness is about 3 nm.

素子分離膜3の製造方法は特に制限されない。公知のフォトリソグラフィ技術を用いて製造する場合には、露光・現像条件を変えることで制御することができる。又はマスクを用いてRIE等のドライエッチングで形成することもできる。   The manufacturing method of the element isolation film 3 is not particularly limited. When manufacturing using a known photolithography technique, it can be controlled by changing exposure and development conditions. Alternatively, it can be formed by dry etching such as RIE using a mask.

素子分離膜3の材料としては、レジスト等の樹脂を含む高分子材料、SiN、SiO2等の無機材料など、何を用いても良い。   As the material of the element isolation film 3, any material such as a polymer material containing a resin such as a resist, an inorganic material such as SiN, SiO2, or the like may be used.

上部電極6は前記素子分離膜3のテーパー部において分断されないように、十分な膜厚を有する必要があり、20nm以上有することが好ましい。これにより、同じテーパー部においても、膜厚の非常に薄い電荷注入層4は実質的に分断されるが、より膜厚の厚い上部電極6は連続膜を形成するため、分断されない。   The upper electrode 6 needs to have a sufficient thickness so as not to be divided at the tapered portion of the element isolation film 3, and preferably has a thickness of 20 nm or more. Thereby, even in the same tapered portion, the very thin charge injection layer 4 is substantially divided, but the thicker upper electrode 6 is not divided because it forms a continuous film.

次に、本実施形態で用いる各部材について説明する。   Next, each member used in the present embodiment will be described.

基板1として好適に使用される材料としては、各種のガラスや、poly−Siやa−Si等でTFT等の駆動回路を形成したガラス基板、シリコンウエハー上に駆動回路を設けたもの等が挙げられる。   Examples of the material suitably used as the substrate 1 include various types of glass, glass substrates on which driving circuits such as TFTs are formed using poly-Si, a-Si, and the like, and those in which driving circuits are provided on a silicon wafer. It is done.

下部電極2としては、適度な導電性をもつならば何を用いても良い。反射電極とするならば、可視光の反射率が高い材料が好ましい。その例としては、Cr、Pt、Ag、Au、Al等、及びこれらの金属材料を含む合金等が好適に用いられる。透明電極とするならば、ITO、IZO(酸化インジウム亜鉛)等の透明導電材料が用いられる。また、金属材料を1nmから10nm程度の薄膜で形成し、透光性のある状態で用いても良い。   Any material may be used as the lower electrode 2 as long as it has appropriate conductivity. If the reflective electrode is used, a material having a high visible light reflectance is preferable. For example, Cr, Pt, Ag, Au, Al, etc., and alloys containing these metal materials are preferably used. If a transparent electrode is used, a transparent conductive material such as ITO or IZO (indium zinc oxide) is used. Alternatively, a metal material may be formed as a thin film with a thickness of about 1 nm to 10 nm and used in a light-transmitting state.

反射電極としてアルミニウム等のイオン化傾向の大きな物質を用いる場合、本発明を用いず公知のフォトリソグラフィ技術を用いて、反射電極上の透明電極(例えばITO等)をパターニングすると、反射率低下が起こることがある。これは、現像、剥離工程等に用いる処理液に接触する際、透明電極とアルミニウムのイオン化傾向の違いによる電食反応によりアルミニウムの溶解が促進され、反射率が低下する現象である。特に、波長の短い青色素子においては、より広い色再現性を実現するために、透明電極の膜厚も薄くする必要が出てくる。この場合、透明電極にピンホールができやすくなるため、反射率低下の影響がより大きくなる。本発明においては電荷注入層形成後にエッチング等のウェット工程を施さないため、電荷注入層とアルミニウムの仕事関数の違いによる電食反応でアルミニウムがダメージを受けることがなく、より好ましい。   When a material having a high ionization tendency such as aluminum is used as the reflective electrode, if a transparent electrode (for example, ITO) on the reflective electrode is patterned using a well-known photolithography technique without using the present invention, the reflectance decreases. There is. This is a phenomenon in which, when coming into contact with a processing solution used in the development, peeling process, etc., the dissolution of aluminum is promoted by the electrolytic corrosion reaction due to the difference in ionization tendency between the transparent electrode and aluminum, and the reflectance is lowered. In particular, in a blue element having a short wavelength, it is necessary to reduce the film thickness of the transparent electrode in order to realize wider color reproducibility. In this case, since it becomes easy to make a pinhole in a transparent electrode, the influence of a reflectance fall becomes larger. In the present invention, since a wet process such as etching is not performed after the charge injection layer is formed, aluminum is more preferably not damaged by an electrolytic corrosion reaction due to a difference in work function between the charge injection layer and aluminum.

発光に関わる有機層5としては、特に制限されない。単層膜でも良いし、積層膜からなっても良い。また、その一部に有機物以外の無機物を含んでも良い。以下に各材料の一例を挙げる。   The organic layer 5 involved in light emission is not particularly limited. It may be a single layer film or a laminated film. Moreover, you may include inorganic substances other than organic substance in the one part. An example of each material is given below.

正孔注入層としては、鋼フタロシアニン、スターバーストアミン化合物、ポリアニリン、ポリチオフェン等の有機物や、金属酸化膜等、さらにこれらの複数の材料の混合物が挙げられるが、これらに限定されるものではない。また、正孔注入層が無くても十分な正孔注入性が得られる場合は、正孔注入層は必ずしも必要ではない。   Examples of the hole injection layer include, but are not limited to, organic materials such as steel phthalocyanine, starburst amine compounds, polyaniline, and polythiophene, metal oxide films, and a mixture of a plurality of these materials. In addition, the hole injection layer is not necessarily required when sufficient hole injection property can be obtained without the hole injection layer.

正孔輸送層を形成する正孔輸送材料としては、トリフェニルジアミン誘導体、ポリフィリル誘導体、スチルベン誘導体等の低分子化合物等が挙げられるが、これらに限定されるものではない。   Examples of the hole transport material forming the hole transport layer include, but are not limited to, low molecular compounds such as triphenyldiamine derivatives, polyphyllyl derivatives, and stilbene derivatives.

有機発光層としては、単一の材料で所望の発光を得る材料、或いはホスト材料にゲスト材料をドープしたものが用いられる。ホスト材料、ゲスト材料を同時に真空蒸着し、それぞれの蒸着レートを調整することで任意のドープ濃度の有機発光層が得られる。このとき発光色に対応し、有機発光層の材料、或いは有機発光層を構成するホスト/ゲストの組み合わせを変え、それぞれの有機EL素子で任意の発光を得ることができる。   As the organic light emitting layer, a material that obtains desired light emission with a single material or a host material doped with a guest material is used. An organic light-emitting layer having an arbitrary dope concentration can be obtained by simultaneously vacuum-depositing a host material and a guest material and adjusting the respective deposition rates. At this time, it is possible to obtain arbitrary light emission by each organic EL element by changing the material of the organic light emitting layer or the host / guest combination constituting the organic light emitting layer corresponding to the emission color.

電子輸送層を形成する電子輸送材料としては、アルミキノリノール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、フェニルキノキサリン誘導体、シロール誘導体等が挙げられるが、これらに限定されるものではない。   Examples of the electron transport material for forming the electron transport layer include, but are not limited to, an aluminum quinolinol derivative, an oxadiazole derivative, a triazole derivative, a phenylquinoxaline derivative, and a silole derivative.

電子注入層としては、アルミキノリノール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、フェニルキノキサリン誘導体、シロール誘導体等、及びこれらのものをホストとし、ゲスト材料をドープしたものが挙げられる。しかし、これらに限定されるものではない。   Examples of the electron injection layer include an aluminum quinolinol derivative, an oxadiazole derivative, a triazole derivative, a phenylquinoxaline derivative, a silole derivative, and the like, and those doped with a guest material. However, it is not limited to these.

これら有機発光層を含めた各有機層は蒸着法等によって形成されることが好ましく、特に有機発光層は形成時にマスクを用いることによって、任意の位置に形成される。   Each organic layer including these organic light emitting layers is preferably formed by vapor deposition or the like. In particular, the organic light emitting layer is formed at an arbitrary position by using a mask at the time of formation.

上部電極6としては、適度な導電性をもつならば何を用いても良い。下部電極2と同様な材料を用いることができる。   Any material may be used as the upper electrode 6 as long as it has appropriate conductivity. A material similar to that of the lower electrode 2 can be used.

このような積層体である素子上に、空気中の水分、酸素等から遮断する目的でキャップを設けても良い。発光を基板と反対側から取り出す場合には、キャップは透光性のものが良く、ガラス等が用いられる。また、前記キャップと、素子との間に空隙を設け、乾燥剤等を配置しても良い。   A cap may be provided on the element which is such a laminated body for the purpose of shielding from moisture, oxygen, etc. in the air. When light emission is taken out from the side opposite to the substrate, the cap is preferably translucent and glass or the like is used. Further, a gap may be provided between the cap and the element, and a desiccant or the like may be disposed.

空気中の水分、酸素等から素子を保護する別な方法として、素子表面に保護膜を形成しても良い。その具体的な材料としては、SiN、SiO、SiON等の無機膜や高分子膜、及びそれらの積層膜等が用いられるが、水分や酸素を遮断可能で且つ透明な材料が良い。   As another method for protecting the element from moisture, oxygen, etc. in the air, a protective film may be formed on the element surface. Specific examples of the material include inorganic films such as SiN, SiO, and SiON, polymer films, and laminated films thereof. A transparent material that can block moisture and oxygen is preferable.

以下、実施例により本発明について更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

<実施例1>
厚さ1mmのガラス上に、公知のリソグラフィ技術を用いて、100×100画素のアクティブ素子及び下部電極を形成する(不図示)。このとき、下部電極としては厚さ100nmのAl電極を用いる。さらに、Al電極上に、画素を囲むように高さ1μmの素子分離膜を形成する。素子分離膜には感光性アクリル樹脂を用い、公知のリソグラフィ技術を用いて所望の形状に形成する。素子分離膜のテーパー角度は60度である。
<Example 1>
An active element and a lower electrode of 100 × 100 pixels are formed on a glass with a thickness of 1 mm using a known lithography technique (not shown). At this time, an Al electrode having a thickness of 100 nm is used as the lower electrode. Further, an element isolation film having a height of 1 μm is formed on the Al electrode so as to surround the pixel. A photosensitive acrylic resin is used for the element isolation film, and the element isolation film is formed into a desired shape using a known lithography technique. The taper angle of the element isolation film is 60 degrees.

下部電極及び素子分離膜上に、スパッタ法を用いてITOからなる電荷注入層を膜厚5nmで形成する。この際、表示領域以外にはマスクを用いて成膜されないようにする。   A charge injection layer made of ITO is formed with a film thickness of 5 nm on the lower electrode and the element isolation film by sputtering. At this time, no film is formed using a mask outside the display area.

有機層の成膜は、真空蒸着法を用いて、1E−4Paの真空度のもとで行う。本実施例で用いる各材料の化学構造を下記化1に示す。   The organic layer is formed using a vacuum evaporation method under a vacuum degree of 1E-4 Pa. The chemical structure of each material used in this example is shown in the following chemical formula 1.

Figure 2009009708
Figure 2009009708

正孔輸送層(HT−1)を蒸着レート0.3nm/secで膜厚20nmに成膜する。その後、有機発光層(EM―1+EM−2)をEM―1の蒸着レート0.087nm/sec、EM−2の蒸着レート0.013nm/secとなるようにレートを調整し共蒸着を行い、20nmの膜厚で成膜する。これに続いて、電子輸送層(ET−1)を蒸着レート0.3nm/secで膜厚10nmに成膜する。さらに、電子注入層(ET−1+Cs2CO3)は、ET−1の蒸着レート0.3nm/secに対して、Cs2CO3のドープ濃度が0.65vol%となるようにレートを調整し、40nmの膜厚で共蒸着する。 A hole transport layer (HT-1) is formed to a thickness of 20 nm at a deposition rate of 0.3 nm / sec. Thereafter, the organic light emitting layer (EM-1 + EM-2) was co-deposited by adjusting the rate so that the deposition rate of EM-1 was 0.087 nm / sec and the deposition rate of EM-2 was 0.013 nm / sec. The film is formed with a film thickness. Subsequently, an electron transport layer (ET-1) is formed to a thickness of 10 nm at a deposition rate of 0.3 nm / sec. Further, the electron injection layer (ET-1 + Cs 2 CO 3 ) is adjusted so that the doping concentration of Cs 2 CO 3 is 0.65 vol% with respect to the deposition rate of 0.3 nm / sec of ET-1. Co-deposited with a film thickness of 40 nm.

スパッタ法により上部電極としてITOを60nmの膜厚で成膜し、吸湿剤を備えるガラス製のキャップで封止する。さらに、不図示の電源に接続し、有機ELアレイを得る。なお、ここで用いたEM−1とEM−2の共蒸着からなる有機発光層は青色発光を呈する。   ITO is formed into a film with a film thickness of 60 nm as an upper electrode by a sputtering method, and sealed with a glass cap provided with a hygroscopic agent. Further, it is connected to a power source (not shown) to obtain an organic EL array. In addition, the organic light emitting layer formed by co-evaporation of EM-1 and EM-2 used here exhibits blue light emission.

本実施例の有機ELアレイの電流密度10mA/cm2における輝度は155cd/m2、前記電流密度における駆動電圧は4.5V、CIE色度座標はx=0.14、y=0.08である。後述する比較例と比べて輝度及び青色の色純度が高く、かつ低電圧の駆動が可能である。また、画素間リークによる信号のクロストークもみられない。 The luminance of the organic EL array of this example at a current density of 10 mA / cm 2 is 155 cd / m 2 , the driving voltage at the current density is 4.5 V, the CIE chromaticity coordinates are x = 0.14, and y = 0.08. is there. Compared to a comparative example described later, the luminance and blue color purity are high, and low voltage driving is possible. Further, there is no signal crosstalk due to inter-pixel leakage.

<比較例1>
下部電極上にITOからなる電荷注入層を設けない以外は実施例1と同様にして有機ELアレイを得る。
<Comparative Example 1>
An organic EL array is obtained in the same manner as in Example 1 except that the charge injection layer made of ITO is not provided on the lower electrode.

本比較例の素子を駆動させると、駆動電圧が10Vであり、実施例1の素子と比べて駆動電圧が大幅に高い。   When the device of this comparative example is driven, the drive voltage is 10 V, which is significantly higher than that of the device of Example 1.

<比較例2>
下部電極上に膜厚20nmのITO薄膜を成膜し、下部電極と同様にパターニングし、その後素子分離膜を形成することと、正孔輸送層の膜厚を5nmとすること以外は実施例1と同様にして、有機ELアレイを得る。
<Comparative Example 2>
Example 1 except that an ITO thin film having a thickness of 20 nm is formed on the lower electrode, patterned in the same manner as the lower electrode, and thereafter an element isolation film is formed, and the thickness of the hole transport layer is 5 nm. In the same manner as above, an organic EL array is obtained.

本比較例の有機ELアレイを駆動させると、電流密度10mA/cm2における輝度は100cd/m2、前記電流密度における駆動電圧は4.5V、CIE色度座標はx=0.14、y=0.09である。実施例1の有機ELアレイに比べて青の色純度がやや低く、かつ輝度も低い。 When the organic EL array of this comparative example is driven, the luminance at a current density of 10 mA / cm 2 is 100 cd / m 2 , the driving voltage at the current density is 4.5 V, the CIE chromaticity coordinates are x = 0.14, y = 0.09. Compared to the organic EL array of Example 1, the blue color purity is slightly lower and the luminance is also lower.

本発明の有機ELアレイは、ディスプレイとして適用可能である。例えばデジタルカメラの画面やファインダー画面、或いは携帯電話の画面や複写機等のプリンタの操作画面や、テレビ、パソコン用ディスプレイ、車載パネル等として適用可能である。   The organic EL array of the present invention can be applied as a display. For example, the present invention can be applied to a screen of a digital camera, a finder screen, a screen of a mobile phone, an operation screen of a printer such as a copying machine, a television, a display for a personal computer, or a vehicle-mounted panel.

本発明の一実施形態の有機ELアレイの概略を説明する断面図である。It is sectional drawing explaining the outline of the organic electroluminescent array of one Embodiment of this invention. 本発明を説明するための概念図である。It is a conceptual diagram for demonstrating this invention.

符号の説明Explanation of symbols

1 基板
2 下部電極
3 素子分離膜
4 電荷注入層
4a 下部電極上の電荷注入層
4b 素子分離膜のテーパー部上の電荷注入層
5 有機層
6 上部電極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower electrode 3 Element isolation film 4 Charge injection layer 4a Charge injection layer 4b on lower electrode Charge injection layer 5 on taper part of element isolation film Organic layer 6 Upper electrode

Claims (6)

基板と、前記基板の上にあり、少なくとも一方が画素ごとに分割された下部電極及び上部電極と、前記上部電極と下部電極との間に挟まれ、有機発光層を少なくとも含む有機層と、前記画素の周囲に配置される素子分離膜と、前記下部電極と有機層との間に導電体又は半導体からなる電荷注入層とを備え、複数の画素からなる有機ELアレイにおいて、
前記電荷注入層は前記下部電極及び前記素子分離膜を含む表示領域全面に形成されており、前記素子分離膜のテーパー部に、前記電荷注入層の高抵抗領域が形成されていることを特徴とする有機ELアレイ。
A substrate, a lower electrode and an upper electrode at least one of which is divided for each pixel, the organic layer sandwiched between the upper electrode and the lower electrode, and including at least an organic light emitting layer; In an organic EL array comprising a plurality of pixels, comprising an element isolation film disposed around a pixel, and a charge injection layer made of a conductor or a semiconductor between the lower electrode and the organic layer,
The charge injection layer is formed over the entire display region including the lower electrode and the element isolation film, and a high resistance region of the charge injection layer is formed in a tapered portion of the element isolation film. An organic EL array.
前記高抵抗領域は、前記素子分離膜のテーパー部に形成された前記電荷注入層が島状構造を有する不連続膜からなることを特徴とする請求項1に記載の有機ELアレイ。   2. The organic EL array according to claim 1, wherein the high resistance region is formed of a discontinuous film in which the charge injection layer formed in the tapered portion of the element isolation film has an island-like structure. 前記電荷注入層の膜厚は0.1nm以上10nm以下であり、前記電荷注入層のテーパー部の角度は45度以上90度以下であることを特徴とする請求項1又は請求項2に記載の有機ELアレイ。   The film thickness of the charge injection layer is 0.1 nm or more and 10 nm or less, and the angle of the tapered portion of the charge injection layer is 45 degrees or more and 90 degrees or less. Organic EL array. 前記電荷注入層の膜厚は2nm以上8nm以下であり、前記電荷注入層のテーパー部の角度は60度以上90度以下であることを特徴とする請求項1又は請求項2に記載の有機ELアレイ。   3. The organic EL according to claim 1, wherein a thickness of the charge injection layer is 2 nm or more and 8 nm or less, and an angle of a taper portion of the charge injection layer is 60 degrees or more and 90 degrees or less. array. 前記上部電極の膜厚は20nm以上であることを特徴とする請求項1乃至請求項4のいずれか1項に記載の有機ELアレイ。   The organic EL array according to claim 1, wherein the upper electrode has a thickness of 20 nm or more. 前記電荷注入層が酸化インジウム錫であることを特徴とする請求項1乃至請求項5のいずれか1項に記載の有機ELアレイ。   The organic EL array according to any one of claims 1 to 5, wherein the charge injection layer is indium tin oxide.
JP2007167193A 2007-06-26 2007-06-26 Organic el array Withdrawn JP2009009708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167193A JP2009009708A (en) 2007-06-26 2007-06-26 Organic el array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167193A JP2009009708A (en) 2007-06-26 2007-06-26 Organic el array

Publications (1)

Publication Number Publication Date
JP2009009708A true JP2009009708A (en) 2009-01-15

Family

ID=40324609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167193A Withdrawn JP2009009708A (en) 2007-06-26 2007-06-26 Organic el array

Country Status (1)

Country Link
JP (1) JP2009009708A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109877A1 (en) * 2009-03-25 2010-09-30 凸版印刷株式会社 Organic electroluminescent device, method for manufacturing organic electroluminescent device, image display device, and method for manufacturing image display device
JP2010287319A (en) * 2009-06-09 2010-12-24 Toppan Printing Co Ltd Structure and its manufacturing method of organic el display
JP2017538282A (en) * 2014-09-30 2017-12-21 ノヴァレッド ゲーエムベーハー Active OLED display, method of operating active OLED display, and compound
WO2022154400A1 (en) * 2021-01-15 2022-07-21 삼성디스플레이 주식회사 Display device and display device manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109877A1 (en) * 2009-03-25 2010-09-30 凸版印刷株式会社 Organic electroluminescent device, method for manufacturing organic electroluminescent device, image display device, and method for manufacturing image display device
US8772762B2 (en) 2009-03-25 2014-07-08 Toppan Printing Co., Ltd. Organic electroluminescent device, method for manufacturing organic electroluminescent device, image display device, and method for manufacturing image display device
JP5708482B2 (en) * 2009-03-25 2015-04-30 凸版印刷株式会社 Organic electroluminescent device and method of manufacturing organic electroluminescent device
JP2010287319A (en) * 2009-06-09 2010-12-24 Toppan Printing Co Ltd Structure and its manufacturing method of organic el display
JP2017538282A (en) * 2014-09-30 2017-12-21 ノヴァレッド ゲーエムベーハー Active OLED display, method of operating active OLED display, and compound
WO2022154400A1 (en) * 2021-01-15 2022-07-21 삼성디스플레이 주식회사 Display device and display device manufacturing method
US11917863B2 (en) 2021-01-15 2024-02-27 Samsung Display Co., Ltd. Display device and method of providing the same

Similar Documents

Publication Publication Date Title
US11778869B2 (en) Display unit and electronic apparatus including functional layer with light-emitting layer and hole injection layer
KR102227455B1 (en) Organic light emitting display device and method for manufacturing the same
TWI740078B (en) Organic light emitting diode display
US9356080B2 (en) Organic EL display device and electronic apparatus
US8901563B2 (en) Organic light-emitting display device and method of manufacturing the same
US8008857B2 (en) Organic light emitting display with reflective electrode
JP2004111369A (en) Organic electroluminescent display device and its manufacturing method
JP2004252406A (en) Display panel, electronic equipment having the panel and method of manufacturing the panel
JP2008124316A (en) Organic el display
KR101084247B1 (en) Organic light emitting diode display
WO2016184265A1 (en) Display substrate and production method and driving method therefor, and display device
TW201222915A (en) Electroluminescent element, display device and lighting device
KR101383454B1 (en) Light emitting device
KR101820166B1 (en) White organic light emitting diode display device and method of fabricating the same
KR20140084603A (en) Dual sided emission type Organic electro luminescent device
JP2004071365A (en) Organic light emitting display device
JP2009009708A (en) Organic el array
KR20100137272A (en) Organic light emitting display device and method for fabricating the same
JP2010141292A (en) Organic light-emitting display device
KR101383490B1 (en) Light emitting device
WO2010067861A1 (en) Organic electroluminescent element, display device, and lighting device
JP2008108533A (en) Organic el display device
KR101587822B1 (en) Organic light emitting diode display device and fabrication method of the same
KR102158987B1 (en) Organic light emitting diode display device
KR101901350B1 (en) Organic light emitting display device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907