JP2009007416A - Method for degrading plastic - Google Patents

Method for degrading plastic Download PDF

Info

Publication number
JP2009007416A
JP2009007416A JP2007168027A JP2007168027A JP2009007416A JP 2009007416 A JP2009007416 A JP 2009007416A JP 2007168027 A JP2007168027 A JP 2007168027A JP 2007168027 A JP2007168027 A JP 2007168027A JP 2009007416 A JP2009007416 A JP 2009007416A
Authority
JP
Japan
Prior art keywords
plastic
molded product
fluid
reaction tank
plastic molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007168027A
Other languages
Japanese (ja)
Other versions
JP4788673B2 (en
Inventor
Shin Matsugi
伸 真継
Manabu Mizobuchi
学 溝渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007168027A priority Critical patent/JP4788673B2/en
Publication of JP2009007416A publication Critical patent/JP2009007416A/en
Application granted granted Critical
Publication of JP4788673B2 publication Critical patent/JP4788673B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for degrading a plastic by which a fluid in a reaction vessel can efficiently be heated up in degradation of the plastic etc., with a fluid in the supercritical state or the subcritical state and the apparatus efficiency can be improved. <P>SOLUTION: There are provided a step (A) of feeding a plastic molded product 2 and the fluid 3 to the reaction vessel 1 and carrying out a degradation treatment of the plastic molded product 2 in the supercritical state or the subcritical state and a step (B) of newly feeding the plastic molded product 2 to the fluid 3 in which the degradation product of the plastic molded product 2 subjected to the degradation treatment in the step (A) is dissolved and carrying out the degradation treatment of the plastic molded product 2 in the supercritical state or the subcritical state. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、プラスチックの分解方法に関する。   The present invention relates to a method for decomposing plastics.

従来より、例えば、有害物を無害化分解することや、食品廃棄物等を分解して再資源化することや、プラスチック廃棄物を分解して有機酸、アルコール等のプラスチックの合成原料やFRP(ガラス繊維強化プラスチック)中のガラス繊維等を回収して再利用できるようにするために、超臨界状態または亜臨界状態の水熱反応によって分解することが様々な装置の構成として提案されている。   Conventionally, for example, detoxifying and decomposing harmful substances, decomposing and recycling food waste, etc., or decomposing plastic waste and synthesizing plastic raw materials such as organic acids and alcohols or FRP ( In order to collect and reuse the glass fiber in the glass fiber reinforced plastic), it has been proposed as a configuration of various apparatuses to decompose by a supercritical or subcritical hydrothermal reaction.

しかしながら、例えば、特許文献1のような超臨界状態または亜臨界状態の流体によるプラスチックの分解においては、破砕した粒状のプラスチックと流体との混合液は固液混合のスラリー状となるため、連続的に反応槽内に原料を供給し、連続的に反応槽内から反応液を取出すことは、必ずしも容易ではないという問題がある。その理由は、第1には、スラリー状混合液を高温高圧で送液するポンプが高価であり、固形物による部品の磨耗等の耐久性に問題が生じやすいことであり、第2には、反応性を確保しつつ、反応槽に残留した未反応固形物の全量排出が困難であることによる。特にプラスチックがFRPの場合、比重の重いガラス繊維や炭酸カルシウム等の無機物成分が未反応のまま残り、沈降性の高いこれらの成分を伴う反応液の排出は難しい。   However, for example, in the decomposition of plastics using a fluid in a supercritical state or a subcritical state as in Patent Document 1, a mixture of crushed granular plastic and fluid becomes a slurry of solid-liquid mixing. However, it is not always easy to supply the raw material into the reaction tank and continuously take out the reaction solution from the reaction tank. The reason for this is that, firstly, the pump for feeding the slurry-like mixed liquid at a high temperature and high pressure is expensive, and problems such as wear of parts due to solid matter are likely to occur, and secondly, This is because it is difficult to discharge the entire amount of unreacted solids remaining in the reaction tank while ensuring the reactivity. In particular, when the plastic is FRP, inorganic components such as glass fiber having a high specific gravity and calcium carbonate remain unreacted, and it is difficult to discharge the reaction solution with these components having high sedimentation properties.

このような場合には、図7に示すような回分式の反応装置が採用される。回分式はバッチ処理であり、投入した原料(FRP)は1バッチの反応後そのまま全量抜き出される操作となる。反応生成物を反応槽1から取り出すにあたっては、反応槽1内は流体3を超臨界状態または亜臨界状態にしているために高温・高圧の状態にあることから、反応槽1内を常温にまで冷却する必要がある。また、分解生成物を取り出すために反応槽1内を常圧にまで減圧する必要がある。そして、次バッチでは常温状態の流体3をあらためて超臨界状態または亜臨界状態まで加温する必要がある。したがって、以上のような一連の操作を含む処理においては、全般的に処理時間が長くなり、また流体の加熱に大量の熱量を使用することから、生産性やコストの面で大きな問題がある。   In such a case, a batch reactor as shown in FIG. 7 is employed. The batch method is a batch process, and the input raw material (FRP) is extracted as it is after the reaction of one batch. When the reaction product is taken out from the reaction vessel 1, the reaction vessel 1 is in a supercritical state or a subcritical state, and thus is in a high temperature / high pressure state. It needs to be cooled. Moreover, in order to take out a decomposition product, it is necessary to depressurize the inside of the reaction tank 1 to a normal pressure. In the next batch, it is necessary to reheat the fluid 3 in the normal temperature state to the supercritical state or the subcritical state. Therefore, in the processing including the series of operations as described above, the processing time is generally long, and a large amount of heat is used for heating the fluid, so that there are significant problems in terms of productivity and cost.

そこで、反応槽内において流体中のプラスチック濃度が可能な限り高くなるようにプラスチックと流体の供給量を調整して反応槽に供給することが考えられる。しかしながら、プラスチック濃度にはおのずと上限があり、その上限近傍で処理を行うと高温の反応槽内壁面に固形分が固着するという新たな問題が生じる。また、依然としてバッチ処理を行っており、プラスチックと流体の反応槽への供給量の調整のみでは、流体の加熱時間の短縮や必要熱量の削減等、装置効率の向上には限界がある。
特開2006−232942号公報
Therefore, it is conceivable to adjust the supply amounts of the plastic and the fluid so that the plastic concentration in the fluid becomes as high as possible in the reaction tank and supply the plastic and the fluid to the reaction tank. However, the plastic concentration naturally has an upper limit, and if the treatment is performed in the vicinity of the upper limit, there arises a new problem that solids adhere to the inner wall surface of the high-temperature reaction tank. Furthermore, batch processing is still performed, and there is a limit to improving the efficiency of the apparatus, such as shortening the heating time of the fluid and reducing the required heat amount, only by adjusting the supply amount of the plastic and fluid to the reaction tank.
JP 2006-232942 A

本発明は、以上の通りの事情に鑑みてなされたものであり、超臨界状態または亜臨界状態の流体でのプラスチック等の分解において反応槽内の流体を効率的に昇温でき、装置効率を向上させることができるプラスチックの分解方法を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and can efficiently raise the temperature of the fluid in the reaction tank in the decomposition of the plastic or the like in the fluid in the supercritical state or the subcritical state, thereby improving the efficiency of the apparatus. It is an object of the present invention to provide a plastic decomposition method that can be improved.

本発明は、上記の課題を解決するために、以下のことを特徴としている。   The present invention is characterized by the following in order to solve the above problems.

第1に、本発明のプラスチックの分解方法は、プラスチック成形品および流体を反応槽に供給し、超臨界または亜臨界の状態でプラスチック成形品を分解処理する工程(A)と、工程(A)で分解処理したプラスチック成形品の分解物が溶解した流体にプラスチック成形品を新たに供給し、超臨界または亜臨界の状態でプラスチック成形品を分解処理する工程(B)とを有する。   First, in the method for decomposing a plastic according to the present invention, a process (A) in which a plastic molded article and a fluid are supplied to a reaction vessel, and the plastic molded article is decomposed in a supercritical or subcritical state, and the process (A) And a step (B) of newly supplying the plastic molded product to the fluid in which the decomposition product of the plastic molded product decomposed in step 1 is dissolved, and decomposing the plastic molded product in a supercritical or subcritical state.

第2に、上記第1の発明において、工程(A)と工程(B)との間に、反応槽から内容物を取り出し、これを固液分離して分離液を反応槽に供給する工程を有することを特徴とする請求項1に記載のプラスチックの分解方法。   Second, in the first invention, the step of taking out the contents from the reaction vessel between the step (A) and the step (B), solid-liquid separating it, and supplying the separated liquid to the reaction vessel. The method for decomposing a plastic according to claim 1, comprising:

第3に、上記第1の発明において、工程(A)の後、反応槽底部に沈降したプラスチック成形品の未分解成分を含む反応槽下部の流体を反応槽から取り出し、工程(B)において、取り出した流体と同程度の流体を、プラスチック成形品とともに新たに反応槽に供給する。   Third, in the first invention, after the step (A), the fluid in the lower part of the reaction tank containing the undecomposed component of the plastic molded product settled on the bottom of the reaction tank is taken out from the reaction tank, and in the step (B), A fluid of the same degree as the taken-out fluid is newly supplied to the reaction tank together with the plastic molded product.

第4に、上記第1ないし第3のいずれかの発明において、工程(B)において、超臨界または亜臨界の状態で分解処理する反応槽の内部圧力と少なくとも同等の圧力まで加圧されたプラスチック供給部からプラスチック成形品を反応槽に供給する。   Fourthly, in any one of the first to third inventions, in step (B), the plastic is pressurized to a pressure at least equal to the internal pressure of the reaction tank that is decomposed in a supercritical or subcritical state. A plastic molded product is supplied to the reaction tank from the supply unit.

第5に、上記第1ないし第4のいずれかの発明において、工程(B)を所定回数繰り返した後、反応槽から内容物を取り出し、これを固液分離して得たプラスチック成形品分解物の溶解成分を含む分離液から、プラスチック成形品分解物の溶解成分を除去し、残りの分離液を反応槽に供給する工程を有する。   Fifth, in any one of the first to fourth inventions, after the step (B) is repeated a predetermined number of times, the contents are taken out from the reaction tank and solid-liquid separated to obtain a decomposed plastic molded product. The step of removing the dissolved component of the plastic molded product decomposition product from the separated solution containing the dissolved component and supplying the remaining separated solution to the reaction vessel.

第6に、上記第1ないし第4のいずれかの発明において、工程(B)を所定回数繰り返した後、反応槽に流体を供給してプラスチック成形品分解物の濃度を低下させ、次いで反応槽の内容物を排出する。   Sixth, in any one of the first to fourth inventions, after repeating step (B) a predetermined number of times, a fluid is supplied to the reaction tank to reduce the concentration of the plastic molded product decomposition product, and then the reaction tank The contents of are discharged.

第7に、上記第1ないし第6のいずれかの発明において、プラスチック成形品が不飽和ポリエステル樹脂を含むプラスチックである。   Seventh, in any one of the first to sixth inventions, the plastic molded article is a plastic containing an unsaturated polyester resin.

第8に、上記第1ないし第7のいずれかの発明において、反応液が水であって、工程(B)において反応槽内の流体の液温が80〜100℃の範囲内に低下した時にプラスチック成形品を投入する。   Eighth, in any one of the first to seventh inventions, when the reaction liquid is water and the liquid temperature of the fluid in the reaction tank is lowered within the range of 80 to 100 ° C. in the step (B). Insert plastic moldings.

上記第1の発明によれば、反応槽内においてプラスチック成形品の分解生成物が溶解した流体を排出せずに、新たにプラスチック成形品を反応槽に供給して前記流体で分解処理するため、反応槽から流体を排出して新たな流体を反応槽に供給して昇温していた従来法よりも大幅に、昇温時間の短縮、消費熱量や流体使用量の削減等、を実現でき、装置効率を向上させることができる。   According to the first aspect of the present invention, the plastic molded product is newly supplied to the reaction tank and decomposed with the fluid without discharging the fluid in which the decomposition product of the plastic molded product is dissolved in the reaction tank. Compared to the conventional method where the fluid is discharged from the reaction tank and a new fluid is supplied to the reaction tank to raise the temperature, the heating time can be shortened, and the heat consumption and fluid usage can be reduced. The apparatus efficiency can be improved.

また、上記第2の発明によれば、反応槽の内容物中の固形分が取り除かれるため、次工程においてプラスチック成形品の投入量は初期と同様の量とすることができる。したがって、さらに装置効率を向上させることができる。   Further, according to the second aspect, since the solid content in the contents of the reaction vessel is removed, the amount of plastic molded product input in the next step can be the same as the initial amount. Therefore, the apparatus efficiency can be further improved.

上記第3の発明によれば、反応槽内のプラスチック成形品の未分解成分の濃度が高い流体が取り除かれるため、反応槽の流体の上記未分解成分や、分解物の高濃度化が抑制される。したがって、反応槽の分解処理において高温の反応槽内壁面への固形分の固着や、反応槽の流体の攪拌性の低下を防止することができる。   According to the third invention, since the fluid having a high concentration of undecomposed components of the plastic molded product in the reaction tank is removed, the concentration of the undecomposed components and decomposed products of the fluid in the reaction tank is suppressed. The Therefore, solid content can be prevented from sticking to the inner wall surface of the high-temperature reaction tank and the stirring ability of the fluid in the reaction tank can be prevented from being degraded in the decomposition treatment of the reaction tank.

上記第4の発明によれば、反応槽の内部圧力と少なくとも同等の圧力まで加圧されたプラスチック供給部からプラスチック成形品を反応槽に供給することにより、反応槽の温度を下げることなく分解処理を開始することが可能となる。したがって、反応槽の冷却時間を削減できるとともに、加熱のための消費熱量を削減でき、装置効率をさらに一層向上させることができる。   According to the fourth aspect of the present invention, by supplying a plastic molded product to the reaction tank from the plastic supply section pressurized to at least the pressure equal to the internal pressure of the reaction tank, the decomposition treatment is performed without lowering the temperature of the reaction tank. Can be started. Therefore, the cooling time of the reaction vessel can be reduced, the amount of heat consumed for heating can be reduced, and the apparatus efficiency can be further improved.

上記第5の発明によれば、反応槽内の流体からプラスチック成形品分解物の溶解成分を取り除いてこの流体を再利用するため、新たな流体を用いる必要はない。したがって、流体の総使用量を削減することができる。   According to the fifth aspect, since the dissolved component of the plastic molded product decomposition product is removed from the fluid in the reaction tank and the fluid is reused, it is not necessary to use a new fluid. Therefore, the total amount of fluid used can be reduced.

上記第6の発明によれば、反応槽内の流体のプラスチック成形品分解物濃度を下げて反応槽内の内容物を排出することができる。プラスチック成形品分解物濃度を下げないで排出した場合には、反応槽に接続された排出管に閉塞等の問題が生じ、その後の操作に支障がでて装置効率が低下するおそれがある。   According to the sixth aspect of the invention, it is possible to lower the concentration of the decomposed product of the plastic molded product of the fluid in the reaction tank and discharge the contents in the reaction tank. If the plastic product decomposition product is discharged without lowering the concentration, problems such as blockage may occur in the discharge pipe connected to the reaction tank, which may hinder subsequent operations and reduce the efficiency of the apparatus.

上記第7および第8の発明によれば、分解対象となるプラスチック成形品や使用する流体を所定のものとすることで、実際上、上記効果をより具体的に、かつ確実なものとして実現することができる。   According to the seventh and eighth aspects of the present invention, the above-described effect can be realized in a more concrete and reliable manner by setting the plastic molded product to be disassembled and the fluid to be used to a predetermined one. be able to.

<実施形態1>
図1は、第1の発明のプラスチックの分解方法の一実施形態を説明するための分解装置の模式図である。
<Embodiment 1>
FIG. 1 is a schematic view of a disassembling apparatus for explaining an embodiment of the plastic disassembling method of the first invention.

まず、本発明の分解方法に用いられる分解装置について説明する。   First, a decomposition apparatus used in the decomposition method of the present invention will be described.

分解装置は、超臨界または亜臨界の状態の流体3でプラスチック成形品2を分解処理する反応槽1に、プラスチック成形品2を供給するプラスチック供給管4と、流体3を供給する流体供給管5とが接続されている。また反応槽1底部には、反応槽1内で分解処理された内容物を排出する排出管6が接続されており、排出管6には排出用開閉弁7が設けられている。この排出用開閉弁7の開閉によって反応槽1内の内容物が排出管6を通じて排出できるようになっている。反応槽1は、例えばステンレス製の円筒形槽で耐圧製に形成され、外周には図示しないが加熱ヒーターが設けられる。また、反応槽1には、反応槽1内に投入されるプラスチック成形品2と流体3とを攪拌モーターによる攪拌翼の回転によって混合する攪拌手段8が設けられ、図示しないがさらに反応槽1内の圧力を測定する圧力ゲージなどで形成される圧力検出器や反応槽1内の温度を測定する温度センサーなどで形成される温度検出器が設けられている。   The decomposition apparatus includes a plastic supply pipe 4 that supplies the plastic molded product 2 to a reaction tank 1 that decomposes the plastic molded product 2 with a fluid 3 in a supercritical or subcritical state, and a fluid supply pipe 5 that supplies the fluid 3. And are connected. A discharge pipe 6 for discharging the contents decomposed in the reaction tank 1 is connected to the bottom of the reaction tank 1, and a discharge opening / closing valve 7 is provided in the discharge pipe 6. By opening and closing the discharge opening / closing valve 7, the contents in the reaction tank 1 can be discharged through the discharge pipe 6. The reaction tank 1 is made of, for example, a stainless steel cylindrical tank and is made pressure-resistant, and a heater is provided on the outer periphery (not shown). Further, the reaction tank 1 is provided with a stirring means 8 for mixing the plastic molded product 2 and the fluid 3 introduced into the reaction tank 1 by rotation of a stirring blade by a stirring motor. There are provided a pressure detector formed by a pressure gauge or the like for measuring the pressure of the gas, a temperature sensor formed by a temperature sensor for measuring the temperature in the reaction tank 1 or the like.

本発明において分解の対象となるプラスチック成形品2は、熱硬化性樹脂および熱可塑性樹脂のいずれの樹脂を用いたものでもよく、例えば、熱硬化性樹脂としては不飽和ポリエステル樹脂、アクリル樹脂、エポキシ樹脂等、熱可塑性樹脂としてはポリ塩化ビニル樹脂、ポリエチレン樹脂、ポリスチレン樹脂等を挙げることができる。またプラスチック成形品2にはガラス繊維、炭酸カルシウム等の無機物を含んでいてもよい。   The plastic molded product 2 to be decomposed in the present invention may be any one of a thermosetting resin and a thermoplastic resin. Examples of the thermosetting resin include unsaturated polyester resins, acrylic resins, and epoxy resins. Examples of the thermoplastic resin such as resin include polyvinyl chloride resin, polyethylene resin, and polystyrene resin. Moreover, the plastic molded product 2 may contain inorganic substances such as glass fiber and calcium carbonate.

本発明で使用する流体3としては、水、一価アルコール、多価アルコール等やこれらの混合物を挙げることができ、プラスチック成形品2の分解をより促進させるため、水酸化カリウムや水酸化ナトリウム等、アルカリ金属の水酸化物の水溶液を流体3として用いることもできる。   Examples of the fluid 3 used in the present invention include water, monohydric alcohol, polyhydric alcohol, and the like, and mixtures thereof. In order to further promote the decomposition of the plastic molded product 2, potassium hydroxide, sodium hydroxide, etc. An aqueous solution of an alkali metal hydroxide can also be used as the fluid 3.

この実施形態では、プラスチック成形品2と流体3とを別々に反応槽1に供給しているが、プラスチック成形品2を粉砕した粉粒体と水等の流体3とを前処理槽にて攪拌しスラリー状にした後、例えば液送ポンプにより供給配管を通してプラスチック成形品2の粉粒体と流体3のスラリーを反応槽1内に供給してもよい。また、反応槽1内に流体3とともに供給されたプラスチック成形品2が、反応槽1下部に沈降して分解反応が受け難くなることを防止したり、また加熱時にプラスチック成形品2が反応槽1内壁面に固着したりすることを防止する等、プラスチック成形品2の流体3に対する攪拌混合性を高めて流体3との反応効率を向上させるために、プラスチック成形品2の最大粒子径が30mm以下になるように粉砕して使用するのが好ましい。プラスチック成形品2の最大粒子径は小さいほど望ましい。   In this embodiment, the plastic molded product 2 and the fluid 3 are separately supplied to the reaction tank 1, but the granular material obtained by pulverizing the plastic molded product 2 and the fluid 3 such as water are stirred in the pretreatment tank. After the slurry is formed, the slurry of the plastic molded product 2 and the fluid 3 may be supplied into the reaction tank 1 through a supply pipe by a liquid feed pump, for example. Further, it is possible to prevent the plastic molded product 2 supplied together with the fluid 3 in the reaction tank 1 from sinking to the lower part of the reaction tank 1 and making it difficult to undergo a decomposition reaction. The maximum particle size of the plastic molded product 2 is 30 mm or less in order to improve the mixing efficiency of the plastic molded product 2 with respect to the fluid 3 and to improve the reaction efficiency with the fluid 3 such as preventing sticking to the inner wall surface. It is preferable to use after pulverization. It is desirable that the maximum particle size of the plastic molded product 2 is smaller.

次にプラスチックの分解方法について説明する。   Next, a method for decomposing plastic will be described.

まず工程(A)では、プラスチック供給管4および流体供給管5からそれぞれプラスチック成形品2と流体3を反応槽1に供給する。このようにプラスチック成形品2と流体3とを反応槽1に供給した後、反応槽1を密閉状態にし、プラスチック成形品2と流体3を攪拌手段8で攪拌しながら加熱ヒーターで加熱する。そして、温度検出器で反応槽1内温度を、圧力検出器で反応槽1内圧力を、それぞれ検出しながら加熱を行い、検出された温度と圧力に応じて加熱を制御する。これによって、反応槽1内の流体3が超臨界状態または亜臨界状態になる温度・圧力を維持し、この超臨界状態または亜臨界状態の流体3を反応触媒としてプラスチック成形品2を分解する。   First, in the step (A), the plastic molded product 2 and the fluid 3 are supplied to the reaction tank 1 from the plastic supply pipe 4 and the fluid supply pipe 5, respectively. After the plastic molded product 2 and the fluid 3 are thus supplied to the reaction tank 1, the reaction tank 1 is sealed, and the plastic molded product 2 and the fluid 3 are heated with a heater while being stirred by the stirring means 8. And it heats, detecting the temperature in reaction tank 1 with a temperature detector, and the pressure in reaction tank 1 with a pressure detector, respectively, and controls heating according to the detected temperature and pressure. As a result, the temperature and pressure at which the fluid 3 in the reaction tank 1 becomes supercritical or subcritical is maintained, and the plastic molded article 2 is decomposed using the supercritical or subcritical fluid 3 as a reaction catalyst.

例えばプラスチック成形品2として不飽和ポリエステル樹脂を、流体3として水を用いる場合、プラスチック濃度が10〜50wt%になるようにそれぞれ反応槽1に供給し、反応槽1内では180〜250℃、1.0〜4.0MPaの温度・圧力に調整し、水を超臨界状態または亜臨界状態に維持して30分〜4時間反応させることによって、不飽和ポリエステル樹脂をエステル交換反応させ、分解物としてスチレンマレイン酸共重合体や多価アルコールなどのモノマーに加水分解することができる。加水分解によりプラスチック成形品の80%以上が流体3に溶解し、初期の供給時のプラスチック濃度より激減した状態となる。   For example, when an unsaturated polyester resin is used as the plastic molded product 2 and water is used as the fluid 3, the plastic concentration is supplied to the reaction vessel 1 so that the plastic concentration becomes 10 to 50 wt%. By adjusting the temperature and pressure to 0.0 to 4.0 MPa and maintaining the water in a supercritical state or subcritical state and reacting for 30 minutes to 4 hours, the unsaturated polyester resin is transesterified to obtain a decomposition product. It can be hydrolyzed to monomers such as styrene maleic acid copolymer and polyhydric alcohol. As a result of hydrolysis, 80% or more of the plastic molded product is dissolved in the fluid 3 and is in a state of drastically decreasing from the plastic concentration at the initial supply.

所定の分解処理時間経過後、流体3を自然冷却または図示しないが反応槽1に設けた減圧弁により減圧し蒸気化して冷却した後、常圧以下になった時点で工程(B)の操作を行う。この工程(B)の操作は繰り返し行う。   After the predetermined decomposition treatment time has elapsed, the fluid 3 is naturally cooled or reduced in pressure by a pressure reducing valve provided in the reaction tank 1 (not shown), vaporized and cooled, and then the operation of the step (B) is performed when the pressure becomes normal pressure or lower. Do. This step (B) is repeated.

工程(B)では、反応槽1内の流体3を排出することなく、新たなプラスチック成形品2をプラスチック供給管4から反応槽1に供給する。工程(A)において流体3としてアルカリ金属の水酸化物の水溶液を用いた場合には、プラスチック成形品2とともに消費したアルカリ金属の水酸化物を添加してもよい。   In the step (B), a new plastic molded product 2 is supplied from the plastic supply pipe 4 to the reaction tank 1 without discharging the fluid 3 in the reaction tank 1. When an alkali metal hydroxide aqueous solution is used as the fluid 3 in the step (A), the alkali metal hydroxide consumed together with the plastic molded product 2 may be added.

この工程(B)でのプラスチック成形品2の供給量は、上記と同様、プラスチック濃度10〜50wt%になるように供給することが考慮される。反応槽1内の流体3はプラスチック濃度が激減した状態となっているため、実際上、プラスチック成形品2の供給量は、上記工程(A)において初期に供給したプラスチック成形品2の供給量と同程度の量を供給することができる。プラスチック成形品2の反応槽1への供給に際しては、流体3の液温が沸点以下になればプラスチック成形品2を供給できるため、常温まで低下するのを待つ必要がない。例えば、流体3が水である場合には、常圧下において、反応槽1内の液温が水の沸点(100℃)以下、すなわち80〜100℃程度に低下した時点で、新たなプラスチック成形品2を供給することができる。そしてプラスチック成形品2の供給後は、その温度から流体が超臨界状態または亜臨界状態になるまで加熱ヒーターで加熱するため、昇温時間を短縮し、消費熱量を削減することができる。また新たに流体3を供給していないので、流体3使用量についても削減することができる。このような効果は、工程(B)の操作を繰り返し行うことによって、より顕著なものとすることができる。   The supply amount of the plastic molded product 2 in this step (B) is considered to be supplied so that the plastic concentration is 10 to 50 wt%, as described above. Since the fluid 3 in the reaction tank 1 is in a state where the plastic concentration is drastically reduced, in practice, the supply amount of the plastic molded product 2 is the same as the supply amount of the plastic molded product 2 initially supplied in the step (A). A similar amount can be supplied. When the plastic molded product 2 is supplied to the reaction tank 1, the plastic molded product 2 can be supplied if the liquid temperature of the fluid 3 is lower than the boiling point, so there is no need to wait for the temperature to drop to room temperature. For example, when the fluid 3 is water, a new plastic molded product is obtained when the liquid temperature in the reaction vessel 1 drops below the boiling point of water (100 ° C.), that is, about 80 to 100 ° C. under normal pressure. 2 can be supplied. And after supply of the plastic molded product 2, since it heats with a heater from the temperature until a fluid will be in a supercritical state or a subcritical state, temperature rising time can be shortened and heat consumption can be reduced. In addition, since the fluid 3 is not newly supplied, the amount of fluid 3 used can be reduced. Such an effect can be made more remarkable by repeatedly performing the operation of the step (B).

プラスチック成形品2として不飽和ポリエステル樹脂を用いた場合、加水分解で生成したスチレンマレイン酸共重合体の流体3中での濃度は上記工程(B)の繰り返し操作によって上昇する。これに伴い流体3の粘性が高まって排出等の操作性に問題が生じたり、飽和溶解度以上になれば溶解していた分解物が析出するため、流体3の濃度や粘度により工程(B)の繰り返し回数を規定することができる。また、プラスチック成形品2としてガラス繊維等の無機物を成分とする成形品を用いた場合、加水分解で生成した無機物の流体3中での濃度は上記工程(B)の繰り返し操作によって上昇する。これに伴い流体3の攪拌性が低下して排出等の操作性に問題が生じるため、工程(B)の繰り返し回数を規定することができる。工程(B)の繰り返し回数については経験的に規定してもよいが、例えば、直接スチレンマレイン酸共重合体等の濃度を測定する、あるいは、粘度計により反応槽1内の流体3の粘度を測定することによって、工程(B)の繰り返し操作の終了を決定し、反応槽1内の内容物を排出する制御を行うようにすることができる。
<実施形態2>
図2は、第2の発明のプラスチックの分解方法の一実施形態を説明するための分解装置の模式図である。
When an unsaturated polyester resin is used as the plastic molded article 2, the concentration of the styrene maleic acid copolymer produced by hydrolysis in the fluid 3 is increased by repeating the above step (B). As a result, the viscosity of the fluid 3 increases, causing problems in operability such as discharge, or the dissolved decomposition product precipitates when the saturation solubility is exceeded. Therefore, depending on the concentration and viscosity of the fluid 3, the process (B) The number of repetitions can be defined. Moreover, when the molded article which uses inorganic substances, such as glass fiber, as the plastic molded article 2, the density | concentration in the fluid 3 of the inorganic substance produced | generated by hydrolysis raises by the repetition operation of the said process (B). Along with this, the agitation of the fluid 3 is lowered and a problem occurs in operability such as discharge, so that the number of repetitions of the step (B) can be defined. The number of repetitions of the step (B) may be defined empirically. For example, the concentration of the styrene maleic acid copolymer or the like is directly measured, or the viscosity of the fluid 3 in the reaction tank 1 is measured by a viscometer. By measuring, it is possible to determine the end of the repetitive operation of the step (B) and to control the discharge of the contents in the reaction tank 1.
<Embodiment 2>
FIG. 2 is a schematic view of a disassembling apparatus for explaining an embodiment of the plastic disassembling method of the second invention.

この実施形態では、工程(A)と工程(B)との間に、反応槽1から内容物を取り出し、これを固液分離して分離液を反応槽1に供給する工程を有している。すなわち、工程(A)で分解処理が終了した後、プラスチック成形品2の分解物が完全に流体3中に溶解しきれない場合や、プラスチック成形品2の未分解成分が残る場合に反応槽1内の内容物を排出用開閉弁7を開いて排出管6から外部に排出し、これを圧搾ろ過が可能なフィルタープレス等の固形分分離手段9により固形分である未分解成分を分離して分離液のみを流体供給管5を通じて再び反応槽1内に戻すものである。例えば、プラスチック成形品2が不飽和ポリエステル樹脂とガラス繊維や炭酸カルシウム等の無機物との複合材であるFRPである場合、未分解の不飽和ポリエステル樹脂や無機物が分離される。   In this embodiment, it has the process of taking out the content from the reaction tank 1 between a process (A) and a process (B), carrying out solid-liquid separation of this, and supplying a separated liquid to the reaction tank 1. . That is, after the decomposition treatment is completed in the step (A), when the decomposition product of the plastic molded product 2 cannot be completely dissolved in the fluid 3, or when the undecomposed component of the plastic molded product 2 remains. The contents inside are opened from the discharge open / close valve 7 and discharged to the outside through the discharge pipe 6, and the solid content separating means 9 such as a filter press capable of squeezing filtration is used to separate the undecomposed components which are solid contents. Only the separated liquid is returned again into the reaction tank 1 through the fluid supply pipe 5. For example, when the plastic molded product 2 is FRP that is a composite material of an unsaturated polyester resin and an inorganic material such as glass fiber or calcium carbonate, undecomposed unsaturated polyester resin or inorganic material is separated.

以上の操作により反応槽1内の内容物から固形分が分離されるので、次工程である工程(B)でのプラスチック成形品2の供給量は、工程(A)において初期に供給したプラスチック成形品2の供給量と同程度の量をプラスチック供給管4より供給することができる。
<実施形態3>
図3は、第3の発明のプラスチックの分解方法の一実施形態を説明するための分解装置の模式図である。
Since the solid content is separated from the contents in the reaction tank 1 by the above operation, the amount of the plastic molded product 2 supplied in the next step (B) is the plastic molding initially supplied in the step (A). An amount equivalent to the supply amount of the product 2 can be supplied from the plastic supply pipe 4.
<Embodiment 3>
FIG. 3 is a schematic view of a disassembling apparatus for explaining an embodiment of the plastic disassembling method of the third invention.

この実施形態では、工程(A)で分解処理が終了した後、所定時間静置して、プラスチック成形品2の未分解成分やプラスチック成形品2の分解物で流体3に溶解しきれなかった未溶解成分を反応槽1底部に沈降させる。そして、プラスチック成形品2の未分解成分を含む反応槽1下部の流体3を反応槽1底部に接続された排出管6から外部に排出することで、反応槽1内の内容物から未分解成分等を分離する。この際、未分解成分等とともに流体3も排出されるので、工程(B)においては、取り出した流体3と同程度の流体3をプラスチック成形品2とともに新たに反応槽1に供給するようにしている。   In this embodiment, after the decomposition process is completed in the step (A), the sample is allowed to stand for a predetermined time, and the undecomposed component of the plastic molded product 2 or the decomposed product of the plastic molded product 2 cannot be completely dissolved in the fluid 3. The dissolved components are allowed to settle at the bottom of the reaction vessel 1. The fluid 3 at the lower part of the reaction tank 1 containing the undecomposed components of the plastic molded product 2 is discharged to the outside from the discharge pipe 6 connected to the bottom of the reaction tank 1, thereby undecomposed components from the contents in the reaction tank 1. Isolate etc. At this time, since the fluid 3 is also discharged together with undecomposed components, in the step (B), the fluid 3 having the same degree as the extracted fluid 3 is newly supplied to the reaction tank 1 together with the plastic molded product 2. Yes.

この実施形態によれば、プラスチック成形品2の未分解成分や未溶解成分等の沈降によって反応槽1下部の流体3のプラスチックの未分解成分や未溶解成分濃度が増大するが、この流体3を取り除いているため、反応槽1の流体3のプラスチックの未分解成分や未溶解成分の濃度の高濃度化が抑制される。したがって、反応槽1の分解処理において高温の反応槽1内壁面への固形分の固着を防止することや、反応槽1の流体3の攪拌性の低下を防止することができる。
<実施形態4>
図4は、第4の発明のプラスチックの分解方法の一実施形態を説明するための分解装置の模式図である。
According to this embodiment, the concentration of undecomposed components and undissolved components in the plastic of the fluid 3 in the lower part of the reaction tank 1 is increased by sedimentation of undecomposed components and undissolved components of the plastic molded product 2. Since it removes, the increase in the density | concentration of the undecomposed component and undissolved component of the plastic of the fluid 3 of the reaction tank 1 is suppressed. Therefore, in the decomposition treatment of the reaction tank 1, it is possible to prevent solid matter from sticking to the inner wall surface of the high-temperature reaction tank 1 and to prevent the stirring property of the fluid 3 in the reaction tank 1 from being lowered.
<Embodiment 4>
FIG. 4 is a schematic view of a disassembling apparatus for explaining an embodiment of the plastic disassembling method of the fourth invention.

この実施形態では、プラスチック成形品2を収納したプラスチック供給部10がプラスチック供給管4に接続され、プラスチック供給用開閉弁11の開閉によりプラスチック供給部10から反応槽1内にプラスチック成形品2が送り出される。プラスチック供給部10はコンプレッサー等で加圧された空気が送り込まれ、その内部が加圧されるようになっている。   In this embodiment, a plastic supply unit 10 containing a plastic molded product 2 is connected to a plastic supply pipe 4, and the plastic molded product 2 is sent from the plastic supply unit 10 into the reaction tank 1 by opening and closing the plastic supply opening / closing valve 11. It is. The plastic supply unit 10 is supplied with air pressurized by a compressor or the like, and the inside thereof is pressurized.

具体的な操作について説明すると、例えば、工程(A)での分解処理の後、プラスチック供給部10を反応槽1の内部圧力と少なくとも同等の圧力、具体的には反応槽1の内部圧力に対する圧力比で0.9〜1.1程度まで、好ましくは内部圧力より少し高い圧力、例えば圧力比で1.3程度の圧力まで加圧しておき、工程(B)において、プラスチック供給用開閉弁11を開き反応槽1にプラスチック成形品2を供給する。例えば、流体3が水である場合には工程(A)での分解処理の後、反応槽1内温度130℃(0.27MPa)の時点でプラスチック供給部10の内圧を0.27MPa以上に設定しておき、次いでプラスチック供給用開閉弁11を開き反応槽1にプラスチック成形品2を供給するものである。工程(A)においてプラスチック成形品2の分解終了時点では反応槽1内は超臨界状態または亜臨界状態であり、その状態で工程(B)において加圧されたプラスチック供給部10からプラスチック成形品2を供給することで、反応槽1の温度を下げることなく分解処理を開始することが可能となる。したがって、反応槽1の冷却時間を削減できるとともに加熱のための消費熱量および加熱時間を削減でき、処理時間を大幅に短縮することができる。
<実施形態5>
図5は、第5の発明のプラスチックの分解方法の一実施形態を説明するための分解装置の模式図である。
A specific operation will be described. For example, after the decomposition treatment in the step (A), the plastic supply unit 10 is at least equal to the internal pressure of the reaction tank 1, specifically, the pressure relative to the internal pressure of the reaction tank 1. The pressure is increased to about 0.9 to 1.1, preferably a pressure slightly higher than the internal pressure, for example, to a pressure of about 1.3 in the pressure ratio. The plastic molded product 2 is supplied to the open reaction tank 1. For example, when the fluid 3 is water, the internal pressure of the plastic supply unit 10 is set to 0.27 MPa or more at the time when the temperature in the reaction tank 1 is 130 ° C. (0.27 MPa) after the decomposition treatment in the step (A). Next, the plastic supply opening / closing valve 11 is opened, and the plastic molded product 2 is supplied to the reaction vessel 1. At the end of the decomposition of the plastic molded product 2 in the step (A), the reaction tank 1 is in a supercritical state or a subcritical state, and in this state, the plastic molded product 2 is supplied from the plastic supply unit 10 pressurized in the step (B). It is possible to start the decomposition process without lowering the temperature of the reaction tank 1 by supplying. Therefore, the cooling time of the reaction tank 1 can be reduced, the amount of heat consumed for heating and the heating time can be reduced, and the processing time can be greatly shortened.
<Embodiment 5>
FIG. 5 is a schematic view of a disassembling apparatus for explaining an embodiment of the plastic disassembling method of the fifth invention.

この実施形態では、工程(B)を所定回数繰り返した後、反応槽1から内容物を排出用開閉弁7を開いて排出管6から全量取り出し、これを上記実施形態2で説明したような固形分分離手段9により固形分を分離して分離液を得る。分離液中にはプラスチック成形品2の分解物が溶解しており、この分解物の溶解成分を溶解成分除去手段12により除去した後、残りの分解液を流体供給管5を通じて再度反応槽1内に戻し、再び工程(B)の分解処理を再開するものである。   In this embodiment, after repeating the step (B) a predetermined number of times, the contents are removed from the reaction vessel 1 by opening the discharge on-off valve 7 and taking out the entire amount from the discharge pipe 6, which is a solid as described in the second embodiment. The solid content is separated by the fraction separating means 9 to obtain a separated liquid. The decomposition product of the plastic molded product 2 is dissolved in the separated liquid, and after the dissolved component of the decomposition product is removed by the dissolved component removing means 12, the remaining decomposed solution is again passed through the fluid supply pipe 5 in the reaction tank 1. The decomposition process in step (B) is resumed again.

例えば、プラスチック成形品2が不飽和ポリエステル樹脂である場合、その分解物はスチレンマレイン酸共重合体であり流体3に溶解するが、流体3を酸性状態にすると析出する。したがって、溶解成分除去手段12として、反応槽1から内容物を取り出して得た分離液に酸を添加してスチレンマレイン酸共重合体を析出させこれを上記固形分分離手段9により固液分離することで、分離液からプラスチック成形品2分解物の溶解成分を取り除くことができる。残りの分離液はアルカリを添加してpHを調整した後、再度反応槽1に戻して処理を行うようにする。   For example, when the plastic molded article 2 is an unsaturated polyester resin, the decomposition product is a styrene maleic acid copolymer and dissolves in the fluid 3, but precipitates when the fluid 3 is in an acidic state. Therefore, as the dissolved component removing means 12, acid is added to the separated liquid obtained by taking out the contents from the reaction tank 1 to precipitate the styrene maleic acid copolymer, which is solid-liquid separated by the solid content separating means 9. Thus, the dissolved component of the decomposition product of the plastic molded product 2 can be removed from the separated liquid. The remaining separation liquid is adjusted to pH by adding an alkali, and then returned to the reaction tank 1 again for treatment.

このような操作によって工程(A)で用いた流体3を再利用でき、新たな流体3を用いる必要はないため、流体3の総使用量を大幅に削減することができる。
<実施形態6>
図6は、第6の発明のプラスチックの分解方法の一実施形態を説明するための分解装置の模式図である。
By such an operation, the fluid 3 used in the step (A) can be reused, and it is not necessary to use a new fluid 3. Therefore, the total usage amount of the fluid 3 can be greatly reduced.
<Embodiment 6>
FIG. 6 is a schematic view of a disassembling apparatus for explaining an embodiment of the plastic disassembling method of the sixth invention.

この実施形態では、工程(B)を所定回数繰り返した後、反応槽1に所定量の流体3を流体供給管5より供給する。供給する流体3の量は、工程(A)において反応槽1に供給された量と反応槽1の大きさによって異なるため特に限定されるものではないが、一般的には工程(A)で反応槽1に供給された流体3の10〜30vol%程度とすることができる。流体3を反応槽1に新たに追加することによって、反応槽1内のプラスチック成形品2分解物の濃度を低下させ、次いで反応槽1の内容物を排出用開閉弁7を開いて排出管6より排出する。   In this embodiment, after the step (B) is repeated a predetermined number of times, a predetermined amount of fluid 3 is supplied to the reaction tank 1 from the fluid supply pipe 5. The amount of the fluid 3 to be supplied is not particularly limited because it differs depending on the amount supplied to the reaction tank 1 in the step (A) and the size of the reaction tank 1, but in general, the reaction is performed in the step (A). It can be set to about 10 to 30 vol% of the fluid 3 supplied to the tank 1. By newly adding the fluid 3 to the reaction tank 1, the concentration of the decomposition product of the plastic molded product 2 in the reaction tank 1 is reduced, and then the contents of the reaction tank 1 are opened by opening the discharge on-off valve 7 and the discharge pipe 6 More discharge.

例えば、プラスチック成形品2として不飽和ポリエステル樹脂を用いた場合、加水分解で生成したスチレンマレイン酸共重合体の流体3中での濃度は上記工程(B)の繰り返し操作によって上昇し、これに伴い流体3の粘性が高まって排出等の操作性に問題が生じる。また、飽和溶解度以上になれば溶解していた分解物が析出するため、これによっても排出等の操作性に問題が生じる。したがって、上限濃度に達した時点で工程(B)を停止し、希釈用に新たな流体3を追加して濃度を下げることで、排出等の操作性の問題を防止することができる。また、新たな流体3の追加は工程(A)とこの希釈用のみであり、この実施形態においても流体3の総使用量を削減することができる。   For example, when an unsaturated polyester resin is used as the plastic molded article 2, the concentration of the styrene-maleic acid copolymer produced by hydrolysis in the fluid 3 is increased by the repeated operation of the step (B). The viscosity of the fluid 3 is increased, causing a problem in operability such as discharge. Moreover, since the decomposition product which melt | dissolved will precipitate if it becomes more than saturation solubility, a problem arises also in operability, such as discharge | emission. Therefore, when the upper limit concentration is reached, the step (B) is stopped, and a new fluid 3 is added for dilution to lower the concentration, thereby preventing operability problems such as discharge. Moreover, the addition of the new fluid 3 is only for the step (A) and the dilution, and the total amount of the fluid 3 can be reduced also in this embodiment.

反応槽1の内容物を排出した後は、再び工程(A)から分解処理を再開する。   After discharging the contents of the reaction tank 1, the decomposition process is restarted from step (A).

第1の発明のプラスチックの分解方法の一実施形態を説明するための分解装置の模式図である。It is a schematic diagram of the decomposition | disassembly apparatus for demonstrating one Embodiment of the decomposition | disassembly method of the plastic of 1st invention. 第2の発明のプラスチックの分解方法の一実施形態を説明するための分解装置の模式図である。It is a schematic diagram of the decomposition | disassembly apparatus for demonstrating one Embodiment of the decomposition | disassembly method of the plastic of 2nd invention. 第3の発明のプラスチックの分解方法の一実施形態を説明するための分解装置の模式図である。It is a schematic diagram of the decomposition | disassembly apparatus for demonstrating one Embodiment of the decomposition | disassembly method of the plastic of 3rd invention. 第4の発明のプラスチックの分解方法の一実施形態を説明するための分解装置の模式図である。It is a schematic diagram of the decomposition | disassembly apparatus for demonstrating one Embodiment of the decomposition | disassembly method of the plastic of 4th invention. 第5の発明のプラスチックの分解方法の一実施形態を説明するための分解装置の模式図である。It is a schematic diagram of the decomposition | disassembly apparatus for demonstrating one Embodiment of the decomposition | disassembly method of the plastic of 5th invention. 第6の発明のプラスチックの分解方法の一実施形態を説明するための分解装置の模式図である。It is a schematic diagram of the decomposition | disassembly apparatus for demonstrating one Embodiment of the decomposition | disassembly method of the plastic of 6th invention. 従来のプラスチックの分解方法を説明するための分解装置の模式図である。It is a schematic diagram of the decomposition | disassembly apparatus for demonstrating the conventional plastic decomposition | disassembly method.

符号の説明Explanation of symbols

1 反応槽
2 プラスチック成形品
3 流体
4 プラスチック供給管
9 固形分分離手段
10 プラスチック供給部
12 溶解分除去手段
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Plastic molded article 3 Fluid 4 Plastic supply pipe 9 Solid content separation means 10 Plastic supply part 12 Dissolved content removal means

Claims (8)

プラスチック成形品および流体を反応槽に供給し、超臨界または亜臨界の状態でプラスチック成形品を分解処理する工程(A)と、工程(A)で分解処理したプラスチック成形品の分解物が溶解した流体にプラスチック成形品を新たに供給し、超臨界または亜臨界の状態でプラスチック成形品を分解処理する工程(B)とを有することを特徴とするプラスチックの分解方法。   The plastic molded product and fluid are supplied to the reaction vessel, and the decomposition product of the plastic molded product decomposed in the step (A) is dissolved in the step (A) of decomposing the plastic molded product in a supercritical or subcritical state. And a step (B) of newly supplying a plastic molded product to the fluid and decomposing the plastic molded product in a supercritical or subcritical state. 工程(A)と工程(B)との間に、反応槽から内容物を取り出し、これを固液分離して分離液を反応槽に供給する工程を有することを特徴とする請求項1に記載のプラスチックの分解方法。   2. The method according to claim 1, further comprising a step of taking out the contents from the reaction vessel between the step (A) and the step (B), solid-liquid separating the content, and supplying the separated liquid to the reaction vessel. Plastic disassembly method. 工程(A)の後、反応槽底部に沈降したプラスチック成形品の未分解成分を含む反応槽下部の流体を反応槽から取り出し、工程(B)において、取り出した流体と同程度の流体を、プラスチック成形品とともに新たに反応槽に供給することを特徴とする請求項1に記載のプラスチックの分解方法。   After the step (A), the fluid in the lower part of the reaction tank containing undecomposed components of the plastic molded product settled at the bottom of the reaction tank is taken out of the reaction tank. The plastic decomposition method according to claim 1, wherein the plastic is newly supplied to the reaction tank together with the molded product. 工程(B)において、超臨界または亜臨界の状態で分解処理する反応槽の内部圧力と少なくとも同等の圧力まで加圧されたプラスチック供給部からプラスチック成形品を反応槽に供給することを特徴とする請求項1ないし3いずれか一項に記載のプラスチックの分解方法。   In the step (B), a plastic molded product is supplied to the reaction tank from a plastic supply section pressurized to a pressure at least equal to the internal pressure of the reaction tank to be decomposed in a supercritical or subcritical state. The method for decomposing a plastic according to any one of claims 1 to 3. 工程(B)を所定回数繰り返した後、反応槽から内容物を取り出し、これを固液分離して得たプラスチック成形品分解物の溶解成分を含む分離液から、プラスチック成形品分解物の溶解成分を除去し、残りの分離液を反応槽に供給する工程を有することを特徴とする請求項1ないし4いずれか一項に記載のプラスチックの分解方法。   After repeating the step (B) a predetermined number of times, the content is taken out from the reaction vessel, and the dissolved component of the plastic molded product decomposition product is obtained from the separated solution containing the dissolved component of the plastic molded product decomposition product obtained by solid-liquid separation. 5. The method for decomposing a plastic according to claim 1, further comprising a step of supplying the remaining separated liquid to the reaction vessel. 工程(B)を所定回数繰り返した後、反応槽に流体を供給してプラスチック成形品分解物の濃度を低下させ、次いで反応槽の内容物を排出することを特徴とする請求項1ないし4いずれか一項に記載のプラスチックの分解方法。   The process (B) is repeated a predetermined number of times, then a fluid is supplied to the reaction tank to reduce the concentration of the plastic molded product decomposition product, and then the contents of the reaction tank are discharged. The method for decomposing plastic according to claim 1. プラスチック成形品が不飽和ポリエステル樹脂を含むプラスチックであることを特徴とする請求項1ないし6いずれか一項に記載のプラスチックの分解方法。   The method for decomposing a plastic according to any one of claims 1 to 6, wherein the plastic molded article is a plastic containing an unsaturated polyester resin. 反応液が水であって、工程(B)において反応槽内の流体の液温が80〜100℃の範囲内に低下した時にプラスチック成形品を投入することを特徴とする請求項1ないし7いずれか一項に記載のプラスチックの分解方法。   8. The plastic molded product is charged when the reaction liquid is water and the liquid temperature of the fluid in the reaction tank falls within the range of 80 to 100 ° C. in step (B). The method for decomposing plastic according to claim 1.
JP2007168027A 2007-06-26 2007-06-26 Plastic disassembly method Expired - Fee Related JP4788673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168027A JP4788673B2 (en) 2007-06-26 2007-06-26 Plastic disassembly method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168027A JP4788673B2 (en) 2007-06-26 2007-06-26 Plastic disassembly method

Publications (2)

Publication Number Publication Date
JP2009007416A true JP2009007416A (en) 2009-01-15
JP4788673B2 JP4788673B2 (en) 2011-10-05

Family

ID=40322823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168027A Expired - Fee Related JP4788673B2 (en) 2007-06-26 2007-06-26 Plastic disassembly method

Country Status (1)

Country Link
JP (1) JP4788673B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154102A1 (en) * 2016-03-08 2017-09-14 日立化成株式会社 Method for recovering decomposition product of thermosetting resin cured product and method for producing regenerated material
JP2018053175A (en) * 2016-09-30 2018-04-05 日立化成株式会社 Dissolution treatment device and dissolution treatment method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140224A (en) * 1997-11-07 1999-05-25 Hitachi Ltd Treatment of waste thermosetting plastic
JP2000159925A (en) * 1998-11-30 2000-06-13 Takeda Chem Ind Ltd Equipment for decomposing and recovering polyurethane resin
JP2001191046A (en) * 2000-01-06 2001-07-17 Chubu Electric Power Co Inc Continuous treatment method for electric wire and cable waste
JP2001340831A (en) * 2000-06-02 2001-12-11 Chubu Electric Power Co Inc Method and apparatus for continuous treatment by using supercritical water
JP2003113125A (en) * 2001-10-05 2003-04-18 Mitsubishi Heavy Ind Ltd Method for producing monomer from polyester
JP2003128834A (en) * 2001-10-22 2003-05-08 Suzuki Motor Corp Method for decomposing thermosetting resin
WO2005103131A1 (en) * 2004-04-23 2005-11-03 Matsushita Electric Works, Ltd. Method for decomposing thermosetting resin
JP2006232934A (en) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd Method for decomposing/recovering plastic

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140224A (en) * 1997-11-07 1999-05-25 Hitachi Ltd Treatment of waste thermosetting plastic
JP2000159925A (en) * 1998-11-30 2000-06-13 Takeda Chem Ind Ltd Equipment for decomposing and recovering polyurethane resin
JP2001191046A (en) * 2000-01-06 2001-07-17 Chubu Electric Power Co Inc Continuous treatment method for electric wire and cable waste
JP2001340831A (en) * 2000-06-02 2001-12-11 Chubu Electric Power Co Inc Method and apparatus for continuous treatment by using supercritical water
JP2003113125A (en) * 2001-10-05 2003-04-18 Mitsubishi Heavy Ind Ltd Method for producing monomer from polyester
JP2003128834A (en) * 2001-10-22 2003-05-08 Suzuki Motor Corp Method for decomposing thermosetting resin
WO2005103131A1 (en) * 2004-04-23 2005-11-03 Matsushita Electric Works, Ltd. Method for decomposing thermosetting resin
JP2006232934A (en) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd Method for decomposing/recovering plastic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154102A1 (en) * 2016-03-08 2017-09-14 日立化成株式会社 Method for recovering decomposition product of thermosetting resin cured product and method for producing regenerated material
JPWO2017154102A1 (en) * 2016-03-08 2018-12-27 日立化成株式会社 Method for recovering decomposition product of cured thermosetting resin and method for producing recycled material
US10968329B2 (en) 2016-03-08 2021-04-06 Showa Denko Materials Co., Ltd. Method of recovering decomposition product of thermosetting resin cured product and method of producing recycled material
JP2018053175A (en) * 2016-09-30 2018-04-05 日立化成株式会社 Dissolution treatment device and dissolution treatment method

Also Published As

Publication number Publication date
JP4788673B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4538583B2 (en) Subcritical water decomposition treatment product production method and subcritical water decomposition treatment product production apparatus
KR101369930B1 (en) Energy-saving sewage sludge solubilization device and method
JP4788673B2 (en) Plastic disassembly method
JP2008296192A (en) Circulation type continuous subcritical water reaction treatment apparatus
US9902632B2 (en) Waste treatment method
EP2624257A2 (en) Processing method and processing apparatus for radioactive waste
JP2010168560A (en) Method for decomposing composite material
CN105502842A (en) Wastewater Fenton oxidation-biological combined treatment method and device capable of recycling sludge
JP2008264763A (en) Decomposition apparatus
JP2010126556A (en) Plastic decomposition apparatus
JP2009106816A (en) Decomposition apparatus
JP2005336320A (en) Method for recovering inorganic substance from plastic
JPH11290827A (en) Method for heating organic waste in fermentation tank
CN105693010B (en) A kind of ferrikinetics and the iron-carbon reduction life assemblage processing method and its device of mud decrement
JP2009203291A (en) Decomposing apparatus and decomposition process method
RU2470044C2 (en) Method and apparatus for recycling oxygen-containing polymers
JP2009125710A (en) Decomposition apparatus
CN110945065B (en) Processing facility and method for PET glycolysis
JP2008239819A (en) Apparatus and method for decomposing thermosetting resin
JP2009235206A (en) Plastic decomposition device
JP2003236594A (en) Apparatus for treating sludge
JP2010253395A (en) Method for discharging decomposition liquid
JPWO2005103131A1 (en) Decomposition method of thermosetting resin
CN103755073B (en) Method for treating oil refining alkaline residue
JP2009007417A (en) Recovery apparatus and recovery method for inorganic material from plastics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees