JP2009008476A - Hydrogen gas sensor and its manufacturing method - Google Patents

Hydrogen gas sensor and its manufacturing method Download PDF

Info

Publication number
JP2009008476A
JP2009008476A JP2007168899A JP2007168899A JP2009008476A JP 2009008476 A JP2009008476 A JP 2009008476A JP 2007168899 A JP2007168899 A JP 2007168899A JP 2007168899 A JP2007168899 A JP 2007168899A JP 2009008476 A JP2009008476 A JP 2009008476A
Authority
JP
Japan
Prior art keywords
hydrogen gas
gas sensor
cnt
catalyst metal
carbon nanomaterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007168899A
Other languages
Japanese (ja)
Other versions
JP4953306B2 (en
Inventor
Junya Suehiro
純也 末廣
Tatsuo Okada
龍雄 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2007168899A priority Critical patent/JP4953306B2/en
Publication of JP2009008476A publication Critical patent/JP2009008476A/en
Application granted granted Critical
Publication of JP4953306B2 publication Critical patent/JP4953306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen gas sensor responding to a hydrogen gas at the normal temperature with high sensitivity at a high speed, enhanced in reliability, low in cost, used repeatedly and easy to manufacture, and to provide its manufacturing method. <P>SOLUTION: The hydrogen gas sensor 1 includes microelectrodes 2a and 2b, a sensor element which subjects CNT to dielectric migration to crosslink it to the microelectrodes 2a and 2b and Pd particles for modifying the surface of CNT to dissociate and adsorb the hydrogen gas and constituted so as to measure a change in the conductance or resistance across the microelectrodes 2a and 2b to detect the concentration of the hydrogen gas. The Pd particles for modifying the surface of CNT contain Pd particles precipitated by the oxidation and reduction reaction of CNT and Pd when CNT is immersed in a solution of a Pd salt or complex and Pd particles precipitated by the oxidation and reduction reaction of Pd and an electrode material superposed on the oxidation and reduction reaction in the solution to be brought about. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、常温で高感度、高速に応答し、安価で消費電力が低い水素ガスセンサと、これを容易に製造できる水素ガスセンサ製造方法に関する。   The present invention relates to a hydrogen gas sensor that responds with high sensitivity and high speed at room temperature, is inexpensive and has low power consumption, and a hydrogen gas sensor manufacturing method capable of easily manufacturing the hydrogen gas sensor.

近年、燃料電池自動車、家庭用燃料電池発電装置などの開発が精力的に行われ、今後、水素ガスを供給する水素ガスプラント、水素ステーション等のインフラ整備も進んでいくと予想されている。この燃料としての水素ガスは、環境に与える負荷が小さいクリーンなエネルギーとして優れた特徴を有している。反面、水素ガスは常温常圧の空気中で濃度4%(下限濃度)以上になると急激に反応が進むことも知られている。従って、水素ガスの普及を支えるには、水素ガスが漏洩したときごく微量であってもこれを高感度、迅速に検知できる水素ガスセンサの開発が不可欠である。   In recent years, vigorous development of fuel cell vehicles, household fuel cell power generation devices, etc. is expected, and it is expected that infrastructure development of hydrogen gas plants, hydrogen stations, etc. for supplying hydrogen gas will proceed in the future. This hydrogen gas as a fuel has an excellent feature as clean energy with a small environmental load. On the other hand, it is also known that the reaction of hydrogen gas rapidly proceeds when the concentration becomes 4% (lower concentration) or higher in air at normal temperature and pressure. Therefore, in order to support the spread of hydrogen gas, it is indispensable to develop a hydrogen gas sensor that can detect even a very small amount of hydrogen gas with high sensitivity and speed.

さて、水素ガスセンサの研究は古くから行われており、その多くはパラジウム(Pd、以下Pd)や白金(Pt、以下Pt)の水素分子を解離させるという触媒作用を利用したものである。代表的な水素ガスセンサの1つとして、触媒燃焼(触媒表面で吸着解離した水素原子と空気に由来する酸素原子が反応し水分子を生成する)による温度上昇に基づいて水素を検出する接触燃焼式センサや、直接界面電位を測定するFET型のガスセンサがある(例えば、特許文献1)。特許文献1のガスセンサはMISFET(金属−絶縁ゲート型FET)を使ったものであって、ゲート電極としてPdを用い、Pd−SiO2−Si構造を有するものである。この水素ガスセンサでは、検出すべき水素ガスがPd表面で吸着、解離されて原子状態のHとなり、拡散によってSiO2界面に達して界面電位を発生し、この結果FETの特性パラメータである閾値電圧が変化し、この閾値電圧の変化を測定することによって水素ガスの濃度を検出するものである。   Hydrogen gas sensors have been researched for a long time, and many of them utilize a catalytic action of dissociating hydrogen molecules of palladium (Pd, hereinafter Pd) and platinum (Pt, hereinafter Pt). One of the typical hydrogen gas sensors is a catalytic combustion type that detects hydrogen based on temperature rise due to catalytic combustion (hydrogen atoms adsorbed and dissociated on the catalyst surface and oxygen atoms derived from air react to produce water molecules). There are sensors and FET type gas sensors that directly measure the interface potential (for example, Patent Document 1). The gas sensor of Patent Document 1 uses a MISFET (metal-insulated gate type FET), uses Pd as a gate electrode, and has a Pd—SiO 2 —Si structure. In this hydrogen gas sensor, the hydrogen gas to be detected is adsorbed and dissociated on the surface of Pd and becomes H in an atomic state, and reaches the SiO2 interface by diffusion and generates an interface potential. As a result, the threshold voltage that is a characteristic parameter of the FET changes. The concentration of hydrogen gas is detected by measuring the change in threshold voltage.

今後予想される水素ガス利用の普及状態を考えると、水素ガスセンサに求められる能力は、上記下限濃度の1/400〜1/40程度と評価できる0.01%〜0.1%の濃度範囲の水素ガスを選択的且つ定量的に検出できることが必要であって、従来の接触燃焼式センサや、FET型ガスセンサ等の水素ガスセンサでは限界(1%程度)があり、検出結果のバラツキも大きかった。   Considering the expected widespread use of hydrogen gas in the future, the capacity required for hydrogen gas sensors is in the concentration range of 0.01% to 0.1%, which can be evaluated as about 1/400 to 1/40 of the above lower limit concentration. Hydrogen gas must be able to be detected selectively and quantitatively, and conventional catalytic combustion type sensors and hydrogen gas sensors such as FET type gas sensors have limitations (about 1%), and the detection results vary greatly.

ところで、近年カーボンナノチューブ(以下、CNT)を使ってガスを検出するガスセンサ、CNTセンサが注目されている。このCNTセンサは、ガス分子が半導体CNTに吸着すると両者間で電荷移動を起こし、半導体CNTの電気的特性(コンダクタンス、キャパシタンス)が変化するため、この現象を利用してガス検知するものである。例えば、アンモニアガスのような還元性ガスの場合、吸着したガス分子がCNTに電子を与え、p型半導体であるCNTのキャリア(正孔)密度が減少し、CNTのコンダクタンスが低下する。このコンダクタンスの変化をみることによってガスを検知することができる。なお、このようなCNTを使ったCNTセンサについて後述する特許文献3参照。   By the way, in recent years, a gas sensor and a CNT sensor for detecting gas using carbon nanotubes (hereinafter referred to as CNT) have attracted attention. In this CNT sensor, when gas molecules are adsorbed on the semiconductor CNT, charge transfer occurs between them, and the electrical characteristics (conductance, capacitance) of the semiconductor CNT change. Therefore, this phenomenon is used to detect gas. For example, in the case of a reducing gas such as ammonia gas, the adsorbed gas molecules give electrons to the CNT, the carrier (hole) density of the CNT that is a p-type semiconductor is reduced, and the conductance of the CNT is lowered. Gas can be detected by observing this change in conductance. For a CNT sensor using such a CNT, see Patent Document 3 described later.

ここで、水素ガスは還元性ガスではあるが、還元性が低く、CNT単体による水素ガス検出は難しく、還元性を高めるためには水素分子を原子に解離する必要があり、PdやPtなどの触媒金属でCNTを修飾する必要がある。このCNTに対する触媒金属による修飾する方法は既にいくつか提案されており、大別して物理的手法と化学的手法の2つがある。物理的手法の代表的なものとしては電子ビーム蒸着法やスパッタリング法、化学的手法の代表的なものとしては無電解めっき法(非特許文献1参照)などがある。   Here, although hydrogen gas is a reducing gas, its reducibility is low, it is difficult to detect hydrogen gas by CNT alone, and in order to improve reducibility, it is necessary to dissociate hydrogen molecules into atoms, such as Pd and Pt. It is necessary to modify the CNT with a catalytic metal. Several methods for modifying the CNT with a catalytic metal have already been proposed, and there are roughly two methods, a physical method and a chemical method. Typical physical methods include electron beam evaporation and sputtering, and typical chemical methods include electroless plating (see Non-Patent Document 1).

この化学的手法の中で、PdやPtナノ粒子とカーボンとの酸化還元反応を利用する方法がある(非特許文献2参照)。例えばSi基板上にCVD成長させたCNTをAuやPtの金属塩溶液に浸漬するだけで、CNT表面にこれら金属のナノ粒子が析出することが報告されている。この手法は、その他にもCu、Pd、Agなどイオン化傾向が小さい金属のナノ粒子生成にも適用可能である(非特許文献3参照)。しかし、これらはいずれもPdやPtナノ粒子からこの金属のナノワイヤを作製するためのテンプレート(鋳型)として析出するものであって、CNTセンサとしてどのような析出形態、粒子分布に修飾するのか、まったく開示されていない。センサが高感度に機能するにはPdやPtナノ粒子の修飾状態がセンサ用に適したように十分コントロールされる必要がある。非特許文献2、3の開示はセンサ製造のためには役に立たない。   Among these chemical methods, there is a method using an oxidation-reduction reaction between Pd or Pt nanoparticles and carbon (see Non-Patent Document 2). For example, it has been reported that nanoparticles of these metals are deposited on the surface of a CNT just by immersing CNT grown on a Si substrate in a metal salt solution of Au or Pt. This technique can also be applied to the production of metal nanoparticles having a small ionization tendency such as Cu, Pd, and Ag (see Non-Patent Document 3). However, these are all deposited as templates for producing this metal nanowire from Pd and Pt nanoparticles, and what kind of precipitation forms and particle distributions are modified as CNT sensors, Not disclosed. In order for the sensor to function with high sensitivity, it is necessary to sufficiently control the modification state of Pd and Pt nanoparticles so as to be suitable for the sensor. The disclosures of Non-Patent Documents 2 and 3 are not useful for sensor manufacture.

同様に、炭素原子を主成分とするクラスターの炭素原子に、例えばCNTに、少なくとも一つのプロトン(H+)解離性の基を導入し、得られたクラスター誘導体によって構成されたプロトン伝導体が2つの電極の間に挟持される水素ガスセンサも提案されている(特許文献2)。敏速に正常作動し、かつ幅広い温度領域において使用可能で、低消費電力とガス選択性を実現することができるものであり、このような水素ガスセンサを用いて水素濃度を測定する燃料電池を提供するものである。 Similarly, at least one proton (H + ) dissociable group is introduced into, for example, CNT into a carbon atom of a cluster mainly composed of carbon atoms, and 2 proton conductors constituted by the obtained cluster derivative are obtained. A hydrogen gas sensor sandwiched between two electrodes has also been proposed (Patent Document 2). Provided is a fuel cell that can operate normally in a rapid manner, can be used in a wide temperature range, can achieve low power consumption and gas selectivity, and measures the hydrogen concentration using such a hydrogen gas sensor. Is.

しかし、加水分解でCNTにプロトン(H+)解離性の基(OH基)を導入するのは、考え方としてはともかく、現実的には困難であり、強酸で酸処理(OSOH基)するか、プラズマ処理するしか方法がないものであった。また、仮にOH基を導入することができたとしても、難溶解性のCNTに親水性の性格が付与され、加水分解時にCNTの繊維がバラバラとなり、本来の目的であるセンサ製造には使用が難しくなる可能性を秘めている。 However, it is actually difficult to introduce a proton (H + ) dissociable group (OH group) into CNTs by hydrolysis, and it is practically difficult to perform acid treatment (OSO 3 H group) with a strong acid. Or there was only a method of plasma processing. Even if OH groups can be introduced, hydrophilic properties are imparted to refractory CNTs, and the fibers of the CNTs break apart during hydrolysis, and are used for sensor production, which is the original purpose. It has the potential to be difficult.

さて、以上従来のCNTの修飾方法について説明したが、修飾したCNTをセンサとして利用するためにはこれらを電極間に架橋し、かつCNTと電極間の良好な電気的接触を得る必要がある。このCNTを電極間に架橋したセンサ素子の製造方法には次のような方法があることも開示されている(特許文献3参照)。第1の方法は、一対の電極間にCVD法によってセンサ電極上で多数のCNTを成長させる方法であり、第2の方法は、予め生成した多数のCNTを溶媒に分散して電極間に塗布、乾燥させてランダムに集積する方法である。しかし、これらの方法は、いずれもCNTを自在にコントロールできない方法であり、電極とCNT間に良好な電気的接続を実現できず、CNTを修飾するのに適した架橋とにはならなかった。   The conventional method for modifying CNTs has been described above. In order to use the modified CNTs as a sensor, it is necessary to crosslink between the electrodes and obtain good electrical contact between the CNTs and the electrodes. It is also disclosed that there is the following method for manufacturing a sensor element in which CNTs are cross-linked between electrodes (see Patent Document 3). The first method is a method in which a large number of CNTs are grown on the sensor electrode by a CVD method between a pair of electrodes, and the second method is a method in which a large number of CNTs produced in advance are dispersed in a solvent and applied between the electrodes. It is a method of drying and accumulating at random. However, none of these methods is a method in which CNT can be freely controlled, and a good electrical connection cannot be realized between the electrode and the CNT, and it has not become a bridge suitable for modifying the CNT.

さて、このようなマイクロサイズの微小物体を操作する方法として、本出願の発明者の1人は、微小物体に不平等電界を印加して分極させ、この分極した微小物体を誘電泳動力で操作してマイクロ電極に捕集するDEPIM(Dielectrophoretic Impedance Measurement Method)法を研究してきた。そして、このDEPIM法を使って上述したようにCNTガスセンサを提案している(特許文献4参照)。この方法を使うことで、ナノサイズのCNTを自在に操ることができ、良好な電気的接続が可能になり、常温でppmレベルのNO、NHガスなどを精度良く検出することが可能になった。 As a method of manipulating such a micro-sized micro object, one of the inventors of the present application applies an unequal electric field to the micro object to polarize it, and manipulates the polarized micro object with dielectrophoretic force. Then, we have studied the DEPIM (Dielectrophoretic Impedance Measurement Method) method of collecting on the microelectrode. And the CNT gas sensor is proposed as mentioned above using this DEPIM method (refer patent document 4). By using this method, nano-sized CNTs can be manipulated freely, good electrical connection becomes possible, and it is possible to accurately detect NO 2 and NH 3 gas at ppm level at room temperature. became.

なお、CNTを利用するものではないが、このほか本発明者らはDEPIM法により、PdやPtなどの金属微粒子を誘電泳動で集積して電極間に架橋したガスセンサも提案している(特願2006−228656)。これはPdやPtなどの金属微粒子の水素吸蔵作用を利用するものである。しかし、高価なPdやPtなどの金属を水素吸蔵金属として架橋するガスセンサは、CNTを使ったガスセンサと比較するとコストパフォーマンスが劣る。また、水素ガスに一度応答すると、その後で水素を含まない空気などのガスでリフレッシュしてもそれが記憶され、繰り返して使用することが難しかった。今後予想される水素ガス利用の普及状態を考えると、使い捨てでなく、繰り返して利用できることが必要である。   Although not using CNT, the present inventors have also proposed a gas sensor in which metal fine particles such as Pd and Pt are integrated by dielectrophoresis and crosslinked between electrodes by the DEPIM method (Japanese Patent Application). 2006-228656). This utilizes the hydrogen occlusion action of metal fine particles such as Pd and Pt. However, a gas sensor that bridges an expensive metal such as Pd or Pt as a hydrogen storage metal is inferior in cost performance as compared with a gas sensor using CNT. Further, once responding to hydrogen gas, even if it is refreshed with a gas such as air that does not contain hydrogen after that, it is memorized and difficult to use repeatedly. Considering the expected widespread use of hydrogen gas in the future, it should be reusable and not disposable.

特開平9−159633号公報JP-A-9-159633 特開2006−156410号公報JP 2006-156410 A 特開2006−329802号公報JP 2006-329802 A 特開2003−227808号公報JP 2003-227808 A M.K.Kumar他,“Nanostructured Pt functionalizedmultiwalled carbon nanotube based hydrogen sensor”,J.Phys.Chem.B,2006年,vol.110,p.1129−p.11298M.K. Kumar et al., “Nanostructured Pt functionalized multiwalled carbon nanotube based hydrogen sensor”, J. Phys. Chem. B, 2006, vol. 110, p. 1129-p. 11298 H.C.Choi他,“Spontaneos reduction of metal ions on thesidewalls of carbon nanotubes”,J.Am Chem.Soc.,2002年,vol.124,p.9058−p.9059H.C. Choi et al., “Spontaneos reduction of metal ions on the sidewalls of carbon nanotubes”, J. Am Chem. Soc., 2002, vol. 124, p. 9058-p. 9059 B.Xue他,“Growth of Pd,Pt,Ag and Au nanoparticles oncarbon nanotubes”,J.Mater Chem.,2001年,vol.11,p.2378−p.2381B. Xue et al., “Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes”, J. Mater Chem., 2001, vol. 11, p. 2378-p. 2381

以上説明したように、接触燃焼式センサやFET型ガスセンサは、正確な濃度測定を行うには精度が悪く、製造した個体間でバラツキが多く、数十℃〜数百℃に加熱する必要があり、水素選択性、応答性も十分ではなかった。水素ガスを扱う上で問題も残る。   As explained above, contact combustion type sensors and FET type gas sensors have poor accuracy for accurate concentration measurement, and vary widely between manufactured individuals, and need to be heated to several tens to several hundreds of degrees centigrade. In addition, hydrogen selectivity and responsiveness were not sufficient. Problems remain in handling hydrogen gas.

CNTセンサも、単体で水素ガスを検出することは難しく、どうしても触媒金属による修飾が必要になる。また、塗布などの結果任せの処理をしてCNTを集積する必要があり、簡単に水素ガスセンサを製造することはできなかった。このようにCNTの集積結果の良好性、修飾状態の良好性を向上させるためのコントロールが難しく、今のところ実用性ある水素ガスセンサの製造方法は確立されていない。特許文献2のように、プロトン伝導体を形成することも提案されているが、製造は簡単ではなく、CNTの架橋そのものが崩れてセンサの製造を困難にし感度を低下させるおそれがある。   It is difficult for a CNT sensor to detect hydrogen gas alone, and it is absolutely necessary to modify it with a catalytic metal. In addition, it is necessary to accumulate CNTs after processing such as coating, and it has not been possible to easily manufacture a hydrogen gas sensor. As described above, it is difficult to control to improve the CNT accumulation result and the modified state, and a practical method for producing a hydrogen gas sensor has not been established so far. It has been proposed to form a proton conductor as in Patent Document 2, but the manufacture is not simple, and the cross-linking itself of the CNTs may collapse, making it difficult to manufacture the sensor and reducing the sensitivity.

非特許文献3,4の触媒金属の修飾技術は、いずれもPdやPtナノ粒子からこれら金属のナノワイヤを作製するためのテンプレート(鋳型)としての析出であって、CNTセンサとしてどのような析出の仕方、粒子の分布状況にコントロールするのか、まったく考慮されていない。というのは、テンプレートは最終的には除去され、金属のワイヤになるためである。水素ガスセンサにおいて問題なのは、触媒金属による修飾状態が水素ガスセンサに適するように十分コントロールされることであり、非特許文献2、3の技術はこうした目的がなく、水素ガスセンサ製造のためには示唆を与えない。   The catalyst metal modification techniques of Non-Patent Documents 3 and 4 are all depositions as templates for producing nanowires of these metals from Pd and Pt nanoparticles, and what kind of deposition is necessary as a CNT sensor. It is not considered at all how to control the manner and distribution of particles. This is because the template is eventually removed and becomes a metal wire. The problem with the hydrogen gas sensor is that the modification state by the catalytic metal is sufficiently controlled so as to be suitable for the hydrogen gas sensor, and the techniques of Non-Patent Documents 2 and 3 do not have such a purpose and provide suggestions for the production of the hydrogen gas sensor. Absent.

そして、今後設置されるであろう水素ガスプラント、水素ガスステーションなどでは、離れた多数の検出点にそれぞれ水素ガスセンサを設置する可能性が高く、この場合バッテリー電源だけで長時間の検出動作をしなければならない。従って、水素ガスセンサとしては低温、低消費電力であることが求められる。そして、高価なPdやPtなどの触媒金属を使い捨てしないで、繰り返して使用することができ、感度、信頼性などを一挙に飛躍させた水素ガスセンサが望まれる。   In hydrogen gas plants and hydrogen gas stations that will be installed in the future, there is a high possibility that hydrogen gas sensors will be installed at a number of remote detection points. There must be. Accordingly, the hydrogen gas sensor is required to have low temperature and low power consumption. There is a demand for a hydrogen gas sensor that can be used repeatedly without throwing away expensive catalyst metals such as Pd and Pt, and that dramatically increases sensitivity, reliability, and the like.

以上説明した課題の中で1つヒントがある。本発明者の一人が既に提案したDEPIM法によれば、電極間に架橋するCNTの集積処理、またそのコントロールが容易なことである。この上にさらに水素ガスセンサの修飾に適した集積状態の開発を行い、PdやPtなどの触媒金属のナノ粒子を好適な修飾方法で析出させることができれば、高感度のCNT水素ガスセンサを簡単な装置と製造方法で作製することが可能になる。   There is one hint in the problems described above. According to the DEPIM method already proposed by one of the present inventors, it is easy to collect and control CNTs that cross-link between electrodes. On top of this, if an integrated state suitable for modification of the hydrogen gas sensor is further developed and nanoparticles of catalytic metals such as Pd and Pt can be deposited by a suitable modification method, a highly sensitive CNT hydrogen gas sensor can be a simple device. And can be manufactured by the manufacturing method.

そこで本発明は、水素ガスに対して、常温で高感度、高速に応答し、信頼性が高く、安価で繰り返し使用することができ、製造が容易な水素ガスセンサを提供することを目的とする。   Accordingly, an object of the present invention is to provide a hydrogen gas sensor that responds to hydrogen gas at room temperature with high sensitivity and high speed, has high reliability, can be used repeatedly at low cost, and is easy to manufacture.

また、本発明は、水素ガスに対して、常温で高感度、高速に応答し、信頼性が高く、安価で繰り返し使用することができ、製造が容易な水素ガスセンサ製造方法を提供することを目的とする。   Another object of the present invention is to provide a method for producing a hydrogen gas sensor that is highly sensitive to hydrogen gas at room temperature, responds at high speed, has high reliability, can be used repeatedly at low cost, and is easy to manufacture. And

本発明の水素ガスセンサは、カーボンナノ材料を誘電泳動して前記電極間に架橋したセンサ素子と、前記カーボンナノ材料の表面を修飾して水素ガスを解離、吸着する触媒金属体とを備え、前記電極間のコンダクタンスまたは抵抗の変化を測定することで水素ガス濃度を検出する水素ガスセンサであって、前記表面を修飾する触媒金属体が、触媒金属の塩若しくは錯体の溶液中に浸漬されたときのカーボンナノ材料と該触媒金属の酸化還元反応で析出する触媒金属粒子と、前記溶液の中で前記酸化還元反応と重畳して起こる前記触媒金属と電極材料の酸化還元反応に由来して析出した触媒金属粒子とを含むことを主要な特徴とする。   A hydrogen gas sensor of the present invention comprises a sensor element obtained by dielectrophoresis of a carbon nanomaterial and cross-linking between the electrodes, and a catalytic metal body that dissociates and adsorbs hydrogen gas by modifying the surface of the carbon nanomaterial, A hydrogen gas sensor for detecting a hydrogen gas concentration by measuring a change in conductance or resistance between electrodes, wherein the catalyst metal body for modifying the surface is immersed in a solution of a salt or complex of a catalyst metal. Catalyst nanoparticle and catalyst metal particles deposited by the oxidation-reduction reaction of the catalyst metal, and catalyst deposited from the oxidation-reduction reaction of the catalyst metal and the electrode material occurring in the solution superimposed on the oxidation-reduction reaction The main feature is that it contains metal particles.

また、本発明の水素ガスセンサ製造方法は、カーボンナノ材料を絶縁基板上に形成された一対の電極間で誘電泳動して架橋し、一旦乾燥後、電極材料よりイオン化傾向の小さな触媒金属の塩若しくは錯体の溶液に前記電極を浸漬し、析出する粒子状の触媒金属体によって前記カーボンナノ材料を修飾すると共に、前記電極材料と触媒金属の酸化還元反応を重畳して発生させ前記カーボンナノ材料の表面にこの酸化還元反応に由来する粒子状の触媒金属体を析出させることを主要な特徴とする。   In the method for producing a hydrogen gas sensor of the present invention, a carbon nanomaterial is dielectrophoretically cross-linked between a pair of electrodes formed on an insulating substrate, and once dried, a catalyst metal salt having a smaller ionization tendency than the electrode material or The electrode is immersed in a complex solution, and the carbon nanomaterial is modified with a particulate catalyst metal body that deposits, and a redox reaction between the electrode material and the catalyst metal is generated in an overlapping manner to generate a surface of the carbon nanomaterial. The main feature is that a particulate catalytic metal body derived from this redox reaction is precipitated.

本発明の水素ガスセンサとその製造方法によれば、水素ガスに対して、常温で高感度、高速に応答し、信頼性が高く、安価で繰り返し使用することができ、製造が容易な水素ガスセンサを提供することができる。   According to the hydrogen gas sensor and the manufacturing method thereof of the present invention, a hydrogen gas sensor that responds to hydrogen gas at room temperature with high sensitivity and high speed, has high reliability, can be used repeatedly at low cost, and is easy to manufacture. Can be provided.

本発明の第1の形態は、一対の電極と、カーボンナノ材料を誘電泳動して前記電極間に架橋したセンサ素子と、前記カーボンナノ材料の表面を修飾して水素ガスを解離、吸着する触媒金属体とを備え、前記電極間のコンダクタンスまたは抵抗の変化を測定することで水素ガス濃度を検出する水素ガスセンサであって、前記表面を修飾する触媒金属体が、触媒金属の塩若しくは錯体の溶液中に浸漬されたときのカーボンナノ材料と該触媒金属の酸化還元反応で析出する触媒金属粒子と、前記溶液の中で前記酸化還元反応と重畳して起こる前記触媒金属と電極材料の酸化還元反応に由来して析出した触媒金属粒子とを含むことを特徴とする水素ガスセンサである。この構成によって、触媒金属と、その塩若しくは錯体、電極材料、溶媒を選択し、誘電泳動の条件、浸漬時間等の条件を変えるだけで、水素ガスに対して、常温で高感度、高速に応答し、信頼性が高く、安価で繰り返し使用することができ、製造が容易な水素ガスセンサを提供することができる。   The first aspect of the present invention includes a pair of electrodes, a sensor element in which a carbon nanomaterial is dielectrophoretically crosslinked between the electrodes, and a catalyst that dissociates and adsorbs hydrogen gas by modifying the surface of the carbon nanomaterial. A hydrogen gas sensor for detecting a hydrogen gas concentration by measuring a change in conductance or resistance between the electrodes, wherein the catalyst metal body for modifying the surface is a solution of a catalyst metal salt or complex When the carbon nanomaterial is immersed in the catalyst, the catalyst metal particles precipitated by the oxidation-reduction reaction of the catalyst metal, and the oxidation-reduction reaction of the catalyst metal and the electrode material occurring in the solution in a superimposed manner with the oxidation-reduction reaction The hydrogen gas sensor is characterized in that it contains catalytic metal particles deposited from the above. With this configuration, the catalyst metal, its salt or complex, electrode material, and solvent can be selected, and the conditions such as dielectrophoresis and immersion time can be changed. In addition, it is possible to provide a hydrogen gas sensor that is highly reliable, inexpensive, can be repeatedly used, and is easy to manufacture.

本発明の第2の形態は、第1の形態に従属する形態であって、カーボンに対する触媒金属の原子数比が1%〜25%であることを特徴とする水素ガスセンサである。この構成によって、水素ガスに対して、常温できわめて高感度、高速に応答し、信頼性が高い水素ガスセンサを提供することができる。   According to a second aspect of the present invention, there is provided a hydrogen gas sensor according to the first aspect, wherein the atomic ratio of the catalytic metal to carbon is 1% to 25%. With this configuration, it is possible to provide a highly reliable hydrogen gas sensor that responds to hydrogen gas at room temperature with extremely high sensitivity and high speed.

本発明の第3の形態は、第1または第2の形態に従属する形態であって、溶液中に一対の電極を浸漬して陰極とし、別に浸漬した陽極との間で直流電圧を印加して陰極酸素還元反応させることを特徴とする水素ガスセンサである。この構成によって、触媒金属体を電気メッキによって確実に修飾することができる。   The third aspect of the present invention is a form subordinate to the first or second aspect, in which a pair of electrodes is immersed in a solution as a cathode, and a DC voltage is applied between the separately immersed anode. The hydrogen gas sensor is characterized in that a cathode oxygen reduction reaction is performed. With this configuration, the catalytic metal body can be reliably modified by electroplating.

本発明の第4の形態は、一対の電極と、カーボンナノ材料を誘電泳動して前記電極間に架橋したセンサ素子と、前記カーボンナノ材料表面を修飾して水素ガスを解離、吸着する触媒金属体とを備え、前記電極間のコンダクタンスまたは抵抗の変化を測定することで水素ガス濃度を検出する水素ガスセンサであって、電極の電極材料と前記カーボンナノ材料のイオン化傾向が触媒金属のそれよりも大きくなるように選択されたことを特徴とする水素ガスセンサであり、イオン化傾向を考慮するだけで、高感度、高速応答、高信頼性で、安価、繰り返し可能な水素ガスセンサを提供することができる。   According to a fourth aspect of the present invention, there is provided a pair of electrodes, a sensor element obtained by dielectrophoresis of a carbon nanomaterial and cross-linking between the electrodes, and a catalytic metal that modifies the surface of the carbon nanomaterial to dissociate and adsorb hydrogen gas. A hydrogen gas sensor for detecting a hydrogen gas concentration by measuring a change in conductance or resistance between the electrodes, wherein the ionization tendency of the electrode material of the electrode and the carbon nanomaterial is higher than that of the catalytic metal. It is a hydrogen gas sensor characterized by being selected to be large, and it is possible to provide a hydrogen gas sensor that is highly sensitive, fast response, highly reliable, inexpensive, and repeatable only by considering the ionization tendency.

本発明の第5の形態は、第1〜第4のいずれかの形態に従属する形態であって、溶液が、カーボンナノ材料の電極からの離脱力と物理吸着力を比較したとき、該物理吸着力の方が大きい溶媒に触媒金属の塩若しくは錯体を溶解した溶液であることを特徴とする水素ガスセンサである。この構成によって、カーボンナノ材料の架橋端近傍における電極からの剥離を容易に防ぐことができ、信頼性を向上させることができる。   The fifth aspect of the present invention is a form subordinate to any one of the first to fourth aspects, and when the solution compares the detachment force of the carbon nanomaterial from the electrode and the physical adsorption force, The hydrogen gas sensor is a solution in which a salt or complex of a catalytic metal is dissolved in a solvent having a higher adsorption power. With this configuration, peeling from the electrode in the vicinity of the bridging end of the carbon nanomaterial can be easily prevented, and the reliability can be improved.

本発明の第6の形態は、第1〜第5のいずれかの形態に従属する形態であって、電極間のコンダクタンスの変化がコンダクタンスの時間変化率であることを特徴とする水素ガスセンサである。この構成によって、水素濃度に比例するコンダクタンス時間変化率を使って正確な水素ガス濃度を定量することができる。   A sixth aspect of the present invention is a hydrogen gas sensor according to any one of the first to fifth aspects, wherein a change in conductance between the electrodes is a time change rate of conductance. . With this configuration, an accurate hydrogen gas concentration can be quantified using a conductance time change rate proportional to the hydrogen concentration.

本発明の第7の形態は、カーボンナノ材料を絶縁基板上に形成された一対の電極間で誘電泳動して架橋し、一旦乾燥後、電極材料よりイオン化傾向の小さな触媒金属の塩若しくは錯体の溶液に前記電極を浸漬し、析出する粒子状の触媒金属体によって前記カーボンナノ材料を修飾すると共に、前記電極材料と触媒金属の酸化還元反応を重畳して発生させ前記カーボンナノ材料の表面にこの酸化還元反応に由来する粒子状の触媒金属体を析出させることを特徴とする水素ガスセンサ製造方法である。この構成によって、触媒金属と、その塩若しくは錯体、電極材料、溶媒を選択し、誘電泳動の条件、浸漬時間等の条件を変えるだけで、常温で高感度、高速に応答し、信頼性が高く、安価で繰り返し使用することができ、製造が容易な水素ガスセンサを製造することができる。   According to a seventh aspect of the present invention, a carbon nanomaterial is dielectrophoretically cross-linked between a pair of electrodes formed on an insulating substrate, and once dried, a catalyst metal salt or complex having a smaller ionization tendency than the electrode material. The electrode is immersed in a solution, and the carbon nanomaterial is modified by a particulate catalyst metal body that deposits, and an oxidation-reduction reaction of the electrode material and the catalyst metal is generated in a superimposed manner on the surface of the carbon nanomaterial. A method for producing a hydrogen gas sensor, comprising depositing a particulate catalytic metal body derived from an oxidation-reduction reaction. With this configuration, just select the catalyst metal and its salt or complex, electrode material, solvent, change the conditions such as dielectrophoresis conditions, immersion time, etc., it responds with high sensitivity and high speed at room temperature, and has high reliability. Therefore, it is possible to manufacture a hydrogen gas sensor that can be used repeatedly at low cost and is easy to manufacture.

本発明の第8の形態は、第7の形態に従属する形態であって、カーボンに対する触媒金属の原子数比を1%〜25%にすることを特徴とする水素ガスセンサ製造方法である。この構成によって、常温できわめて高感度、高速に応答し、信頼性が高い水素ガスセンサを提供することができる。   An eighth form of the present invention is a form subordinate to the seventh form, and is a hydrogen gas sensor manufacturing method characterized in that the atomic ratio of the catalyst metal to carbon is 1% to 25%. With this configuration, it is possible to provide a highly reliable hydrogen gas sensor that responds with high sensitivity and high speed at room temperature.

本発明の第9の形態は、絶縁基板上に形成された一対の電極間にカーボンナノ材料を誘電泳動して架橋し、一旦乾燥後、前記カーボンナノ材料の前記電極からの離脱力と物理吸着力を比較したとき該物理吸着力の方が大きい溶媒に対して、前記電極材料よりイオン化傾向の小さな触媒金属の塩若しくは錯体を溶解し、この溶液に前記電極を浸漬し、析出する粒子状の触媒金属体によって前記カーボンナノ材料を修飾すると共に、前記電極材料と触媒金属の酸化還元反応を重畳して発生させ前記カーボンナノ材料の表面にこの酸化還元反応に由来する粒子状の触媒金属体を析出させることを特徴とする水素ガスセンサ製造方法である。この構成によって、触触媒金属と、その塩若しくは錯体、電極材料、溶媒を選択し、誘電泳動の条件、浸漬時間等の条件を変えるだけで、常温できわめて高感度、高速に応答し、カーボンナノ材料の架橋端近傍における電極からの剥離を容易に防ぐことができ、信頼性が高い水素ガスセンサを製造することができる。   In the ninth aspect of the present invention, the carbon nanomaterial is dielectrophoretically crosslinked between a pair of electrodes formed on an insulating substrate, and once dried, the carbon nanomaterial is detached from the electrode and physically adsorbed. When a force is compared, a catalyst metal salt or complex having a smaller ionization tendency than that of the electrode material is dissolved in a solvent having a larger physical adsorption force. The carbon nanomaterial is modified with a catalytic metal body, and a redox reaction between the electrode material and the catalytic metal is generated in a superimposed manner to form a particulate catalytic metal body derived from the redox reaction on the surface of the carbon nanomaterial. It is a hydrogen gas sensor manufacturing method characterized by making it precipitate. With this configuration, by selecting the catalytic metal and its salt or complex, electrode material, and solvent, and changing the conditions of dielectrophoresis, immersion time, etc., it responds with high sensitivity and high speed at room temperature. Peeling from the electrode in the vicinity of the bridging end of the material can be easily prevented, and a highly reliable hydrogen gas sensor can be manufactured.

本発明の第10の形態は、第9の形態に従属する形態であって、溶液中に一対の電極を浸漬して陰極とし、別に浸漬した陽極との間で直流電圧を印加して陰極酸素還元反応させることを特徴とする水素ガスセンサ製造方法である。この構成によって、触媒金属体を電気メッキによって確実に修飾することができる。   A tenth aspect of the present invention is a form subordinate to the ninth aspect, wherein a cathode is formed by immersing a pair of electrodes in a solution, and a DC voltage is applied between the separately immersed anode. It is a hydrogen gas sensor manufacturing method characterized by carrying out a reduction reaction. With this configuration, the catalytic metal body can be reliably modified by electroplating.

(実施の形態1)
以下、本発明の実施の形態1における水素ガスセンサと、水素ガスセンサにCNTを集積するCNT集積装置、水素ガスセンサ製造方法について説明をする。図1は本発明の実施の形態1における水素ガスセンサとCNT集積化装置の説明図、図2は本発明の実施の形態1における水素ガスセンサの液相酸化還元反応の状態を示す説明図、図3(a)は本発明の実施の形態1における水素ガスセンサの触媒金属粒子を析出させる前のSEM像写真、図3(b)は(a)の触媒金属粒子を析出させた後のSEM像写真、図4は本発明の実施の形態1における水素ガスセンサの還元反応処理を行ったCNTのEDX分析図、図5(a)は本発明の実施の形態1における水素ガスセンサのCNT上に触媒金属粒子を原子数比6%で析出させたときのSEM像写真、図5(b)は(a)の水素ガスセンサの電CNT上に触媒金属粒子を原子数比80%で析出させたときのSEM像写真である。
(Embodiment 1)
Hereinafter, a hydrogen gas sensor according to Embodiment 1 of the present invention, a CNT accumulation device that accumulates CNTs on the hydrogen gas sensor, and a method for producing a hydrogen gas sensor will be described. FIG. 1 is an explanatory diagram of a hydrogen gas sensor and a CNT integration device according to Embodiment 1 of the present invention. FIG. 2 is an explanatory diagram illustrating a state of a liquid phase oxidation-reduction reaction of the hydrogen gas sensor according to Embodiment 1 of the present invention. (A) is a SEM image photograph before depositing catalyst metal particles of the hydrogen gas sensor in Embodiment 1 of the present invention, FIG. 3 (b) is an SEM image photograph after depositing catalyst metal particles of (a), FIG. 4 is an EDX analysis diagram of the CNT subjected to the reduction reaction treatment of the hydrogen gas sensor according to Embodiment 1 of the present invention, and FIG. 5A is a diagram showing catalyst metal particles on the CNT of the hydrogen gas sensor according to Embodiment 1 of the present invention. SEM image photograph when depositing at an atomic ratio of 6%, FIG. 5B is an SEM image photograph when catalytic metal particles are deposited at an atomic ratio of 80% on the electric CNT of the hydrogen gas sensor of FIG. It is.

図1は本発明の実施の形態1の水素ガスセンサとCNT集積化装置を示す。図1において、1は水素ガスを検出するため基板化された水素ガスセンサ、2a,2bはクロム(Cr)やアルミニウム(Al)などで作製されたキャッスルウォール型、櫛歯型等の一対のマイクロ電極(本発明の電極)、3a,3bはマイクロ電極2a,2bの尖端部分(角の部分となるエッジ)であって不平等電界を形成する電界集中部、4はガラス基板やプラスチック、酸化シリコン等の絶縁基板、5は水素ガスセンサ1を収容して誘電泳動を行う密閉チャンバ、6は電極2a,2bに交流電圧を印加するための電源、7は1kΩ程度の抵抗が設けられたインピーダンス調整装置である。なお、キャッスルウォール型のマイクロ電極2a,2bは図1に示すように平面上で電界集中部3a,3bが最接近する凹凸形状をしているが、櫛歯型のマイクロ電極2a,2bは、櫛のように歯(例えば30μm〜100μm幅)が形成された一対のマイクロ電極が互いに挿入、組み合わされて対向した電極であり、主として電極の厚さ方向の対向する上下のエッジ間に不平等電界が形成される。   FIG. 1 shows a hydrogen gas sensor and a CNT integrated device according to Embodiment 1 of the present invention. In FIG. 1, 1 is a hydrogen gas sensor formed as a substrate for detecting hydrogen gas, 2a and 2b are a pair of microelectrodes such as a castle wall type and a comb type made of chromium (Cr) or aluminum (Al). (Electrode of the present invention) 3a and 3b are the tip portions (edges which become corner portions) of the microelectrodes 2a and 2b, and an electric field concentration portion which forms an unequal electric field, 4 is a glass substrate, plastic, silicon oxide, etc. 5 is a sealed chamber for accommodating the hydrogen gas sensor 1 and performing dielectrophoresis, 6 is a power source for applying an AC voltage to the electrodes 2a and 2b, and 7 is an impedance adjusting device provided with a resistance of about 1 kΩ. is there. As shown in FIG. 1, the castle wall type microelectrodes 2a and 2b have a concavo-convex shape where the electric field concentration portions 3a and 3b are closest to each other as shown in FIG. A pair of microelectrodes in which teeth (for example, 30 μm to 100 μm width) are formed like combs are inserted and combined to face each other, and an unequal electric field is mainly formed between opposing upper and lower edges in the thickness direction of the electrodes Is formed.

マイクロ電極2a,2bの電極材料として例えばCrを使用する場合、絶縁基板4にCr薄膜を真空蒸着などして、フォトリソグラフィーによって電極を形成する。実施の形態1の電極フィンガーはキャッスルウォール型で、長さ5mm、電極最短ギャップ長は5μmである。真空蒸着のほかメッキ、スパッタリング等で成膜するのもよく、薄膜の厚さは50nm〜200nm程度が望ましい。マイクロ電極2a,2bの電極材料は誘電泳動で交流電圧を印加したとき電気分解が生じないようなイオン化傾向の小さい金属である必要があり、後述するCNTを修飾するPdやPt等の触媒金属より、イオン化傾向が大きな材料でなければならない。   When using, for example, Cr as the electrode material of the microelectrodes 2a and 2b, a Cr thin film is vacuum-deposited on the insulating substrate 4 and the electrodes are formed by photolithography. The electrode finger of the first embodiment is a castle wall type, has a length of 5 mm, and an electrode shortest gap length of 5 μm. In addition to vacuum deposition, a film may be formed by plating, sputtering, or the like, and the thickness of the thin film is preferably about 50 nm to 200 nm. The electrode material of the microelectrodes 2a and 2b needs to be a metal with a small ionization tendency so that electrolysis does not occur when an alternating voltage is applied by dielectrophoresis, and is based on a catalytic metal such as Pd or Pt that modifies CNT, which will be described later. Must be a material with a high ionization tendency.

次に、8はエタノール等の有機溶媒や水などの溶媒にCNTを強制的に分散させたCNT懸濁液(本発明の溶液)、8aは単層CNT(SWCNT)や多層CNT(MWCNT)などのCNT(本発明のカーボンナノ材料)、9aはCNT懸濁液を供給する導入路、9bはCNT懸濁液を排出する排出路、10はCNT分散溶媒を密閉チャンバ5に供給するためのポンプである。なお、このCNT8aをマイクロ電極2a,2b間で誘電泳動(DEPIM法)して集積した架橋部が、本発明における水素ガスに対するセンサ素子となる。   Next, 8 is a CNT suspension (solution of the present invention) in which CNT is forcibly dispersed in an organic solvent such as ethanol or a solvent such as water, 8a is a single-walled CNT (SWCNT), a multilayered CNT (MWCNT), or the like. CNT (carbon nanomaterial of the present invention), 9a is an introduction path for supplying the CNT suspension, 9b is a discharge path for discharging the CNT suspension, and 10 is a pump for supplying the CNT dispersion solvent to the sealed chamber 5 It is. The cross-linked portion obtained by collecting the CNTs 8a by dielectrophoresis (DEPIM method) between the microelectrodes 2a and 2b is a sensor element for hydrogen gas in the present invention.

誘電泳動でCNTをマイクロ電極2a,2bに集積するときは、密閉チャンバ5を介してポンプ10によってCNT縣濁液8を循環させ、密閉チャンバ5内のマイクロ電極2a,2bへ電源6によって交流電圧を印加する。これによって発生する不平等電界で電界強度が最も大きくなる電界集中部間(電極ギャップ)に誘電泳動によってCNT8aを誘導して集積する。CNTの集積後、CNTは溶媒を蒸散させることで乾燥され、ファンデルワアールス力等の物理吸着力で絶縁基板4と電極材料に物理吸着される。   When collecting CNTs on the microelectrodes 2a and 2b by dielectrophoresis, the CNT suspension 8 is circulated by the pump 10 through the sealed chamber 5, and the AC voltage is supplied to the microelectrodes 2a and 2b in the sealed chamber 5 by the power source 6. Is applied. The CNTs 8a are induced and accumulated by dielectrophoresis between the electric field concentration portions (electrode gaps) where the electric field strength becomes maximum due to the unequal electric field generated thereby. After the CNTs are accumulated, the CNTs are dried by evaporating the solvent, and are physically adsorbed on the insulating substrate 4 and the electrode material by physical adsorption force such as van der Waals force.

ここで、DEPIM法の誘電泳動力FDEPの説明を行う。誘電泳動力FDEPは複素数表現でFDEP=2πε・a・Re[K]▽Eで表現できる。ここに、ε:懸濁液の誘電率、a:球形近似したときの微小粒子の半径、Re[K]:微小物体と懸濁液の複素誘電率に依存するパラメータ、E:電界強度である。このRe[K]は、誘電泳動に用いる電界の周波数fをパラメータとして、正負に変化する。特定の周波数域、例えば10kHz〜1MHzで正の誘電泳動力が働き、それ以外では負の誘電泳動力が働く。従って周波数を選んで、正の最大の誘電泳動力FDEPを作用させて効果的に微小粒子を集積する必要がある。なお、CNTはアスペクト比が大きく多くは細長い粒子であるが、上記表現の半径aで示した係数が変わるだけで原理的には上記FDEPに従って誘電泳動力の作用を受けることにより電界集中部3a,3bに凝集させられる。 Here, the dielectrophoretic force F DEP of the DEPIM method will be described. The dielectrophoretic force F DEP can be expressed in a complex number expression as F DEP = 2πε m · a 3 · Re [K] ▽ E 2 . Where ε m is the dielectric constant of the suspension, a is the radius of the microparticle when approximated by a sphere, Re [K] is a parameter depending on the complex dielectric constant of the microscopic object and the suspension, and E is the electric field strength. is there. This Re [K] changes positively and negatively with the frequency f of the electric field used for dielectrophoresis as a parameter. A positive dielectrophoretic force works in a specific frequency range, for example, 10 kHz to 1 MHz, and a negative dielectrophoretic force works otherwise. Therefore, it is necessary to effectively collect fine particles by selecting a frequency and applying the maximum positive dielectrophoretic force F DEP . Incidentally, CNT is much larger aspect ratio is an elongated particle, the electric field concentrated portions by receiving the action of the dielectrophoretic force in accordance with the F DEP is only in principle coefficients shown changes in the radius a 3 of the expression Aggregated into 3a and 3b.

CNT8aは誘電泳動されると、電界的に安定した位置に集積される。S字状、さらに多くの曲がり部分を持って屈曲した多数の細長い繊維状の粒子がマイクロ電極2a,2bの尖端部分の周囲に形成される電界の方向に配向し、互いに重なりあって網の目状となる。図3(a)はこの誘電泳動でマイクロ電極2a,2b間に網の目状に形成されたCNTの架橋を示す。このような網の目は偶然に支配される塗布やCVD成長では決して得られない。センサ素子としてはグラファイトのように平面状に広がったフィルム状のものが好適であるが、CNT8aの種類を選び、誘電泳動を行うことにより、これが整然と簡単に実現できる。また、誘電泳動の時間を調節することで網の目のサイズは粗くも細かくも調整できる。   When the CNTs 8a are subjected to dielectrophoresis, the CNTs 8a are accumulated at a stable position in terms of electric field. A large number of slender fibrous particles bent in an S shape and having more bent portions are oriented in the direction of the electric field formed around the tip portions of the microelectrodes 2a and 2b and overlap each other to form a mesh It becomes a shape. FIG. 3 (a) shows the cross-linking of CNTs formed in a mesh shape between the microelectrodes 2a and 2b by this dielectrophoresis. Such a mesh is never obtained by accidentally controlled coating or CVD growth. As the sensor element, a film-like element spread in a plane like graphite is suitable, but this can be realized neatly and simply by selecting the type of CNT 8a and performing dielectrophoresis. Further, by adjusting the time of dielectrophoresis, the mesh size can be adjusted coarsely or finely.

このようなCNT8aが集積されたセンサ素子を備えた電極の実施例を一例で説明すると、単層CNT(SWCNTs,Sigma−aldrich社製,平均径1nm,1−4mm長,純度50%)をエタノール中に濃度1g/mlで超音波分散し、密閉チャンバ5内にポンプ10を用いて0.5ml/minの流速で循環させ、マイクロ電極2a,2b間に振幅交流10Vpp、周波数100kHzの高周波電圧を印加し、CNTの誘電泳動集積を行い、誘電泳動集積完了後にエタノールを室温で蒸散させて作製すればよい。   An example of an electrode having a sensor element in which such CNTs 8a are integrated will be described as an example. Single-walled CNTs (SWCNTs, manufactured by Sigma-aldrich, average diameter 1 nm, 1-4 mm length, purity 50%) are ethanol. It is ultrasonically dispersed at a concentration of 1 g / ml and circulated in the sealed chamber 5 using a pump 10 at a flow rate of 0.5 ml / min. A high-frequency voltage of amplitude AC 10 Vpp and frequency 100 kHz is applied between the microelectrodes 2 a and 2 b. The CNTs may be produced by dielectrophoretic integration of CNTs, and after the dielectrophoretic integration is completed, ethanol is evaporated at room temperature.

続いて、本発明の実施の形態1のマイクロ電極2a,2b間に架橋されたCNT8aを触媒金属で修飾するプロセスの説明を行う。なお、実施の形態1の水素ガスセンサのマイクロ電極2a,2bでは、CNT8aだけでなく、マイクロ電極2a,2b上及びこの近傍にも触媒金属粒子(本発明の触媒金属体)が析出するという特徴を有している。すなわち、CNT8aが還元され、触媒金属が酸化されて触媒金属粒子がCNT8a上に析出するだけでなく、マイクロ電極2a,2b部分で電極材料も還元され、触媒金属粒子がマイクロ電極2a,2b及びこの近傍に析出し、さらにこの酸化還元反応が近傍の触媒金属の酸化をアシストして、CNT8aに対する本来の析出に加えてさらに多くの触媒金属粒子をCNT8aの表面に析出させる。すなわち、CNT8a表面を修飾する触媒金属粒子には、触媒金属の塩若しくは錯体の溶液中に浸漬されたときにCNT8と触媒金属の酸化還元反応で析出する触媒金属粒子と、この溶液中で重畳して起こる触媒金属と電極材料の酸化還元反応に由来して析出する触媒金属体粒子の2種類を含むことになる。   Subsequently, a process for modifying the CNT 8a cross-linked between the microelectrodes 2a and 2b of Embodiment 1 of the present invention with a catalytic metal will be described. The microelectrodes 2a and 2b of the hydrogen gas sensor of Embodiment 1 are characterized in that catalyst metal particles (catalyst metal body of the present invention) are deposited not only on the CNTs 8a but also on and near the microelectrodes 2a and 2b. Have. That is, the CNT 8a is reduced, the catalytic metal is oxidized and the catalytic metal particles are deposited on the CNT 8a, the electrode material is also reduced at the microelectrodes 2a and 2b, and the catalytic metal particles are converted into the microelectrodes 2a and 2b and this This precipitates in the vicinity, and further, this oxidation-reduction reaction assists the oxidation of the nearby catalyst metal, and in addition to the original deposition on the CNT 8a, more catalyst metal particles are deposited on the surface of the CNT 8a. That is, the catalyst metal particles that modify the surface of the CNT 8a are superposed in the solution with catalyst metal particles that are precipitated by a redox reaction between the CNT 8 and the catalyst metal when immersed in a solution of a salt or complex of the catalyst metal. Thus, two types of catalyst metal particles that are deposited due to the redox reaction between the catalyst metal and the electrode material that occur in this manner are included.

まず、触媒金属粒子で修飾するときの触媒金属で起こる酸化、CNT8aで起こる還元反応について説明する。実施の形態1では、触媒金属でCNT8aを修飾するとき、CNT8aをPdやPt等の触媒金属の塩や錯体の水溶液中に浸漬することで行う。水溶液中の触媒金属とCNT8aは両者のイオン化傾向が異なるため、CNT8aは図2に示すように水溶液中で酸化され、溶液中の触媒金属イオンは電子を得て還元され粒子状の形態でCNT8a表面に析出する。   First, the oxidation that occurs in the catalyst metal when modifying with the catalyst metal particles and the reduction reaction that occurs in the CNT 8a will be described. In the first embodiment, when the CNT 8a is modified with the catalyst metal, the CNT 8a is immersed in an aqueous solution of a salt or complex of a catalyst metal such as Pd or Pt. Since the catalytic metal in the aqueous solution and the CNT 8a are different in ionization tendency, the CNT 8a is oxidized in the aqueous solution as shown in FIG. 2, and the catalytic metal ion in the solution obtains electrons and is reduced in the form of particles in the surface of the CNT 8a. It precipitates in.

ところが、実施の形態1の酸化還元反応は、このほか重畳的に電極材料と触媒金属間でも発生する。実施の形態1では、電極材料として触媒金属よりイオン化傾向が大きなCrやAl等の金属を使用しているため、マイクロ電極2a,2bをPdやPt等の触媒金属の塩や錯体の水溶液中に浸漬すると、マイクロ電極2a,2b上でも触媒金属粒子が析出する。   However, the oxidation-reduction reaction of Embodiment 1 also occurs between the electrode material and the catalyst metal in a superimposed manner. In Embodiment 1, since metals such as Cr and Al, which have a higher ionization tendency than the catalyst metal, are used as the electrode material, the microelectrodes 2a and 2b are placed in an aqueous solution of a salt or complex of a catalyst metal such as Pd or Pt. When immersed, catalytic metal particles are deposited on the microelectrodes 2a and 2b.

このためCNT8aとマイクロ電極2a,2bとでは、触媒金属とCNT8a、触媒金属と電極材料の間でそれぞれ酸化還元反応が同時に起こることになる。そして、この触媒金属と電極材料の反応がCNT8aの表面への触媒金属の析出を増加させる。すなわち、電極材料との置換によって生成される触媒金属粒子は電極の表面だけでなく、その周囲の絶縁基板4や、CNT8aが集積される電極ギャップ(電界集中部3a,3b間)にも形成される。まず、SEMでは確認できないような小さな触媒金属のナノ粒子(核)が電極ギャップ上で酸化還元反応により置換、核生成されて析出する。従って、CNT表面ではCNT8a本来の置換反応で生成される触媒金属のナノ粒子(核)に加え、電極材料の影響による核が加わって2種類の核が核成長することになり、CNTを多量に修飾することになる。ここで、2つの酸化還元反応がCNT上で核成長させ、重畳的に修飾することになるのは、触媒金属塩溶液のpHや電位などが電極材料−触媒金属の酸化還元反応の存在によって変化し、誘電泳動により網の目状となった凹凸のあるCNT上で核形成、核成長が促されるからとも考えられる。図5(a)(b)の写真をみても、電極材料Crが置換、溶出して拡散されたであろう範囲で核成長が進行しているのが分かる。このように、触媒金属は、イオン化傾向の差が、(電極材料、CNT)>触媒金属の順のイオン化傾向をもっている必要がある。このときCNTの触媒金属による修飾は電極材料由来の作用でCNT単体だけの場合より倍化される。   Therefore, in the CNT 8a and the microelectrodes 2a and 2b, redox reactions occur simultaneously between the catalytic metal and the CNT 8a and between the catalytic metal and the electrode material. The reaction between the catalyst metal and the electrode material increases the deposition of the catalyst metal on the surface of the CNT 8a. That is, the catalytic metal particles generated by the substitution with the electrode material are formed not only on the surface of the electrode but also on the surrounding insulating substrate 4 and the electrode gap (between the electric field concentration portions 3a and 3b) where the CNTs 8a are integrated. The First, small catalytic metal nanoparticles (nuclei), which cannot be confirmed by SEM, are replaced by a redox reaction on the electrode gap, and nucleated and precipitated. Therefore, on the CNT surface, in addition to the catalyst metal nanoparticles (nuclei) generated by the original substitution reaction of CNT8a, nuclei due to the influence of the electrode material are added, and two types of nuclei grow, and a large amount of CNT is produced. Will be qualified. Here, the two oxidation-reduction reactions cause nucleation on CNTs, and the modification is performed in a superimposed manner. The pH and potential of the catalyst metal salt solution change depending on the presence of the electrode material-catalyst metal oxidation-reduction reaction. It is also considered that nucleation and nucleation are promoted on uneven CNTs that have been formed into a net-like shape by dielectrophoresis. 5 (a) and 5 (b), it can be seen that the nucleus growth proceeds in a range where the electrode material Cr would have been replaced, eluted and diffused. Thus, the catalyst metal needs to have an ionization tendency in the order of (electrode material, CNT)> catalyst metal in the difference in ionization tendency. At this time, the modification of the CNT with the catalytic metal is doubled as compared with the case of the CNT alone due to the action derived from the electrode material.

誘電泳動で作製されたCNT8aの集積体からなるセンサ素子は、電極ギャップの2倍に近い長さの架橋端(両端の合計)を有している。従って、架橋部分の全長の50%から70%程度を占めるCNT8aの架橋端では電極材料の影響が強く上記触媒金属の析出作用が進み易い。この触媒金属の作用により効果的に水素原子を捕捉することが可能になり、CNT8aが水素ガスに触れたとき、鋭敏にコンダクタンスが上昇する。このコンダクタンスの変化を検出すれば高感度で水素ガス濃度を検出できる。   A sensor element made of an assembly of CNTs 8a produced by dielectrophoresis has a bridging end (total of both ends) having a length close to twice the electrode gap. Therefore, the influence of the electrode material is strong at the cross-linking ends of the CNTs 8a that occupy about 50% to 70% of the total length of the cross-linking portion, and the above-described catalytic metal deposition action easily proceeds. The action of the catalytic metal makes it possible to effectively capture hydrogen atoms, and when the CNT 8a touches hydrogen gas, the conductance increases sharply. If this change in conductance is detected, the hydrogen gas concentration can be detected with high sensitivity.

従って、単純に誘電泳動しただけでは、触媒金属のCNT8a上への析出が増加することはないが、触媒金属、CNT、電極材料のイオン化傾向の差を選ぶことによって、触媒金属のCNT上への析出量を大きくすることができる。図5(a)(b)は電極材料がCrである場合に、マイクロ電極を触媒金属(この場合塩化パラジウム(PdCl2)の水溶液に浸漬したとき、Crの表面に触媒金属であるPdの微粒子が多数ほぼ一様に析出していることを示す。 Therefore, the simple dielectrophoresis does not increase the deposition of the catalytic metal on the CNT 8a. However, by selecting the difference in the ionization tendency of the catalytic metal, the CNT, and the electrode material, the catalytic metal on the CNT is selected. The amount of precipitation can be increased. 5 (a) and 5 (b), when the electrode material is Cr, when the microelectrode is immersed in an aqueous solution of a catalytic metal (in this case, palladium chloride (PdCl 2 )), fine particles of Pd which is a catalytic metal on the surface of Cr. It is shown that a large number of are deposited almost uniformly.

ただ、本発明者らは、触媒金属の析出量は多ければ多いほど感度が良くなるのではない、との新たな知見を得た。すなわち、図6(b)で示すように原子数の比率を表す原子数比が25%を超える状態になると、触媒金属がマイクロ電極2a,2b上に大量に析出した状態になり(図5(b)参照)、この状態では図7に示すように逆にセンサ素子の感度を低下させてしまう。この原因として、1つは電極材料上での触媒金属の析出が過剰に多くなり、水素貯蔵金属でもある触媒金属が水素を貯蔵してしまい、CNT8a上の触媒金属に吸着される水素の量が相対的に低下することがあげられる。また、図6(a)で示すようにこの比率が下限である1%未満になると、触媒金属がCNT8a上に十分析出しておらず(図5(a)参照)、触媒作用が十分でなくなる。ここで図6(a)は本発明の実施の形態1における水素ガスセンサの触媒金属粒子原子数比が1%に満たない場合のEDX分析図、図6(b)は触媒金属粒子原子数比が25%を超えた場合のEDX分析図、図7は本発明の実施の形態1における水素ガスセンサが原子数比25%のセンサ素子をもつときの水素ガスに対する応答図である。なお、図7は原子数比25%のときの応答図であるが、25%を超えた状態でも、また、1%未満でも同様の応答となる。従って、カーボンに対する触媒金属の原子数比を1%〜25%とするのが高感度のCNTのセンサ素子を作製するためには必要である。   However, the present inventors have obtained a new finding that the greater the amount of catalyst metal deposited, the better the sensitivity. That is, as shown in FIG. 6B, when the atomic ratio representing the atomic ratio exceeds 25%, a large amount of catalyst metal is deposited on the microelectrodes 2a and 2b (FIG. 5B). In this state, the sensitivity of the sensor element is reduced as shown in FIG. One reason for this is that excessive deposition of the catalytic metal on the electrode material is excessive, the catalytic metal that is also a hydrogen storage metal stores hydrogen, and the amount of hydrogen adsorbed by the catalytic metal on the CNT 8a is reduced. It can be relatively lowered. As shown in FIG. 6A, when this ratio is less than 1% which is the lower limit, the catalytic metal is not sufficiently deposited on the CNT 8a (see FIG. 5A), and the catalytic action is not sufficient. . Here, FIG. 6A is an EDX analysis diagram in the case where the catalyst metal particle atomic ratio of the hydrogen gas sensor in Embodiment 1 of the present invention is less than 1%, and FIG. 6B is the catalyst metal particle atomic ratio. FIG. 7 is a response diagram to hydrogen gas when the hydrogen gas sensor according to Embodiment 1 of the present invention has a sensor element with an atomic ratio of 25%. FIG. 7 is a response diagram when the atomic ratio is 25%, but the same response is obtained when the ratio exceeds 25% or less than 1%. Therefore, it is necessary to make the atomic ratio of the catalytic metal to carbon 1% to 25% in order to produce a highly sensitive CNT sensor element.

なお、上記したカーボンに対する触媒金属の原子数比はエネルギー分散型X線(以下、EDX)分析により求めればよい。図4に示すように、EDX分析で電極のガラス基板に由来するC、Si、Oと共にPdが検出されるから、このPdの強度に対するCの強度の比をとることでカーボンに対する触媒金属の原子数比を算出できる。   Note that the atomic ratio of the catalytic metal to the carbon described above may be obtained by energy dispersive X-ray (hereinafter, EDX) analysis. As shown in FIG. 4, since Pd is detected together with C, Si, and O derived from the glass substrate of the electrode by EDX analysis, the atomic ratio of the catalyst metal to carbon is obtained by taking the ratio of the strength of C to the strength of this Pd. Number ratio can be calculated.

ところで、触媒金属−CNT、触媒金属−電極材料の2つの酸化還元反応は、アセトンなどの有機溶媒を用いた場合でも起こる。しかし、アセトン等の有機溶媒を使った場合、酸化還元反応が弱く、また、せっかくCNT集積装置でマイクロ電極間に集積されたCNTの結束、凝集状態が緩み、剥離し易くなる。確かに有機溶媒を使えばCNTは溶媒に溶解し易く、処理し易くなるが、CNTの架橋端ではCNTが剥離し易くなる。従って、CNTの溶媒中での離脱力が常温でCNTの電極材料に対する物理吸着力より低い溶媒が溶媒として適当である。中でも水を溶媒にするのが最も好適である。なお、この離脱力が物理吸着力より低いか否かは実際には溶媒に漬けて剥がれないかを確認すればよく、また通電して導通性を確認すればよい。また、後述の図13(b)で説明するが、アセトン等の有機溶媒の場合、一度水素ガスに触れると、空気に再度触れてもリフレッシュされず、水素ガスセンサを繰り返して使用することが困難になる。   By the way, two oxidation-reduction reactions of catalytic metal-CNT and catalytic metal-electrode material occur even when an organic solvent such as acetone is used. However, when an organic solvent such as acetone is used, the oxidation-reduction reaction is weak, and the binding and aggregation state of the CNTs accumulated between the microelectrodes in the CNT accumulating device is loosened and becomes easy to peel off. Certainly, if an organic solvent is used, the CNTs are easily dissolved in the solvent and easy to process, but the CNTs easily peel off at the cross-linked ends of the CNTs. Accordingly, a solvent having a detachment force of CNT in a solvent lower than a physical adsorption force of the CNT to the electrode material at room temperature is suitable as the solvent. Of these, water is most preferably used as the solvent. Whether or not the detachment force is lower than the physical adsorption force may be confirmed by actually immersing it in a solvent and not being peeled off, or by conducting electricity and confirming continuity. Further, as will be described later with reference to FIG. 13B, in the case of an organic solvent such as acetone, once the hydrogen gas is touched, it is not refreshed even if it is touched again, making it difficult to repeatedly use the hydrogen gas sensor. Become.

さて、実施の形態1においては、触媒金属として酢酸パラジウム(Pd(CH3COO)2)を用いたマイクロ電極とした。酢酸パラジウムは本来水には溶け難いが、超音波分散などして懸濁液を得て水を溶媒として利用すればよく、この場合集積したCNT8aの架橋がマイクロ電極2a,2bから剥離しない。一例を挙げると、Pdで修飾するため、酢酸パラジウム50mgをイオン交換水175mlに懸濁し、数時間超音波分散を行って懸濁液とし、不溶物をフィルターで除去を行う。その後CNT8aを誘電泳動で集積したマイクロ電極2a,2bを酢酸パラジウム水溶液に常温で浸漬し、一定時間経過後に溶液から引き上げ、空気中で乾燥させる。そして、以上の処理でCNTがPd修飾されていることを図4に示すようにEDX分析により確認した。 In the first embodiment, a microelectrode using palladium acetate (Pd (CH 3 COO) 2 ) as the catalyst metal is used. Palladium acetate is originally hardly dissolved in water, but it is sufficient to obtain a suspension by ultrasonic dispersion or the like and use water as a solvent. In this case, the cross-links of the accumulated CNTs 8a do not peel from the microelectrodes 2a and 2b. For example, in order to modify with Pd, 50 mg of palladium acetate is suspended in 175 ml of ion-exchanged water, subjected to ultrasonic dispersion for several hours to form a suspension, and insolubles are removed with a filter. Thereafter, the microelectrodes 2a and 2b in which the CNTs 8a are integrated by dielectrophoresis are immersed in an aqueous palladium acetate solution at room temperature, and after a certain period of time, the microelectrodes 2a and 2b are pulled up from the solution and dried in the air. Then, it was confirmed by EDX analysis that CNT was modified with Pd by the above treatment as shown in FIG.

図4のEDX分析によれば、電極のガラス基板に由来するC、Si、Oと共に小さなPdのピークが現れており、CNTがPdで修飾されていることが確認できる。また、この場合のカーボン(CNT)に対してのPdの原子数比は6%程度であった。この付近の原子数比で高感度のセンサ素子を実現できる。従って、触媒金属塩の水溶液にCNTを常温で浸漬するだけで、液相酸化還元反応が起こっていることが確認でき、触媒金属によりCNTが修飾されることが分かる。   According to the EDX analysis of FIG. 4, a small Pd peak appears together with C, Si, and O derived from the glass substrate of the electrode, and it can be confirmed that CNT is modified with Pd. In this case, the atomic ratio of Pd to carbon (CNT) was about 6%. A highly sensitive sensor element can be realized with an atomic ratio in the vicinity. Therefore, it can be confirmed that the liquid phase oxidation-reduction reaction has occurred just by immersing the CNT in an aqueous solution of the catalyst metal salt at room temperature, and it can be seen that the CNT is modified by the catalyst metal.

なお、併せて走査型電子顕微鏡(SEM)による確認も行った。図3(a)(b)はそれぞれPdの析出前と析出後のSEM像写真であるが、SEM像に大きな変化は見られない。これは、液相酸化還元反応によってCNT表面に析出する金属粒子はナノサイズだからであり、SEMの解像度では観察できないためと考えられる。それは図5(a)の触媒金属の粒子が小さいことからも窺い知ることができる。   In addition, confirmation by a scanning electron microscope (SEM) was also performed. FIGS. 3A and 3B are SEM image photographs before and after precipitation of Pd, respectively, but no significant change is observed in the SEM image. This is presumably because the metal particles deposited on the CNT surface by the liquid phase oxidation-reduction reaction are nano-sized and cannot be observed with SEM resolution. This can be seen from the fact that the catalyst metal particles in FIG.

続いて、以上説明した実施例1の水素ガスセンサの水素応答特性について説明する。図8は本発明の実施の形態1における水素ガスセンサの水素ガス検出時のセンサ応答の原理図である。これは、水素ガス検出を行っているときPdで修飾されたセンサ素子上で水素ガスがどのように変化するかを示す。これによれば、触媒金属、ここではPdの作用によって空気中の水素ガス(H)がH→2H+2eの反応を起こす。 Next, the hydrogen response characteristics of the hydrogen gas sensor of Example 1 described above will be described. FIG. 8 is a principle diagram of sensor response when hydrogen gas is detected by the hydrogen gas sensor according to Embodiment 1 of the present invention. This shows how the hydrogen gas changes on the sensor element modified with Pd when performing hydrogen gas detection. According to this, hydrogen gas (H 2 ) in the air causes a reaction of H 2 → 2H + + 2e by the action of the catalyst metal, here Pd.

すなわち、Pd修飾されたCNTの表面に到達した水素ガス分子(H)は、触媒金属の表面上で解離、水素原子(H)を生じ吸着する。この水素原子(H)がPd内へ拡散し、これに伴いPdの仕事関数が低下し、Pdからp型半導体であるCNTへの電子移動が起こってCNTの還元反応が起こる。その結果、CNT中の正孔キャリア密度が低下し、CNTのコンダクタンスが低下するものと考えられる。 That is, the hydrogen gas molecules (H 2 ) that have reached the surface of the Pd-modified CNT dissociate on the surface of the catalyst metal, and generate and adsorb hydrogen atoms (H + ). This hydrogen atom (H + ) diffuses into Pd, and as a result, the work function of Pd decreases, and electron transfer from Pd to CNT, which is a p-type semiconductor, occurs to cause a CNT reduction reaction. As a result, it is considered that the hole carrier density in the CNT is lowered and the conductance of the CNT is lowered.

実施の形態1の場合、CNTとマイクロ電極との接合部分では、触媒金属Pdが相対的に多量に析出した状態になっているため、CNT中の正孔キャリア密度が十分に低下し、センサ素子のコンダクタンスが低下するものと考えられる。これによりセンサ素子の感度は向上する。   In the case of Embodiment 1, since the catalytic metal Pd is deposited in a relatively large amount at the junction between the CNT and the microelectrode, the hole carrier density in the CNT is sufficiently reduced, and the sensor element It is thought that the conductance of the is reduced. This improves the sensitivity of the sensor element.

ここで、具体的に水素応答特性を測定した結果の説明を行う。酢酸パラジウム水溶液に1時間または5分浸漬させたPd修飾CNTを備えた水素ガスセンサの空気希釈水素(濃度1%)に対する常温での応答をそれぞれ図9(a)(b)に示す。図9(a)は本発明の実施の形態1における水素ガスセンサの1時間浸漬処理したセンサ素子の空気希釈水素に対する応答図、図9(b)は本発明の実施の形態1における水素ガスセンサの5分間浸漬処理したセンサ素子の空気希釈水素に対する応答図である。空気と水素ガスへの暴露を交互に行ったものである。いずれも縦軸は、コンダクタンスの変化量ΔGをセンサ素子の初期コンダクタンスGで規格化したセンサ応答(規格化コンダクタンス)で表している。 Here, the result of measuring the hydrogen response characteristic will be specifically described. FIGS. 9 (a) and 9 (b) show the responses at room temperature to hydrogen-diluted hydrogen (concentration 1%) of a hydrogen gas sensor provided with Pd-modified CNT immersed in an aqueous palladium acetate solution for 1 hour or 5 minutes, respectively. FIG. 9 (a) is a response diagram of the hydrogen gas sensor according to Embodiment 1 of the present invention to the air-diluted hydrogen of the sensor element subjected to the immersion treatment for 1 hour, and FIG. 9 (b) is 5 of the hydrogen gas sensor according to Embodiment 1 of the present invention. It is a response figure with respect to air dilution hydrogen of the sensor element which carried out the immersion process for minutes. Alternating exposure to air and hydrogen gas. Both the vertical axis represents a variation ΔG of conductance sensor response normalized by the initial conductance G 0 of the sensor element (normalized conductance).

これによると、どちらのセンサも水素暴露直後に規格化コンダクタンスは減少し、数分以内で飽和した。その後空気に切り換えると規格化コンダクタンスは指数関数的に初期値に戻り、再び水素を暴露すると同様の応答が再現性よく得られた。なお、図9(a)(b)は1時間と5分の応答だけしか示していないが、触媒金属塩を浸漬する浸漬時間(処理時間)が1時間以下の場合、時間が長いほどセンサ応答(規格化コンダクタンス)は大きくなる。   According to this, the normalized conductance decreased immediately after hydrogen exposure for both sensors and saturated within a few minutes. When switched to air, the normalized conductance returned to its initial value exponentially, and a similar response was obtained with good reproducibility when exposed to hydrogen again. 9 (a) and 9 (b) show only responses of 1 hour and 5 minutes. However, when the immersion time (treatment time) for immersing the catalyst metal salt is 1 hour or less, the sensor response increases as the time increases. (Standardized conductance) increases.

図9(b)に示す5分浸漬させた水素ガスセンサの応答量は、図9(a)に示す1時間浸漬させたセンサ素子のセンサ応答の約50%(水素ガス濃度1%のとき前者のΔG/Gは−0.04、後者のΔG/Gは−0.09)であり、応答量は小さくなっている。しかし、この場合も十分に水素検出は可能である。なお、Pd修飾を施さないCNTを備えた水素ガスセンサは水素ガスに殆ど応答しなかった。5分浸漬させたセンサ素子のコンダクタンスの浸漬前からの増加率は1.2であるが、1時間浸漬させたセンサ素子のコンダクタンスの浸漬前からの増加率は2.2であった。 The response amount of the hydrogen gas sensor immersed in 5 minutes shown in FIG. 9 (b) is about 50% of the sensor response of the sensor element immersed in 1 hour shown in FIG. 9 (a) (when the hydrogen gas concentration is 1%) ΔG / G 0 is −0.04 and the latter ΔG / G 0 is −0.09), and the response amount is small. However, even in this case, sufficient hydrogen detection is possible. The hydrogen gas sensor provided with CNTs not subjected to Pd modification hardly responded to hydrogen gas. The increase rate of the conductance of the sensor element immersed for 5 minutes from before immersion was 1.2, but the increase rate of the conductance of the sensor element immersed for 1 hour from before immersion was 2.2.

次に、触媒金属塩溶液中の酸化還元反応でPd修飾したCNTを備えた水素ガスセンサの特性について詳しく説明する。図10は本発明の実施の形態1における水素ガスセンサの水素ガス濃度を変化させたときの応答図であり、図11は本発明の実施の形態1における水素ガスセンサの水素ガス濃度とコンダクタンス時間変化率の関係図である。図10は図9(a)のPd修飾水素ガスセンサの濃度0.01%−1%の水素に対するセンサ応答を示すものである。図10によれば、0.01%の水素に対しても規格化コンダクタンスは減少しており、0.01%の水素が常温で検出可能であることが分かる。水素濃度が高いほど、センサ応答飽和値と水素暴露直後のコンダクタンス時間変化率は大きくなる。このうち、センサ応答飽和値は水素濃度に対して線形性を示さないが、水素暴露直後のコンダクタンス時間変化率は図11に示すようにほぼ水素濃度に比例しており、このコンダクタンス時間変化率を水素ガス濃度の定量に利用できる。なお、図10が煩雑になるので図10には図示はしなかったが、5%、0.05%の水素ガスのセンサ応答も同一の傾向を示し、ガス濃度に比例した応答を示す結果を得ている。   Next, the characteristics of the hydrogen gas sensor provided with CNT modified with Pd by oxidation-reduction reaction in the catalyst metal salt solution will be described in detail. FIG. 10 is a response diagram when the hydrogen gas concentration of the hydrogen gas sensor in the first embodiment of the present invention is changed, and FIG. 11 is a hydrogen gas concentration and conductance time change rate of the hydrogen gas sensor in the first embodiment of the present invention. FIG. FIG. 10 shows the sensor response of the Pd-modified hydrogen gas sensor of FIG. 9A to hydrogen with a concentration of 0.01% -1%. FIG. 10 shows that the normalized conductance decreases even with 0.01% hydrogen, and 0.01% hydrogen can be detected at room temperature. The higher the hydrogen concentration, the greater the sensor response saturation value and the rate of change in conductance time immediately after hydrogen exposure. Among these, the sensor response saturation value does not show linearity with respect to the hydrogen concentration, but the conductance time change rate immediately after exposure to hydrogen is almost proportional to the hydrogen concentration as shown in FIG. It can be used for quantitative determination of hydrogen gas concentration. Since FIG. 10 is complicated, it is not shown in FIG. 10, but the sensor responses of 5% and 0.05% hydrogen gas show the same tendency, and the result shows a response proportional to the gas concentration. It has gained.

続いて、実施の形態1における水素ガスセンサのガス選択性について説明する。実施の形態1のPd修飾したCNTを備えたセンサ素子は、以上の説明から分かるように感度、再現性、定量性、動作温度などの点で今後予想されるニーズに十分に応えることができる実用性を備えたものである。そこで、この実用化に際して重要なガス選択性について説明する。   Next, the gas selectivity of the hydrogen gas sensor in Embodiment 1 will be described. As can be seen from the above description, the sensor element including the Pd-modified CNT according to the first embodiment can sufficiently meet the future needs in terms of sensitivity, reproducibility, quantitativeness, operating temperature, and the like. It has the nature. Therefore, the gas selectivity important for practical use will be described.

この選択性を評価するガスとして、大気中に存在しており、且つCNTを備えたセンサ素子が応答しやすいガスとして知られている二酸化窒素(NO)を用いた。Pd修飾前後のCNTを備えた水素ガスセンサのNO(1ppm)に対する応答を図12(a)(b)に示す。図12(a)は本発明の実施の形態1における水素ガスセンサの触媒金属修飾前のNOに対する応答図、図12(b)は本発明の実施の形態1における水素ガスセンサの触媒金属修飾後のNOに対する応答図である。どちらのセンサ素子も、NO暴露によって規格化コンダクタンスが上昇したが、Pd修飾したセンサ素子の応答量は修飾前の約60%に低下した。これは、Pd修飾によってNOの吸着サイトが減少したためであるとも考えられ、Pd修飾によって水素以外へのガスへの応答を抑制できる可能性を示唆している。 As a gas for evaluating the selectivity, nitrogen dioxide (NO 2 ), which is present in the atmosphere and is known as a gas to which a sensor element equipped with CNT easily responds, was used. FIGS. 12A and 12B show the response of the hydrogen gas sensor provided with CNTs before and after the Pd modification to NO 2 (1 ppm). FIG. 12A is a response diagram to NO 2 before the catalyst metal modification of the hydrogen gas sensor according to the first embodiment of the present invention, and FIG. 12B is a diagram after the catalyst metal modification of the hydrogen gas sensor according to the first embodiment of the present invention. it is a response diagram of NO 2. In both sensor elements, the normalized conductance increased by exposure to NO 2 , but the response amount of the Pd-modified sensor element decreased to about 60% before the modification. This is also considered to be due to the decrease in NO 2 adsorption sites due to Pd modification, suggesting the possibility that the response to gases other than hydrogen can be suppressed by Pd modification.

さて、以上説明した触媒金属の塩は酢酸パラジウムであり、溶媒は水を使用したものであった。そこで、以下、(1)触媒金属の塩を塩化パラジウム(PdCl)に変え、溶媒を水にした水素ガスセンサと、(2)触媒金属塩は酢酸パラジウムであるが、溶媒に有機酸であるアセトンを用いた場合を説明する。図13(a)は本発明の実施の形態1における水素ガスセンサの触媒金属を塩化パラジウムとしたときの応答図、図13(b)は本発明の実施の形態1における水素ガスセンサの溶媒をアセトンにしたときの応答図である。 The catalyst metal salt described above was palladium acetate, and the solvent was water. Therefore, hereinafter, (1) a hydrogen gas sensor in which the catalyst metal salt is changed to palladium chloride (PdCl 2 ) and the solvent is water, and (2) the catalyst metal salt is palladium acetate, but the solvent is acetone, which is an organic acid. The case where is used will be described. FIG. 13A is a response diagram when the catalytic metal of the hydrogen gas sensor in Embodiment 1 of the present invention is palladium chloride, and FIG. 13B is acetone as the solvent of the hydrogen gas sensor in Embodiment 1 of the present invention. It is a response diagram when doing.

図13(a)は触媒金属を塩化パラジウム(PdCl)、溶媒に水とした水素ガスセンサのセンサ応答(規格化コンダクタンス)を示している。これによれば、上述した酢酸パラジウムの場合と同等の作用効果を奏していることが分かる。このほか、例えば塩化白金酸カリウム(K[PdCl])等の白金塩でも、溶媒を水にしたときは同様のセンサ応答(規格化コンダクタンス)が得られる(図示はしない)。5分間塩化パラジウムに浸漬させたセンサ素子のコンダクタンスの浸漬前からの増加率は2.8であり、水素暴露時のΔG/Gは−0.05であった。 FIG. 13A shows the sensor response (normalized conductance) of a hydrogen gas sensor in which the catalyst metal is palladium chloride (PdCl 2 ) and the solvent is water. According to this, it turns out that there exists an effect equivalent to the case of the palladium acetate mentioned above. In addition, for example, a platinum salt such as potassium chloroplatinate (K 2 [PdCl 6 ]) can provide a similar sensor response (normalized conductance) when the solvent is water (not shown). The increase rate of the conductance of the sensor element immersed in palladium chloride for 5 minutes from before immersion was 2.8, and ΔG / G 0 at the time of hydrogen exposure was −0.05.

次に、触媒金属塩を酢酸パラジウム、溶媒にアセトンを用いた場合を説明する。図13(b)に示すように、この場合の水素ガスセンサは空気と水素ガスに交互に暴露したとき問題を生じる。水素ガスに暴露したあと、さらに空気に曝したとき、初期値に復帰しない。従って、再現性が悪く水素ガスセンサを繰り返し使用することが難しくなる。なお、この水素ガスセンサは5分酢酸パラジウムに浸漬したものでセンサ素子のコンダクタンスの浸漬前からの増加率は1.7であり、3回目の水素暴露時のΔG/Gは−0.02であった。上述したように、浸漬処理を行う溶媒としてはCNTの溶媒中での離脱力が物理吸着力より低い水が好適であり、アセトンのような有機溶媒は浸漬処理を行う溶媒としては適当ではない。 Next, the case where the catalytic metal salt is palladium acetate and the solvent is acetone will be described. As shown in FIG. 13B, the hydrogen gas sensor in this case causes a problem when exposed to air and hydrogen gas alternately. It does not return to the initial value when exposed to air after being exposed to hydrogen gas. Therefore, reproducibility is poor and it is difficult to repeatedly use the hydrogen gas sensor. This hydrogen gas sensor was immersed in palladium acetate for 5 minutes, the rate of increase in conductance of the sensor element from before immersion was 1.7, and ΔG / G 0 at the third hydrogen exposure was −0.02. there were. As described above, water for which the detachment force of CNTs in the solvent is lower than the physical adsorption force is suitable as the solvent for the immersion treatment, and an organic solvent such as acetone is not suitable as the solvent for the immersion treatment.

以上のことから、上述した酸化還元反応によるCNTを備えた水素ガスセンサに対する触媒金属による修飾は、常温動作可能な高感度の水素ガスセンサのセンサ素子を作製する手法としてきわめて有効であることが分かる。その最大の特徴はその作製の簡便性であって、予め誘電泳動で作製したCNTを備えた水素ガスセンサを触媒金属塩に数分〜数時間浸漬して乾燥させるだけでよい。この浸漬時間を調整すれば簡単にカーボンに対する触媒金属の原子数比を1%〜25%とすることができる。そして、CNTを集積するときにDEPIM法を用いることにより、修飾されたフィルム状のCNTを簡便且つ安価に作製するが可能になる。   From the above, it can be seen that the modification with the catalytic metal to the hydrogen gas sensor provided with CNTs by the oxidation-reduction reaction described above is extremely effective as a method for producing a sensor element of a highly sensitive hydrogen gas sensor operable at room temperature. Its greatest feature is the ease of production, and it is only necessary to immerse a hydrogen gas sensor equipped with CNTs produced in advance by dielectrophoresis in a catalytic metal salt for several minutes to several hours and dry it. By adjusting this immersion time, the atomic ratio of the catalyst metal to carbon can be easily set to 1% to 25%. Then, by using the DEPIM method when accumulating CNTs, it becomes possible to easily and inexpensively produce modified film-like CNTs.

次に、CNTを備えた水素ガスセンサの初期コンダクタンス(水素暴露前の値)を、触媒金属(Pd)修飾処理前後で比較した結果を(表1)に示す。   Next, Table 1 shows the result of comparing the initial conductance (value before hydrogen exposure) of the hydrogen gas sensor equipped with CNTs before and after the catalytic metal (Pd) modification treatment.

(表1)によれば、Pd修飾処理によって初期コンダクタンスは増加している。これは、修飾処理によってCNTはPdと逆に酸化され、コンダクタンスが増加したためであると思われる。なお、陰極還元反応の場合は実施の形態2で詳述する。この初期コンダクタンスの増加割合からPd修飾の程度を定量できる可能性がある。例えば、浸漬時間が1時間の場合の初期コンダクタンス増加は5分の場合よりも大きく、これは図9に示したセンサ応答の差と定性的に一致している。そして、浸漬時間を調整することでセンサ素子の応答性を容易に制御することが可能になる。このとき、上述したようにカーボンに対する触媒金属の原子数比を1%〜25%にする浸漬時間を選択する必要がある。   According to (Table 1), the initial conductance is increased by the Pd modification treatment. This is presumably because CNT was oxidized opposite to Pd by the modification treatment, and the conductance increased. The case of cathodic reduction reaction will be described in detail in Embodiment 2. There is a possibility that the degree of Pd modification can be quantified from the increase rate of the initial conductance. For example, the initial conductance increase when the immersion time is 1 hour is larger than that when the immersion time is 5 minutes, which is qualitatively consistent with the difference in sensor response shown in FIG. And it becomes possible to control the responsiveness of a sensor element easily by adjusting immersion time. At this time, as described above, it is necessary to select an immersion time in which the atomic ratio of the catalytic metal to carbon is 1% to 25%.

このように実施の形態1の水素ガスセンサの製造方法は、酸化還元反応による触媒金属修飾によって常温動作可能な高感度の水素ガスセンサを提供でき、簡便かつ安価に製造することができる。また、この水素ガスセンサによれば、少なくとも濃度0.01%〜0.1%の空気中水素を常温で1分以内に可逆的に検出するができる。   As described above, the method for manufacturing a hydrogen gas sensor according to Embodiment 1 can provide a highly sensitive hydrogen gas sensor that can operate at room temperature by catalytic metal modification by oxidation-reduction reaction, and can be manufactured easily and inexpensively. Moreover, according to this hydrogen gas sensor, hydrogen in the air having a concentration of at least 0.01% to 0.1% can be detected reversibly within 1 minute at room temperature.

また、この水素ガスセンサの応答は水素濃度が高いほど大きくなるので、高感度のセンサを作製するのが容易であり、暴露直後のコンダクタンス時間変化率は水素濃度にほぼ比例するため、高速応答が可能になる。そして、水素選択性に優れた水素ガスセンサを提供できる。   In addition, since the response of this hydrogen gas sensor increases as the hydrogen concentration increases, it is easy to fabricate a highly sensitive sensor, and the rate of change in conductance time immediately after exposure is almost proportional to the hydrogen concentration, enabling high-speed response. become. And the hydrogen gas sensor excellent in hydrogen selectivity can be provided.

(実施の形態2)   (Embodiment 2)

次に、本発明の実施の形態2における水素ガスセンサと、水素ガスセンサ製造方法について説明をする。図14は本発明の実施の形態2における水素ガスセンサの陰極酸化還元反応の状態を示す説明図、図15は本発明の実施の形態2における水素ガスセンサのセンサ応答図である。実施の形態1の水素ガスセンサと、CNT集積装置についての説明は実施の形態2においても同様であるので、図面は参照し、説明は省略する。   Next, a hydrogen gas sensor and a hydrogen gas sensor manufacturing method according to Embodiment 2 of the present invention will be described. FIG. 14 is an explanatory diagram showing the state of the cathodic oxidation-reduction reaction of the hydrogen gas sensor according to Embodiment 2 of the present invention, and FIG. 15 is a sensor response diagram of the hydrogen gas sensor according to Embodiment 2 of the present invention. Since the description of the hydrogen gas sensor of Embodiment 1 and the CNT accumulating device is the same in Embodiment 2, the drawings are referred to and the description is omitted.

図13において、21は触媒金属塩塩または錯体の溶液中にCNTを集積したマイクロ電極2a,2bを浸漬して陰極とし、これとは別に浸漬して設けられる陽極、22はこの陰極と陽極22の間に直流電圧を印加する電源である。   In FIG. 13, reference numeral 21 denotes a cathode obtained by immersing the microelectrodes 2a and 2b in which CNTs are accumulated in a catalyst metal salt or complex solution, and an anode provided by immersing the anode separately. It is a power supply which applies a DC voltage between.

実施の形態2では、CNTが架橋されたマイクロ電極2a,2bの一方を陰極、陽極22との間に直流の電源22によって直流電圧を印加する。これにより、CNTとマイクロ電極2a,2bの表面には触媒金属、例えばPdが析出する。実施の形態1の水素ガスセンサは、触媒金属とCNTのイオン化傾向の差を利用してきわめて簡便な処理で触媒金属修飾を行ったが、実施の形態2の水素ガスセンサは電気化学的に触媒金属を確実に析出させる点だけが相違している。   In the second embodiment, a DC voltage is applied between one of the microelectrodes 2 a and 2 b cross-linked with CNTs as a cathode and an anode 22 by a DC power supply 22. Thereby, a catalytic metal, for example, Pd is deposited on the surfaces of the CNT and the microelectrodes 2a and 2b. The hydrogen gas sensor according to the first embodiment is modified by a very simple process using the difference in ionization tendency between the catalyst metal and the CNT. However, the hydrogen gas sensor according to the second embodiment electrochemically applies the catalyst metal to the catalyst metal. The only difference is that it is reliably deposited.

実施の形態2の陰極還元反応により触媒金属修飾したCNTを備えた水素ガスセンサの空気希釈水素(濃度1%)に対するセンサ応答を図15に示す。このセンサ応答は、図8(a)に示した浸漬のみによる酸化還元反応で触媒金属修飾した水素ガスセンサのセンサ応答と応答量、応答速度共にほぼ同一であった。ほぼ差はみられない。   FIG. 15 shows the sensor response to the air diluted hydrogen (concentration 1%) of the hydrogen gas sensor provided with the CNT modified with the catalytic metal by the cathodic reduction reaction of the second embodiment. The sensor response was almost the same as the sensor response, the response amount, and the response speed of the hydrogen gas sensor modified with the catalytic metal by the oxidation-reduction reaction only by immersion shown in FIG. There is almost no difference.

このように本発明の実施の形態2における水素ガスセンサと、水素ガスセンサ製造方法は、電気メッキによって確実に触媒金属体をCNTに修飾することができ、常温動作可能な高感度の水素ガスセンサを提供でき、簡便かつ安価に製造することができる。また、この水素ガスセンサによれば、少なくとも濃度0.01%〜0.1%の空気中水素を常温で1分以内に可逆的に検出するができる。   As described above, the hydrogen gas sensor and the hydrogen gas sensor manufacturing method according to the second embodiment of the present invention can provide a highly sensitive hydrogen gas sensor capable of operating at room temperature by reliably modifying the catalytic metal body to CNT by electroplating. It can be easily and inexpensively manufactured. Moreover, according to this hydrogen gas sensor, hydrogen in the air having a concentration of at least 0.01% to 0.1% can be detected reversibly within 1 minute at room temperature.

本発明は、水素ガスプラントや水素ステーション、あるいは燃料電池の水素ガスの漏洩を検知する水素ガスセンサに適用できる。   The present invention can be applied to a hydrogen gas sensor that detects leakage of hydrogen gas from a hydrogen gas plant, a hydrogen station, or a fuel cell.

本発明の実施の形態1における水素ガスセンサとCNT集積化装置の説明図Explanatory drawing of the hydrogen gas sensor and CNT integrated device in Embodiment 1 of this invention 本発明の実施の形態1における水素ガスセンサの液相酸化還元反応の状態を示す説明図Explanatory drawing which shows the state of the liquid phase oxidation-reduction reaction of the hydrogen gas sensor in Embodiment 1 of this invention (a)本発明の実施の形態1における水素ガスセンサの触媒金属粒子を析出させる前のSEM像写真、(b)(a)の触媒金属粒子を析出させる後のSEM像写真(A) SEM image photograph before depositing catalyst metal particles of hydrogen gas sensor in Embodiment 1 of the present invention, (b) SEM image photograph after depositing catalyst metal particles of (a) 本発明の実施の形態1における水素ガスセンサの還元反応処理を行ったCNTのEDX分析図EDX analysis diagram of CNT subjected to reduction reaction treatment of hydrogen gas sensor in Embodiment 1 of the present invention (a)本発明の実施の形態1における水素ガスセンサのCNT上に触媒金属粒子を原子数比6%で析出させたときのSEM像写真、(b)(a)の水素ガスセンサのCNT上に触媒金属粒子を原子数比80%で析出させたときのSEM像写真(A) SEM image photograph when catalyst metal particles are deposited on the CNT of the hydrogen gas sensor in Embodiment 1 of the present invention at an atomic ratio of 6%, (b) the catalyst on the CNT of the hydrogen gas sensor of (a) SEM image when metal particles are deposited at an atomic ratio of 80% (a)本発明の実施の形態1における水素ガスセンサの触媒金属粒子原子数比が1%に満たない場合のEDX分析図、(b)触媒金属粒子原子数比が25%を超えた場合のEDX分析図(A) EDX analysis diagram when the catalyst metal particle atomic ratio of the hydrogen gas sensor of Embodiment 1 of the present invention is less than 1%, (b) EDX when the catalytic metal particle atomic ratio exceeds 25% Analysis chart 本発明の実施の形態1における水素ガスセンサが原子数比25%のセンサ素子をもつときの水素ガスに対する応答図Response diagram for hydrogen gas when the hydrogen gas sensor according to Embodiment 1 of the present invention has a sensor element with an atomic ratio of 25% 本発明の実施の形態1における水素ガスセンサの水素ガス検出時のセンサ応答の原理図Principle diagram of sensor response when hydrogen gas is detected by hydrogen gas sensor according to Embodiment 1 of the present invention (a)本発明の実施の形態1における水素ガスセンサの1時間浸漬処理したセンサ素子の空気希釈水素に対する応答図、(b)本発明の実施の形態1における水素ガスセンサの5分間浸漬処理したセンサ素子の空気希釈水素に対する応答図(A) Response diagram of the sensor element immersed in the hydrogen gas sensor for 1 hour according to Embodiment 1 of the present invention with respect to air diluted hydrogen, (b) Sensor element subjected to the immersion treatment for 5 minutes of the hydrogen gas sensor according to Embodiment 1 of the present invention Response diagram for air diluted hydrogen 本発明の実施の形態1における水素ガスセンサの水素ガス濃度を変化させたときの応答図Response diagram when the hydrogen gas concentration of the hydrogen gas sensor in Embodiment 1 of the present invention is changed 本発明の実施の形態1における水素ガスセンサの水素ガス濃度とコンダクタンス時間変化率の関係図Relationship diagram between hydrogen gas concentration and conductance time change rate of hydrogen gas sensor in Embodiment 1 of the present invention (a)本発明の実施の形態1における水素ガスセンサの触媒金属修飾前のNOに対する応答図、(b)本発明の実施の形態1における水素ガスセンサの触媒金属修飾後のNOに対する応答図である。(A) Response diagram for NO 2 before catalytic metal modification of the hydrogen gas sensor in Embodiment 1 of the present invention, (b) Response diagram for NO 2 after catalyst metal modification of the hydrogen gas sensor in Embodiment 1 of the present invention. is there. (a)本発明の実施の形態1における水素ガスセンサの触媒金属を塩化パラジウムとしたときの応答図、(b)本発明の実施の形態1における水素ガスセンサの溶媒をアセトンにしたときの応答図(A) Response diagram when the catalytic metal of the hydrogen gas sensor in Embodiment 1 of the present invention is palladium chloride, (b) Response diagram when the solvent of the hydrogen gas sensor in Embodiment 1 of the present invention is acetone. 本発明の実施の形態2における水素ガスセンサの陰極酸化還元反応の状態を示す説明図Explanatory drawing which shows the state of the cathode oxidation reduction reaction of the hydrogen gas sensor in Embodiment 2 of this invention 本発明の実施の形態2における水素ガスセンサのセンサ応答図Sensor response diagram of hydrogen gas sensor according to Embodiment 2 of the present invention

符号の説明Explanation of symbols

1 水素ガスセンサ
2a,2b マイクロ電極
3a,3b 電界集中部
4 絶縁基板
5 密閉チャンバ
6,22 電源
7 インピーダンス調整装置
8 CNT懸濁液
8a CNT
9a 導入路
9b 排出路
10 ポンプ
21 陽極
DESCRIPTION OF SYMBOLS 1 Hydrogen gas sensor 2a, 2b Micro electrode 3a, 3b Electric field concentration part 4 Insulating substrate 5 Sealed chamber 6,22 Power supply 7 Impedance adjustment apparatus 8 CNT suspension 8a CNT
9a Introduction path 9b Discharge path 10 Pump 21 Anode

Claims (10)

一対の電極と、カーボンナノ材料を誘電泳動して前記電極間に架橋したセンサ素子と、前記カーボンナノ材料の表面を修飾して水素ガスを解離、吸着する触媒金属体とを備え、前記電極間のコンダクタンスまたは抵抗の変化を測定することで水素ガス濃度を検出する水素ガスセンサであって、前記表面を修飾する触媒金属体が、触媒金属の塩若しくは錯体の溶液中に浸漬されたときのカーボンナノ材料と該触媒金属の酸化還元反応で析出する触媒金属粒子と、前記溶液の中で前記酸化還元反応と重畳して起こる前記触媒金属と電極材料の酸化還元反応に由来して析出した触媒金属粒子とを含むことを特徴とする水素ガスセンサ。 A pair of electrodes, a sensor element in which a carbon nanomaterial is dielectrophoretically crosslinked between the electrodes, and a catalytic metal body that modifies the surface of the carbon nanomaterial to dissociate and adsorb hydrogen gas. A hydrogen gas sensor for detecting a hydrogen gas concentration by measuring a change in conductance or resistance of the carbon nano-particles when the catalytic metal body for modifying the surface is immersed in a solution of a catalyst metal salt or complex. Catalyst metal particles deposited by oxidation-reduction reaction of the material and the catalyst metal, and catalyst metal particles deposited from the oxidation-reduction reaction of the catalyst metal and the electrode material occurring in the solution in superposition with the oxidation-reduction reaction And a hydrogen gas sensor. カーボンに対する前記触媒金属の原子数比が1%〜25%であることを特徴とする請求項1記載の水素ガスセンサ。 2. The hydrogen gas sensor according to claim 1, wherein the atomic ratio of the catalytic metal to carbon is 1% to 25%. 前記溶液中に前記一対の電極を浸漬して陰極とし、別に浸漬した陽極との間で直流電圧を印加して陰極酸素還元反応させることを特徴とする請求項1または2記載の水素ガスセンサ。 3. The hydrogen gas sensor according to claim 1, wherein the pair of electrodes are immersed in the solution to form a cathode, and a direct-current voltage is applied to the separately immersed anode to cause a cathode oxygen reduction reaction. 一対の電極と、カーボンナノ材料を誘電泳動して前記電極間に架橋したセンサ素子と、前記カーボンナノ材料表面を修飾して水素ガスを解離、吸着する触媒金属体とを備え、前記電極間のコンダクタンスまたは抵抗の変化を測定することで水素ガス濃度を検出する水素ガスセンサであって、前記電極の電極材料と前記カーボンナノ材料のイオン化傾向が、前記触媒金属のそれよりも大きくなるように選択されたことを特徴とする水素ガスセンサ。 A pair of electrodes, a sensor element obtained by dielectrophoresis of a carbon nanomaterial and cross-linking between the electrodes, and a catalytic metal body that modifies the surface of the carbon nanomaterial to dissociate and adsorb hydrogen gas, A hydrogen gas sensor for detecting a hydrogen gas concentration by measuring a change in conductance or resistance, wherein the ionization tendency of the electrode material of the electrode and the carbon nanomaterial is selected to be larger than that of the catalyst metal. A hydrogen gas sensor characterized by that. 前記溶液が、前記カーボンナノ材料の前記電極からの離脱力と物理吸着力を比較したとき、該物理吸着力の方が大きい溶媒に前記触媒金属の塩若しくは錯体を溶解した溶液であることを特徴とする請求項1〜4のいずれかに記載された水素ガスセンサ。 The solution is a solution in which the catalyst metal salt or complex is dissolved in a solvent having a larger physical adsorption force when comparing the separation force of the carbon nanomaterial from the electrode and the physical adsorption force. The hydrogen gas sensor according to any one of claims 1 to 4. 前記電極間のコンダクタンスの変化がコンダクタンスの時間変化率であることを特徴とする請求項1〜5のいずれかに記載された水素ガスセンサ。 6. The hydrogen gas sensor according to claim 1, wherein the change in conductance between the electrodes is a time change rate of conductance. カーボンナノ材料を絶縁基板上に形成された一対の電極間で誘電泳動して架橋し、一旦乾燥後、電極材料よりイオン化傾向の小さな触媒金属の塩若しくは錯体の溶液に前記電極を浸漬し、析出する粒子状の触媒金属体によって前記カーボンナノ材料を修飾すると共に、前記電極材料と触媒金属の酸化還元反応を重畳して発生させ前記カーボンナノ材料の表面にこの酸化還元反応に由来する粒子状の触媒金属体を析出させることを特徴とする水素ガスセンサ製造方法。 A carbon nanomaterial is dielectrophoretically cross-linked between a pair of electrodes formed on an insulating substrate, and once dried, the electrode is immersed in a catalyst metal salt or complex solution that has a lower ionization tendency than the electrode material and deposited. The carbon nanomaterial is modified with a particulate catalytic metal body that generates a redox reaction of the electrode material and the catalytic metal in an overlapping manner, and the particulate nanoparticle derived from the redox reaction is generated on the surface of the carbon nanomaterial. A method for producing a hydrogen gas sensor, comprising depositing a catalytic metal body. カーボンに対する前記触媒金属の原子数比を1%〜25%にすることを特徴とする請求項7記載の水素ガスセンサ製造方法。 The method for producing a hydrogen gas sensor according to claim 7, wherein the atomic ratio of the catalytic metal to carbon is 1% to 25%. 絶縁基板上に形成された一対の電極間にカーボンナノ材料を誘電泳動して架橋し、一旦乾燥後、前記カーボンナノ材料の前記電極からの離脱力と物理吸着力を比較したとき該物理吸着力の方が大きい溶媒に対して、前記電極材料よりイオン化傾向の小さな触媒金属の塩若しくは錯体を溶解し、この溶液に前記電極を浸漬し、析出する粒子状の触媒金属体によって前記カーボンナノ材料を修飾すると共に、前記電極材料と触媒金属の酸化還元反応を重畳して発生させ前記カーボンナノ材料の表面にこの酸化還元反応に由来する粒子状の触媒金属体を析出させることを特徴とする水素ガスセンサ製造方法。 When the carbon nanomaterial is dielectrophoretically cross-linked between a pair of electrodes formed on an insulating substrate, and once dried, the physical adsorption force is compared with the separation force of the carbon nanomaterial from the electrode and the physical adsorption force. In a solvent having a larger size, a catalyst metal salt or complex having a smaller ionization tendency than that of the electrode material is dissolved, the electrode is immersed in the solution, and the carbon nanomaterial is dispersed by a particulate catalyst metal body that precipitates. A hydrogen gas sensor characterized by modifying and generating a redox reaction of the electrode material and a catalytic metal in an overlapping manner to deposit a particulate catalytic metal body derived from the redox reaction on the surface of the carbon nanomaterial Production method. 前記溶液中に前記一対の電極を浸漬して陰極とし、別に浸漬した陽極との間で直流電圧を印加して陰極酸素還元反応させることを特徴とする請求項9記載の水素ガスセンサ製造方法。 The method for producing a hydrogen gas sensor according to claim 9, wherein the pair of electrodes are immersed in the solution to form a cathode, and a direct current voltage is applied to the anode separately immersed to cause a cathode oxygen reduction reaction.
JP2007168899A 2007-06-27 2007-06-27 Hydrogen gas sensor manufacturing method Expired - Fee Related JP4953306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168899A JP4953306B2 (en) 2007-06-27 2007-06-27 Hydrogen gas sensor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168899A JP4953306B2 (en) 2007-06-27 2007-06-27 Hydrogen gas sensor manufacturing method

Publications (2)

Publication Number Publication Date
JP2009008476A true JP2009008476A (en) 2009-01-15
JP4953306B2 JP4953306B2 (en) 2012-06-13

Family

ID=40323709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168899A Expired - Fee Related JP4953306B2 (en) 2007-06-27 2007-06-27 Hydrogen gas sensor manufacturing method

Country Status (1)

Country Link
JP (1) JP4953306B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042445A (en) * 2010-08-23 2012-03-01 Chungnam National Univ Industry Collaboration Foundation High sensitive gas sensor using carbon material containing ionic metal catalyst and manufacturing method thereof
KR101309590B1 (en) * 2011-10-25 2013-09-17 한국표준과학연구원 Hydrogen gas concentration measurement system
JP2014052237A (en) * 2012-09-06 2014-03-20 Seiko Instruments Inc Gas sensor, gas measuring apparatus, and gas sensor manufacturing method
CN103760196A (en) * 2014-02-19 2014-04-30 中国工程物理研究院化工材料研究所 Birnessite type manganese dioxide nanosheet hydrogen sensor and preparation method thereof
WO2014109410A1 (en) * 2013-01-11 2014-07-17 株式会社アクアバンク Method for determining dissolved-hydrogen concentration
JP2017151081A (en) * 2016-02-23 2017-08-31 インダストリー−アカデミック・コーポレーション・ファウンデーション・ヨンセイ・ユニヴァーシティ Hydrogen sensor and method for manufacturing the same
KR20170114963A (en) * 2016-04-06 2017-10-16 울산과학기술원 Hydrogen gas sensor and Fabrication method of the same
JP2018165682A (en) * 2017-03-28 2018-10-25 学校法人加計学園 Gas sensor
JP2019200070A (en) * 2018-05-14 2019-11-21 キヤノン株式会社 Reducing gas detection material and reducing gas detection sensor
CN111480067A (en) * 2017-12-15 2020-07-31 佳能株式会社 Reducing gas sensor
JP2021508655A (en) * 2017-12-22 2021-03-11 パロ アルト リサーチ センター インコーポレイテッド Nanotubes decorated with annealed metal nanoparticles
JP2022088972A (en) * 2020-12-03 2022-06-15 宮城県 Gas concentration measurement method and gas concentration measuring device
US11686698B2 (en) 2018-05-14 2023-06-27 Canon Kabushiki Kaisha Reducing gas detection material and reducing gas detection sensor
CN118090837A (en) * 2024-04-23 2024-05-28 大连理工大学 Room-temperature hydrogen-sensitive cube material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517604A (en) * 1999-12-15 2003-05-27 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Carbon nanotube device
JP2003227808A (en) * 2002-02-05 2003-08-15 Koyo Seiko Co Ltd Sensor using carbon nano tube
JP2004325142A (en) * 2003-04-22 2004-11-18 Matsushita Electric Works Ltd Gas sensor
JP2005510711A (en) * 2001-11-26 2005-04-21 ソニー インターナショナル (ヨーロッパ) ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of semiconductor materials as chemical sensing materials that are manufactured and operate at temperatures close to room temperature
JP2006112819A (en) * 2004-10-12 2006-04-27 Fujitsu Ltd Gas detection device
JP2006242644A (en) * 2005-03-01 2006-09-14 Tohoku Univ Dissolved hydrogen sensor using metal thin film
JP2006329802A (en) * 2005-05-26 2006-12-07 Kyushu Univ Carbon nanotube sensor and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517604A (en) * 1999-12-15 2003-05-27 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Carbon nanotube device
JP2005510711A (en) * 2001-11-26 2005-04-21 ソニー インターナショナル (ヨーロッパ) ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of semiconductor materials as chemical sensing materials that are manufactured and operate at temperatures close to room temperature
JP2003227808A (en) * 2002-02-05 2003-08-15 Koyo Seiko Co Ltd Sensor using carbon nano tube
JP2004325142A (en) * 2003-04-22 2004-11-18 Matsushita Electric Works Ltd Gas sensor
JP2006112819A (en) * 2004-10-12 2006-04-27 Fujitsu Ltd Gas detection device
JP2006242644A (en) * 2005-03-01 2006-09-14 Tohoku Univ Dissolved hydrogen sensor using metal thin film
JP2006329802A (en) * 2005-05-26 2006-12-07 Kyushu Univ Carbon nanotube sensor and its manufacturing method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042445A (en) * 2010-08-23 2012-03-01 Chungnam National Univ Industry Collaboration Foundation High sensitive gas sensor using carbon material containing ionic metal catalyst and manufacturing method thereof
KR101309590B1 (en) * 2011-10-25 2013-09-17 한국표준과학연구원 Hydrogen gas concentration measurement system
JP2014052237A (en) * 2012-09-06 2014-03-20 Seiko Instruments Inc Gas sensor, gas measuring apparatus, and gas sensor manufacturing method
US10775353B2 (en) 2013-01-11 2020-09-15 Aqua Bank Co., Ltd. Method for determining dissolved-hydrogen concentration
WO2014109410A1 (en) * 2013-01-11 2014-07-17 株式会社アクアバンク Method for determining dissolved-hydrogen concentration
CN103760196A (en) * 2014-02-19 2014-04-30 中国工程物理研究院化工材料研究所 Birnessite type manganese dioxide nanosheet hydrogen sensor and preparation method thereof
CN103760196B (en) * 2014-02-19 2016-01-20 中国工程物理研究院化工材料研究所 A kind of Birnessite type manganese dioxide nanosheet hydrogen sensor and preparation method thereof
JP2017151081A (en) * 2016-02-23 2017-08-31 インダストリー−アカデミック・コーポレーション・ファウンデーション・ヨンセイ・ユニヴァーシティ Hydrogen sensor and method for manufacturing the same
KR20170114963A (en) * 2016-04-06 2017-10-16 울산과학기술원 Hydrogen gas sensor and Fabrication method of the same
JP2018165682A (en) * 2017-03-28 2018-10-25 学校法人加計学園 Gas sensor
CN111480067A (en) * 2017-12-15 2020-07-31 佳能株式会社 Reducing gas sensor
JP2021508655A (en) * 2017-12-22 2021-03-11 パロ アルト リサーチ センター インコーポレイテッド Nanotubes decorated with annealed metal nanoparticles
JP7487104B2 (en) 2017-12-22 2024-05-20 パロ アルト リサーチ センター インコーポレイテッド Annealed metal nanoparticle decorated nanotubes
JP2019200070A (en) * 2018-05-14 2019-11-21 キヤノン株式会社 Reducing gas detection material and reducing gas detection sensor
JP7150467B2 (en) 2018-05-14 2022-10-11 キヤノン株式会社 Reducing gas detection material and reducing gas detection sensor
US11686698B2 (en) 2018-05-14 2023-06-27 Canon Kabushiki Kaisha Reducing gas detection material and reducing gas detection sensor
JP2022088972A (en) * 2020-12-03 2022-06-15 宮城県 Gas concentration measurement method and gas concentration measuring device
JP7495691B2 (en) 2020-12-03 2024-06-05 宮城県 Gas concentration measuring method and gas concentration measuring device
CN118090837A (en) * 2024-04-23 2024-05-28 大连理工大学 Room-temperature hydrogen-sensitive cube material and preparation method thereof

Also Published As

Publication number Publication date
JP4953306B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4953306B2 (en) Hydrogen gas sensor manufacturing method
Gooding Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing
Star et al. Gas sensor array based on metal-decorated carbon nanotubes
Du et al. Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film
Shin et al. Flower-like palladium nanoclusters decorated graphene electrodes for ultrasensitive and flexible hydrogen gas sensing
Balasubramanian et al. Electrochemically functionalized carbon nanotubes for device applications
Day et al. Factors controlling the electrodeposition of metal nanoparticles on pristine single walled carbon nanotubes
Van Hieu et al. Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite
Choi et al. Synthesis and gas sensing performance of ZnO–SnO2 nanofiber–nanowire stem-branch heterostructure
Shamsabadi et al. Electrochemical non-enzymatic sensing of glucose by gold nanoparticles incorporated graphene nanofibers
Zilli et al. Room temperature hydrogen gas sensor nanocomposite based on Pd-decorated multi-walled carbon nanotubes thin films
Dai et al. Fabrication of Nickel/nanodiamond/boron-doped diamond electrode for non-enzymatic glucose biosensor.
Cui et al. Sensing hydrogen peroxide using a glassy carbon electrode modified with in-situ electrodeposited platinum-gold bimetallic nanoclusters on a graphene surface
Takács et al. WO3 nano-rods sensitized with noble metal nano-particles for H2S sensing in the ppb range
Wang et al. Electrocatalytic oxidation and detection of N-acetylcysteine based on magnetite/reduced graphene oxide composite-modified glassy carbon electrode
Sanati et al. A cost-effective and green-reduced graphene oxide/polyurethane foam electrode for electrochemical applications
Kwon et al. Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles
Joshi et al. Methanol oxidation reaction on Pt based electrocatalysts modified ultramicroelectrode (UME): Novel electrochemical method for monitoring rate of CO adsorption
Yan et al. Electrophoretic deposition of multiwalled carbon nanotubes onto porous silicon with enhanced NO2-sensing characteristics
TW201935492A (en) Sensor electrode material, sensor electrode, sensor, and bio-sensor
Yang et al. Preparation and performance study of humidity sensor based on defect-controlled TiO2/CdS heterostructure
Shrivas et al. The direct-writing of low cost paper based flexible electrodes and touch pad devices using silver nano-ink and ZnO nanoparticles
KR20120111467A (en) Diamond-deposited nanowire and method of preparing the same
JP6008272B2 (en) Method for producing metal nano-x raster-supported carbon porous body
Cai et al. Fabrication of gas sensor based on field ionization from SWCNTs with tripolar microelectrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees