JP2009006832A - Anti-lock brake controller for vehicle - Google Patents

Anti-lock brake controller for vehicle Download PDF

Info

Publication number
JP2009006832A
JP2009006832A JP2007169572A JP2007169572A JP2009006832A JP 2009006832 A JP2009006832 A JP 2009006832A JP 2007169572 A JP2007169572 A JP 2007169572A JP 2007169572 A JP2007169572 A JP 2007169572A JP 2009006832 A JP2009006832 A JP 2009006832A
Authority
JP
Japan
Prior art keywords
friction coefficient
wheel
speed
brake
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007169572A
Other languages
Japanese (ja)
Other versions
JP5107620B2 (en
Inventor
Hiromi Inagaki
裕巳 稲垣
Masaru Goto
後藤  勝
Hidetoshi Kobori
秀俊 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007169572A priority Critical patent/JP5107620B2/en
Publication of JP2009006832A publication Critical patent/JP2009006832A/en
Application granted granted Critical
Publication of JP5107620B2 publication Critical patent/JP5107620B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anti-lock brake controller for a vehicle reducing the braking distance by rapidly determining, by a simple computation content, that the friction coefficient of a traveling road surface is abruptly changed from a low value to a high value. <P>SOLUTION: A friction coefficient abrupt change determination means 61 determines that the friction coefficient is abruptly changed from a low value to a high value when: a slowly increasing mode is selected by all wheels based on the low friction coefficient; the elapsed time of the slowly increasing mode of at least one wheel is equal to or longer than the predetermined time; the deceleration of a vehicle exceeds the threshold for determination to the deceleration side; and the difference between the maximum value and the minimum value of the wheel corresponding vehicle body speed respectively estimated by wheel corresponding vehicle body speed estimation means 55A-55D is below the reference value. Control mode setting means 62A-62D change the control mode from the slowly increasing mode to the rapidly increasing mode when the slowly increasing mode is selected because the friction coefficient abrupt change determination means 61 determines that the friction coefficient of the traveling road surface is abruptly changed from a low value to a high value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数の車輪にそれぞれ装着された車輪ブレーキが発揮するブレーキ力を個別に調整可能なアクチュエータと;前記各車輪の車輪速度を個別に検出する車輪速度検出手段と;車体速度を検出する車体速度検出手段と;車両の減速度を検出する減速度検出手段と;該減速度検出手段で検出された減速度に基づいて走行路面の摩擦係数の高低を判別する摩擦係数判別手段と;前記車輪速度検出手段で検出された車輪速度ならびに前記車体速度検出手段で検出された車体速度に基づいて前記各車輪毎にロック傾向を判定するロック傾向判定手段と;該ロック傾向判定手段による判定結果に応じてブレーキ力を増減するための制御モードを前記各車輪ブレーキ毎に定めるとともに該制御モードが増加モードであるときには前記摩擦係数判定手段の判定結果に応じて高摩擦係数であると判定したときの急増加モードならびに低摩擦係数であると判定したときの緩増加モードを切換える制御モード設定手段と;該制御モード設定手段で設定された制御モードに従って前記アクチュエータの作動を制御するアクチュエータ制御手段と;を備える車両のアンチロックブレーキ制御装置に関する。   The present invention includes an actuator capable of individually adjusting a braking force exerted by a wheel brake mounted on each of a plurality of wheels; a wheel speed detecting unit that individually detects a wheel speed of each wheel; and a vehicle body speed. Vehicle body speed detection means; deceleration detection means for detecting vehicle deceleration; friction coefficient determination means for determining the level of the friction coefficient of the road surface based on the deceleration detected by the deceleration detection means; A lock tendency determining means for determining a lock tendency for each wheel based on the wheel speed detected by the wheel speed detecting means and the vehicle body speed detected by the vehicle body speed detecting means; Accordingly, a control mode for increasing or decreasing the braking force is determined for each wheel brake, and when the control mode is the increase mode, the friction coefficient determination Control mode setting means for switching between a sudden increase mode when it is determined that the coefficient of friction is high and a slow increase mode when it is determined that the coefficient of friction is low according to the determination result; and set by the control mode setting means And an actuator control means for controlling the operation of the actuator according to a control mode.

アンチロックブレーキ制御時に、車輪ブレーキのブレーキ力を増加する制御モードにおいて、急増加モードおよび緩増加モードを切換え可能とした車両のアンチロックブレーキ制御装置が、たとえば特許文献1等で既に知られている。
特開2004−196235号公報
An antilock brake control device for a vehicle that can switch between a sudden increase mode and a slow increase mode in a control mode for increasing the braking force of a wheel brake during the antilock brake control is already known, for example, in Patent Document 1 .
JP 2004-196235 A

ところで、このようなアンチロックブレーキ制御装置では、走行路面の摩擦係数が低いときには緩増加モード、摩擦係数が高いときには急増加モードを選択するのであるが、走行路面の摩擦係数が低摩擦係数から高摩擦係数に急激に変化したときには、速やかに急増加モードに変化しないと制動距離が長くなってしまう。このような摩擦係数の急激な変化を検出するにあたっては、車両の減速度がマイナス側に急激に変化したことをもって低摩擦係数から高摩擦係数に変化したと判断することも可能であるが、車両の減速度だけによる判断では、誤判断を防止するために、判断基準となる車両の減速度の変化量を比較的大きく設定せざるを得ず、そうすると低摩擦係数から高摩擦係数への変化の検出が遅れがちになり、応答性に課題が生じる。   By the way, in such an anti-lock brake control device, the slow increase mode is selected when the friction coefficient of the traveling road surface is low, and the rapid increase mode is selected when the friction coefficient is high, but the friction coefficient of the traveling road surface is increased from a low friction coefficient to a high friction coefficient. When the friction coefficient changes abruptly, the braking distance becomes long unless it quickly changes to the sudden increase mode. In detecting such a sudden change in the friction coefficient, it is possible to judge that the vehicle has changed from a low friction coefficient to a high friction coefficient when the deceleration of the vehicle suddenly changes to the negative side. In order to prevent misjudgment, it is necessary to set the amount of change in the vehicle deceleration, which is the criterion, to be relatively large, so that the change from the low coefficient of friction to the high coefficient of friction can be avoided. Detection tends to be delayed, causing a problem in responsiveness.

本発明は、かかる事情に鑑みてなされたものであり、走行路面の摩擦係数が低摩擦係数から高摩擦係数に急激に変化したことを簡単な演算内容でかつ速やかに判断して、優れた応答性が得られるようにした車両のアンチロックブレーキ制御装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to quickly determine with a simple calculation content that the friction coefficient of the traveling road surface has suddenly changed from a low friction coefficient to a high friction coefficient, and an excellent response. An object of the present invention is to provide an anti-lock brake control device for a vehicle in which the performance is obtained.

上記目的を達成するために、本発明は、複数の車輪にそれぞれ装着された車輪ブレーキが発揮するブレーキ力を個別に調整可能なアクチュエータと;前記各車輪の車輪速度を個別に検出する車輪速度検出手段と;車体速度を検出する車体速度検出手段と;車両の減速度を検出する減速度検出手段と;該減速度検出手段で検出された減速度に基づいて走行路面の摩擦係数の高低を判別する摩擦係数判別手段と;前記車輪速度検出手段で検出された車輪速度ならびに前記車体速度検出手段で検出された車体速度に基づいて前記各車輪毎にロック傾向を判定するロック傾向判定手段と;該ロック傾向判定手段による判定結果に応じてブレーキ力を増減するための制御モードを前記各車輪ブレーキ毎に定めるとともに該制御モードが増加モードであるときには前記摩擦係数判定手段の判定結果に応じて高摩擦係数であると判定したときの急増加モードならびに低摩擦係数であると判定したときの緩増加モードを切換える制御モード設定手段と;該制御モード設定手段で設定された制御モードに従って前記アクチュエータの作動を制御するアクチュエータ制御手段と;を備える車両のアンチロックブレーキ制御装置において、前記車輪速度検出手段で検出された車輪速度に基づいて前記各車輪毎の車輪対応車体速度を推定する車輪対応車体速度推定手段と;前記摩擦係数判別手段が低摩擦係数であると判別するのに基づいて全車輪で前記緩増加モードを選択している状態で、少なくとも1つの車輪の緩増加モードの経過時間が所定時間以上であり、前記減速度検出手段で検出される車両の減速度が判定用の閾値を減速側に超え、しかも前記各車輪対応車体速度推定手段でそれぞれ推定された車輪対応車体速度の最大値および最小値の差が基準値未満であるときに摩擦係数が低摩擦係数から高摩擦係数に急激に変化したと判断する摩擦係数急変化判断手段と;を含み、前記制御モード設定手段は、走行路面の摩擦係数が低摩擦係数から高摩擦係数に急激に変化したと前記摩擦係数急変化判断手段が判断するのに応じて全車輪の制御モードを緩増加モードから急増加モードに切換えることを特徴とする。   In order to achieve the above object, the present invention provides an actuator capable of individually adjusting a braking force exerted by a wheel brake mounted on each of a plurality of wheels; and wheel speed detection for individually detecting the wheel speed of each wheel. A vehicle speed detecting means for detecting the vehicle speed; a deceleration detecting means for detecting the deceleration of the vehicle; and determining the level of the friction coefficient of the traveling road surface based on the deceleration detected by the deceleration detecting means. A friction coefficient determining means for determining the locking tendency for each wheel based on the wheel speed detected by the wheel speed detecting means and the vehicle body speed detected by the vehicle body speed detecting means; A control mode for increasing or decreasing the braking force is determined for each wheel brake according to the determination result by the lock tendency determination means, and the control mode is an increase mode. Control mode setting means for switching between a rapid increase mode when it is determined to be a high friction coefficient and a slow increase mode when it is determined to be a low friction coefficient according to the determination result of the friction coefficient determination means; And an actuator control means for controlling the operation of the actuator according to a control mode set by the control mode setting means. In the anti-lock brake control device for a vehicle, each of the above-mentioned values based on the wheel speed detected by the wheel speed detection means. A wheel-corresponding vehicle speed estimating means for estimating a wheel-corresponding vehicle speed for each wheel; in a state where the slow increase mode is selected for all the wheels based on the fact that the friction coefficient determining means determines that the coefficient of friction is low. The deceleration of the vehicle is detected by the deceleration detection means when the elapsed time of the slow increase mode of at least one wheel is equal to or longer than a predetermined time. The friction coefficient is low when the threshold value for judgment exceeds the deceleration side, and the difference between the maximum and minimum wheel speeds estimated by the wheel speed estimation means is less than the reference value. A friction coefficient sudden change judging means for judging that the coefficient has suddenly changed from a coefficient to a high friction coefficient; and the control mode setting means has said that the friction coefficient of the road surface has suddenly changed from a low friction coefficient to a high friction coefficient. The control mode for all the wheels is switched from the slowly increasing mode to the rapidly increasing mode in accordance with the determination by the friction coefficient rapid change determining means.

本発明の上記構成によれば、少なくとも1つの車輪の緩増加モードの経過時間が所定時間以上であることによって増圧不足の状態であると判断し、車輪対応車体速度の最大値および最小値の差が基準値未満であることで複数の車輪の車輪速度がほぼ同期して変化していると判断し、そのような状態で車両の減速度が判定用の閾値を減速側に超えることをもって走行路面の摩擦係数が低摩擦係数から高摩擦係数に急激に変化したと判断するので、判定用の閾値を厳密に定めることを可能とし、走行路面の摩擦係数が低摩擦係数から高摩擦係数に急激に変化したことを簡単な演算内容でかつ速やかに判断することができ、それによって優れた応答性を確保して制動距離の短縮を図ることができる。   According to the above configuration of the present invention, it is determined that the pressure increase is insufficient because the elapsed time of the slow increase mode of at least one wheel is equal to or longer than the predetermined time, and the maximum value and the minimum value of the vehicle speed corresponding to the wheel are When the difference is less than the reference value, it is determined that the wheel speeds of the plurality of wheels are changing almost synchronously, and in such a state, the vehicle's deceleration exceeds the threshold value for judgment and travels Since it is judged that the friction coefficient of the road surface has suddenly changed from a low friction coefficient to a high friction coefficient, it is possible to set a threshold value for judgment strictly, and the friction coefficient of the running road surface suddenly changes from a low friction coefficient to a high friction coefficient. Thus, it is possible to quickly determine that the change has been made with simple calculation contents, thereby ensuring excellent responsiveness and shortening the braking distance.

以下、本発明の実施の形態を、添付の図面に示した本発明の一実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on one embodiment of the present invention shown in the accompanying drawings.

図1〜図6は本発明の一実施例を示すものであり、図1は前輪駆動車両の駆動系およびブレーキ系を示す図、図2はブレーキ液圧制御装置の構成を示す液圧系統図、図3は常開型電磁弁の縦断面図、図4は弁軸のストローク変化に対する吸引力変化を示す図、図5はコントローラの構成を示すブロック図、図6は車輪対応車体速度および車輪速度の関係を示す図である。   1 to 6 show an embodiment of the present invention, FIG. 1 is a diagram showing a drive system and a brake system of a front-wheel drive vehicle, and FIG. 2 is a hydraulic system diagram showing a configuration of a brake hydraulic pressure control device. FIG. 3 is a longitudinal sectional view of a normally open type electromagnetic valve, FIG. 4 is a diagram showing a change in attraction force with respect to a change in stroke of the valve shaft, FIG. 5 is a block diagram showing the configuration of a controller, and FIG. It is a figure which shows the relationship of speed.

先ず図1において、駆動輪である左前輪WAおよび右前輪WCにはパワーユニットPから動力が伝達されるものであり、該パワーユニットPは、エンジンEと、該エンジンEの出力を変速して左前輪WAおよび右前輪WCに伝達するための変速機Tとで構成される。また左前輪WAおよび右前輪WCには駆動輪用車輪ブレーキである左前輪用車輪ブレーキBAおよび右前輪用車輪ブレーキBCが装着され、従動輪である右後輪WBおよび左後輪WDには、右後輪用車輪ブレーキBBおよび左後輪用車輪ブレーキBDが装着される。   First, in FIG. 1, power is transmitted from the power unit P to the left front wheel WA and the right front wheel WC which are driving wheels. The power unit P shifts the output of the engine E and the engine E to the left front wheel. It is comprised with the transmission T for transmitting to WA and the right front wheel WC. The left front wheel WA and the right front wheel WC are equipped with a left front wheel wheel brake BA and a right front wheel brake BC, which are drive wheel brakes. The driven wheel, the right rear wheel WB and the left rear wheel WD, A right rear wheel brake BB and a left rear wheel brake BD are mounted.

前記各車輪ブレーキBA〜BDは、液圧の作用によって作動するディスクブレーキであり、各車輪ブレーキBA〜BDにはアクチュエータ1からの液圧が作用する。このアクチュエータ1は、ブレーキペダル2のブレーキ操作によって液圧を出力するタンデム型のマスタシリンダMの出力液圧を調圧して前記各車輪ブレーキBA〜BDに作用せしめることを可能である。   Each of the wheel brakes BA to BD is a disc brake that operates by the action of hydraulic pressure, and the hydraulic pressure from the actuator 1 acts on each of the wheel brakes BA to BD. The actuator 1 can adjust the output hydraulic pressure of the tandem master cylinder M that outputs the hydraulic pressure by the brake operation of the brake pedal 2 to be applied to the wheel brakes BA to BD.

前記アクチュエータ1の作動はコントローラCによって制御されるものであり、このコントローラCには、駆動輪である左前輪WAおよび右前輪WCの駆動輪速度を検出する駆動輪用車輪速度検出手段6A,6Cの検出値、従動輪である右後輪WBおよび左後輪WDの従動輪速度を検出する従動輪用車輪速度検出手段6B,6Dの検出値、各車輪ブレーキBA〜BDのブレーキ液圧を検出するブレーキ圧検出手段7A〜7Dの検出値が入力される。   The operation of the actuator 1 is controlled by a controller C. The controller C includes wheel speed detecting means 6A, 6C for driving wheels for detecting the driving wheel speeds of the left front wheel WA and the right front wheel WC as driving wheels. Detection value, detection values of driven wheel speed detection means 6B and 6D for detecting the driven wheel speeds of the right rear wheel WB and the left rear wheel WD, which are driven wheels, and the brake fluid pressure of each wheel brake BA to BD. Detection values of the brake pressure detection means 7A to 7D to be input are input.

図2において、アクチュエータ1は、左前輪用車輪ブレーキBAおよび右後輪用車輪ブレーキBBに対応した第1液圧路10Aと、右前輪用車輪ブレーキBCおよび左後輪用車輪ブレーキBDに対応した第2液圧路10Bと、マスタシリンダMが備えるリザーバRとは別の第1および第2リザーバ11A,11Bと、共通な単一の電動モータ13で駆動されるとともに第1および第2リザーバ11A,11Bのブレーキ液をくみ上げて第1および第2液圧路10A,10Bに吐出可能な第1および第2ポンプ14A,14Bと、マスタシリンダMの第1出力ポート3Aおよび第1液圧路10A間に介設される常開型電磁弁15Aと、マスタシリンダMの第2出力ポート3Bおよび第2液圧路10B間に介設される常開型電磁弁15Bと、第1ポンプ14Aの吸入側およびマスタシリンダMの第1出力ポート3A間に介設される常閉型電磁弁16Aと、第2ポンプ14Bの吸入側およびマスタシリンダMの第2出力ポート3B間に介設される常閉型電磁弁16Bと、第1液圧路10Aおよび左前輪用車輪ブレーキBA間に設けられる左前輪ブレーキ調圧手段17Aと、第1液圧路10Aおよび右後輪用車輪ブレーキBB間に設けられる右後輪ブレーキ調圧手段17Bと、第2液圧路10Bおよび右前輪用車輪ブレーキBC間に設けられる右前輪ブレーキ調圧手段17Cと、第2液圧路10Bおよび左後輪用車輪ブレーキBD間に設けられる左後輪ブレーキ調圧手段17Dとを備える。   In FIG. 2, the actuator 1 corresponds to the first hydraulic passage 10A corresponding to the left front wheel brake BA and the right rear wheel brake BB, and to the right front wheel brake BC and the left rear wheel brake BD. The first hydraulic pressure passage 10B, the first and second reservoirs 11A and 11B different from the reservoir R provided in the master cylinder M, and the first and second reservoirs 11A are driven by a common single electric motor 13. , 11B can pump up the brake fluid and discharge it to the first and second hydraulic pressure passages 10A, 10B, and the first output port 3A and the first hydraulic pressure passage 10A of the master cylinder M. A normally open solenoid valve 15A interposed therebetween, a normally open solenoid valve 15B interposed between the second output port 3B of the master cylinder M and the second hydraulic pressure passage 10B, and a first Between the suction side of the pump 14A and the first output port 3A of the master cylinder M, and between the suction side of the second pump 14B and the second output port 3B of the master cylinder M. The normally closed solenoid valve 16B, the left front wheel brake pressure adjusting means 17A provided between the first hydraulic pressure path 10A and the left front wheel wheel brake BA, the first hydraulic pressure path 10A and the right rear wheel wheel brake BB. The right rear wheel brake pressure adjusting means 17B provided between the second hydraulic pressure path 10B and the right front wheel brake pressure adjusting means 17C provided between the right front wheel wheel brake BC, the second hydraulic pressure path 10B and the left rear wheel. Left rear wheel brake pressure adjusting means 17D provided between the vehicle wheel brakes BD.

左前輪ブレーキ調圧手段17Aは、第1液圧路10Aおよび左前輪用車輪ブレーキBA間に設けられる常開型電磁弁18Aと、第1リザーバ11Aおよび左前輪用車輪ブレーキBA間に設けられる常閉型電磁弁19Aと、左前輪用車輪ブレーキBA側から第1液圧路10A側へのブレーキ液の流通を許容して常開型電磁弁18Aに並列に接続されるチェック弁20Aとで構成される。   The left front wheel brake pressure adjusting means 17A is a normally open solenoid valve 18A provided between the first hydraulic pressure passage 10A and the left front wheel wheel brake BA, and a normal opening type solenoid valve 18A provided between the first reservoir 11A and the left front wheel wheel brake BA. A closed solenoid valve 19A and a check valve 20A connected in parallel to the normally open solenoid valve 18A to allow the brake fluid to flow from the left front wheel brake BA side to the first hydraulic pressure passage 10A side. Is done.

このような左前輪ブレーキ調圧手段17Aによれば、ブレーキペダル3を踏み込んだブレーキ操作時において、常閉型電磁弁19Aの閉弁時に常開型電磁弁18Aを開弁しておくことにより第1出力ポート3Aの液圧を左前輪用車輪ブレーキBAに作用せしめて左前輪用車輪ブレーキBAのブレーキ力を増加することができ、また常開型電磁弁18Aおよび常閉型電磁弁19Aをともに閉じると左前輪用車輪ブレーキBAのブレーキ液圧を保持して左前輪用車輪ブレーキBAのブレーキ力を保持することができ、さらに常開型電磁弁18Aを閉じた状態で常閉型電磁弁19Aを開弁することにより左前輪用車輪ブレーキBAのブレーキ液圧を減圧して左前輪用車輪ブレーキBAのブレーキ力を減少することができる。   According to such a left front wheel brake pressure adjusting means 17A, when the brake pedal 3 is depressed, the normally open solenoid valve 18A is opened when the normally closed solenoid valve 19A is closed. The brake force of the front left wheel brake BA can be increased by applying the hydraulic pressure of the output port 3A to the front left wheel brake BA, and both the normally open solenoid valve 18A and the normally closed solenoid valve 19A are provided. When closed, the brake fluid pressure of the left front wheel brake BA can be maintained to maintain the braking force of the left front wheel brake BA, and the normally open solenoid valve 18A is closed and the normally closed solenoid valve 19A is closed. By opening the valve, the brake fluid pressure of the left front wheel brake BA can be reduced to reduce the brake force of the left front wheel brake BA.

右後輪ブレーキ調圧手段17Bは、第1液圧路10Aおよび右後輪用車輪ブレーキBB間に設けられる常開型電磁弁18Bと、第1リザーバ11Aおよび右後輪用車輪ブレーキBB間に設けられる常閉型電磁弁19Bと、右後輪用車輪ブレーキBB側から第1液圧路10A側へのブレーキ液の流通を許容して常開型電磁弁18Bに並列に接続されるチェック弁20Bとで構成されるものであり、常開型電磁弁18Bおよび常閉型電磁弁19Bの開閉を制御することにより、上記左前輪ブレーキ調圧手段17Aと同様に、右後輪用車輪ブレーキBBのブレーキ力の増加、保持および減少を切換えて制御することができる。   The right rear wheel brake pressure adjusting means 17B includes a normally-open electromagnetic valve 18B provided between the first hydraulic pressure path 10A and the right rear wheel wheel brake BB, and between the first reservoir 11A and the right rear wheel wheel brake BB. A normally closed solenoid valve 19B provided and a check valve connected in parallel to the normally open solenoid valve 18B while allowing the brake fluid to flow from the right rear wheel brake BB side to the first hydraulic pressure passage 10A side. 20B, and by controlling the opening and closing of the normally open solenoid valve 18B and the normally closed solenoid valve 19B, the right rear wheel wheel brake BB is controlled in the same manner as the left front wheel brake pressure adjusting means 17A. The brake force can be controlled to increase, hold and decrease.

右前輪ブレーキ調圧手段17Cは、第2液圧路10Bおよび右前輪用車輪ブレーキBC間に設けられる常開型電磁弁18Cと、第2リザーバ11Bおよび右前輪用車輪ブレーキBC間に設けられる常閉型電磁弁19Cと、右前輪用車輪ブレーキBC側から第2液圧路10B側へのブレーキ液の流通を許容して常開型電磁弁18Cに並列に接続されるチェック弁20Cとで構成されるものであり、常開型電磁弁18Cおよび常閉型電磁弁19Cの開閉を制御することにより、上記左前輪ブレーキ調圧手段17Aおよび右後輪ブレーキ調圧手段17Bと同様に、右前輪用車輪ブレーキBCのブレーキ力の増加、保持および減少を切換えて制御することができる。   The right front wheel brake pressure adjusting means 17C is a normally-open solenoid valve 18C provided between the second hydraulic pressure passage 10B and the right front wheel wheel brake BC, and a normal opening solenoid valve 18C provided between the second reservoir 11B and the right front wheel wheel brake BC. A closed solenoid valve 19C and a check valve 20C connected in parallel to the normally open solenoid valve 18C while allowing the brake fluid to flow from the right front wheel brake BC side to the second hydraulic pressure passage 10B side. In the same manner as the left front wheel brake pressure adjusting means 17A and the right rear wheel brake pressure adjusting means 17B, the right front wheel is controlled by controlling the opening and closing of the normally open type electromagnetic valve 18C and the normally closed type electromagnetic valve 19C. It is possible to switch and control the increase, retention and decrease of the brake force of the industrial wheel brake BC.

左後輪ブレーキ調圧手段17Dは、第2液圧路10Bおよび左後輪用車輪ブレーキBD間に設けられる常開型電磁弁18Dと、第2リザーバ11Bおよび左後輪用車輪ブレーキBD間に設けられる常閉型電磁弁19Dと、左後輪用車輪ブレーキBD側から第2液圧路10B側へのブレーキ液の流通を許容して常開型電磁弁18Dに並列に接続されるチェック弁20Dとで構成されるものであり、常開型電磁弁18Dおよび常閉型電磁弁19Dの開閉を制御することにより、上記左前輪ブレーキ調圧手段17A、右後輪ブレーキ調圧手段17Bおよび右前輪ブレーキ調圧手段17Cと同様に、左後輪用車輪ブレーキBDのブレーキ力の増加、保持および減少を切換えて制御することができる。   The left rear wheel brake pressure adjusting means 17D is provided between a normally open solenoid valve 18D provided between the second hydraulic pressure path 10B and the left rear wheel wheel brake BD, and between the second reservoir 11B and the left rear wheel wheel brake BD. A normally closed solenoid valve 19D provided and a check valve connected in parallel to the normally open solenoid valve 18D while allowing the brake fluid to flow from the left rear wheel brake BD side to the second hydraulic pressure passage 10B side. 20D, and by controlling the opening and closing of the normally open solenoid valve 18D and the normally closed solenoid valve 19D, the left front wheel brake pressure regulating means 17A, the right rear wheel brake pressure regulating means 17B and the right As with the front wheel brake pressure adjusting means 17C, the braking force of the left rear wheel wheel brake BD can be controlled to be increased, held and decreased.

またマスタシリンダMの第1出力ポート3Aおよび第1液圧路10A間を常開型電磁弁15Aの閉弁によって遮断するとともに常閉型電磁弁16Aを開弁してマスタシリンダMの第1出力ポート3Aを第1ポンプ14Aの吸入側に連通せしめた状態で第1ポンプ14Aを作動せしめ、左前輪ブレーキ調圧手段17Aおよび右後輪ブレーキ調圧手段17Bにおける常開型電磁弁18A,18Bおよび常閉型電磁弁19A,19Bの開閉制御を行なうことにより、非ブレーキ操作時に左前輪用車輪ブレーキBAおよび右後輪用車輪ブレーキBBのブレーキ力の増加、保持および減少を制御することも可能である。   Further, the first output port 3A of the master cylinder M and the first hydraulic pressure passage 10A are shut off by closing the normally open solenoid valve 15A, and the normally closed solenoid valve 16A is opened to open the first output of the master cylinder M. The first pump 14A is operated in a state where the port 3A is in communication with the suction side of the first pump 14A, and the normally open solenoid valves 18A, 18B in the left front wheel brake pressure adjusting means 17A and the right rear wheel brake pressure adjusting means 17B By controlling the opening and closing of the normally closed solenoid valves 19A and 19B, it is possible to control the increase, retention and decrease of the braking force of the left front wheel brake BA and the right rear wheel brake BB during non-braking operation. is there.

さらにマスタシリンダMの第2出力ポート3Bおよび第2液圧路10B間を常開型電磁弁15Bの閉弁によって遮断するとともに常閉型電磁弁16Bを開弁してマスタシリンダMの第2出力ポート3Bを第2ポンプ14Bの吸入側に連通せしめた状態で第2ポンプ14Bを作動せしめ、右前輪ブレーキ調圧手段17Cおよび左後輪ブレーキ調圧手段17Dにおける常開型電磁弁18C,18Dおよび常閉型電磁弁19C,19Dの開閉制御を行なうことにより、非ブレーキ操作時に右前輪用車輪ブレーキBCおよび左後輪用車輪ブレーキBDのブレーキ力の増加、保持、減少を制御することも可能である。   Further, the second output port 3B of the master cylinder M and the second hydraulic pressure passage 10B are shut off by closing the normally open solenoid valve 15B, and the normally closed solenoid valve 16B is opened to open the second output of the master cylinder M. The second pump 14B is operated with the port 3B communicating with the suction side of the second pump 14B, and the normally open solenoid valves 18C, 18D in the right front wheel brake pressure adjusting means 17C and the left rear wheel brake pressure adjusting means 17D By controlling the opening and closing of the normally closed solenoid valves 19C and 19D, it is possible to control the increase, retention, and decrease of the braking force of the right front wheel brake BC and the left rear wheel brake BD during non-brake operation. is there.

ところで、各車輪ブレーキBA〜BDに液圧を作用せしめたブレーキ時に各車輪WA〜WDのうちロック状態に陥りそうになった車輪の車輪ブレーキのブレーキ力は、上述の増加、減少および保持モードを切り換えるようにしたアンチロックブレーキ制御が実行されるものであり、このアンチロックブレーキ制御時に、各車輪ブレーキ調圧手段17A〜17Dの常閉型電磁弁16A〜16Dがオン・オフ制御されるのに対し、各常開型電磁弁15A〜15Dは、オン・オフ制御されるとともにオン・オフ間の中間でデューティ制御されるものであり、そのような中間値の付与電流に応じて各車輪ブレーキBA〜BD側の液圧をリニアに変化させるべく構成される常開型電磁弁15A〜15Dのうち、常開型電磁弁15Aの構成について図3を参照しながら以下に説明する。   By the way, the braking force of the wheel brakes of the wheels WA to WD that are about to fall into the locked state during the braking operation in which the hydraulic pressure is applied to the wheel brakes BA to BD has the above increase, decrease, and holding modes. The anti-lock brake control is performed so that the normally closed electromagnetic valves 16A to 16D of the wheel brake pressure adjusting means 17A to 17D are turned on / off during the anti-lock brake control. On the other hand, the normally open solenoid valves 15A to 15D are on / off controlled and duty controlled in the middle between on and off, and each wheel brake BA according to the applied current of such an intermediate value. FIG. 3 shows the configuration of the normally open solenoid valve 15A among the normally open solenoid valves 15A to 15D configured to linearly change the fluid pressure on the BD side. It will now be described with ether.

図3において、常開型電磁弁15Aは、電磁力を発揮するソレノイド部24と、該ソレノイド部24で駆動される弁部25とで構成されるものであり、固定の支持ブロック26の一面26aに開口するようにして該支持ブロッック26に設けられる装着孔27に弁部25が収容され、ソレノイド部24は支持ブロック26の一面26aから突出する。   In FIG. 3, the normally open electromagnetic valve 15 </ b> A includes a solenoid portion 24 that exhibits electromagnetic force, and a valve portion 25 that is driven by the solenoid portion 24, and one surface 26 a of a fixed support block 26. The valve portion 25 is accommodated in a mounting hole 27 provided in the support block 26 so that the solenoid block 24 protrudes from one surface 26 a of the support block 26.

弁部25は、磁性金属により段付きの円筒状に形成される弁ハウジング28を備えるものであり、この弁ハウジング28は、支持ブロック26の装着孔27に嵌合される。装着孔27の開口端寄り内面には弁ハウジング28に係合して該弁ハウジング28の装着孔27からの離脱を阻止する止め輪29が嵌着される。また弁ハウジング28の外面の軸方向に間隔をあけた2個所には環状のシール部材30,31が装着されており、それらのシール部材30,31間で支持ブロック26および弁ハウジング28間には環状室32が形成される。   The valve portion 25 includes a valve housing 28 that is formed of a magnetic metal into a stepped cylindrical shape. The valve housing 28 is fitted into the mounting hole 27 of the support block 26. A retaining ring 29 that engages with the valve housing 28 and prevents the valve housing 28 from being detached from the mounting hole 27 is fitted to the inner surface near the opening end of the mounting hole 27. In addition, annular seal members 30 and 31 are mounted at two positions spaced apart in the axial direction on the outer surface of the valve housing 28, and between the seal members 30 and 31, there is a gap between the support block 26 and the valve housing 28. An annular chamber 32 is formed.

弁ハウジング28には円筒状の弁座部材33が圧入、固着される。また弁ハウジング28には、非磁性材料製の弁軸34が摺動可能に嵌合されており、弁軸34の一端および弁座部材33間に出力室35が形成され、出力室35に臨んで弁座部材33に形成される弁座33aに着座可能な球状の弁体36が弁軸34の一端に固着される。しかも弁軸34の一端および弁座部材33間には、弁軸34すなわち弁体36を弁座部材33から離反する方向に付勢する戻しばね37が設けられる。   A cylindrical valve seat member 33 is press-fitted and fixed to the valve housing 28. In addition, a valve shaft 34 made of a nonmagnetic material is slidably fitted in the valve housing 28, and an output chamber 35 is formed between one end of the valve shaft 34 and the valve seat member 33, and faces the output chamber 35. A spherical valve element 36 that can be seated on a valve seat 33 a formed on the valve seat member 33 is fixed to one end of the valve shaft 34. Moreover, a return spring 37 is provided between one end of the valve shaft 34 and the valve seat member 33 to urge the valve shaft 34, that is, the valve body 36 in a direction away from the valve seat member 33.

弁ハウジング28には、第1液圧路10Aに連なって支持ブロック36に設けられた液圧路38および弁座部材33間に介在するようにしてフィルタ39が装着される。また環状室32に臨む部分で弁ハウジング28の外周にはフィルタ40が装着されており、該フィルタ40を介して出力室35を環状室32に通じさせるための通路41が弁ハウジング28に設けられる。前記環状室32は左前輪用車輪ブレーキBAに通じるものであり、支持ブロック36には環状室32を左前輪用車輪ブレーキBAに通じさせる液圧路42が設けられる。さらに弁座部材33およびフィルタ39間で弁ハウジング28には、液圧路38の圧力が環状室32よりも低下したときに開弁して環状室32のブレーキ液を液圧路38側に還流させるチェック弁20Aが配設される。   A filter 39 is attached to the valve housing 28 so as to be interposed between the hydraulic pressure path 38 provided in the support block 36 and the valve seat member 33 so as to be connected to the first hydraulic pressure path 10A. A filter 40 is mounted on the outer periphery of the valve housing 28 at a portion facing the annular chamber 32, and a passage 41 for allowing the output chamber 35 to communicate with the annular chamber 32 through the filter 40 is provided in the valve housing 28. . The annular chamber 32 communicates with the left front wheel wheel brake BA, and the support block 36 is provided with a hydraulic path 42 for communicating the annular chamber 32 with the left front wheel wheel brake BA. Further, the valve housing 28 is opened between the valve seat member 33 and the filter 39 when the pressure in the hydraulic pressure path 38 is lower than that in the annular chamber 32, and the brake fluid in the annular chamber 32 is returned to the hydraulic pressure path 38 side. A check valve 20A is provided.

ソレノイド部34は、固定コア45と、前記弁部35における弁軸34の他端に同軸に連接されて固定コア45に対向するアーマチュア46と、固定コア45に対するアーマチュア46の近接・離反移動を案内するガイド筒47と、ガイド筒47を囲繞するボビン48と、該ボビン48に巻装されるコイル49と、コイル49を囲繞する磁路枠50と、磁路枠50およびボビン48間に介装されるコイル状のばね51とを備える。   The solenoid part 34 guides the approaching / separating movement of the armature 46 with respect to the fixed core 45, the armature 46 that is coaxially connected to the other end of the valve shaft 34 in the valve part 35 and faces the fixed core 45. Guide cylinder 47, a bobbin 48 surrounding the guide cylinder 47, a coil 49 wound around the bobbin 48, a magnetic path frame 50 surrounding the coil 49, and the magnetic path frame 50 and the bobbin 48. The coiled spring 51 is provided.

固定コア45は円筒状に形成されており、前記弁ハウジング28の一端中央部に同軸にかつ一体に連設される。ガイド筒47は、非磁性材料たとえばステンレス鋼により一端を半球状の閉塞端とした薄肉の有底円筒状に形成されるものであり、該ガイド筒47の他端に前記固定コア45の先端部が嵌合され、たとえば溶接によりガイド筒47の他端が固定コア45に固着される。しかも弁ハウジング28の装着孔37への装着状態でガイド筒47は支持ブロック36の一面36aから突出されている。   The fixed core 45 is formed in a cylindrical shape, and is coaxially and integrally connected to the center of one end of the valve housing 28. The guide tube 47 is formed in a thin bottomed cylindrical shape with a hemispherical closed end at one end made of a non-magnetic material such as stainless steel, and the tip of the fixed core 45 is connected to the other end of the guide tube 47. And the other end of the guide tube 47 is fixed to the fixed core 45 by welding, for example. In addition, the guide cylinder 47 protrudes from the one surface 36 a of the support block 36 in a mounted state in the mounting hole 37 of the valve housing 28.

ボビン48は、ガイド筒47を挿通させる中心孔48aを有して合成樹脂により形成されるものであり、該ボビン48にコイル49が巻装される。   The bobbin 48 has a central hole 48 a through which the guide tube 47 is inserted and is formed of synthetic resin. A coil 49 is wound around the bobbin 48.

磁路枠50は、ボビン48およびコイル49を囲繞する磁路筒52を備え、この磁路筒52の一端には、ガイド筒47の閉塞端部を中央部から突出させるようにしてボビン48に当接するリング板状の磁路板53がかしめ係合される。   The magnetic path frame 50 includes a magnetic path cylinder 52 that surrounds the bobbin 48 and the coil 49. At one end of the magnetic path cylinder 52, the closed end portion of the guide cylinder 47 protrudes from the center portion to the bobbin 48. The ring plate-like magnetic path plate 53 that abuts is caulked and engaged.

一方、磁路筒52の他端には、固定コア45の周囲で弁ハウジング28の一端に当接するリング板状の当接板部52aが一体に連設されており、この当接板部52aの内周に、固定コア45の基部が嵌合される。また一端を当接板部52aに当接せしめたコイル状のばね51の他端は、ボビン48に当接される。   On the other hand, the other end of the magnetic path cylinder 52 is integrally provided with a ring plate-like contact plate portion 52a that contacts the one end of the valve housing 28 around the fixed core 45, and this contact plate portion 52a. The base portion of the fixed core 45 is fitted to the inner periphery of the core. In addition, the other end of the coiled spring 51 whose one end is in contact with the contact plate portion 52 a is in contact with the bobbin 48.

ガイド筒47内には、固定コア45に対して近接・離反することが可能なアーマチュア46が収納されており、固定コア45を移動自在に貫通する前記弁軸34の一端がアーマチュア46に同軸に当接される。ところで、弁軸34は、戻しばね37のばね力により弁体36を弁座部材33から離反する方向に付勢されており、弁軸34の他端はアーマチュア46に常時当接されており、アーマチュア46の軸方向移動に応じて弁軸34すなわち弁体36も軸方向に移動することになる。   An armature 46 that can move toward and away from the fixed core 45 is housed in the guide tube 47, and one end of the valve shaft 34 that passes through the fixed core 45 movably is coaxial with the armature 46. Abutted. By the way, the valve shaft 34 is urged in a direction away from the valve seat member 33 by the spring force of the return spring 37, and the other end of the valve shaft 34 is always in contact with the armature 46. In response to the axial movement of the armature 46, the valve shaft 34, that is, the valve body 36 also moves in the axial direction.

すなわちアーマチュア46に固定コア45側への磁気吸引力が作用していない状態で、該アーマチュア46は戻しばね37のばね力によりガイド筒47の一端閉塞部で受けられるまで後退した位置に在り、この際、弁体36は弁座部材33から離反しており、常開型電磁弁15Aは開弁状態にある。また弁体36が弁座部材33に着座するまで固定コア45側にアーマチュア46を磁気吸引させると、常開型電磁弁15Aが閉弁状態となる。   That is, in a state where the magnetic attractive force toward the fixed core 45 is not acting on the armature 46, the armature 46 is in a retracted position by the spring force of the return spring 37 until it is received at one end closed portion of the guide cylinder 47. At this time, the valve body 36 is separated from the valve seat member 33, and the normally open solenoid valve 15A is in the valve open state. When the armature 46 is magnetically attracted toward the fixed core 45 until the valve element 36 is seated on the valve seat member 33, the normally open solenoid valve 15A is closed.

ところで、弁軸34の一端には、出力室35の液圧による液圧力と、戻しばね37のばね力との合力が作用するのに対し、弁軸34の他端には、アーマチュア46を固定コア45側に吸引する磁気吸引力が作用するものであり、弁軸34は、液圧力およびばね力の合力と、磁気吸引力とが均衡するようにストローク作動することになる。そこでコイル49への通電量を、たとえばデューティ制御によってオン・オフ間の中間値となるように制御することにより、アーマチュア46を固定コア45側に吸引する磁気吸引力を変化させることができる。   By the way, the resultant force of the hydraulic pressure of the output chamber 35 and the spring force of the return spring 37 acts on one end of the valve shaft 34, while the armature 46 is fixed to the other end of the valve shaft 34. The magnetic attraction force attracted to the core 45 side acts, and the valve shaft 34 is stroke-operated so that the resultant force of the fluid pressure and the spring force is balanced with the magnetic attraction force. Therefore, by controlling the energization amount to the coil 49 to be an intermediate value between on and off by, for example, duty control, the magnetic attraction force that attracts the armature 46 to the fixed core 45 side can be changed.

一方、固定コア45およびアーマチュア46の対向面45a,46aは、出力室35から離反するにつれて大径となるテーパ面に形成される。   On the other hand, the opposed surfaces 45 a and 46 a of the fixed core 45 and the armature 46 are formed as tapered surfaces that increase in diameter as they move away from the output chamber 35.

このように固定コア45およびアーマチュア46の対向面45a,46aがテーパ面に形成されると、アーマチュア46の軸方向ストローク量に比べて固定コア45およびアーマチュア46の対向距離(テーパ面に直角な方向の距離)の変化を小さくすることができ、対向面45a,46a間に発生する吸引力の変化が軸方向ストロークの変化に対して小さくなる。しかも実際に軸方向に作用する吸引力は対向面45a,46a間に発生する吸引力のsin成分であり、テーパ面の角度が鋭角になるほど対向面45a,46a間の吸引力の変化に対して軸方向の吸引力の変化が小さくなる。   When the opposing surfaces 45a and 46a of the fixed core 45 and the armature 46 are formed in a tapered surface in this way, the opposing distance between the fixed core 45 and the armature 46 (in a direction perpendicular to the tapered surface) compared to the axial stroke amount of the armature 46. The change in the suction force generated between the opposed surfaces 45a and 46a is smaller than the change in the axial stroke. Moreover, the suction force that actually acts in the axial direction is a sine component of the suction force generated between the opposing surfaces 45a and 46a, and with respect to the change in the suction force between the opposing surfaces 45a and 46a as the taper surface angle becomes acute. The change in the suction force in the axial direction is reduced.

これにより、図4の実線で示すように、固定コア45およびアーマチュア46間の吸引力が、弁部35における全閉および全開間の実用範囲ではほぼフラットになるようにすることができる。これに対し、固定コア45およびアーマチュア46の対向面を軸方向に直角な平坦面としたときには、弁軸34の軸方向ストロークに応じて固定コア45およびアーマチュア46の対向距離が比例的に変化するので、図4の鎖線で示すように、固定コア45およびアーマチュア46間の吸引力は実用範囲でも大きく変化してしまう。   As a result, as shown by the solid line in FIG. 4, the suction force between the fixed core 45 and the armature 46 can be made substantially flat in the practical range between the fully closed and fully opened states of the valve portion 35. On the other hand, when the opposing surfaces of the fixed core 45 and the armature 46 are flat surfaces perpendicular to the axial direction, the opposing distance between the fixed core 45 and the armature 46 changes proportionally according to the axial stroke of the valve shaft 34. Therefore, as shown by the chain line in FIG. 4, the suction force between the fixed core 45 and the armature 46 changes greatly even in the practical range.

このようにして常開型電磁弁15Aは、オン・オフ制御されるとともに左前輪用車輪ブレーキBA側の液圧をリニアに変化させるべくオン・オフ間の中間値の電流を付与すべくデューティ制御されるものであり、他の常開型電磁弁15B〜15Dも上記常開型電磁弁15Aと同様に構成される。一方、常閉型電磁弁16A〜16Dはオン・オフ制御されるだけである。而してアンチロックブレーキ制御の増加モードにおいて、常開型電磁弁15A〜15Dをオン状態とすることによって、各車輪ブレーキBA〜BDのブレーキ力を急増加することが可能であり、また常開型電磁弁15A〜15Dをデューティ制御することによって各車輪ブレーキBA〜BDのブレーキ力を緩増加することが可能である。   In this way, the normally open solenoid valve 15A is on / off controlled and duty controlled to give an intermediate current between on and off so as to linearly change the hydraulic pressure on the left front wheel brake BA side. The other normally open solenoid valves 15B to 15D are configured similarly to the normally open solenoid valve 15A. On the other hand, the normally closed solenoid valves 16A to 16D are only on / off controlled. Thus, in the increase mode of the anti-lock brake control, the brake force of each of the wheel brakes BA to BD can be increased rapidly by turning on the normally open solenoid valves 15A to 15D, and the normally open type is also normally open. It is possible to moderately increase the brake force of each wheel brake BA to BD by duty-controlling the type solenoid valves 15A to 15D.

図5において、コントローラCは、車輪速度検出手段6A,6C,6B,6Dで個別に検出される左前輪WA、右前輪WC、右後輪WBおよび左後輪WDの車輪速度に基づいて各車輪WA〜WD毎の車輪対応車体速度を推定する車輪対応車体速度推定手段55A,55C,55B,55Dと、車体速度を検出する車体速度検出手段56と、車両の減速度を検出する減速度検出手段57と、該減速度検出手段57で検出された減速度に基づいて走行路面の摩擦係数の高低を判別する摩擦係数判別手段58と、車輪速度検出手段6Aで検出された車輪速度ならびに前記車体速度検出手段56で検出された車体速度に基づいて左前輪WAのロック傾向を判定する左前輪用ロック傾向判定手段59Aと、車輪速度検出手段6Cで検出された車輪速度ならびに前記車体速度検出手段56で検出された車体速度に基づいて右前輪WCのロック傾向を判定する右前輪用ロック傾向判定手段59Cと、車輪速度検出手段6Bで検出された車輪速度ならびに前記車体速度検出手段56で検出された車体速度に基づいて右後輪WBのロック傾向を判定する右後輪用ロック傾向判定手段59Bと、車輪速度検出手段6Dで検出された車輪速度ならびに前記車体速度検出手段56で検出された車体速度に基づいて左後輪WDのロック傾向を判定する左後輪用ロック傾向判定手段59Dと、前記車輪対応車体速度推定手段55A〜55Dでそれぞれ推定された車輪対応車体速度の最大値および最小値の差を演算する最大偏差演算手段60と、走行路面の摩擦係数が低摩擦係数から高摩擦係数に急激に変化したと判断することを可能とした摩擦係数急変化判断手段61と、基本的には前記左前輪用ロック傾向判定手段59Aによる判定結果および前記摩擦係数判別手段58の判別結果に応じて左前輪用車輪ブレーキBAのブレーキ力を増減するための制御モードを定める左前輪用制御モード設定手段62Aと、基本的には前記右前輪用ロック傾向判定手段59Cによる判定結果ならびに前記摩擦係数判別手段58の判別結果に応じて右前輪用車輪ブレーキBCのブレーキ力を増減するための制御モードを定める右前輪用制御モード設定手段62Cと、基本的には前記右後輪用ロック傾向判定手段59Bによる判定結果ならびに前記摩擦係数判別手段58の判別結果に応じて右後輪用車輪ブレーキBBのブレーキ力を増減するための制御モードを定める右後輪用制御モード設定手段62Bと、基本的には前記左後輪用ロック傾向判定手段59Dによる判定結果ならびに前記摩擦係数判別手段58の判別結果に応じて左後輪用車輪ブレーキBDのブレーキ力を増減するための制御モードを定める左後輪用制御モード設定手段62Dと、前記左前輪用制御モード設定手段62Aで設定された制御モードに従って前記アクチュエータ1における左前輪ブレーキ調圧手段17Aの作動を制御する左前輪用アクチュエータ制御手段63Aと、前記右前輪用制御モード設定手段62Cで設定された制御モードに従って前記アクチュエータ1における右前輪ブレーキ調圧手段17Cの作動を制御する右前輪用アクチュエータ制御手段63Cと、前記右後輪用制御モード設定手段62Cで設定された制御モードに従って前記アクチュエータ1における右後輪ブレーキ調圧手段17Bの作動を制御する右後輪用アクチュエータ制御手段63Bと、前記左後輪用制御モード設定手段62Dで設定された制御モードに従って前記アクチュエータ1における左後輪ブレーキ調圧手段17Dの作動を制御する左後輪用アクチュエータ制御手段63Dとを備える。   In FIG. 5, the controller C uses the wheel speeds of the left front wheel WA, the right front wheel WC, the right rear wheel WB, and the left rear wheel WD, which are individually detected by the wheel speed detection means 6A, 6C, 6B, 6D. Wheel-corresponding vehicle speed estimating means 55A, 55C, 55B, 55D for estimating the wheel-corresponding vehicle speed for each of WA to WD, vehicle speed detecting means 56 for detecting the vehicle speed, and deceleration detecting means for detecting the deceleration of the vehicle 57, a friction coefficient determining means 58 for determining the level of the friction coefficient of the traveling road surface based on the deceleration detected by the deceleration detecting means 57, the wheel speed detected by the wheel speed detecting means 6A and the vehicle body speed. The left front wheel locking tendency determination means 59A for determining the locking tendency of the left front wheel WA based on the vehicle body speed detected by the detection means 56, and the wheel speed detected by the wheel speed detection means 6C. In addition, the right front wheel lock tendency determination means 59C for determining the lock tendency of the right front wheel WC based on the vehicle body speed detected by the vehicle body speed detection means 56, the wheel speed detected by the wheel speed detection means 6B, and the vehicle body speed. A right rear wheel locking tendency determination means 59B for determining the locking tendency of the right rear wheel WB based on the vehicle body speed detected by the detection means 56, the wheel speed detected by the wheel speed detection means 6D, and the vehicle body speed detection means. The left rear wheel lock tendency determining means 59D for determining the lock tendency of the left rear wheel WD based on the vehicle body speed detected at 56, and the wheel corresponding vehicle body speed estimated by the wheel corresponding vehicle body speed estimating means 55A to 55D, respectively. The maximum deviation calculating means 60 for calculating the difference between the maximum value and the minimum value of the vehicle, and the friction coefficient of the road surface has changed suddenly from a low friction coefficient to a high friction coefficient. The friction coefficient sudden change determination means 61 that can be disconnected, and basically the wheel brake for the front left wheel according to the determination result by the left front wheel lock tendency determination means 59A and the determination result of the friction coefficient determination means 58. The left front wheel control mode setting means 62A for determining the control mode for increasing / decreasing the braking force of the BA, basically the determination result by the right front wheel lock tendency determination means 59C and the determination result of the friction coefficient determination means 58. Accordingly, the determination result by the right front wheel control mode setting means 62C for determining the control mode for increasing / decreasing the braking force of the right front wheel brake BC, basically the determination result by the right rear wheel lock tendency determination means 59B and the friction. The right rear determines the control mode for increasing or decreasing the braking force of the right rear wheel brake BB according to the determination result of the coefficient determining means 58. The braking force of the wheel brake BD for the left rear wheel is basically determined according to the determination result by the wheel control mode setting means 62B and the determination result by the left rear wheel lock tendency determination means 59D and the determination result by the friction coefficient determination means 58. Control of the operation of the left front wheel brake pressure adjusting means 17A in the actuator 1 according to the control mode set by the left rear wheel control mode setting means 62D for determining a control mode for increasing and decreasing and the left front wheel control mode setting means 62A. Actuator control means 63A for the left front wheel, and actuator control means 63C for the right front wheel that controls the operation of the right front wheel brake pressure adjusting means 17C in the actuator 1 according to the control mode set by the control mode setting means 62C for the right front wheel. In accordance with the control mode set by the right rear wheel control mode setting means 62C. The left rear wheel actuator control means 63B for controlling the operation of the right rear wheel brake pressure adjusting means 17B in the actuator 1 and the left rear wheel control mode setting means 62D according to the control mode set by the left rear wheel control mode setting means 62D. Left rear wheel actuator control means 63D for controlling the operation of the rear wheel brake pressure adjusting means 17D.

車輪対応車体速度推定手段55Aは、車輪速度検出手段6Aで検出された左前輪WAの車輪速度に基づいて、減速過程では設定減速度以上の減速度とならないように車輪減速度を用いて車体速度を推定し、増速過程では設定増速度以上の増速度とならないようにして車輪増速度を用いて車体速度を推定するものであり、車輪速度に対して図6で示すように変化する車輪対応車体速度が、車輪対応車体速度推定手段55Aで推定される。   Based on the wheel speed of the left front wheel WA detected by the wheel speed detecting means 6A, the wheel-corresponding vehicle body speed estimating means 55A uses the wheel deceleration so that the vehicle speed does not exceed the set deceleration in the deceleration process. The vehicle speed is estimated by using the wheel acceleration so that the acceleration does not exceed the set acceleration in the acceleration process, and the wheel speed changes as shown in FIG. The vehicle body speed is estimated by the wheel corresponding vehicle body speed estimating means 55A.

車輪対応車体速度推定手段55C,55B,55Dも、上述の車輪対応車体速度推定手段55Aと同様にして、車輪速度検出手段6C,6B,6Dで検出される右前輪WC,右後輪WBおよび左後輪WDの車輪速度に基づいて、右前輪WC,右後輪WBおよび左後輪WD毎の車輪対応車体速度を推定する。   The wheel corresponding vehicle body speed estimating means 55C, 55B, 55D is also the same as the wheel corresponding vehicle body speed estimating means 55A, and the right front wheel WC, the right rear wheel WB and the left detected by the wheel speed detecting means 6C, 6B, 6D. Based on the wheel speed of the rear wheel WD, the wheel corresponding vehicle body speed for each of the right front wheel WC, the right rear wheel WB, and the left rear wheel WD is estimated.

車体速度検出手段56は、前記車輪対応車体速度推定手段55A〜55Dで推定された車輪対応車体速度の最高値を車体速度として選択するものであり、減速度検出手段57は、車体速度検出手段56で得られた車体速度を微分することによって車両の減速度を得るように構成される。さらに摩擦係数判別手段58は、減速度検出手段57で得られた車両の減速度に基づいて走行路面の摩擦係数の高低を判別する。   The vehicle body speed detecting means 56 selects the highest value of the wheel corresponding vehicle body speeds estimated by the wheel corresponding vehicle body speed estimating means 55A to 55D as the vehicle body speed, and the deceleration detecting means 57 is the vehicle body speed detecting means 56. A vehicle deceleration is obtained by differentiating the vehicle body speed obtained in (1). Further, the friction coefficient discriminating means 58 discriminates the level of the friction coefficient of the traveling road surface based on the vehicle deceleration obtained by the deceleration detecting means 57.

なお車両の旋回状態を考慮して、車体速度検出手段56で得られる車体速度を、従動輪である右後輪WBおよび左後輪WDの車輪速度に基づいて旋回補正するようにしてもよい。   In consideration of the turning state of the vehicle, the vehicle body speed obtained by the vehicle body speed detecting means 56 may be corrected for turning based on the wheel speeds of the right rear wheel WB and the left rear wheel WD as driven wheels.

左前輪用ロック傾向判定手段59A、右前輪用ロック傾向判定手段59C、右後輪用ロック傾向判定手段59Bおよび左後輪用ロック傾向判定手段59Dは、各車輪速度検出手段6A〜6Dで検出された車輪速度ならびに車体速度検出手段56で検出された車体速度に基づいて左前輪WA、右前輪WC、右後輪WBおよび左後輪WDのロック傾向をそれぞれ判定する。   The left front wheel lock tendency determining means 59A, the right front wheel lock tendency determining means 59C, the right rear wheel lock tendency determining means 59B and the left rear wheel lock tendency determining means 59D are detected by the respective wheel speed detecting means 6A to 6D. The locking tendency of the left front wheel WA, the right front wheel WC, the right rear wheel WB and the left rear wheel WD is determined based on the wheel speed and the vehicle body speed detected by the vehicle body speed detection means 56, respectively.

左前輪用制御モード設定手段62A、右前輪用制御モード設定手段62C、右後輪用制御モード設定手段62Bおよび左後輪用制御モード設定手段62Dは、左前輪用ロック傾向判定手段59A、右前輪用ロック傾向判定手段59C、右後輪用ロック傾向判定手段59Bおよび左後輪用ロック傾向判定手段59Dによる判定結果に応じて、左前輪用車輪ブレーキBA、右前輪用車輪ブレーキBC、右後輪用車輪ブレーキBBおよび左後輪用車輪ブレーキBDのブレーキ力の増加モード、保持モードおよび減少モードを切換えるようにして制御モードを設定するのであるが、特に、増加モードにあっては、摩擦係数判定手段58の判定結果に応じて高摩擦係数であると判定したときの急増加モードならびに低摩擦係数であると判定したときの緩増加モードを切換える。   The left front wheel control mode setting means 62A, the right front wheel control mode setting means 62C, the right rear wheel control mode setting means 62B, and the left rear wheel control mode setting means 62D are the left front wheel lock tendency determination means 59A, the right front wheel, The left front wheel brake BA, the right front wheel brake BC, the right rear wheel according to the determination results by the lock tendency determination means 59C, the right rear wheel lock tendency determination means 59B, and the left rear wheel lock tendency determination means 59D The control mode is set by switching the brake force increasing mode, holding mode and decreasing mode of the wheel brake BB for the left rear wheel and the wheel brake BD for the left rear wheel. The rapid increase mode when it is determined that the coefficient of friction is high according to the determination result of the means 58 and the slow speed when it is determined that the coefficient of friction is low. Switch the pressure mode.

また摩擦係数急変化判断手段61は、摩擦係数判別手段58が低摩擦係数であると判別するのに基づいて全車輪すなわち左前輪WA、右前輪WC、右後輪WBおよび左後輪WDにそれぞれ対応した左前輪用制御モード設定手段62A、右前輪用制御モード設定手段62C、右後輪用制御モード設定手段62Bおよび左後輪用制御モード設定手段62Dが緩増加モードを選択している状態で、少なくとも1つの車輪の緩増加モードの経過時間が所定時間たとえば400m秒以上であり、減速度検出手段57で検出される車両の減速度が判定用の閾値たとえば(−0.3G)を減速側に超え、しかも前記最大偏差演算手段60の演算値すなわち前記各車輪対応車体速度推定手段55A〜55Dでそれぞれ推定された車輪対応車体速度の最大値および最小値の差が基準値たとえば5km/h未満であるときに摩擦係数が低摩擦係数から高摩擦係数に急激に変化したと判断する。   Further, the friction coefficient sudden change judging means 61 applies to all wheels, that is, the left front wheel WA, the right front wheel WC, the right rear wheel WB, and the left rear wheel WD based on the fact that the friction coefficient judging means 58 judges that the coefficient of friction is low. In a state where the corresponding left front wheel control mode setting means 62A, right front wheel control mode setting means 62C, right rear wheel control mode setting means 62B and left rear wheel control mode setting means 62D are selecting the slowly increasing mode. The elapsed time of the slow increase mode of at least one wheel is a predetermined time, for example, 400 msec or more, and the vehicle deceleration detected by the deceleration detection means 57 is reduced to a threshold value for determination (eg, −0.3 G). In addition, the calculated value of the maximum deviation calculating means 60, that is, the maximum value of the wheel-corresponding vehicle speed estimated by the wheel-corresponding vehicle speed estimating means 55A to 55D, respectively. Friction coefficient is determined to have changed drastically to the high friction coefficient of a low friction coefficient when the difference between the minimum value is less than the reference value, for example 5km / h.

さらに左前輪用制御モード設定手段62A、右前輪用制御モード設定手段62C、右後輪用制御モード設定手段62Bおよび左後輪用制御モード設定手段62Dは、摩擦係数判別手段58が低摩擦係数であると判別するのに基づいて緩増加モードを選択している状態で、走行路面の摩擦係数が低摩擦係数から高摩擦係数に急激に変化したと摩擦係数急変化判断手段61が判断するのに応じて制御モードを緩増加モードから急増加モードに切換える。   Further, the left front wheel control mode setting means 62A, the right front wheel control mode setting means 62C, the right rear wheel control mode setting means 62B, and the left rear wheel control mode setting means 62D have the friction coefficient determining means 58 having a low friction coefficient. The friction coefficient sudden change determination means 61 determines that the friction coefficient of the running road surface has suddenly changed from the low friction coefficient to the high friction coefficient in the state where the slow increase mode is selected based on the determination that there is. In response, the control mode is switched from the slow increase mode to the rapid increase mode.

次にこの実施例の作用について説明すると、左前輪用車輪ブレーキBA、右前輪用車輪ブレーキBC、右後輪用車輪ブレーキBBおよび左後輪用車輪ブレーキBDによるブレーキ力のアンチロックブレーキ制御時の制御モードを定める左前輪用制御モード設定手段59A、右前輪用制御モード設定手段59C、右後輪用制御モード設定手段59Bおよび左後輪用制御モード設定手段59Dは、制御モードが増加モードであるときには摩擦係数判定手段58の判定結果に応じて高摩擦係数であると判定したときの急増加モードならびに低摩擦係数であると判定したときの緩増加モードを切換えるのであるが、全ての制御モード設定手段59A〜59Dで緩増加モードを選択している状態で、摩擦係数急変化判断手段61は、少なくとも1つの車輪の緩増加モードの経過時間が所定時間以上であり、減速度検出手段57で検出される車両の減速度が判定用の閾値を減速側に超え、しかも各車輪対応車体速度推定手段55A〜55Dでそれぞれ推定された車輪対応車体速度の最大値および最小値の差が基準値未満であるときに摩擦係数が低摩擦係数から高摩擦係数に急激に変化したと判断する。   Next, the operation of this embodiment will be described. The left front wheel brake BA, the right front wheel brake BC, the right rear wheel brake BB, and the left rear wheel brake BD are controlled by the anti-lock brake control. The left front wheel control mode setting means 59A, the right front wheel control mode setting means 59C, the right rear wheel control mode setting means 59B, and the left rear wheel control mode setting means 59D for determining the control mode are in the increase mode. Depending on the determination result of the friction coefficient determination means 58, there are sometimes switching between a sudden increase mode when it is determined to be a high friction coefficient and a slow increase mode when it is determined that it is a low friction coefficient. In a state where the mode of moderate increase is selected by the means 59A to 59D, the friction coefficient sudden change determination means 61 is provided with at least one vehicle. The elapsed time of the slow increase mode is equal to or longer than a predetermined time, the vehicle deceleration detected by the deceleration detection means 57 exceeds the threshold for determination toward the deceleration side, and the vehicle body speed estimation means 55A to 55D corresponding to each wheel. When the difference between the estimated maximum and minimum wheel-corresponding vehicle speeds is less than the reference value, it is determined that the friction coefficient has suddenly changed from a low friction coefficient to a high friction coefficient.

すなわち摩擦係数急変化判断手段61は、少なくとも1つの車輪の緩増加モードの経過時間が所定時間以上であることによって増圧不足の状態であると判断し、車輪対応車体速度の最大値および最小値の差が基準値未満であることで複数の車輪の車輪速度がほぼ同期して変化していると判断し、そのような状態で車両の減速度が判定用の閾値を減速側に超えることをもって走行路面の摩擦係数が低摩擦係数から高摩擦係数に急激に変化したと判断するものであり、判定用の閾値を厳密に定めることを可能とし、走行路面の摩擦係数が低摩擦係数から高摩擦係数に急激に変化したことを簡単な演算内容でかつ速やかに判断することができる。   That is, the friction coefficient sudden change determination means 61 determines that the pressure increase is insufficient because the elapsed time of the slow increase mode of at least one wheel is equal to or longer than the predetermined time, and the maximum value and minimum value of the vehicle speed corresponding to the wheel. It is determined that the wheel speeds of the plurality of wheels are changing almost synchronously because the difference between the two is less than the reference value, and in such a state, the vehicle deceleration exceeds the threshold for determination toward the deceleration side. It is judged that the friction coefficient of the road surface has changed abruptly from the low friction coefficient to the high friction coefficient, and it is possible to set a threshold for judgment strictly, and the friction coefficient of the road surface is changed from the low friction coefficient to the high friction coefficient. It is possible to quickly determine with a simple calculation content that the coefficient has rapidly changed.

而して摩擦係数急変化判断手段61が、走行路面の摩擦係数が低摩擦係数から高摩擦係数に急激に変化したと判断するのに応じて、左前輪用制御モード設定手段62A、右前輪用制御モード設定手段62C、右後輪用制御モード設定手段62Bおよび左後輪用制御モード設定手段62Dは、制御モードを緩増加モードから急増加モードに切換えるので、速やかに急増加モードに切換えることで制動距離が長くなることを回避することができ、優れた応答性を確保して制動距離の短縮を図ることができる。   Thus, when the friction coefficient sudden change judging means 61 judges that the friction coefficient of the running road surface has suddenly changed from the low friction coefficient to the high friction coefficient, the left front wheel control mode setting means 62A, the right front wheel use The control mode setting means 62C, the right rear wheel control mode setting means 62B, and the left rear wheel control mode setting means 62D switch the control mode from the slow increase mode to the rapid increase mode. An increase in the braking distance can be avoided, and excellent braking performance can be ensured to shorten the braking distance.

以上、本発明の実施例を説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the present invention described in the claims. It is.

たとえば車両旋回時には旋回半径の差に基づいて旋回内輪および旋回外輪間で車輪速度の差が生じるので、摩擦係数急変化判断手段61において、車輪対応車体速度の最大値および最小値の差の基準値を、旋回量に応じて旋回半径が小さく(操舵角が大きく)なるに従って大きくなるように補正してもよい。また前記基準値を一定値とし、旋回量に応じて各車輪の車輪対応車体速度を旋回半径の差の影響を補償するように補正するようにしてもよい。   For example, when the vehicle turns, a difference in wheel speed occurs between the turning inner wheel and the turning outer wheel based on the difference in turning radius. Therefore, the friction coefficient sudden change determination means 61 uses the reference value for the difference between the maximum and minimum wheel-corresponding vehicle speeds. May be corrected so as to increase as the turning radius becomes smaller (the steering angle becomes larger) in accordance with the turning amount. Further, the reference value may be a constant value, and the wheel-corresponding vehicle body speed of each wheel may be corrected according to the turning amount so as to compensate for the influence of the difference in turning radius.

前輪駆動車両の駆動系およびブレーキ系を示す図である。It is a figure which shows the drive system and brake system of a front-wheel drive vehicle. ブレーキ液圧制御装置の構成を示す液圧系統図である。It is a hydraulic system diagram which shows the composition of a brake fluid pressure control device. 常開型電磁弁の縦断面図である。It is a longitudinal cross-sectional view of a normally open type solenoid valve. 弁軸のストローク変化に対する吸引力変化を示す図である。It is a figure which shows the suction force change with respect to the stroke change of a valve shaft. コントローラの構成を示すブロック図である。It is a block diagram which shows the structure of a controller. 車輪対応車体速度および車輪速度の関係を示す図である。It is a figure which shows the relationship between the vehicle body speed corresponding to a wheel, and a wheel speed.

符号の説明Explanation of symbols

1・・・アクチュエータ
6A,6B,6C,6D・・・車輪速度検出手段
55A,55B,55C,55D・・・車輪対応車体速度推定手段
56・・・車体速度検出手段
57・・・減速度検出手段
58・・・摩擦係数判別手段
59A,59B,59C,59D・・・ロック傾向判定手段
61・・・摩擦係数急変化判断手段
62A,62B,62C,62D・・・制御モード設定手段
63A,63B,63C,63D・・・アクチュエータ制御手段
BA,BB,BC,BD・・・車輪ブレーキ
WA・・・車輪である左前輪
WB・・・車輪である右後輪
WC・・・車輪である右前輪
WD・・・車輪である左後輪
DESCRIPTION OF SYMBOLS 1 ... Actuator 6A, 6B, 6C, 6D ... Wheel speed detection means 55A, 55B, 55C, 55D ... Wheel corresponding vehicle body speed estimation means 56 ... Body speed detection means 57 ... Deceleration detection Means 58... Friction coefficient discrimination means 59A, 59B, 59C, 59D... Lock tendency judgment means 61... Friction coefficient sudden change judgment means 62A, 62B, 62C, 62D... Control mode setting means 63A, 63B , 63C, 63D ... Actuator control means BA, BB, BC, BD ... Wheel brake WA ... Left front wheel WB as a wheel ... Right rear wheel WC as a wheel ... Right front wheel as a wheel WD: Left rear wheel as a wheel

Claims (1)

複数の車輪(WA,WB,WC,WD)にそれぞれ装着された車輪ブレーキ(BA,BB,BC,BD)が発揮するブレーキ力を個別に調整可能なアクチュエータ(1)と;前記各車輪(WA〜WD)の車輪速度を個別に検出する車輪速度検出手段(6A,6B,6C,6D)と;車体速度を検出する車体速度検出手段(56)と;車両の減速度を検出する減速度検出手段(57)と;該減速度検出手段(57)で検出された減速度に基づいて走行路面の摩擦係数の高低を判別する摩擦係数判別手段(58)と;前記車輪速度検出手段(6A〜6D)で検出された車輪速度ならびに前記車体速度検出手段(56)で検出された車体速度に基づいて前記各車輪(WA〜WD)毎にロック傾向を判定するロック傾向判定手段(59A,59B,59C,59D)と;該ロック傾向判定手段(59A〜59D)による判定結果に応じてブレーキ力を増減するための制御モードを前記各車輪ブレーキ(BA〜BD)毎に定めるとともに該制御モードが増加モードであるときには前記摩擦係数判定手段(58)の判定結果に応じて高摩擦係数であると判定したときの急増加モードならびに低摩擦係数であると判定したときの緩増加モードを切換える制御モード設定手段(62A,62B,62C,62D)と;該制御モード設定手段(62A〜62D)で設定された制御モードに従って前記アクチュエータ(1)の作動を制御するアクチュエータ制御手段(63A,63B,63C,63D)と;を備える車両のアンチロックブレーキ制御装置において、前記車輪速度検出手段(6A〜6D)で検出された車輪速度に基づいて前記各車輪(WA〜WD)毎の車輪対応車体速度を推定する車輪対応車体速度推定手段(55A,55B,55C,55D)と;前記摩擦係数判別手段(58)が低摩擦係数であると判別するのに基づいて全車輪(WA〜WD)で前記緩増加モードを選択している状態で、少なくとも1つの車輪の緩増加モードの経過時間が所定時間以上であり、前記減速度検出手段(57)で検出される車両の減速度が判定用の閾値を減速側に超え、しかも前記各車輪対応車体速度推定手段(55A〜55D)でそれぞれ推定された車輪対応車体速度の最大値および最小値の差が基準値未満であるときに摩擦係数が低摩擦係数から高摩擦係数に急激に変化したと判断する摩擦係数急変化判断手段(61)と;を含み、前記制御モード設定手段(62A〜62D)は、前記摩擦係数判別手段(58)が低摩擦係数であると判別するのに基づいて全車輪(WA〜WD)で前記緩増加モードを選択している状態で、走行路面の摩擦係数が低摩擦係数から高摩擦係数に急激に変化したと前記摩擦係数急変化判断手段(61)が判断するのに応じて全車輪(WA〜WD)の制御モードを緩増加モードから急増加モードに切換えることを特徴とする車両のアンチロックブレーキ制御装置。   An actuator (1) capable of individually adjusting a braking force exerted by a wheel brake (BA, BB, BC, BD) mounted on each of a plurality of wheels (WA, WB, WC, WD); Wheel speed detecting means (6A, 6B, 6C, 6D) for individually detecting the wheel speed of WD); body speed detecting means (56) for detecting the body speed; and deceleration detection for detecting the deceleration of the vehicle Means (57); friction coefficient determination means (58) for determining the level of the friction coefficient of the road surface based on the deceleration detected by the deceleration detection means (57); and the wheel speed detection means (6A to 6A). 6D) and a lock tendency determination means (59A, 59B) for determining a lock tendency for each wheel (WA to WD) based on the wheel speed detected by the vehicle speed and the vehicle body speed detection means (56). 5 C, 59D); and a control mode for increasing or decreasing the braking force is determined for each wheel brake (BA to BD) according to the determination result by the lock tendency determination means (59A to 59D) and the control mode is increased. Control mode setting for switching between a rapid increase mode when it is determined to be a high friction coefficient and a slow increase mode when it is determined to be a low friction coefficient according to the determination result of the friction coefficient determination means (58). Means (62A, 62B, 62C, 62D); actuator control means (63A, 63B, 63C, 63D) for controlling the operation of the actuator (1) according to the control mode set by the control mode setting means (62A to 62D) And an anti-lock brake control device for a vehicle comprising the wheel speed detecting means (6A to 6D). Wheel corresponding vehicle body speed estimating means (55A, 55B, 55C, 55D) for estimating the wheel corresponding vehicle speed for each of the wheels (WA to WD) based on the detected wheel speed; and the friction coefficient determining means (58). In the state where the slow increase mode is selected for all the wheels (WA to WD) based on determining that is a low friction coefficient, the elapsed time of the slow increase mode of at least one wheel is a predetermined time or more. The vehicle speed detected by the deceleration detection means (57) exceeds the threshold value for determination toward the deceleration side, and the vehicle body speed corresponding to each wheel estimated by the vehicle speed estimation means (55A to 55D) corresponding to each wheel. Friction coefficient sudden change judging means (61) for judging that the friction coefficient has suddenly changed from the low friction coefficient to the high friction coefficient when the difference between the maximum value and the minimum value of the speed is less than the reference value; control The mode setting means (62A to 62D) is in a state in which the slow increase mode is selected for all the wheels (WA to WD) based on the fact that the friction coefficient determination means (58) determines that the friction coefficient is low. The control mode of all the wheels (WA to WD) is gradually increased according to the fact that the friction coefficient sudden change judging means (61) judges that the friction coefficient of the road surface has suddenly changed from the low friction coefficient to the high friction coefficient. An antilock brake control device for a vehicle, wherein the mode is switched from a mode to a sudden increase mode.
JP2007169572A 2007-06-27 2007-06-27 Anti-lock brake control device for vehicle Expired - Fee Related JP5107620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007169572A JP5107620B2 (en) 2007-06-27 2007-06-27 Anti-lock brake control device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007169572A JP5107620B2 (en) 2007-06-27 2007-06-27 Anti-lock brake control device for vehicle

Publications (2)

Publication Number Publication Date
JP2009006832A true JP2009006832A (en) 2009-01-15
JP5107620B2 JP5107620B2 (en) 2012-12-26

Family

ID=40322380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007169572A Expired - Fee Related JP5107620B2 (en) 2007-06-27 2007-06-27 Anti-lock brake control device for vehicle

Country Status (1)

Country Link
JP (1) JP5107620B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09109869A (en) * 1995-10-18 1997-04-28 Sumitomo Electric Ind Ltd Anti-skid control device
JPH09263226A (en) * 1996-03-28 1997-10-07 Toyota Motor Corp Anti-lock control device
JPH11129883A (en) * 1997-10-29 1999-05-18 Aisin Seiki Co Ltd Anti-skid control device
JP2005053423A (en) * 2003-08-07 2005-03-03 Toyoda Mach Works Ltd Method and apparatus for judging state of road surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09109869A (en) * 1995-10-18 1997-04-28 Sumitomo Electric Ind Ltd Anti-skid control device
JPH09263226A (en) * 1996-03-28 1997-10-07 Toyota Motor Corp Anti-lock control device
JPH11129883A (en) * 1997-10-29 1999-05-18 Aisin Seiki Co Ltd Anti-skid control device
JP2005053423A (en) * 2003-08-07 2005-03-03 Toyoda Mach Works Ltd Method and apparatus for judging state of road surface

Also Published As

Publication number Publication date
JP5107620B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP2590825B2 (en) Manual / Electric dual brake system
JP3716490B2 (en) Braking force control device
EP2949525B1 (en) Vehicular brake hydraulic pressure controller
US8191858B2 (en) Solenoid valve having a short axis
JPH1159403A (en) Hydraulic brake device
US20120248357A1 (en) Solenoid valve for brake system
KR101048745B1 (en) Solenoid valve for controlling brake oil pressure and anti-theft vehicle using same
JP2005343194A (en) Brake fluid pressure control device for vehicle and brake device for vehicle
JP5107620B2 (en) Anti-lock brake control device for vehicle
JP5165446B2 (en) solenoid valve
JP2008308136A (en) Anti-lock brake controller for vehicle
JP5686118B2 (en) Solenoid valve device
JP2004196235A (en) Anti-lock brake controller for vehicle
JP4441370B2 (en) Anti-lock brake control device for vehicle
JP5006243B2 (en) Brake control device
US4281685A (en) Electromagnetic locking type actuator
JPH08121635A (en) Solenoid valve
JP6460779B2 (en) Solenoid valve and vehicle brake fluid pressure control device
US6280006B1 (en) Brake hydraulic control device for use in vehicle
JP3069991B2 (en) Vehicle brake fluid pressure control device
JP2900542B2 (en) Vehicle brake pressure control device
JP2004196236A (en) Anti-lock brake controller for vehicle
JP7367372B2 (en) Vehicle braking device
JP2617360B2 (en) Vehicle brake hydraulic control method
JP2004168109A (en) Anti-lock brake controlling system for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120919

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121004

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees