JP2008308136A - Anti-lock brake controller for vehicle - Google Patents

Anti-lock brake controller for vehicle Download PDF

Info

Publication number
JP2008308136A
JP2008308136A JP2007160602A JP2007160602A JP2008308136A JP 2008308136 A JP2008308136 A JP 2008308136A JP 2007160602 A JP2007160602 A JP 2007160602A JP 2007160602 A JP2007160602 A JP 2007160602A JP 2008308136 A JP2008308136 A JP 2008308136A
Authority
JP
Japan
Prior art keywords
wheel
friction coefficient
front wheel
control mode
brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007160602A
Other languages
Japanese (ja)
Inventor
Hiromi Inagaki
裕巳 稲垣
Masaru Goto
後藤  勝
Hidetoshi Kobori
秀俊 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007160602A priority Critical patent/JP2008308136A/en
Publication of JP2008308136A publication Critical patent/JP2008308136A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulating Braking Force (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent insufficient increase of the braking force by a wheel brake on a road surface side of the high friction coefficient when reaching a friction coefficient split state. <P>SOLUTION: In a state of the slow-increasing mode based on the discrimination of a friction coefficient discrimination means 58 that a left-front wheel control mode setting means 59A and a right front wheel control mode setting means 59C are in the state of low friction coefficient during the anti-lock brake control, when a split state detection means 66 detects the friction coefficient split state in which the friction coefficient of a traveling road surface is different between right and left wheels based on the difference in the wheel corresponding vehicle body speed estimated respectively by wheel corresponding vehicle body speed estimation means 55A, 55C, the control mode setting means changes the control mode from the slow increasing mode to the rapid increasing mode corresponding to the front wheel on the high-speed side out of the left-front wheel control mode setting means 59A and the right front wheel control mode setting means 59C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、同軸上の左右の車輪にそれぞれ装着された車輪ブレーキが発揮するブレーキ力を個別に調整可能なアクチュエータと、前記左右の車輪の車輪速度を個別に検出する車輪速度検出手段と、車体速度を検出する車体速度検出手段と、車両の減速度を検出する減速度検出手段と、該減速度検出手段で検出された減速度に基づいて走行路面の摩擦係数の高低を判別する摩擦係数判別手段と、前記車輪速度検出手段で検出された車輪速度ならびに前記車体速度検出手段で検出された車体速度に基づいて前記左右の車輪毎にロック傾向を判定するロック傾向判定手段と、該ロック傾向判定手段による判定結果に応じてブレーキ力を増減するための制御モードを前記左右の車輪の車輪ブレーキ毎に定めるとともに該制御モードが増加モードであるときには前記摩擦係数判定手段の判定結果に応じて高摩擦係数であると判定したときの急増加モードならびに低摩擦係数であると判定したときの緩増加モードを切換える制御モード設定手段と、該制御モード設定手段で設定された制御モードに従って前記アクチュエータの作動を制御するアクチュエータ制御手段とを備える車両のアンチロックブレーキ制御装置に関する。   The present invention relates to an actuator capable of individually adjusting a braking force exerted by wheel brakes mounted on left and right wheels on the same axis, wheel speed detecting means for individually detecting wheel speeds of the left and right wheels, and a vehicle body. Body speed detecting means for detecting the speed, deceleration detecting means for detecting the deceleration of the vehicle, and friction coefficient determination for determining the level of the friction coefficient of the traveling road surface based on the deceleration detected by the deceleration detecting means Means for determining a lock tendency for each of the left and right wheels based on the wheel speed detected by the wheel speed detection means and the vehicle body speed detected by the vehicle body speed detection means, and the lock tendency determination The control mode for increasing or decreasing the braking force according to the determination result by the means is determined for each wheel brake of the left and right wheels, and the control mode is the increase mode. Control mode setting means for switching between a sudden increase mode when determined to be a high friction coefficient and a slow increase mode when determined to be a low friction coefficient according to the determination result of the friction coefficient determination means, The present invention relates to an anti-lock brake control device for a vehicle comprising actuator control means for controlling the operation of the actuator according to a control mode set by a control mode setting means.

アンチロックブレーキ制御時に、車輪ブレーキのブレーキ力を増加する制御モードにおいて、急増加モードおよび緩増加モードを切換え可能とした車両のアンチロックブレーキ制御装置が、たとえば特許文献1等で既に知られている。
特開2004−196235号公報
An antilock brake control device for a vehicle that can switch between a sudden increase mode and a slow increase mode in a control mode for increasing the braking force of a wheel brake during the antilock brake control is already known, for example, in Patent Document 1 .
JP 2004-196235 A

ところで、このようなアンチロックブレーキ制御装置では、走行路面の摩擦係数が低いときには緩増加モード、摩擦係数が高いときには急増加モードを選択するのであるが、左右の車輪の一方が低摩擦係数の路面に接地したままで他方の車輪が高摩擦係数の路面に接地した摩擦係数スプリット状態となったときには、車両の減速度が低くなることに基づいて低摩擦係数であると判別しがちであり、低摩擦係数であると判別して緩増加モードを選択し、緩増加モードのままでブレーキ力を制御していると、高摩擦係数の路面側の車輪では充分なブレーキ力の増加が得られず、ブレーキ力の増加不足を生じてしまうことがある。   By the way, in such an anti-lock brake control device, the slow increase mode is selected when the friction coefficient of the running road surface is low, and the rapid increase mode is selected when the friction coefficient is high. However, one of the left and right wheels has a low friction coefficient. When the other wheel is in contact with the high friction coefficient road surface and the friction coefficient split state is entered, the low friction coefficient tends to be determined based on the decrease in vehicle deceleration. If it is determined that the coefficient of friction is the slow increase mode and the braking force is controlled in the slow increase mode, a sufficient increase in the braking force cannot be obtained with the wheel on the road surface side with the high friction coefficient. Insufficient braking force may occur.

本発明は、かかる事情に鑑みてなされたものであり、摩擦係数スプリット状態となったときに高摩擦係数の路面側の車輪ブレーキによるブレーキ力増加不足が生じないようにした車両のアンチロックブレーキ制御装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and anti-lock brake control for a vehicle in which an increase in braking force due to a wheel brake on a road surface side having a high friction coefficient does not occur when the friction coefficient is in a split state. An object is to provide an apparatus.

上記目的を達成するために、本発明は、同軸上の左右の車輪にそれぞれ装着された車輪ブレーキが発揮するブレーキ力を個別に調整可能なアクチュエータと、前記左右の車輪の車輪速度を個別に検出する車輪速度検出手段と、車体速度を検出する車体速度検出手段と、車両の減速度を検出する減速度検出手段と、該減速度検出手段で検出された減速度に基づいて走行路面の摩擦係数の高低を判別する摩擦係数判別手段と、前記車輪速度検出手段で検出された車輪速度ならびに前記車体速度検出手段で検出された車体速度に基づいて前記左右の車輪毎にロック傾向を判定するロック傾向判定手段と、該ロック傾向判定手段による判定結果に応じてブレーキ力を増減するための制御モードを前記左右の車輪の車輪ブレーキ毎に定めるとともに該制御モードが増加モードであるときには前記摩擦係数判定手段の判定結果に応じて高摩擦係数であると判定したときの急増加モードならびに低摩擦係数であると判定したときの緩増加モードを切換える制御モード設定手段と、該制御モード設定手段で設定された制御モードに従って前記アクチュエータの作動を制御するアクチュエータ制御手段とを備える車両のアンチロックブレーキ制御装置において、前記車輪速度検出手段で検出された車輪速度に基づいて前記左右の車輪毎の車輪対応車体速度を推定する車輪対応車体速度推定手段と、それらの車輪対応車体速度推定手段でそれぞれ推定された車輪対応車体速度の差に基づいて走行路面の摩擦係数が左右の車輪間で異なっている摩擦係数スプリット状態であることを検出するスプリット状態検出手段とを含み、前記制御モード設定手段は、前記摩擦係数判別手段が低摩擦係数であると判別するのに基づいて前記緩増加モードを選択している状態で前記スプリット状態検出手段が摩擦係数スプリット状態を検出するのに応じて前記左右の車輪のうち前記車輪対応車体速度が高い方の車輪側の制御モードを緩増加モードから急増加モードに切換えることを特徴とする。   In order to achieve the above object, the present invention separately detects an actuator capable of individually adjusting a braking force exerted by wheel brakes mounted on left and right wheels on the same axis, and wheel speeds of the left and right wheels. Wheel speed detecting means for detecting vehicle speed, vehicle speed detecting means for detecting vehicle speed, deceleration detecting means for detecting vehicle deceleration, and friction coefficient of the road surface based on the deceleration detected by the deceleration detecting means Friction coefficient determination means for determining the height of the vehicle, and a lock tendency for determining a lock tendency for each of the left and right wheels based on the wheel speed detected by the wheel speed detection means and the vehicle body speed detected by the vehicle body speed detection means A control mode for increasing or decreasing the braking force is determined for each wheel brake of the left and right wheels according to the determination result by the determination means and the determination result by the lock tendency determination means. Control mode setting for switching between a sudden increase mode when it is determined to be a high friction coefficient and a slow increase mode when it is determined to be a low friction coefficient according to the determination result of the friction coefficient determination means when the mode is an increase mode And an actuator control means for controlling the operation of the actuator in accordance with the control mode set by the control mode setting means. In the antilock brake control device for a vehicle, based on the wheel speed detected by the wheel speed detection means The wheel-corresponding vehicle speed estimating means for estimating the wheel-corresponding vehicle speed for each of the left and right wheels, and the friction coefficient of the traveling road surface based on the difference between the wheel-corresponding vehicle speed estimated by the wheel-corresponding vehicle speed estimating means Split state that detects friction coefficient split state that is different between right and left wheels And the control mode setting means is configured such that the split state detection means is in a state in which the moderate increase mode is selected based on the fact that the friction coefficient determination means determines that the friction coefficient is a low friction coefficient. According to the detection of the split state, the control mode on the wheel side of the left and right wheels having the higher vehicle speed corresponding to the wheel is switched from the slowly increasing mode to the rapidly increasing mode.

なお実施例の左前輪用車輪ブレーキBAおよび右前輪用車輪ブレーキBCが本発明の車輪ブレーキに対応し、実施例の左前輪WAおよび右前輪WCが本発明の車輪に対応する。   The left front wheel brake BA and the right front wheel brake BC of the embodiment correspond to the wheel brake of the present invention, and the left front wheel WA and the right front wheel WC of the embodiment correspond to the wheel of the present invention.

本発明の上記構成によれば、車両の減速度が低くなることに基づいて低摩擦係数であると判別しがちな摩擦係数スプリット状態の路面を走行する際のアンチロックブレーキ制御時に、低摩擦係数であると判別して緩増加モードを選択したとしても、同軸上の左右の車輪にそれぞれ装着されるとともに相互に独立してブレーキ力を制御可能な左右の車輪ブレーキのうち高速側の車輪に装着された車輪ブレーキのブレーキ力制御は、緩増加モードから急増加モードに切換えられるので、摩擦係数スプリット状態にある路面で高摩擦係数の路面側の車輪ブレーキによるブレーキ力増加不足が生じないようにすることができる。   According to the above configuration of the present invention, when the anti-lock brake control is performed when traveling on the road surface in the friction coefficient split state, which is likely to be determined as the low friction coefficient based on the decrease in the deceleration of the vehicle, the low friction coefficient Even if the slow increase mode is selected, it is attached to the left and right wheels on the same axis, and the left and right wheel brakes that can control the braking force independently of each other are attached to the wheels on the high speed side. Since the braking force control of the wheel brake is switched from the slow increasing mode to the sudden increasing mode, the increase in braking force due to the wheel braking on the road surface side with the high friction coefficient is prevented from occurring on the road surface in the friction coefficient split state. be able to.

以下、本発明の実施の形態を、添付の図面に示した本発明の一実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on one embodiment of the present invention shown in the accompanying drawings.

図1〜図6は本発明の一実施例を示すものであり、図1は前輪駆動車両の駆動系およびブレーキ系を示す図、図2はブレーキ液圧制御装置の構成を示す液圧系統図、図3は常開型電磁弁の縦断面図、図4は弁軸のストローク変化に対する吸引力変化を示す図、図5はコントローラの構成を示すブロック図、図6は車輪速対応車体速度および車輪速度の関係を示す図である。   1 to 6 show an embodiment of the present invention, FIG. 1 is a diagram showing a drive system and a brake system of a front-wheel drive vehicle, and FIG. 2 is a hydraulic system diagram showing a configuration of a brake hydraulic pressure control device. 3 is a longitudinal cross-sectional view of a normally open solenoid valve, FIG. 4 is a diagram showing a change in attraction force with respect to a change in the stroke of the valve shaft, FIG. 5 is a block diagram showing the configuration of the controller, and FIG. It is a figure which shows the relationship of wheel speed.

先ず図1において、駆動輪である左前輪WAおよび右前輪WCにはパワーユニットPから動力が伝達されるものであり、該パワーユニットPは、エンジンEと、該エンジンEの出力を変速して左前輪WAおよび右前輪WCに伝達するための変速機Tとで構成される。また左前輪WAおよび右前輪WCには駆動輪用車輪ブレーキである左前輪用車輪ブレーキBAおよび右前輪用車輪ブレーキBCが装着され、従動輪である右後輪WBおよび左後輪WDには、右後輪用車輪ブレーキBBおよび左後輪用車輪ブレーキBDが装着される。   First, in FIG. 1, power is transmitted from the power unit P to the left front wheel WA and the right front wheel WC which are driving wheels. The power unit P shifts the output of the engine E and the engine E to the left front wheel. It is comprised with the transmission T for transmitting to WA and the right front wheel WC. The left front wheel WA and the right front wheel WC are equipped with a left front wheel wheel brake BA and a right front wheel brake BC, which are drive wheel brakes. The driven wheel, the right rear wheel WB and the left rear wheel WD, A right rear wheel brake BB and a left rear wheel brake BD are mounted.

前記各車輪ブレーキBA〜BDは、液圧の作用によって作動するディスクブレーキであり、各車輪ブレーキBA〜BDにはアクチュエータ1からの液圧が作用する。このアクチュエータ1は、ブレーキペダル2のブレーキ操作によって液圧を出力するタンデム型のマスタシリンダMの出力液圧を調圧して前記各車輪ブレーキBA〜BDに作用せしめることを可能である。   Each of the wheel brakes BA to BD is a disc brake that operates by the action of hydraulic pressure, and the hydraulic pressure from the actuator 1 acts on each of the wheel brakes BA to BD. The actuator 1 can adjust the output hydraulic pressure of the tandem master cylinder M that outputs the hydraulic pressure by the brake operation of the brake pedal 2 to be applied to the wheel brakes BA to BD.

前記アクチュエータ1の作動はコントローラCによって制御されるものであり、このコントローラCには、駆動輪である左前輪WAおよび右前輪WCの駆動輪速度を検出する駆動輪用車輪速度検出手段6A,6Cの検出値、従動輪である右後輪WBおよび左後輪WDの従動輪速度を検出する従動輪用車輪速度検出手段6B,6Dの検出値、各車輪ブレーキBA〜BDのブレーキ液圧を検出するブレーキ圧検出手段7A〜7Dの検出値が入力される。   The operation of the actuator 1 is controlled by a controller C. The controller C includes wheel speed detecting means 6A, 6C for driving wheels for detecting the driving wheel speeds of the left front wheel WA and the right front wheel WC as driving wheels. Detection value, detection values of driven wheel speed detection means 6B and 6D for detecting the driven wheel speeds of the right rear wheel WB and the left rear wheel WD, which are driven wheels, and the brake fluid pressure of each wheel brake BA to BD. Detection values of the brake pressure detection means 7A to 7D to be input are input.

図2において、アクチュエータ1は、左前輪用車輪ブレーキBAおよび右後輪用車輪ブレーキBBに対応した第1液圧路10Aと、右前輪用車輪ブレーキBCおよび左後輪用車輪ブレーキBDに対応した第2液圧路10Bと、マスタシリンダMが備えるリザーバRとは別の第1および第2リザーバ11A,11Bと、共通な単一の電動モータ13で駆動されるとともに第1および第2リザーバ11A,11Bのブレーキ液をくみ上げて第1および第2液圧路10A,10Bに吐出可能な第1および第2ポンプ14A,14Bと、マスタシリンダMの第1出力ポート3Aおよび第1液圧路10A間に介設される常開型電磁弁15Aと、マスタシリンダMの第2出力ポート3Bおよび第2液圧路10B間に介設される常開型電磁弁15Bと、第1ポンプ14Aの吸入側およびマスタシリンダMの第1出力ポート3A間に介設される常閉型電磁弁16Aと、第2ポンプ14Bの吸入側およびマスタシリンダMの第2出力ポート3B間に介設される常閉型電磁弁16Bと、第1液圧路10Aおよび左前輪用車輪ブレーキBA間に設けられる左前輪ブレーキ調圧手段17Aと、第1液圧路10Aおよび右後輪用車輪ブレーキBB間に設けられる右後輪ブレーキ調圧手段17Bと、第2液圧路10Bおよび右前輪用車輪ブレーキBC間に設けられる右前輪ブレーキ調圧手段17Cと、第2液圧路10Bおよび左後輪用車輪ブレーキBD間に設けられる左後輪ブレーキ調圧手段17Dとを備える。   In FIG. 2, the actuator 1 corresponds to the first hydraulic passage 10A corresponding to the left front wheel brake BA and the right rear wheel brake BB, and to the right front wheel brake BC and the left rear wheel brake BD. The first hydraulic pressure passage 10B, the first and second reservoirs 11A and 11B different from the reservoir R provided in the master cylinder M, and the first and second reservoirs 11A are driven by a common single electric motor 13. , 11B can pump up the brake fluid and discharge it to the first and second hydraulic pressure passages 10A, 10B, and the first output port 3A and the first hydraulic pressure passage 10A of the master cylinder M. A normally open solenoid valve 15A interposed therebetween, a normally open solenoid valve 15B interposed between the second output port 3B of the master cylinder M and the second hydraulic pressure passage 10B, and a first Between the suction side of the pump 14A and the first output port 3A of the master cylinder M, and between the suction side of the second pump 14B and the second output port 3B of the master cylinder M. The normally closed solenoid valve 16B, the left front wheel brake pressure adjusting means 17A provided between the first hydraulic pressure path 10A and the left front wheel wheel brake BA, the first hydraulic pressure path 10A and the right rear wheel wheel brake BB. The right rear wheel brake pressure adjusting means 17B provided between the second hydraulic pressure path 10B and the right front wheel brake pressure adjusting means 17C provided between the right front wheel wheel brake BC, the second hydraulic pressure path 10B and the left rear wheel. Left rear wheel brake pressure adjusting means 17D provided between the vehicle wheel brakes BD.

左前輪ブレーキ調圧手段17Aは、第1液圧路10Aおよび左前輪用車輪ブレーキBA間に設けられる常開型電磁弁18Aと、第1リザーバ11Aおよび左前輪用車輪ブレーキBA間に設けられる常閉型電磁弁19Aと、左前輪用車輪ブレーキBA側から第1液圧路10A側へのブレーキ液の流通を許容して常開型電磁弁18Aに並列に接続されるチェック弁20Aとで構成される。   The left front wheel brake pressure adjusting means 17A is a normally open solenoid valve 18A provided between the first hydraulic pressure passage 10A and the left front wheel wheel brake BA, and a normal opening type solenoid valve 18A provided between the first reservoir 11A and the left front wheel wheel brake BA. A closed solenoid valve 19A and a check valve 20A connected in parallel to the normally open solenoid valve 18A to allow the brake fluid to flow from the left front wheel brake BA side to the first hydraulic pressure passage 10A side. Is done.

このような左前輪ブレーキ調圧手段17Aによれば、ブレーキペダル3を踏み込んだブレーキ操作時において、常閉型電磁弁19Aの閉弁時に常開型電磁弁18Aを開弁しておくことにより第1出力ポート3Aの液圧を左前輪用車輪ブレーキBAに作用せしめて左前輪用車輪ブレーキBAのブレーキ力を増加することができ、また常開型電磁弁18Aおよび常閉型電磁弁19Aをともに閉じると左前輪用車輪ブレーキBAのブレーキ液圧を保持して左前輪用車輪ブレーキBAのブレーキ力を保持することができ、さらに常開型電磁弁18Aを閉じた状態で常閉型電磁弁19Aを開弁することにより左前輪用車輪ブレーキBAのブレーキ液圧を減圧して左前輪用車輪ブレーキBAのブレーキ力を減少することができる。   According to such a left front wheel brake pressure adjusting means 17A, when the brake pedal 3 is depressed, the normally open solenoid valve 18A is opened when the normally closed solenoid valve 19A is closed. The brake force of the front left wheel brake BA can be increased by applying the hydraulic pressure of the output port 3A to the front left wheel brake BA, and both the normally open solenoid valve 18A and the normally closed solenoid valve 19A are provided. When closed, the brake fluid pressure of the left front wheel brake BA can be maintained to maintain the braking force of the left front wheel brake BA, and the normally open solenoid valve 18A is closed and the normally closed solenoid valve 19A is closed. By opening the valve, the brake fluid pressure of the left front wheel brake BA can be reduced to reduce the brake force of the left front wheel brake BA.

右後輪ブレーキ調圧手段17Bは、第1液圧路10Aおよび右後輪用車輪ブレーキBB間に設けられる常開型電磁弁18Bと、第1リザーバ11Aおよび右後輪用車輪ブレーキBB間に設けられる常閉型電磁弁19Bと、右後輪用車輪ブレーキBB側から第1液圧路10A側へのブレーキ液の流通を許容して常開型電磁弁18Bに並列に接続されるチェック弁20Bとで構成されるものであり、常開型電磁弁18Bおよび常閉型電磁弁19Bの開閉を制御することにより、上記左前輪ブレーキ調圧手段17Aと同様に、右後輪用車輪ブレーキBBのブレーキ力の増加、保持および減少を切換えて制御することができる。   The right rear wheel brake pressure adjusting means 17B includes a normally-open electromagnetic valve 18B provided between the first hydraulic pressure path 10A and the right rear wheel wheel brake BB, and between the first reservoir 11A and the right rear wheel wheel brake BB. A normally closed solenoid valve 19B provided and a check valve connected in parallel to the normally open solenoid valve 18B while allowing the brake fluid to flow from the right rear wheel brake BB side to the first hydraulic pressure passage 10A side. 20B, and by controlling the opening and closing of the normally open solenoid valve 18B and the normally closed solenoid valve 19B, the right rear wheel wheel brake BB is controlled in the same manner as the left front wheel brake pressure adjusting means 17A. The brake force can be controlled to increase, hold and decrease.

右前輪ブレーキ調圧手段17Cは、第2液圧路10Bおよび右前輪用車輪ブレーキBC間に設けられる常開型電磁弁18Cと、第2リザーバ11Bおよび右前輪用車輪ブレーキBC間に設けられる常閉型電磁弁19Cと、右前輪用車輪ブレーキBC側から第2液圧路10B側へのブレーキ液の流通を許容して常開型電磁弁18Cに並列に接続されるチェック弁20Cとで構成されるものであり、常開型電磁弁18Cおよび常閉型電磁弁19Cの開閉を制御することにより、上記左前輪ブレーキ調圧手段17Aおよび右後輪ブレーキ調圧手段17Bと同様に、右前輪用車輪ブレーキBCのブレーキ力の増加、保持および減少を切換えて制御することができる。   The right front wheel brake pressure adjusting means 17C is a normally-open solenoid valve 18C provided between the second hydraulic pressure passage 10B and the right front wheel wheel brake BC, and a normal opening solenoid valve 18C provided between the second reservoir 11B and the right front wheel wheel brake BC. A closed solenoid valve 19C and a check valve 20C connected in parallel to the normally open solenoid valve 18C while allowing the brake fluid to flow from the right front wheel brake BC side to the second hydraulic pressure passage 10B side. In the same manner as the left front wheel brake pressure adjusting means 17A and the right rear wheel brake pressure adjusting means 17B, the right front wheel is controlled by controlling the opening and closing of the normally open type electromagnetic valve 18C and the normally closed type electromagnetic valve 19C. It is possible to switch and control the increase, retention and decrease of the brake force of the industrial wheel brake BC.

左後輪ブレーキ調圧手段17Dは、第2液圧路10Bおよび左後輪用車輪ブレーキBD間に設けられる常開型電磁弁18Dと、第2リザーバ11Bおよび左後輪用車輪ブレーキBD間に設けられる常閉型電磁弁19Dと、左後輪用車輪ブレーキBD側から第2液圧路10B側へのブレーキ液の流通を許容して常開型電磁弁18Dに並列に接続されるチェック弁20Dとで構成されるものであり、常開型電磁弁18Dおよび常閉型電磁弁19Dの開閉を制御することにより、上記左前輪ブレーキ調圧手段17A、右後輪ブレーキ調圧手段17Bおよび右前輪ブレーキ調圧手段17Cと同様に、左後輪用車輪ブレーキBDのブレーキ力の増加、保持および減少を切換えて制御することができる。   The left rear wheel brake pressure adjusting means 17D is provided between a normally open solenoid valve 18D provided between the second hydraulic pressure path 10B and the left rear wheel wheel brake BD, and between the second reservoir 11B and the left rear wheel wheel brake BD. A normally closed solenoid valve 19D provided and a check valve connected in parallel to the normally open solenoid valve 18D while allowing the brake fluid to flow from the left rear wheel brake BD side to the second hydraulic pressure passage 10B side. 20D, and by controlling the opening and closing of the normally open solenoid valve 18D and the normally closed solenoid valve 19D, the left front wheel brake pressure regulating means 17A, the right rear wheel brake pressure regulating means 17B and the right As with the front wheel brake pressure adjusting means 17C, the braking force of the left rear wheel wheel brake BD can be controlled to be increased, held and decreased.

またマスタシリンダMの第1出力ポート3Aおよび第1液圧路10A間を常開型電磁弁15Aの閉弁によって遮断するとともに常閉型電磁弁16Aを開弁してマスタシリンダMの第1出力ポート3Aを第1ポンプ14Aの吸入側に連通せしめた状態で第1ポンプ14Aを作動せしめ、左前輪ブレーキ調圧手段17Aおよび右後輪ブレーキ調圧手段17Bにおける常開型電磁弁18A,18Bおよび常閉型電磁弁19A,19Bの開閉制御を行なうことにより、非ブレーキ操作時に左前輪用車輪ブレーキBAおよび右後輪用車輪ブレーキBBのブレーキ力の増加、保持および減少を制御することも可能である。   Further, the first output port 3A of the master cylinder M and the first hydraulic pressure passage 10A are shut off by closing the normally open solenoid valve 15A, and the normally closed solenoid valve 16A is opened to open the first output of the master cylinder M. The first pump 14A is operated in a state where the port 3A is in communication with the suction side of the first pump 14A, and the normally open solenoid valves 18A, 18B in the left front wheel brake pressure adjusting means 17A and the right rear wheel brake pressure adjusting means 17B By controlling the opening and closing of the normally closed solenoid valves 19A and 19B, it is possible to control the increase, retention and decrease of the braking force of the left front wheel brake BA and the right rear wheel brake BB during non-braking operation. is there.

さらにマスタシリンダMの第2出力ポート3Bおよび第2液圧路10B間を常開型電磁弁15Bの閉弁によって遮断するとともに常閉型電磁弁16Bを開弁してマスタシリンダMの第2出力ポート3Bを第2ポンプ14Bの吸入側に連通せしめた状態で第2ポンプ14Bを作動せしめ、右前輪ブレーキ調圧手段17Cおよび左後輪ブレーキ調圧手段17Dにおける常開型電磁弁18C,18Dおよび常閉型電磁弁19C,19Dの開閉制御を行なうことにより、非ブレーキ操作時に右前輪用車輪ブレーキBCおよび左後輪用車輪ブレーキBDのブレーキ力の増加、保持、減少を制御することも可能である。   Further, the second output port 3B of the master cylinder M and the second hydraulic pressure passage 10B are shut off by closing the normally open solenoid valve 15B, and the normally closed solenoid valve 16B is opened to open the second output of the master cylinder M. The second pump 14B is operated with the port 3B communicating with the suction side of the second pump 14B, and the normally open solenoid valves 18C, 18D in the right front wheel brake pressure adjusting means 17C and the left rear wheel brake pressure adjusting means 17D By controlling the opening and closing of the normally closed solenoid valves 19C and 19D, it is possible to control the increase, retention, and decrease of the braking force of the right front wheel brake BC and the left rear wheel brake BD during non-brake operation. is there.

ところで、各車輪ブレーキBA〜BDに液圧を作用せしめたブレーキ時に各車輪WA〜WDのうちロック状態に陥りそうになった車輪の車輪ブレーキのブレーキ力は、上述の増加、減少および保持モードを切り換えるようにしたアンチロックブレーキ制御が実行されるものであり、このアンチロックブレーキ制御時に、各車輪ブレーキ調圧手段17A〜17Dの常閉型電磁弁16A〜16Dがオン・オフ制御されるのに対し、各常開型電磁弁15A〜15Dは、オン・オフ制御されるとともにオン・オフ間の中間でデューティ制御されるものであり、そのような中間値の付与電流に応じて各車輪ブレーキBA〜BD側の液圧をリニアに変化させるべく構成される常開型電磁弁15A〜15Dのうち、常開型電磁弁15Aの構成について図3を参照しながら以下に説明する。   By the way, the braking force of the wheel brakes of the wheels WA to WD that are about to fall into the locked state during the braking operation in which the hydraulic pressure is applied to the wheel brakes BA to BD has the above increase, decrease, and holding modes. The anti-lock brake control is performed so that the normally closed electromagnetic valves 16A to 16D of the wheel brake pressure adjusting means 17A to 17D are turned on / off during the anti-lock brake control. On the other hand, the normally open solenoid valves 15A to 15D are on / off controlled and duty controlled in the middle between on and off, and each wheel brake BA according to the applied current of such an intermediate value. FIG. 3 shows the configuration of the normally open solenoid valve 15A among the normally open solenoid valves 15A to 15D configured to linearly change the fluid pressure on the BD side. It will now be described with ether.

図3において、常開型電磁弁15Aは、電磁力を発揮するソレノイド部24と、該ソレノイド部24で駆動される弁部25とで構成されるものであり、固定の支持ブロック26の一面26aに開口するようにして該支持ブロッック26に設けられる装着孔27に弁部25が収容され、ソレノイド部24は支持ブロック26の一面26aから突出する。   In FIG. 3, the normally open electromagnetic valve 15 </ b> A includes a solenoid portion 24 that exhibits electromagnetic force, and a valve portion 25 that is driven by the solenoid portion 24, and one surface 26 a of a fixed support block 26. The valve portion 25 is accommodated in a mounting hole 27 provided in the support block 26 so that the solenoid block 24 protrudes from one surface 26 a of the support block 26.

弁部25は、磁性金属により段付きの円筒状に形成される弁ハウジング28を備えるものであり、この弁ハウジング28は、支持ブロック26の装着孔27に嵌合される。装着孔27の開口端寄り内面には弁ハウジング28に係合して該弁ハウジング28の装着孔27からの離脱を阻止する止め輪29が嵌着される。また弁ハウジング28の外面の軸方向に間隔をあけた2個所には環状のシール部材30,31が装着されており、それらのシール部材30,31間で支持ブロック26および弁ハウジング28間には環状室32が形成される。   The valve portion 25 includes a valve housing 28 that is formed of a magnetic metal into a stepped cylindrical shape. The valve housing 28 is fitted into the mounting hole 27 of the support block 26. A retaining ring 29 that engages with the valve housing 28 and prevents the valve housing 28 from being detached from the mounting hole 27 is fitted to the inner surface near the opening end of the mounting hole 27. In addition, annular seal members 30 and 31 are mounted at two positions spaced apart in the axial direction on the outer surface of the valve housing 28, and between the seal members 30 and 31, there is a gap between the support block 26 and the valve housing 28. An annular chamber 32 is formed.

弁ハウジング28には円筒状の弁座部材33が圧入、固着される。また弁ハウジング28には、非磁性材料製の弁軸34が摺動可能に嵌合されており、弁軸34の一端および弁座部材33間に出力室35が形成され、出力室35に臨んで弁座部材33に形成される弁座33aに着座可能な球状の弁体36が弁軸34の一端に固着される。しかも弁軸34の一端および弁座部材33間には、弁軸34すなわち弁体36を弁座部材33から離反する方向に付勢する戻しばね37が設けられる。   A cylindrical valve seat member 33 is press-fitted and fixed to the valve housing 28. In addition, a valve shaft 34 made of a nonmagnetic material is slidably fitted in the valve housing 28, and an output chamber 35 is formed between one end of the valve shaft 34 and the valve seat member 33, and faces the output chamber 35. A spherical valve element 36 that can be seated on a valve seat 33 a formed on the valve seat member 33 is fixed to one end of the valve shaft 34. Moreover, a return spring 37 is provided between one end of the valve shaft 34 and the valve seat member 33 to urge the valve shaft 34, that is, the valve body 36 in a direction away from the valve seat member 33.

弁ハウジング28には、第1液圧路10Aに連なって支持ブロック36に設けられた液圧路38および弁座部材33間に介在するようにしてフィルタ39が装着される。また環状室32に臨む部分で弁ハウジング28の外周にはフィルタ40が装着されており、該フィルタ40を介して出力室35を環状室32に通じさせるための通路41が弁ハウジング28に設けられる。前記環状室32は左前輪用車輪ブレーキBAに通じるものであり、支持ブロック36には環状室32を左前輪用車輪ブレーキBAに通じさせる液圧路42が設けられる。さらに弁座部材33およびフィルタ39間で弁ハウジング28には、液圧路38の圧力が環状室32よりも低下したときに開弁して環状室32のブレーキ液を液圧路38側に還流させるチェック弁20Aが配設される。   A filter 39 is attached to the valve housing 28 so as to be interposed between the hydraulic pressure path 38 provided in the support block 36 and the valve seat member 33 so as to be connected to the first hydraulic pressure path 10A. A filter 40 is mounted on the outer periphery of the valve housing 28 at a portion facing the annular chamber 32, and a passage 41 for allowing the output chamber 35 to communicate with the annular chamber 32 through the filter 40 is provided in the valve housing 28. . The annular chamber 32 communicates with the left front wheel wheel brake BA, and the support block 36 is provided with a hydraulic path 42 for communicating the annular chamber 32 with the left front wheel wheel brake BA. Further, the valve housing 28 is opened between the valve seat member 33 and the filter 39 when the pressure in the hydraulic pressure path 38 is lower than that in the annular chamber 32, and the brake fluid in the annular chamber 32 is returned to the hydraulic pressure path 38 side. A check valve 20A is provided.

ソレノイド部34は、固定コア45と、前記弁部35における弁軸34の他端に同軸に連接されて固定コア45に対向するアーマチュア46と、固定コア45に対するアーマチュア46の近接・離反移動を案内するガイド筒47と、ガイド筒47を囲繞するボビン48と、該ボビン48に巻装されるコイル49と、コイル49を囲繞する磁路枠50と、磁路枠50およびボビン48間に介装されるコイル状のばね51とを備える。   The solenoid part 34 guides the approaching / separating movement of the armature 46 with respect to the fixed core 45, the armature 46 that is coaxially connected to the other end of the valve shaft 34 in the valve part 35 and faces the fixed core 45. Guide cylinder 47, a bobbin 48 surrounding the guide cylinder 47, a coil 49 wound around the bobbin 48, a magnetic path frame 50 surrounding the coil 49, and the magnetic path frame 50 and the bobbin 48. The coiled spring 51 is provided.

固定コア45は円筒状に形成されており、前記弁ハウジング28の一端中央部に同軸にかつ一体に連設される。ガイド筒47は、非磁性材料たとえばステンレス鋼により一端を半球状の閉塞端とした薄肉の有底円筒状に形成されるものであり、該ガイド筒47の他端に前記固定コア45の先端部が嵌合され、たとえば溶接によりガイド筒47の他端が固定コア45に固着される。しかも弁ハウジング28の装着孔37への装着状態でガイド筒47は支持ブロック36の一面36aから突出されている。   The fixed core 45 is formed in a cylindrical shape, and is coaxially and integrally connected to the center of one end of the valve housing 28. The guide tube 47 is formed in a thin bottomed cylindrical shape with a hemispherical closed end at one end made of a non-magnetic material such as stainless steel, and the tip of the fixed core 45 is connected to the other end of the guide tube 47. And the other end of the guide tube 47 is fixed to the fixed core 45 by welding, for example. In addition, the guide cylinder 47 protrudes from the one surface 36 a of the support block 36 in a mounted state in the mounting hole 37 of the valve housing 28.

ボビン48は、ガイド筒47を挿通させる中心孔48aを有して合成樹脂により形成されるものであり、該ボビン48にコイル49が巻装される。   The bobbin 48 has a central hole 48 a through which the guide tube 47 is inserted and is formed of synthetic resin. A coil 49 is wound around the bobbin 48.

磁路枠50は、ボビン48およびコイル49を囲繞する磁路筒52を備え、この磁路筒52の一端には、ガイド筒47の閉塞端部を中央部から突出させるようにしてボビン48に当接するリング板状の磁路板53がかしめ係合される。   The magnetic path frame 50 includes a magnetic path cylinder 52 that surrounds the bobbin 48 and the coil 49. At one end of the magnetic path cylinder 52, the closed end portion of the guide cylinder 47 protrudes from the center portion to the bobbin 48. The ring plate-like magnetic path plate 53 that abuts is caulked and engaged.

一方、磁路筒52の他端には、固定コア45の周囲で弁ハウジング28の一端に当接するリング板状の当接板部52aが一体に連設されており、この当接板部52aの内周に、固定コア45の基部が嵌合される。また一端を当接板部52aに当接せしめたコイル状のばね51の他端は、ボビン48に当接される。   On the other hand, the other end of the magnetic path cylinder 52 is integrally provided with a ring plate-like contact plate portion 52a that contacts the one end of the valve housing 28 around the fixed core 45, and this contact plate portion 52a. The base portion of the fixed core 45 is fitted to the inner periphery of the core. In addition, the other end of the coiled spring 51 whose one end is in contact with the contact plate portion 52 a is in contact with the bobbin 48.

ガイド筒47内には、固定コア45に対して近接・離反することが可能なアーマチュア46が収納されており、固定コア45を移動自在に貫通する前記弁軸34の一端がアーマチュア46に同軸に当接される。ところで、弁軸34は、戻しばね37のばね力により弁体36を弁座部材33から離反する方向に付勢されており、弁軸34の他端はアーマチュア46に常時当接されており、アーマチュア46の軸方向移動に応じて弁軸34すなわち弁体36も軸方向に移動することになる。   An armature 46 that can move toward and away from the fixed core 45 is housed in the guide tube 47, and one end of the valve shaft 34 that passes through the fixed core 45 movably is coaxial with the armature 46. Abutted. By the way, the valve shaft 34 is urged in a direction away from the valve seat member 33 by the spring force of the return spring 37, and the other end of the valve shaft 34 is always in contact with the armature 46. In response to the axial movement of the armature 46, the valve shaft 34, that is, the valve body 36 also moves in the axial direction.

すなわちアーマチュア46に固定コア45側への磁気吸引力が作用していない状態で、該アーマチュア46は戻しばね37のばね力によりガイド筒47の一端閉塞部で受けられるまで後退した位置に在り、この際、弁体36は弁座部材33から離反しており、常開型電磁弁15Aは開弁状態にある。また弁体36が弁座部材33に着座するまで固定コア45側にアーマチュア46を磁気吸引させると、常開型電磁弁15Aが閉弁状態となる。   That is, in a state where the magnetic attractive force toward the fixed core 45 is not acting on the armature 46, the armature 46 is in a retracted position by the spring force of the return spring 37 until it is received at one end closed portion of the guide cylinder 47. At this time, the valve body 36 is separated from the valve seat member 33, and the normally open solenoid valve 15A is in the valve open state. When the armature 46 is magnetically attracted toward the fixed core 45 until the valve element 36 is seated on the valve seat member 33, the normally open solenoid valve 15A is closed.

ところで、弁軸34の一端には、出力室35の液圧による液圧力と、戻しばね37のばね力との合力が作用するのに対し、弁軸34の他端には、アーマチュア46を固定コア45側に吸引する磁気吸引力が作用するものであり、弁軸34は、液圧力およびばね力の合力と、磁気吸引力とが均衡するようにストローク作動することになる。そこでコイル49への通電量を、たとえばデューティ制御によってオン・オフ間の中間値となるように制御することにより、アーマチュア46を固定コア45側に吸引する磁気吸引力を変化させることができる。   By the way, the resultant force of the hydraulic pressure of the output chamber 35 and the spring force of the return spring 37 acts on one end of the valve shaft 34, while the armature 46 is fixed to the other end of the valve shaft 34. The magnetic attraction force attracted to the core 45 side acts, and the valve shaft 34 is stroke-operated so that the resultant force of the fluid pressure and the spring force is balanced with the magnetic attraction force. Therefore, by controlling the energization amount to the coil 49 to be an intermediate value between on and off by, for example, duty control, the magnetic attraction force that attracts the armature 46 to the fixed core 45 side can be changed.

一方、固定コア45およびアーマチュア46の対向面45a,46aは、出力室35から離反するにつれて大径となるテーパ面に形成される。   On the other hand, the opposed surfaces 45 a and 46 a of the fixed core 45 and the armature 46 are formed as tapered surfaces that increase in diameter as they move away from the output chamber 35.

このように固定コア45およびアーマチュア46の対向面45a,46aがテーパ面に形成されると、アーマチュア46の軸方向ストローク量に比べて固定コア45およびアーマチュア46の対向距離(テーパ面に直角な方向の距離)の変化を小さくすることができ、対向面45a,46a間に発生する吸引力の変化が軸方向ストロークの変化に対して小さくなる。しかも実際に軸方向に作用する吸引力は対向面45a,46a間に発生する吸引力のsin成分であり、テーパ面の角度が鋭角になるほど対向面45a,46a間の吸引力の変化に対して軸方向の吸引力の変化が小さくなる。   When the opposing surfaces 45a and 46a of the fixed core 45 and the armature 46 are formed in a tapered surface in this way, the opposing distance between the fixed core 45 and the armature 46 (in a direction perpendicular to the tapered surface) compared to the axial stroke amount of the armature 46. The change in the suction force generated between the opposed surfaces 45a and 46a is smaller than the change in the axial stroke. Moreover, the suction force that actually acts in the axial direction is a sine component of the suction force generated between the opposing surfaces 45a and 46a, and with respect to the change in the suction force between the opposing surfaces 45a and 46a as the taper surface angle becomes acute. The change in the suction force in the axial direction is reduced.

これにより、図4の実線で示すように、固定コア45およびアーマチュア46間の吸引力が、弁部35における全閉および全開間の実用範囲ではほぼフラットになるようにすることができる。これに対し、固定コア45およびアーマチュア46の対向面を軸方向に直角な平坦面としたときには、弁軸34の軸方向ストロークに応じて固定コア45およびアーマチュア46の対向距離が比例的に変化するので、図4の鎖線で示すように、固定コア45およびアーマチュア46間の吸引力は実用範囲でも大きく変化してしまう。   As a result, as shown by the solid line in FIG. 4, the suction force between the fixed core 45 and the armature 46 can be made substantially flat in the practical range between the fully closed and fully opened states of the valve portion 35. On the other hand, when the opposing surfaces of the fixed core 45 and the armature 46 are flat surfaces perpendicular to the axial direction, the opposing distance between the fixed core 45 and the armature 46 changes proportionally according to the axial stroke of the valve shaft 34. Therefore, as shown by the chain line in FIG. 4, the suction force between the fixed core 45 and the armature 46 changes greatly even in the practical range.

このようにして常開型電磁弁15Aは、オン・オフ制御されるとともに左前輪用車輪ブレーキBA側の液圧をリニアに変化させるべくオン・オフ間の中間値の電流を付与すべくデューティ制御されるものであり、他の常開型電磁弁15B〜15Dも上記常開型電磁弁15Aと同様に構成される。一方、常閉型電磁弁16A〜16Dはオン・オフ制御されるだけである。而してアンチロックブレーキ制御の増加モードにおいて、常開型電磁弁15A〜15Dをオン状態とすることによって、各車輪ブレーキBA〜BDのブレーキ力を急増加することが可能であり、また常開型電磁弁15A〜15Dをデューティ制御することによって各車輪ブレーキBA〜BDのブレーキ力を緩増加することが可能である。   In this way, the normally open solenoid valve 15A is on / off controlled and duty controlled to give an intermediate current between on and off so as to linearly change the hydraulic pressure on the left front wheel brake BA side. The other normally open solenoid valves 15B to 15D are configured similarly to the normally open solenoid valve 15A. On the other hand, the normally closed solenoid valves 16A to 16D are only on / off controlled. Thus, in the increase mode of the anti-lock brake control, the brake force of each of the wheel brakes BA to BD can be increased rapidly by turning on the normally open solenoid valves 15A to 15D, and the normally open type is also normally open. It is possible to moderately increase the brake force of each wheel brake BA to BD by duty-controlling the type solenoid valves 15A to 15D.

図5において、コントローラCは、車輪速度検出手段6A,6C,6B,6Dで個別に検出される左前輪WA、右前輪WC、右後輪WBおよび左後輪WDの車輪速度に基づいて各車輪WA〜WD毎の車輪対応車体速度を推定する車輪対応車体速度推定手段55A,55C,55B,55Dと、車体速度を検出する車体速度検出手段56と、車両の減速度を検出する減速度検出手段57と、該減速度検出手段57で検出された減速度に基づいて走行路面の摩擦係数の高低を判別する摩擦係数判別手段58と、車輪速度検出手段6Aで検出された車輪速度ならびに前記車体速度検出手段56で検出された車体速度に基づいて左前輪WAのロック傾向を判定する左前輪用ロック傾向判定手段59Aと、車輪速度検出手段6Cで検出された車輪速度ならびに前記車体速度検出手段56で検出された車体速度に基づいて右前輪WCのロック傾向を判定する右前輪用ロック傾向判定手段59Cと、車輪速度検出手段6B,6Dで検出された右後輪WBおよび左後輪WDの車輪速度のうち低い方を選択するローセレクト手段60と、該ローセレクト手段60で選択された車輪速度ならびに前記車体速度検出手段56で検出された車体速度に基づいて右前輪WCおよび左後輪WDのロック傾向を判定する後輪用ロック傾向判定手段61と、前記左前輪用ロック傾向判定手段59Aによる判定結果に応じて左前輪用車輪ブレーキBAのブレーキ力を増減するための制御モードを定める左前輪用制御モード設定手段62Aと、前記右前輪用ロック傾向判定手段59Cによる判定結果に応じて右前輪用車輪ブレーキBCのブレーキ力を増減するための右前輪用制御モード設定手段62Cと、前記後輪用ロック傾向判定手段61による判定結果に応じて右後輪用車輪ブレーキBBおよび左後輪用車輪ブレーキBDのブレーキ力を増減するための後輪用制御モード設定手段63と、前記左前輪用制御モード設定手段62Aで設定された制御モードに従って前記アクチュエータ1における左前輪ブレーキ調圧手段17Aの作動を制御する左前輪用アクチュエータ制御手段64Aと、前記右前輪用制御モード設定手段62Cで設定された制御モードに従って前記アクチュエータ1における右前輪ブレーキ調圧手段17Cの作動を制御する右前輪用アクチュエータ制御手段64Cと、前記後輪用制御モード設定手段63で設定された制御モードに従って前記アクチュエータ1における右後輪ブレーキ調圧手段17Bおよび左後輪ブレーキ調圧手段17Dの作動を制御する後輪用アクチュエータ制御手段65と、同軸上である左前輪WAおよび右前輪WCに個別に対応した車輪対応車体速度推定手段55A,55Cでそれぞれ推定された車輪対応車体速度の差に基づいて走行路面の摩擦係数が左右の車輪間で異なっている摩擦係数スプリット状態であることを検出してその結果を左前輪用制御モード設定手段62Aおよび右前輪用制御モード設定手段62Cに入力するスプリット状態検出手段66とを備える。   In FIG. 5, the controller C uses the wheel speeds of the left front wheel WA, the right front wheel WC, the right rear wheel WB, and the left rear wheel WD, which are individually detected by the wheel speed detection means 6A, 6C, 6B, 6D. Wheel-corresponding vehicle speed estimating means 55A, 55C, 55B, 55D for estimating the wheel-corresponding vehicle speed for each of WA to WD, vehicle speed detecting means 56 for detecting the vehicle speed, and deceleration detecting means for detecting the deceleration of the vehicle 57, a friction coefficient determining means 58 for determining the level of the friction coefficient of the traveling road surface based on the deceleration detected by the deceleration detecting means 57, the wheel speed detected by the wheel speed detecting means 6A and the vehicle body speed. The left front wheel locking tendency determination means 59A for determining the locking tendency of the left front wheel WA based on the vehicle body speed detected by the detection means 56, and the wheel speed detected by the wheel speed detection means 6C. In addition, the right front wheel lock tendency determination means 59C for determining the lock tendency of the right front wheel WC based on the vehicle body speed detected by the vehicle body speed detection means 56, and the right rear wheel WB detected by the wheel speed detection means 6B and 6D. And a low select means 60 for selecting the lower one of the wheel speeds of the left rear wheel WD, the right front wheel based on the wheel speed selected by the low select means 60 and the vehicle body speed detected by the vehicle body speed detection means 56. In order to increase or decrease the braking force of the left front wheel wheel brake BA according to the determination result by the rear wheel lock tendency determination means 61 for determining the lock tendency of the WC and the left rear wheel WD and the left front wheel lock tendency determination means 59A. Left front wheel control mode setting means 62A for determining the control mode and right front wheel wheel according to the determination result by the right front wheel lock tendency determination means 59C. The right front wheel wheel brake BB and the left rear wheel brake BD according to the determination result by the right front wheel control mode setting means 62C for increasing / decreasing the brake force of the rake BC and the rear wheel lock tendency determination means 61. The operation of the left front wheel brake pressure adjusting means 17A in the actuator 1 is controlled in accordance with the control mode set by the rear wheel control mode setting means 63 for increasing or decreasing the braking force of the vehicle and the control mode setting means 62A for the left front wheel. Left front wheel actuator control means 64A; right front wheel actuator control means 64C for controlling the operation of the right front wheel brake pressure adjusting means 17C in the actuator 1 according to the control mode set by the right front wheel control mode setting means 62C; According to the control mode set by the rear wheel control mode setting means 63, the alarm is set. The rear wheel actuator control means 65 for controlling the operation of the right rear wheel brake pressure adjusting means 17B and the left rear wheel brake pressure adjusting means 17D, and the left front wheel WA and the right front wheel WC, which are coaxial, are individually supported in the actuator 1. Based on the difference between the wheel-corresponding vehicle body speeds estimated by the wheel-corresponding vehicle body speed estimating means 55A and 55C, it is detected that the friction coefficient of the road surface is different between the left and right wheels, and the result is as a result. Is input to the left front wheel control mode setting means 62A and the right front wheel control mode setting means 62C.

車輪対応車体速度推定手段55Aは、車輪速度検出手段6Aで左前輪WAの車輪速度に基づいて、減速過程では設定減速度以上の減速度とならないように車輪減速度を用いて車体速度を推定し、増速過程では設定増速度以上の増速度とならないようにして車輪増速度を用いて車体速度を推定するものであり、車輪速度に対して図6で示すように変化する車輪対応車体速度が、車輪対応車体速度推定手段55Aで推定される。   Based on the wheel speed of the left front wheel WA by the wheel speed detection means 6A, the wheel-corresponding vehicle body speed estimation means 55A estimates the vehicle body speed using the wheel deceleration so that the deceleration does not exceed the set deceleration during the deceleration process. In the acceleration process, the vehicle speed is estimated using the wheel acceleration so as not to increase more than the set acceleration, and the vehicle speed corresponding to the wheel changes as shown in FIG. 6 with respect to the wheel speed. This is estimated by the wheel corresponding vehicle body speed estimating means 55A.

車輪対応車体速度推定手段55C,55B,55Dも、上述の車輪対応車体速度推定手段55Aと同様にして、車輪速度検出手段6C,6B,6Dで検出される右前輪WC,右後輪WBおよび左後輪WDの車輪速度に基づいて、右前輪WC,右後輪WBおよび左後輪WD毎の車輪対応車体速度を推定する。   The wheel corresponding vehicle body speed estimating means 55C, 55B, 55D is also the same as the wheel corresponding vehicle body speed estimating means 55A, and the right front wheel WC, the right rear wheel WB and the left detected by the wheel speed detecting means 6C, 6B, 6D. Based on the wheel speed of the rear wheel WD, the wheel corresponding vehicle body speed for each of the right front wheel WC, the right rear wheel WB, and the left rear wheel WD is estimated.

車体速度検出手段56は、前記車輪対応車体速度推定手段55A〜55Dで推定された車輪対応車体速度の最高値を車体速度として選択するものであり、減速度検出手段57は、車体速度検出手段56で得られた車体速度を微分することによって車両の減速度を得るように構成される。さらに摩擦係数判別手段58は、減速度検出手段57で得られた車両の減速度に基づいて走行路面の摩擦係数の高低を判別する。   The vehicle body speed detecting means 56 selects the highest value of the wheel corresponding vehicle body speeds estimated by the wheel corresponding vehicle body speed estimating means 55A to 55D as the vehicle body speed, and the deceleration detecting means 57 is the vehicle body speed detecting means 56. A vehicle deceleration is obtained by differentiating the vehicle body speed obtained in (1). Further, the friction coefficient discriminating means 58 discriminates the level of the friction coefficient of the traveling road surface based on the vehicle deceleration obtained by the deceleration detecting means 57.

なお車両の旋回状態を考慮して、車体速度検出手段56で得られる車体速度を、従動輪である右後輪WBおよび左後輪WDの車輪速度に基づいて旋回補正するようにしてもよい。   In consideration of the turning state of the vehicle, the vehicle body speed obtained by the vehicle body speed detecting means 56 may be corrected for turning based on the wheel speeds of the right rear wheel WB and the left rear wheel WD as driven wheels.

左前輪用ロック傾向判定手段59Aおよび右前輪用ロック傾向判定手段59Cは、同軸上である左前輪WAに装着された左前輪用車輪ブレーキBAならびに右前輪WCに装着された右前輪用車輪ブレーキBCのブレーキ力を相互に独立して個別に制御するために、車輪速度検出手段6Aで検出された車輪速度ならびに車体速度検出手段56で検出された車体速度に基づいて左前輪WAのロック傾向を判定するととともに、車輪速度検出手段6Cで検出された車輪速度ならびに前記車体速度検出手段56で検出された車体速度に基づいて右前輪WCのロック傾向を判定する。   The left front wheel lock tendency determination means 59A and the right front wheel lock tendency determination means 59C are coaxially mounted on the left front wheel WA on the left front wheel WA, and on the right front wheel wheel brake BC on the right front wheel WC. In order to control the braking force of the vehicle independently and independently, the lock tendency of the left front wheel WA is determined based on the wheel speed detected by the wheel speed detecting means 6A and the vehicle body speed detected by the vehicle body speed detecting means 56. At the same time, the locking tendency of the right front wheel WC is determined based on the wheel speed detected by the wheel speed detecting means 6C and the vehicle body speed detected by the vehicle body speed detecting means 56.

また同軸上である右後輪WBに装着された右後輪用車輪ブレーキBBならびに左後輪WDに装着された左後輪用車輪ブレーキBDのブレーキ力は一括制御されるものであり、車輪速度検出手段6Bで検出された右後輪WBの車輪速度ならびに車輪速度検出手段6Dで検出された左後輪WDの車輪速度のうち低い方がローセレクト手段60で選択され、そのローセレクト手段60で選択された車輪速度と、車体速度検出手段56で得られた車体速度とに基づいて後輪用ロック傾向判定手段61が後輪のロック傾向を判定する。   The braking force of the right rear wheel wheel brake BB mounted on the right rear wheel WB and the left rear wheel wheel brake BD mounted on the left rear wheel WD, which are coaxial, is controlled collectively, and the wheel speed. Of the wheel speed of the right rear wheel WB detected by the detection means 6B and the wheel speed of the left rear wheel WD detected by the wheel speed detection means 6D, the lower one is selected by the row selection means 60. Based on the selected wheel speed and the vehicle body speed obtained by the vehicle body speed detection means 56, the rear wheel lock tendency determination means 61 determines the rear wheel lock tendency.

左前輪用制御モード設定手段62Aおよび右前輪用制御モード設定手段62Cは、前記左前輪用ロック傾向判定手段59Aおよび前記右前輪用ロック傾向判定手段59Cによる判定結果に応じて、左前輪用車輪ブレーキBAおよび右前輪用車輪ブレーキBCのブレーキ力の増加モード、保持モードおよび減少モードを切換えるようにして制御モードを設定するのであるが、特に、増加モードにあっては、摩擦係数判定手段58の判定結果に応じて高摩擦係数であると判定したときの急増加モードならびに低摩擦係数であると判定したときの緩増加モードを切換える。   The left front wheel control mode setting means 62A and the right front wheel control mode setting means 62C are arranged in accordance with the determination results of the left front wheel lock tendency determination means 59A and the right front wheel lock tendency determination means 59C. The control mode is set by switching the braking force increasing mode, holding mode, and decreasing mode of the BA and right front wheel brake BC. In particular, in the increasing mode, the determination by the friction coefficient determining means 58 is performed. Depending on the result, a rapid increase mode when it is determined to have a high friction coefficient and a slow increase mode when it is determined to be a low friction coefficient are switched.

またスプリット状態検出手段66は、車輪対応車体速度推定手段55A,55Cでそれぞれ推定された車輪対応車体速度の差に基づいて走行路面の摩擦係数が左右の車輪間で異なっている摩擦係数スプリット状態であることを検出するものであり、このスプリット状態検出手段66によって摩擦係数スプリット状態であることが検出されたときに、前記両左前輪用制御モード設定手段62Aおよび右前輪用制御モード設定手段62Cのうち車輪対応車体速度が高い方の車輪側の制御モード設定手段には、スプリット状態検出手段66から切換信号が入力される。   Further, the split state detection means 66 is in a friction coefficient split state in which the friction coefficient of the road surface is different between the left and right wheels based on the difference between the wheel corresponding vehicle body speeds estimated by the wheel corresponding vehicle body speed estimating means 55A and 55C. When the split state detection means 66 detects that the friction coefficient is in the split state, the left front wheel control mode setting means 62A and the right front wheel control mode setting means 62C A switching signal is input from the split state detecting means 66 to the control mode setting means on the wheel side having the higher vehicle speed corresponding to the wheel.

低摩擦係数であることに基づいて緩増加モードを選択している状態で前記左前輪用制御モード設定手段62Aおよび右前輪用制御モード設定手段62Cのうち前記スプリット状態検出手段66から切換信号が入力された制御モード設定手段は、制御モードを緩増加モードから急増加モードに切換える。   A switching signal is input from the split state detection means 66 of the left front wheel control mode setting means 62A and the right front wheel control mode setting means 62C in a state in which the slow increase mode is selected based on the low friction coefficient. The controlled mode setting means switches the control mode from the slowly increasing mode to the rapidly increasing mode.

さらに後輪用制御モード設定手段63は、後輪用ロック傾向判定手段61による判定結果に応じて、右後輪用車輪ブレーキBBおよび左後輪用車輪ブレーキBDのブレーキ力の増加モード、保持モードおよび減少モードを切換えるようにして制御モードを設定し、特に、増加モードにあっては、摩擦係数判定手段58の判定結果に応じて高摩擦係数であると判定したときの急増加モードならびに低摩擦係数であると判定したときの緩増加モードを切換える。   Further, the rear wheel control mode setting means 63 is configured to increase the braking force of the right rear wheel wheel brake BB and the left rear wheel wheel brake BD according to the determination result by the rear wheel lock tendency determination means 61, and the holding mode. The control mode is set so as to switch between the decrease mode and the increase mode, and particularly in the increase mode, the rapid increase mode and the low friction when the friction coefficient determination means 58 determines that the friction coefficient is high according to the determination result. Switches the mode of slow increase when it is determined to be a coefficient.

次にこの実施例の作用について説明すると、左前輪用車輪ブレーキBAおよび右前輪用車輪ブレーキBCによるブレーキ力のアンチロックブレーキ制御時の制御モードを定める左前輪用制御モード設定手段59Aおよび右前輪用制御モード設定手段59Cは、制御モードが増加モードであるときには摩擦係数判定手段58の判定結果に応じて高摩擦係数であると判定したときの急増加モードならびに低摩擦係数であると判定したときの緩増加モードを切換えるのであるが、緩増加モードを選択している状態でスプリット状態検出手段66が、左前輪WAおよび右前輪WC毎の車輪対応車体速度を推定する車輪対応車体速度推定手段55A,55Cでそれぞれ推定された車輪対応車体速度の差に基づいて走行路面の摩擦係数が左右の車輪間で異なっている摩擦係数スプリット状態であることを検出したときに、左前輪用制御モード設定手段59Aおよび右前輪用制御モード設定手段59Cのうち高速側の前輪に対応して制御モード設定手段は、制御モードを緩増加モードから急増加モードに切換える。   Next, the operation of this embodiment will be described. The left front wheel control mode setting means 59A and the right front wheel for determining the control mode at the time of antilock brake control of the braking force by the left front wheel brake BA and the right front wheel brake BC. When the control mode is the increase mode, the control mode setting means 59C determines the rapid increase mode when it is determined to be the high friction coefficient according to the determination result of the friction coefficient determination means 58 and the low friction coefficient. Although the mode of moderate increase is switched, the split state detection means 66 estimates the wheel corresponding vehicle speed for each of the left front wheel WA and the right front wheel WC while the slow increase mode is selected. The friction coefficient of the road surface is different between the left and right wheels based on the difference in vehicle speed corresponding to the wheels estimated at 55C. The control mode setting means corresponding to the front wheel on the high speed side among the left front wheel control mode setting means 59A and the right front wheel control mode setting means 59C when the friction coefficient split state is detected. Switch the mode from slow increase mode to rapid increase mode.

すなわち車両の減速度が低くなることに基づいて低摩擦係数であると判別しがちな摩擦係数スプリット状態の路面を走行する際のアンチロックブレーキ制御時に、低摩擦係数であると判別して緩増加モードを選択したとしても、同軸上の左右の前輪WA,WCにそれぞれ装着されるとともに相互に独立してブレーキ力を制御可能な左前輪用車輪ブレーキBAおよび右前輪用車輪ブレーキBCのうち高速側の車輪に装着された車輪ブレーキのブレーキ力制御は、緩増加モードから急増加モードに切換えられることになり、摩擦係数スプリット状態にある路面で高摩擦係数の路面側の車輪ブレーキによるブレーキ力増加不足が生じないようにすることができる。   That is, when anti-lock brake control is performed when driving on a road surface with a friction coefficient split that tends to be determined as a low coefficient of friction based on a decrease in vehicle deceleration, it is determined that the coefficient of friction is low and increases slowly. Even if the mode is selected, the high speed side of the left front wheel brake BA and the right front wheel brake BC that are mounted on the left and right front wheels WA and WC on the same axis and can control the brake force independently of each other. The brake force control of the wheel brakes mounted on the wheels of the vehicle will be switched from the slow increase mode to the sudden increase mode, and the braking force increase due to the wheel brake on the road surface side with the high friction coefficient on the road surface in the friction coefficient split state is insufficient. Can be prevented from occurring.

以上、本発明の実施例を説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行うことが可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the present invention described in the claims. It is.

たとえば上記実施例では、アンチロックブレーキ制御時に左前輪用車輪ブレーキBAおよび右前輪用車輪ブレーキBCのブレーキ力を個別に制御し、右後輪用車輪ブレーキBBおよび左後輪用車輪ブレーキBDのブレーキ力を一括制御するようにしたが、左前輪用車輪ブレーキBA、右前輪用車輪ブレーキBC、右後輪用車輪ブレーキBBおよび左後輪用車輪ブレーキBDのブレーキ力をそれぞれ個別制御するようにした車両のアンチロックブレーキ制御装置にも本発明を適用することができる。   For example, in the above embodiment, the brake force of the left front wheel brake BA and the right front wheel brake BC is individually controlled during anti-lock brake control, and the right rear wheel brake BB and the left rear wheel brake BD are braked. Although the force is controlled collectively, the braking force of the left front wheel brake BA, the right front wheel brake BC, the right rear wheel brake BB, and the left rear wheel brake BD is individually controlled. The present invention can also be applied to an antilock brake control device for a vehicle.

前輪駆動車両の駆動系およびブレーキ系を示す図である。It is a figure which shows the drive system and brake system of a front-wheel drive vehicle. ブレーキ液圧制御装置の構成を示す液圧系統図である。It is a hydraulic system diagram which shows the composition of a brake fluid pressure control device. 常開型電磁弁の縦断面図である。It is a longitudinal cross-sectional view of a normally open type solenoid valve. 弁軸のストローク変化に対する吸引力変化を示す図である。It is a figure which shows the suction force change with respect to the stroke change of a valve shaft. コントローラの構成を示すブロック図である。It is a block diagram which shows the structure of a controller. 車輪速対応車体速度および車輪速度の関係を示す図である。It is a figure which shows the relationship between the vehicle speed corresponding to a wheel speed, and a wheel speed.

符号の説明Explanation of symbols

1・・・アクチュエータ
6A,6C・・・車輪速度検出手段
56・・・車体速度検出手段
55A,55C・・・車輪対応車体速度推定手段
57・・・減速度検出手段
58・・・摩擦係数判別手段
59A,59C・・・ロック傾向判定手段
62A,62C・・・制御モード設定手段
64A,64C・・・アクチュエータ制御手段
66・・・スプリット状態検出手段
BA,BC・・・車輪ブレーキ
WA・・・車輪である左前輪
WC・・・車輪である右前輪
DESCRIPTION OF SYMBOLS 1 ... Actuator 6A, 6C ... Wheel speed detection means 56 ... Vehicle body speed detection means 55A, 55C ... Wheel corresponding vehicle body speed estimation means 57 ... Deceleration detection means 58 ... Friction coefficient discrimination Means 59A, 59C ... Lock tendency judgment means 62A, 62C ... Control mode setting means 64A, 64C ... Actuator control means 66 ... Split state detection means BA, BC ... Wheel brake WA ... Left front wheel WC as a wheel ... Right front wheel as a wheel

Claims (1)

同軸上の左右の車輪(WA,WC)にそれぞれ装着された車輪ブレーキ(BA,BC)が発揮するブレーキ力を個別に調整可能なアクチュエータ(1)と、前記左右の車輪(WA,WC)の車輪速度を個別に検出する車輪速度検出手段(6A,6C)と、車体速度を検出する車体速度検出手段(56)と、車両の減速度を検出する減速度検出手段(57)と、該減速度検出手段(57)で検出された減速度に基づいて走行路面の摩擦係数の高低を判別する摩擦係数判別手段(58)と、前記車輪速度検出手段(6A,6C)で検出された車輪速度ならびに前記車体速度検出手段(56)で検出された車体速度に基づいて前記左右の車輪(WA,WC)毎にロック傾向を判定するロック傾向判定手段(59A,59C)と、該ロック傾向判定手段(59A,59C)による判定結果に応じてブレーキ力を増減するための制御モードを前記左右の車輪(WA,WC)の車輪ブレーキ(BA,BC)毎に定めるとともに該制御モードが増加モードであるときには前記摩擦係数判定手段(58)の判定結果に応じて高摩擦係数であると判定したときの急増加モードならびに低摩擦係数であると判定したときの緩増加モードを切換える制御モード設定手段(62A,62C)と、該制御モード設定手段(62A,62C)で設定された制御モードに従って前記アクチュエータ(1)の作動を制御するアクチュエータ制御手段(64A,64C)とを備える車両のアンチロックブレーキ制御装置において、前記車輪速度検出手段(6A,6C)で検出された車輪速度に基づいて前記左右の車輪(WA,WC)毎の車輪対応車体速度を推定する車輪対応車体速度推定手段(55A,55C)と、それらの車輪対応車体速度推定手段(55A,55C)でそれぞれ推定された車輪対応車体速度の差に基づいて走行路面の摩擦係数が左右の車輪間で異なっている摩擦係数スプリット状態であることを検出するスプリット状態検出手段(66)とを含み、前記制御モード設定手段(62A,62C)は、前記摩擦係数判別手段(58)が低摩擦係数であると判別するのに基づいて前記緩増加モードを選択している状態で前記スプリット状態検出手段(66)が摩擦係数スプリット状態を検出するのに応じて前記左右の車輪(WA,WC)のうち前記車輪対応車体速度が高い方の車輪側の制御モードを緩増加モードから急増加モードに切換えることを特徴とする車両のアンチロックブレーキ制御装置。   The actuator (1) capable of individually adjusting the braking force exerted by the wheel brakes (BA, BC) mounted on the left and right wheels (WA, WC) on the same axis, and the left and right wheels (WA, WC) Wheel speed detection means (6A, 6C) for individually detecting the wheel speed, body speed detection means (56) for detecting the vehicle speed, deceleration detection means (57) for detecting vehicle deceleration, Friction coefficient discriminating means (58) for discriminating the level of the friction coefficient of the road surface based on the deceleration detected by the speed detecting means (57), and the wheel speed detected by the wheel speed detecting means (6A, 6C). A lock tendency determining means (59A, 59C) for determining a lock tendency for each of the left and right wheels (WA, WC) based on the vehicle body speed detected by the vehicle body speed detecting means (56); A control mode for increasing or decreasing the braking force is determined for each wheel brake (BA, BC) of the left and right wheels (WA, WC) according to the determination result of (59A, 59C), and the control mode is an increase mode. Control mode setting means (62A) for switching between a rapid increase mode when it is determined that the friction coefficient is high and a slow increase mode when it is determined that the friction coefficient is low according to the determination result of the friction coefficient determination means (58). 62C) and actuator control means (64A, 64C) for controlling the operation of the actuator (1) according to the control mode set by the control mode setting means (62A, 62C). The left and right wheels (6A, 6C) based on the wheel speed detected by the wheel speed detecting means (6A, 6C). (A, WC) Wheel corresponding vehicle body speed estimating means (55A, 55C) for estimating the wheel corresponding vehicle body speed, and the difference between the wheel corresponding vehicle body speeds estimated by the wheel corresponding vehicle body speed estimating means (55A, 55C). Split state detection means (66) for detecting that the friction coefficient of the road surface is different between the left and right wheels based on the split state detection means (66), the control mode setting means (62A, 62C), The split state detecting means (66) detects the friction coefficient split state in a state where the slow increase mode is selected based on the fact that the friction coefficient determining means (58) determines that the friction coefficient is low. In response, the control mode on the wheel side of the left and right wheels (WA, WC) with the higher vehicle speed corresponding to the wheel is switched from the slowly increasing mode to the rapidly increasing mode. An antilock brake control device for a vehicle characterized by the above.
JP2007160602A 2007-06-18 2007-06-18 Anti-lock brake controller for vehicle Pending JP2008308136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007160602A JP2008308136A (en) 2007-06-18 2007-06-18 Anti-lock brake controller for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007160602A JP2008308136A (en) 2007-06-18 2007-06-18 Anti-lock brake controller for vehicle

Publications (1)

Publication Number Publication Date
JP2008308136A true JP2008308136A (en) 2008-12-25

Family

ID=40236117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007160602A Pending JP2008308136A (en) 2007-06-18 2007-06-18 Anti-lock brake controller for vehicle

Country Status (1)

Country Link
JP (1) JP2008308136A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396465A (en) * 1989-09-08 1991-04-22 Akebono Brake Ind Co Ltd Method for antilock control of car
JPH06156247A (en) * 1992-11-27 1994-06-03 Jidosha Kiki Co Ltd Method for controlling anti-skid brake
JPH1035465A (en) * 1996-07-22 1998-02-10 Mitsubishi Electric Corp Anti-lock brake controller
JP2003220940A (en) * 2002-01-30 2003-08-05 Hitachi Unisia Automotive Ltd Brake control system
JP2005053423A (en) * 2003-08-07 2005-03-03 Toyoda Mach Works Ltd Method and apparatus for judging state of road surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0396465A (en) * 1989-09-08 1991-04-22 Akebono Brake Ind Co Ltd Method for antilock control of car
JPH06156247A (en) * 1992-11-27 1994-06-03 Jidosha Kiki Co Ltd Method for controlling anti-skid brake
JPH1035465A (en) * 1996-07-22 1998-02-10 Mitsubishi Electric Corp Anti-lock brake controller
JP2003220940A (en) * 2002-01-30 2003-08-05 Hitachi Unisia Automotive Ltd Brake control system
JP2005053423A (en) * 2003-08-07 2005-03-03 Toyoda Mach Works Ltd Method and apparatus for judging state of road surface

Similar Documents

Publication Publication Date Title
JP2590825B2 (en) Manual / Electric dual brake system
EP0997363A2 (en) Supply valve for a hydraulic control unit of a vehicular braking system
JP3716490B2 (en) Braking force control device
JP2007008198A (en) Brake device for vehicle
WO2014115809A1 (en) Vehicular brake hydraulic pressure controller
US20120248357A1 (en) Solenoid valve for brake system
US20160312912A1 (en) Electromagnetic valve and brake unit
EP1424253A1 (en) Brake fluid pressure maintaining apparatus for vehicles
KR20210052304A (en) Two-stage solenoid valve
JP5107620B2 (en) Anti-lock brake control device for vehicle
JP2008308136A (en) Anti-lock brake controller for vehicle
JP5165446B2 (en) solenoid valve
US7252282B2 (en) Armature with vent passages for vehicle actuator
US20050128673A1 (en) Solenoid drive circuit
JP2009257577A (en) Solenoid valve and solenoid valve unit provided with same
US4281685A (en) Electromagnetic locking type actuator
US4709968A (en) Fluid pressure control apparatus for reducing swing or fall of vehicle body due to braking during backwards running of vehicle
JP5006243B2 (en) Brake control device
JP6460779B2 (en) Solenoid valve and vehicle brake fluid pressure control device
US6280006B1 (en) Brake hydraulic control device for use in vehicle
JPH08121635A (en) Solenoid valve
JP2005022465A (en) Braking device for vehicle
JP2006103440A (en) Anti-lock brake controlling device of vehicle
JP3069991B2 (en) Vehicle brake fluid pressure control device
JP2004196236A (en) Anti-lock brake controller for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Effective date: 20110804

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110810

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20111011

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20120425

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120829