JP2009004693A - Superconductive magnet device and magnetic resonance imaging device - Google Patents

Superconductive magnet device and magnetic resonance imaging device Download PDF

Info

Publication number
JP2009004693A
JP2009004693A JP2007166317A JP2007166317A JP2009004693A JP 2009004693 A JP2009004693 A JP 2009004693A JP 2007166317 A JP2007166317 A JP 2007166317A JP 2007166317 A JP2007166317 A JP 2007166317A JP 2009004693 A JP2009004693 A JP 2009004693A
Authority
JP
Japan
Prior art keywords
superconducting
coil
permanent current
current switch
magnet device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007166317A
Other languages
Japanese (ja)
Other versions
JP5155603B2 (en
Inventor
Yasunori Koga
康則 古閑
Hiroyuki Watanabe
洋之 渡邊
Kunihiro Takayama
邦浩 高山
Tsutomu Yamamoto
勉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007166317A priority Critical patent/JP5155603B2/en
Publication of JP2009004693A publication Critical patent/JP2009004693A/en
Application granted granted Critical
Publication of JP5155603B2 publication Critical patent/JP5155603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable superconductive magnet device and a magnetic resonance imaging device, in which structure is simple, and a persistent current of a superconductive coil can be stably retained for the long term. <P>SOLUTION: A superconductive magnet device 1 includes: a pair of coil containers 4 and 4 which accommodate a circularly-shaped superconductive coil 2 with a cooling medium; a pair of vacuum containers 1A and 1B which accommodate coil containers 4 and 4, respectively; a connecting tube 1C which supports the vacuum containers 1A and 1B, while opposing them to each other in the vertical direction, using a space between the vacuum containers 1A and 1B as a magnetic field space; a superconductive wire 2A which is connected between the superconductive coil 2 and 2 of a pair of the coil containers 1A and 1B through the connecting tube 1C; and a permanent current switch 7 which is connected to the superconductive wire 2A and passes permanent current to the superconductive coil 2. The permanent current switch 7 is arranged in the connecting tube 1C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超伝導磁石装置および磁気共鳴撮像装置に関するものである。   The present invention relates to a superconducting magnet device and a magnetic resonance imaging apparatus.

超伝導磁石装置を構成する超伝導コイルや永久電流スイッチは、これを冷却するための液化した冷媒、例えば、液体ヘリウム等で冷却されてコイル容器に収納され、そしてコイル容器は、断熱真空層を形成する真空容器に収納される。コイル容器と真空容器との間には熱シールドが設置されており、この熱シールドによってコイル容器は、さらに断熱保護されている。
一般に、永久電流スイッチは、磁気共鳴撮像装置に適用される超伝導磁石装置において、上下一対として設けられたコイル容器のうち、上側のコイル容器の内部に配置されるものが知れられている。また、一対のコイル容器とは別体に設けられたタンク内に配置されたものが知られている(例えば、特許文献1,2参照)。
The superconducting coil and the permanent current switch constituting the superconducting magnet device are cooled with a liquefied refrigerant for cooling the superconducting magnet device, such as liquid helium, and stored in the coil container, and the coil container has a heat insulating vacuum layer. It is stored in a vacuum container to be formed. A heat shield is provided between the coil container and the vacuum container, and the coil container is further insulated and protected by the heat shield.
In general, in a superconducting magnet device applied to a magnetic resonance imaging apparatus, a permanent current switch is known that is disposed inside an upper coil container among a pair of upper and lower coil containers. Moreover, what is arrange | positioned in the tank provided separately from a pair of coil container is known (for example, refer patent document 1, 2).

ところで、超伝導コイルが通電されて磁場を発生しているときに超伝導コイルの一部分のコイル導体が動いたり、コイル導体を被覆等している含浸材にクラックが発生したりする等の機械的擾乱が発生すると、これが熱擾乱となって、超伝導コイルの一部分が温度上昇し、常伝導に転移する。このような熱擾乱による温度上昇が、周囲の冷媒による冷却を大きく上回ると、常伝導転移が超伝導コイル全体に至る現象、いわゆるクエンチを生じる。
このようなクエンチが発生すると、超伝導コイルから多量の熱が生じる。また、これとは別に、永久電流スイッチにおいて機械的擾乱等により常伝導転移が生じた場合にも、永久電流回路は閉回路を維持することができなくなり、クエンチに至ることがある。
By the way, when the superconducting coil is energized and a magnetic field is generated, a part of the coil conductor of the superconducting coil moves, or the impregnating material covering the coil conductor cracks. When a disturbance occurs, this becomes a thermal disturbance, and a part of the superconducting coil rises in temperature and transitions to normal conduction. When the temperature rise due to such thermal disturbance greatly exceeds the cooling by the surrounding refrigerant, a phenomenon in which the normal conduction transition reaches the entire superconducting coil, so-called quenching, occurs.
When such a quench occurs, a large amount of heat is generated from the superconducting coil. In addition, even when a normal transition occurs due to mechanical disturbance or the like in the permanent current switch, the permanent current circuit cannot maintain a closed circuit and may be quenched.

このような超伝導磁石装置により構成される磁気共鳴撮像装置は、近年、高強度の磁場を有するものの開発が進められており、構成要素である永久電流スイッチにおいても、動作状態における擾乱に対して高い電磁気的な安定性が要求されている。   In recent years, a magnetic resonance imaging apparatus constituted by such a superconducting magnet apparatus has been developed with a high-intensity magnetic field, and even in a permanent current switch as a component, a disturbance in an operating state is prevented. High electromagnetic stability is required.

特開2002−190406号公報JP 2002-190406 A 特開2003−159230号公報JP 2003-159230 A

しかしながら、前記した特許文献1では、永久電流スイッチが上側のコイル容器の内部に配置された構成であるため、上側の超伝導コイル等による高強度の磁場の影響を受けるおそれがあり、永久電流回路の閉回路を維持することができずにクエンチに至る等、超伝導磁石装置や磁気共鳴撮像装置の信頼性が低下するおそれがあった。
また、前記した特許文献2では、永久電流スイッチが別体に設けられたタンク内に配置されているため、構造が複雑になるという問題を有していた。
However, in Patent Document 1 described above, since the permanent current switch is arranged inside the upper coil container, there is a risk of being affected by a high-intensity magnetic field due to the upper superconducting coil or the like. Therefore, the reliability of the superconducting magnet device and the magnetic resonance imaging device may be lowered, for example, because the closed circuit cannot be maintained and quenching occurs.
Further, in Patent Document 2 described above, the permanent current switch is disposed in a tank provided separately, and thus has a problem that the structure becomes complicated.

このような観点から、本発明は、構造が簡単であるとともに、超伝導コイルの永久電流を長期的に安定保持することができ、信頼性の高い超伝導磁石装置および磁気共鳴撮像装置を提供することを課題とする。   From such a point of view, the present invention provides a highly reliable superconducting magnet device and magnetic resonance imaging apparatus that have a simple structure and can stably maintain the permanent current of the superconducting coil for a long period of time. This is the issue.

前記した課題を解決するための手段として本発明は、コイル容器を収納する一対の真空容器を上下方向に相対向させた状態で連結管で支持し、各コイル容器内の超伝導コイルに永久電流を流す永久電流スイッチをこの連結管に配置した構成としたので、構造が簡単になり、しかも、従来のように上側のコイル容器の内部に永久電流スイッチを配置したものよりも、高強度の磁場の影響を永久電流スイッチが受け難くなり、超伝導コイルの永久電流を長期的に安定保持することができて、信頼性が高まるようになる。   As a means for solving the above-described problems, the present invention provides a pair of vacuum containers that accommodate coil containers, which are supported by a connecting pipe in a state of facing each other in the vertical direction, and a permanent current is supplied to the superconducting coils in each coil container. Because the permanent current switch that flows the current is arranged in this connecting pipe, the structure is simplified, and the magnetic field is stronger than the conventional one in which the permanent current switch is arranged inside the upper coil container. As a result, the permanent current switch is less likely to be affected, and the permanent current of the superconducting coil can be stably maintained for a long period of time, thereby improving the reliability.

本発明によれば、構造が簡単であるとともに、超伝導コイルの永久電流を長期的に安定保持することができ、信頼性の高い超伝導磁石装置および磁気共鳴撮像装置が得られる。   According to the present invention, it is possible to obtain a highly reliable superconducting magnet device and magnetic resonance imaging apparatus that have a simple structure and can stably maintain the permanent current of the superconducting coil for a long period of time.

次に、本発明の超伝導磁石装置を備えた磁気共鳴撮像装置(以下、MRI装置という)の実施形態を図面を参照して説明する。
(第1実施形態)
MRI装置は、図1に示すように、超伝導磁石装置1と、被検体(不図示、以下同様)を乗せるベッドBと、このベッドBに乗せられた被検体を磁場空間において均一磁場空間となる撮像領域Fへ搬送する、図示しない駆動機構が設けられた搬送手段B1と、この搬送手段B1によって撮像領域Fに搬送された被検体からの核磁気共鳴信号を解析するコンピュータ等の機器からなる解析手段30とから構成され、ベッドBに乗せられた被検体を通して断層撮影を行うものである。
Next, an embodiment of a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) provided with the superconducting magnet apparatus of the present invention will be described with reference to the drawings.
(First embodiment)
As shown in FIG. 1, the MRI apparatus includes a superconducting magnet apparatus 1, a bed B on which a subject (not shown, the same applies hereinafter) is placed, and a subject placed on the bed B in a magnetic field space. Conveying means B1 provided with a drive mechanism (not shown) for conveying to the imaging region F, and equipment such as a computer for analyzing nuclear magnetic resonance signals from the subject conveyed to the imaging region F by the conveying means B1. It comprises an analyzing means 30 and performs tomography through a subject placed on a bed B.

図2に示すように、超伝導磁石装置1は、円環状に形成された超伝導コイル2を冷媒3とともに収納するコイル容器4を備え、内部を真空に保持された一対の真空容器1A,1Bに、コイル容器4が熱シールド5を介してそれぞれ囲繞されて収納された構成となっている。そして、一対の真空容器1A,1B間を磁場空間として、各真空容器1A,1Bは、上下方向に相対向させた状態で互いに連結する一対の連結管1C,1C(図2では一方のみ図示)で支持されている。   As shown in FIG. 2, the superconducting magnet device 1 includes a coil container 4 that houses an annular superconducting coil 2 together with a refrigerant 3, and a pair of vacuum containers 1A and 1B that are held in a vacuum. In addition, the coil container 4 is enclosed and accommodated via the heat shield 5. A pair of connecting pipes 1C and 1C are connected to each other in a state where the vacuum containers 1A and 1B are opposed to each other in a vertical direction with a magnetic field space between the pair of vacuum containers 1A and 1B (only one is shown in FIG. 2). It is supported by.

超伝導コイル2は、コイル線材として、例えば、NbTi線材が用いられ、図示しない支持体によってコイル容器4の内部に支持されている。また、冷媒3としては、例えば、液体ヘリウムが用いられている。   The superconducting coil 2 uses, for example, an NbTi wire as a coil wire, and is supported inside the coil container 4 by a support body (not shown). As the refrigerant 3, for example, liquid helium is used.

コイル容器4は、密閉可能な容器で形成されており、冷媒3を蓄えておくタンクの役割を果たす。このようなコイル容器4には、このコイル容器4の内部に冷媒3を注入するための図示しない注入管路やコイル容器4の内部の気相状態の冷媒ガス(ヘリウムガス)を排出するため図示しない排気管路が連結されている。なお、コイル容器4の内部の圧力を検出するための図示しない管路等、幾つかの図示しない管路が真空容器1Aを貫通してコイル容器4に連結されている。   The coil container 4 is formed of a sealable container and serves as a tank for storing the refrigerant 3. Such a coil container 4 is shown in order to discharge a gas phase refrigerant gas (helium gas) inside the coil container 4 and an injection pipe (not shown) for injecting the refrigerant 3 into the coil container 4. Not connected to the exhaust line. In addition, several pipes (not shown) such as pipes (not shown) for detecting the pressure inside the coil container 4 pass through the vacuum container 1A and are connected to the coil container 4.

連結管1C,1Cは、超伝導磁石装置1の図示しない中心軸を挟んで超伝導磁石装置1の径方向両側に配置されている。そして、上側の真空容器1Aと下側の真空容器1Bとは、これらの連結管1C,1Cの内部において連結されており、各真空容器1A,1B内に収納されるコイル容器4、熱シールド5も、連結管1C,1Cの内部でそれぞれ連結されている。これによって、真空容器1A,1B間で冷媒3が通流可能に構成されている。なお、上側の真空容器1Aおよび下側の真空容器1Bには、撮像領域Fに面するように凹部が形成されており、この凹部に図示しない傾斜磁場コイル等が設けられている。   The connecting pipes 1 </ b> C and 1 </ b> C are arranged on both sides in the radial direction of the superconducting magnet device 1 across a central axis (not shown) of the superconducting magnet device 1. The upper vacuum container 1A and the lower vacuum container 1B are connected to each other inside the connecting pipes 1C and 1C, and the coil container 4 and the heat shield 5 housed in the vacuum containers 1A and 1B. Are connected inside the connecting pipes 1C and 1C, respectively. Thus, the refrigerant 3 is configured to flow between the vacuum containers 1A and 1B. The upper vacuum vessel 1A and the lower vacuum vessel 1B are formed with a recess so as to face the imaging region F, and a gradient magnetic field coil or the like (not shown) is provided in the recess.

本実施形態では、一方の連結管1Cの内部に、超伝導コイル2,2に連結された超伝導線2A(渡り線、一部省略して図示)と、この超伝導線2Aに接続された永久電流スイッチ7が配置されている。つまり、超伝導線2Aおよび永久電流スイッチ7は、連結管1Cの内部を通流可能な冷媒3に浸漬されている。
永久電流スイッチ7は、超伝導コイル2,2に永久電流を流すものであり、後記する永久電流スイッチヒータ7Bの通電・非通電によって常伝導状態または超伝導状態にされ、これによって超伝導コイル2,2の励磁・消磁を行うものである。
In the present embodiment, a superconducting wire 2A (crossover wire, partially omitted) connected to the superconducting coils 2 and 2 and the superconducting wire 2A are connected to the inside of one connecting tube 1C. A permanent current switch 7 is arranged. That is, the superconducting wire 2A and the permanent current switch 7 are immersed in the refrigerant 3 that can flow inside the connecting pipe 1C.
The permanent current switch 7 allows a permanent current to flow through the superconducting coils 2 and 2, and is brought into a normal conduction state or a superconducting state by energization / non-energization of a permanent current switch heater 7B described later. , 2 excitation / demagnetization.

具体的に、超伝導磁石装置1は、図3に示すように、超伝導コイル2、永久電流スイッチ7、省略可能な保護抵抗8が並列接続された回路に励磁電源E1、ヒータ電源E2が接続されてなる励磁回路を有している。永久電流スイッチ7は、超伝導体7Aとこれを加熱する永久電流スイッチヒータ7Bを備えており、ヒータ電源E2によって永久電流スイッチヒータ7BをON・OFFすることによって、超伝導体7Aの常伝導状態または超伝導状態を制御するものである。   Specifically, as shown in FIG. 3, the superconducting magnet device 1 is connected to an excitation power supply E1 and a heater power supply E2 in a circuit in which a superconducting coil 2, a permanent current switch 7, and an optional protective resistor 8 are connected in parallel. The excitation circuit is formed. The permanent current switch 7 includes a superconductor 7A and a permanent current switch heater 7B that heats the superconductor 7A. When the permanent current switch heater 7B is turned on / off by the heater power supply E2, the normal state of the superconductor 7A is reached. Or it controls the superconducting state.

このような励磁回路を永久電流運転にする手順は次の通りである。
初めに、ヒータ電源E2により永久電流スイッチヒータ7Bに通電し、永久電流スイッチヒータ7Bの加熱によって超伝導体7Aを常伝導転移させ、永久電流スイッチ7をOFFにする。
その後、励磁電源E1により超伝導コイル2,2に通電し、定格電流まで超伝導コイル2,2を励磁する。そして、定格電流まで超伝導コイル2,2を励磁したら、永久電流スイッチヒータ7Bを非通電にして、永久電流スイッチ7をONにする。この操作で、超伝導コイル2,2と永久電流スイッチ7とからなる永久電流回路(閉回路)に電流が流れる。
その後、励磁電源E1の電流をゼロまで下げる。
以上のような手順によって励磁回路を永久電流運転に移行することができる。
The procedure for setting such an excitation circuit to permanent current operation is as follows.
First, the permanent power switch heater 7B is energized by the heater power supply E2, and the superconductor 7A is transitioned to normal conduction by heating the permanent current switch heater 7B, and the permanent current switch 7 is turned off.
Thereafter, the superconducting coils 2 and 2 are energized by the excitation power source E1, and the superconducting coils 2 and 2 are excited to the rated current. When the superconducting coils 2 and 2 are excited to the rated current, the permanent current switch heater 7B is deenergized and the permanent current switch 7 is turned on. By this operation, a current flows through a permanent current circuit (closed circuit) composed of the superconducting coils 2 and 2 and the permanent current switch 7.
Thereafter, the current of the excitation power source E1 is lowered to zero.
The excitation circuit can be shifted to the permanent current operation by the procedure as described above.

なお、永久電流スイッチ7に使用する超伝導体7Aは、裸線やキュプロニッケル等により複合化されたものが用いられる。   The superconductor 7A used for the permanent current switch 7 is a composite made of bare wire, cupronickel or the like.

図4は永久電流スイッチ7の周りにおける磁場状態を示したものであり、この実施形態では上下の超伝導コイル2,2の間に存在する磁場強度のうち、他よりも低強度となる領域、つまり、超伝導コイル2,2の作り出す磁場が互いに打ち消し合うことにより周囲よりも低強度となる磁場が生成される低強度領域R1に、永久電流スイッチ7が配置されている。これにより、永久電流スイッチ7は、連結管1Cの上下方向において略中央となる位置に配置されるようになっている。   FIG. 4 shows a magnetic field state around the permanent current switch 7. In this embodiment, the magnetic field strength existing between the upper and lower superconducting coils 2 and 2 is lower than the others. In other words, the permanent current switch 7 is disposed in the low-intensity region R1 in which the magnetic field generated by the superconducting coils 2 and 2 cancels each other to generate a magnetic field having a lower intensity than the surroundings. Thereby, the permanent current switch 7 is arranged at a position that is substantially in the center in the vertical direction of the connecting pipe 1C.

なお、超伝導線2Aは、連結管1Cから超伝導コイル2,2の周方向へ引き回されて超伝導コイル2,2に設けられた図示しない接続口を介して接続されている。
また、超伝導磁石装置1の組立は、例えば、真空容器1A,1Bを先に組み立てておいてから、これらの真空容器1A,1Bを連結管1C,1Cでそれぞれ連結することにより行うことができる。つまり、連結工程による連結管1Cの連結が組立工程の最終段階に近いところで行う組立が行われて、超伝導磁石装置1が組み立てられる。
The superconducting wire 2A is routed from the connecting pipe 1C in the circumferential direction of the superconducting coils 2 and 2 and connected through a connection port (not shown) provided in the superconducting coils 2 and 2.
The superconducting magnet device 1 can be assembled, for example, by first assembling the vacuum containers 1A and 1B and then connecting these vacuum containers 1A and 1B with connecting pipes 1C and 1C, respectively. . That is, the superconducting magnet device 1 is assembled by performing assembly in which the connection of the connection pipe 1C in the connection process is close to the final stage of the assembly process.

以下では、本実施形態において得られる効果を説明する。
(1)本実施形態によれば、永久電流スイッチ7が連結管1Cの内部に配置されているので、超伝導コイル2,2に接続される超伝導線2Aの引き回しが短くて済み、超伝導線2Aの配索全長を短くすることができる。また、超伝導コイル2,2の周方向に対する超伝導線2Aの引き回し距離を短くすることが可能となり、その分、超伝導線2Aの引き回しによって生じる不整磁場の発生を好適に抑制することができる。したがって、超伝導磁石装置1により作り出される均一磁場への影響が最小限となるようにすることができ、信頼性の高い超伝導磁石装置1およびMRI装置が得られる。
(2)連結管1Cに永久電流スイッチ7が配置される構造であるので、組立時の最終段階となる真空容器1A,1Bを連結管1C,1Cでそれぞれ連結する工程時に、回路全体の健全性確認のために実施する電気試験、例えば、耐電圧試験や絶縁抵抗試験等を行うことができる。したがって、永久電流スイッチ7を含んだ励磁回路における電気試験の回数を少なくすることができる。これにより、コストを低減することができる。
また、電気試験の回数を少なくすることができるので、試験において永久電流スイッチ7に高電圧の印加される回数が自ずと少なくなる。これにより、絶縁劣化等による永久電流スイッチ7の故障を好適に防止することができる。
(3)連結管1Cの内部に永久電流スイッチ7が配置されるので、連結管1Cを通流可能な冷媒3に永久電流スイッチ7を常に浸漬することが可能であり、永久電流運転中に生じる熱擾乱、例えば、冷媒3の補給時に生じる蒸発ガスに永久電流スイッチ7が晒されることによる熱擾乱を防止することができる。これにより、永久電流スイッチ7が好適に冷却されて保護され、超伝導コイル2,2の永久電流が長期的に安定保持されたものとなる。したがって、超伝導磁石装置1およびMRI装置の信頼性の向上を図ることができる。
(4)永久電流スイッチ7は、連結管1Cの内部において、周囲よりも低強度となる磁場が生成される領域R1に配置されているので、永久電流運転中の不安定性を低減することができ、超伝導コイル2,2の永久電流を長期的に安定保持することができるようになる。これにより、信頼性の高い超伝導磁石装置1およびMRI装置を得ることができる。
また、高強度の磁場を形成する超伝導磁石装置1に対しても好適に適用することができるので、永久電流運転中の不安定性が低減されることと相俟って、診断精度の向上および診断時間の短縮化を図ることができるMRI装置が得られる。
(5)連結管1Cの内部に永久電流スイッチ7が配置されているので、従来のような別体のタンクを設置する必要がなく、別体のタンクを設けたときのように構造が複雑になることがない。したがって、構造が簡単であり、組み付けも行い易い。
(6)連結管1Cの内部に永久電流スイッチ7が配置されるので、永久電流スイッチ7を設けるための別途、特別なスペースを超伝導磁石装置1に設ける必要がなく、超伝導磁石装置1の小型化にも寄与する。
Below, the effect acquired in this embodiment is demonstrated.
(1) According to the present embodiment, since the permanent current switch 7 is disposed inside the connecting pipe 1C, the superconducting wire 2A connected to the superconducting coils 2 and 2 can be routed short, and superconducting The entire wiring length of the line 2A can be shortened. In addition, it is possible to shorten the routing distance of the superconducting wire 2A with respect to the circumferential direction of the superconducting coils 2 and 2, and accordingly, generation of an irregular magnetic field caused by the routing of the superconducting wire 2A can be suitably suppressed. . Therefore, the influence on the uniform magnetic field created by the superconducting magnet apparatus 1 can be minimized, and a highly reliable superconducting magnet apparatus 1 and MRI apparatus can be obtained.
(2) Since the permanent current switch 7 is arranged in the connecting pipe 1C, the soundness of the entire circuit is obtained at the time of connecting the vacuum vessels 1A and 1B, which are the final stage of assembly, with the connecting pipes 1C and 1C, respectively. An electrical test performed for confirmation, such as a withstand voltage test or an insulation resistance test, can be performed. Therefore, the number of electrical tests in the excitation circuit including the permanent current switch 7 can be reduced. Thereby, cost can be reduced.
In addition, since the number of electrical tests can be reduced, the number of times a high voltage is applied to the permanent current switch 7 in the test is naturally reduced. Thereby, failure of the permanent current switch 7 due to insulation deterioration or the like can be suitably prevented.
(3) Since the permanent current switch 7 is disposed inside the connecting pipe 1C, it is possible to always immerse the permanent current switch 7 in the refrigerant 3 that can flow through the connecting pipe 1C, which occurs during the permanent current operation. Thermal disturbance, for example, thermal disturbance due to exposure of the permanent current switch 7 to evaporative gas generated when the refrigerant 3 is replenished can be prevented. Thereby, the permanent current switch 7 is suitably cooled and protected, and the permanent current of the superconducting coils 2 and 2 is stably maintained for a long time. Therefore, the reliability of the superconducting magnet apparatus 1 and the MRI apparatus can be improved.
(4) Since the permanent current switch 7 is disposed in the region R1 in the connecting pipe 1C where a magnetic field having a lower strength than the surroundings is generated, instability during permanent current operation can be reduced. The permanent current of the superconducting coils 2 and 2 can be stably maintained for a long time. Thereby, the superconducting magnet apparatus 1 and the MRI apparatus with high reliability can be obtained.
In addition, since it can be suitably applied to the superconducting magnet device 1 that forms a high-intensity magnetic field, in combination with the reduction of instability during permanent current operation, improvement in diagnostic accuracy and An MRI apparatus capable of shortening the diagnosis time is obtained.
(5) Since the permanent current switch 7 is arranged inside the connecting pipe 1C, there is no need to install a separate tank as in the conventional case, and the structure is complicated as when a separate tank is provided. Never become. Therefore, the structure is simple and the assembly is easy.
(6) Since the permanent current switch 7 is arranged inside the connecting pipe 1C, it is not necessary to provide a special space in the superconducting magnet device 1 for providing the permanent current switch 7; Contributes to downsizing.

(第2実施形態)
図5に第2実施形態の超伝導磁石装置1’を示す。本実施形態が前記第1実施形態と異なるところは、前記した超伝導コイル2,2(超伝導主コイル)とは逆向きの磁場を発生する超伝導シールドコイル10,10を設けた点にあり、その他の点に変わりはない。
つまり、超伝導シールドコイル10,10には、超伝導コイル2,2に流れる第1の方向の電流とは逆方向となる第2の方向の電流が流れるように構成されている。
(Second Embodiment)
FIG. 5 shows a superconducting magnet device 1 ′ of the second embodiment. This embodiment is different from the first embodiment in that superconducting shield coils 10 and 10 that generate a magnetic field opposite to the superconducting coils 2 and 2 (superconducting main coil) are provided. The other points remain the same.
That is, the superconducting shield coils 10 and 10 are configured such that a current in the second direction that is opposite to the current in the first direction flowing through the superconducting coils 2 and 2 flows.

超伝導シールドコイル10,10は、真空容器1Aにおいて、外周部近傍の上端部側に配置されており、また、真空容器1Bにおいて、外周部近傍の下端部側に配置されている。つまり、超伝導シールドコイル10,10は、超伝導磁石装置1の撮像領域Fから遠い部位に位置しており、これによって、超伝導磁石装置1の側方へ漏れる漏洩磁場を抑制するように作用する。   Superconducting shield coils 10 and 10 are arranged on the upper end side in the vicinity of the outer peripheral portion in vacuum container 1A, and are arranged on the lower end side in the vicinity of the outer peripheral portion in vacuum container 1B. That is, the superconducting shield coils 10 and 10 are located in a portion far from the imaging region F of the superconducting magnet device 1, and thereby act to suppress a leakage magnetic field that leaks to the side of the superconducting magnet device 1. To do.

このような超伝導シールドコイル10,10を備えた超伝導磁石装置1’において、連結管1Cに配置される永久電流スイッチ7は、超伝導コイル2,2、超伝導シールドコイル10,10の軸線方向(中心軸Oの軸線の延長方向)から見たときに、これらの超伝導コイル2,2、超伝導シールドコイル10,10の径方向において、前記超伝導コイル2,2と超伝導シールドコイル10,10との間に配置されるようになっている。   In the superconducting magnet device 1 ′ having such superconducting shield coils 10, 10, the permanent current switch 7 disposed in the connecting pipe 1 </ b> C includes the superconducting coils 2, 2 and the axis of the superconducting shield coils 10, 10. When viewed from the direction (extension direction of the axis of the central axis O), in the radial direction of the superconducting coils 2 and 2 and the superconducting shield coils 10 and 10, the superconducting coils 2 and 2 and the superconducting shield coil 10 and 10 are arranged.

図6はこのような超伝導シールドコイル10,10を備えた超伝導磁石装置1’における永久電流スイッチ7の周りにおける磁場状態を示したものである。この実施形態においても、上下の超伝導コイル2,2、超伝導シールドコイル10,10の間に存在する磁場強度のうち、他よりも低強度となる領域、つまり、超伝導コイル2,2、超伝導シールドコイル10,10の作り出す磁場が互いに打ち消し合うことにより周囲よりも低強度となる磁場が生成される低磁場領域R2に、永久電流スイッチ7が配置されている。この場合においても前記第1実施形態と同様に、永久電流スイッチ7は、連結管1Cの上下方向において略中央となる位置に配置されるようになっている。   FIG. 6 shows a magnetic field state around the permanent current switch 7 in the superconducting magnet device 1 ′ having such superconducting shield coils 10 and 10. Also in this embodiment, the magnetic field strength existing between the upper and lower superconducting coils 2 and 2 and the superconducting shield coils 10 and 10 is lower than the other regions, that is, the superconducting coils 2 and 2, The permanent current switch 7 is arranged in a low magnetic field region R2 where a magnetic field having a lower strength than the surroundings is generated by canceling out the magnetic fields generated by the superconducting shield coils 10 and 10. Also in this case, as in the first embodiment, the permanent current switch 7 is arranged at a position that is substantially in the center in the vertical direction of the connecting pipe 1C.

以上のような超伝導磁石装置1’においても、前記第1実施例で説明した効果(1)〜(6)と同様の効果が得られるとともに、超伝導シールドコイル10,10の存在によって、永久電流スイッチ7が経験する経験磁場がより低減されるようになり、永久電流運転中の不安定性を低減し、信頼性の高いアクティブシールド型の超伝導磁石装置1’およびMRI装置が得られる。   Also in the superconducting magnet device 1 ′ as described above, the same effects as the effects (1) to (6) described in the first embodiment can be obtained, and the presence of the superconducting shield coils 10 and 10 makes it permanent. The empirical magnetic field experienced by the current switch 7 is further reduced, the instability during permanent current operation is reduced, and a highly reliable active shield superconducting magnet device 1 ′ and MRI device are obtained.

なお、前記第1,第2実施形態では、永久電流スイッチ7が、連結管1Cの内部において他よりも磁場強度が低強度となる低強度領域R1,R2に配置される構成としたが、本発明はこれに限られることはなく、例えば、連結管1Cの外部の側方において、磁場強度が低強度となる低強度領域R3(図6参照)に配置されるように構成してもよい。この場合には、連結管1Cの内部等から図示しない配管を連結管1Cの側方へ延設して、永久電流スイッチ7を冷却するように構成することができる。つまり、連結管1Cの内部を通流可能に設けられた冷媒3を用いて、連結管1Cの側方に配置された永久電流スイッチ7を好適に冷却することができる。したがって、別途冷却用の装置等を設ける必要もなく経済性に優れる。また、永久電流スイッチ7が連結管1Cの側方に配置されているので、前記した電気試験がより行い易くなる。
また、このような構成においても永久電流スイッチ7は、他よりも磁場強度が低強度となる低強度領域R3に配置されるので、超伝導コイル2,2(超伝導シールドコイル10,10)の永久電流が長期的に安定保持されたものとなる。したがって、超伝導磁石装置1(1’)およびMRI装置の信頼性の向上を図ることができる。
In the first and second embodiments, the permanent current switch 7 is arranged in the low strength regions R1 and R2 where the magnetic field strength is lower than the others inside the connecting tube 1C. The invention is not limited to this, and for example, it may be configured to be arranged in the low-strength region R3 (see FIG. 6) where the magnetic field strength is low on the side outside the connecting pipe 1C. In this case, the permanent current switch 7 can be cooled by extending a pipe (not shown) from the inside of the connecting pipe 1C to the side of the connecting pipe 1C. That is, the permanent current switch 7 disposed on the side of the connecting pipe 1C can be suitably cooled using the refrigerant 3 provided so as to be able to flow inside the connecting pipe 1C. Therefore, it is not necessary to provide a separate cooling device or the like, and the cost is excellent. In addition, since the permanent current switch 7 is disposed on the side of the connecting pipe 1C, the above-described electrical test is more easily performed.
Even in such a configuration, the permanent current switch 7 is disposed in the low-strength region R3 where the magnetic field strength is lower than the others, so that the superconducting coils 2 and 2 (superconducting shield coils 10 and 10) The permanent current is stably maintained for a long time. Therefore, the reliability of the superconducting magnet device 1 (1 ′) and the MRI apparatus can be improved.

本発明の第1実施形態の超伝導磁石装置を備えた磁気共鳴撮像装置を示す説明図である。It is explanatory drawing which shows the magnetic resonance imaging device provided with the superconducting magnet apparatus of 1st Embodiment of this invention. 第1実施形態の超伝導磁石装置を示す模式断面図である。It is a schematic cross section which shows the superconducting magnet apparatus of 1st Embodiment. 超伝導コイルを励磁する励磁回路を示す回路図である。It is a circuit diagram which shows the excitation circuit which excites a superconducting coil. 第1実施形態の超伝導磁石装置における磁場状態を示す模式図である。It is a schematic diagram which shows the magnetic field state in the superconducting magnet apparatus of 1st Embodiment. 本発明の第2実施形態の超伝導磁石装置を示す模式断面図である。It is a schematic cross section which shows the superconducting magnet apparatus of 2nd Embodiment of this invention. 第2実施形態の超伝導磁石装置における磁場状態を示す模式図である。It is a schematic diagram which shows the magnetic field state in the superconducting magnet apparatus of 2nd Embodiment.

符号の説明Explanation of symbols

1,1’ 超伝導磁石装置
1A,1B 真空容器
1C 連結管
2 超伝導コイル
3 冷媒
4 コイル容器
5 熱シールド
7 永久電流スイッチ
7A 超伝導体
7B 永久電流スイッチヒータ
8 保護抵抗
10 超伝導シールドコイル
30 解析手段
B ベッド
B1 搬送手段
E1 励磁電源
E2 ヒータ電源
F 撮像領域
R1〜R3 低強度領域
DESCRIPTION OF SYMBOLS 1,1 'Superconducting magnet apparatus 1A, 1B Vacuum container 1C Connecting pipe 2 Superconducting coil 3 Refrigerant 4 Coil container 5 Heat shield 7 Permanent current switch 7A Superconductor 7B Permanent current switch heater 8 Protection resistance 10 Superconducting shield coil 30 Analysis means B Bed B1 Transport means E1 Excitation power supply E2 Heater power supply F Imaging area R1 to R3 Low intensity area

Claims (6)

環状に形成された超伝導コイルを冷媒とともに収納する一対のコイル容器と、
前記各コイル容器をそれぞれ収納する一対の真空容器と、
前記真空容器間を磁場空間として、各真空容器を上下方向に相対向させた状態で支持する連結管と、
前記連結管を介して一対の前記コイル容器の前記超伝導コイル間に接続された超伝導線と、
前記超伝導線に接続され、前記超伝導コイルに永久電流を流す永久電流スイッチと、
を備えた超伝導磁石装置であって、
前記連結管に前記永久電流スイッチが配置されていることを特徴とする超伝導磁石装置。
A pair of coil containers for storing a superconducting coil formed in an annular shape together with a refrigerant;
A pair of vacuum containers for respectively accommodating the coil containers;
A connecting pipe that supports each vacuum container in a state of facing each other in the vertical direction, with the space between the vacuum containers as a magnetic field space,
A superconducting wire connected between the superconducting coils of the pair of coil containers via the connecting pipe;
A permanent current switch connected to the superconducting wire and for passing a permanent current through the superconducting coil;
A superconducting magnet device comprising:
A superconducting magnet device, wherein the permanent current switch is disposed in the connecting pipe.
前記永久電流スイッチは、前記連結管の内部に設けられており、当該連結管の内部における磁場強度のうち、他よりも低強度となる低強度領域に配置されていることを特徴とする請求項1に記載の超伝導磁石装置。   The permanent current switch is provided inside the connecting pipe, and is disposed in a low-strength region where the strength of the magnetic field inside the connecting pipe is lower than the others. 2. The superconducting magnet device according to 1. 前記連結管を通じて、前記冷媒が一対の前記コイル容器間を通流可能に設けられており、当該冷媒に、前記超伝導線および前記永久電流スイッチが浸漬されていることを特徴とする請求項2に記載の超伝導磁石装置。   3. The refrigerant is provided so that the refrigerant can flow between the pair of coil containers through the connection pipe, and the superconducting wire and the permanent current switch are immersed in the refrigerant. A superconducting magnet device according to claim 1. 前記超伝導コイルは、第1の方向の電流が流れる超伝導主コイルと、前記第1の方向とは逆方向の第2の方向の電流が流れる超伝導シールドコイルとを含み、
前記永久電流スイッチは、前記超伝導コイルの軸線方向から見たときに、当該超伝導コイルの径方向において、前記超伝導主コイルと前記超伝導シールドコイルとの間に配置されていることを特徴とする請求項1から請求項3のいずれか1項に記載の超伝導磁石装置。
The superconducting coil includes a superconducting main coil through which a current in a first direction flows, and a superconducting shield coil through which a current in a second direction opposite to the first direction flows.
The permanent current switch is disposed between the superconducting main coil and the superconducting shield coil in the radial direction of the superconducting coil when viewed from the axial direction of the superconducting coil. The superconducting magnet device according to any one of claims 1 to 3.
前記冷媒は液体ヘリウムであることを特徴とする請求項1から請求項4のいずれか1項に記載の超伝導磁石装置。   The superconducting magnet device according to any one of claims 1 to 4, wherein the refrigerant is liquid helium. 前記請求項1から請求項5のいずれか1項に記載の超伝導磁石装置を備えた磁気共鳴撮像装置であって、
被検体を乗せるベッドと、このベッドに乗せられた前記被検体を一対の前記真空容器間の撮像領域へ搬送する搬送手段と、この搬送手段によって前記撮像領域に搬送された前記被検体からの核磁気共鳴信号を解析する解析手段とを備えたことを特徴とする磁気共鳴撮像装置。
A magnetic resonance imaging apparatus comprising the superconducting magnet device according to any one of claims 1 to 5,
A bed on which the subject is placed, transport means for transporting the subject placed on the bed to the imaging region between the pair of vacuum containers, and a nucleus from the subject transported to the imaging region by the transport means A magnetic resonance imaging apparatus comprising: an analysis unit that analyzes a magnetic resonance signal.
JP2007166317A 2007-06-25 2007-06-25 Superconducting magnet device and magnetic resonance imaging device Expired - Fee Related JP5155603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166317A JP5155603B2 (en) 2007-06-25 2007-06-25 Superconducting magnet device and magnetic resonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166317A JP5155603B2 (en) 2007-06-25 2007-06-25 Superconducting magnet device and magnetic resonance imaging device

Publications (2)

Publication Number Publication Date
JP2009004693A true JP2009004693A (en) 2009-01-08
JP5155603B2 JP5155603B2 (en) 2013-03-06

Family

ID=40320729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166317A Expired - Fee Related JP5155603B2 (en) 2007-06-25 2007-06-25 Superconducting magnet device and magnetic resonance imaging device

Country Status (1)

Country Link
JP (1) JP5155603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530328A (en) * 2014-09-08 2017-10-12 シーメンス ヘルスケア リミテッドSiemens Healthcare Limited Equipment for cryogenic cooling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149403A (en) * 1984-08-17 1986-03-11 Showa Electric Wire & Cable Co Ltd Superconductive magnet
JP2000126154A (en) * 1998-10-22 2000-05-09 Hitachi Medical Corp Superconducting magnet apparatus
JP2002209869A (en) * 2001-01-15 2002-07-30 Mitsubishi Electric Corp Superconducting magnet device and its production method
JP2003159230A (en) * 2001-09-12 2003-06-03 Hitachi Ltd Superconducting magnet and magnetic resonance imaging apparatus using the same
JP2006305146A (en) * 2005-04-28 2006-11-09 Hitachi Ltd Magnetic resonance imaging apparatus
JP2008154677A (en) * 2006-12-21 2008-07-10 Hitachi Medical Corp Magnetic resonance imaging device and its operating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149403A (en) * 1984-08-17 1986-03-11 Showa Electric Wire & Cable Co Ltd Superconductive magnet
JP2000126154A (en) * 1998-10-22 2000-05-09 Hitachi Medical Corp Superconducting magnet apparatus
JP2002209869A (en) * 2001-01-15 2002-07-30 Mitsubishi Electric Corp Superconducting magnet device and its production method
JP2003159230A (en) * 2001-09-12 2003-06-03 Hitachi Ltd Superconducting magnet and magnetic resonance imaging apparatus using the same
JP2006305146A (en) * 2005-04-28 2006-11-09 Hitachi Ltd Magnetic resonance imaging apparatus
JP2008154677A (en) * 2006-12-21 2008-07-10 Hitachi Medical Corp Magnetic resonance imaging device and its operating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530328A (en) * 2014-09-08 2017-10-12 シーメンス ヘルスケア リミテッドSiemens Healthcare Limited Equipment for cryogenic cooling
US10712077B2 (en) 2014-09-08 2020-07-14 Siemens Healthcare Limited Arrangement for cryogenic cooling

Also Published As

Publication number Publication date
JP5155603B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5852425B2 (en) Superconducting electromagnet apparatus, cooling method thereof, and magnetic resonance imaging apparatus
JP4934067B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
US8525023B2 (en) Cooled current leads for cooled equipment
JP4266232B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
US8726489B2 (en) Adjustment method of a magnetic resonance imaging apparatus
JP2007027715A (en) Low magnetic field loss cold mass structure for superconducting magnet
JP4691350B2 (en) Low eddy current cryogen circuit for superconducting magnets.
JP2007005793A (en) Pulsed magnetic field generator
JP2008264536A (en) System and apparatus for direct cooling of gradient coils
WO2015079921A1 (en) Magnetic resonance imaging apparatus
US20110284191A1 (en) Thermal shield and method for thermally cooling a magnetic resonance imaging system
US7250766B2 (en) Gradient coil apparatus for magnetic resonance imaging system
JPH0845728A (en) Magnet assembly of superconducting magnetic resonance imaging device
US6289681B1 (en) Superconducting magnet split cryostat interconnect assembly
JP6266225B2 (en) Magnetic resonance imaging apparatus and magnet for magnetic resonance imaging apparatus
JP5155603B2 (en) Superconducting magnet device and magnetic resonance imaging device
JP2008522704A (en) Magnetic resonance imaging apparatus, method for compensating magnetic field drift of main magnet, and computer program
JP6647918B2 (en) Superconducting electromagnet apparatus and magnetic resonance imaging apparatus
JP2007173460A (en) Superconducting electromagnet device
JP4699293B2 (en) Superconducting magnet
WO2013150951A1 (en) Superconductor electromagnet and magnetic resonance imaging device
US20200058423A1 (en) Thermal bus heat exchanger for superconducting magnet
JP2013042789A (en) Gradient magnetic field coil unit and magnetic resonance imaging apparatus
JP2001110626A (en) Superconducting magnet
JP4866215B2 (en) Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5155603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees