JP2003159230A - Superconducting magnet and magnetic resonance imaging apparatus using the same - Google Patents
Superconducting magnet and magnetic resonance imaging apparatus using the sameInfo
- Publication number
- JP2003159230A JP2003159230A JP2002266204A JP2002266204A JP2003159230A JP 2003159230 A JP2003159230 A JP 2003159230A JP 2002266204 A JP2002266204 A JP 2002266204A JP 2002266204 A JP2002266204 A JP 2002266204A JP 2003159230 A JP2003159230 A JP 2003159230A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- cooling medium
- superconducting
- superconducting magnet
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は超伝導磁石及びそれ
を用いた磁気共鳴イメージング(MRI)装置にかかわ
り、特に被検体に閉塞感を与えない開放型のMRI装置
に好適な超電導磁石及びそれを用いたMRI装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet and a magnetic resonance imaging (MRI) apparatus using the superconducting magnet. It relates to the MRI apparatus used.
【0002】[0002]
【従来の技術】MRI装置に使用される従来の超伝導磁
石の一例が特開平10−179546号公報に記載され
ている。これに記載されている従来の超電導磁石は、冷
却媒体である液体ヘリウムに浸されて超電導コイルを収
納しているコイル容器が、液体ヘリウムを貯えるヘリウ
ムタンクを兼用しており、しかも、液体ヘリウムを冷却
する冷凍機がコイル容器(ヘリウム容器)に直接設置さ
れて構成されている。2. Description of the Related Art An example of a conventional superconducting magnet used in an MRI apparatus is described in Japanese Patent Application Laid-Open No. 10-179546. In the conventional superconducting magnet described in this, the coil container, which is immersed in liquid helium as a cooling medium and stores the superconducting coil, also serves as a helium tank for storing liquid helium. A refrigerator for cooling is installed directly in a coil container (helium container).
【0003】また、冷凍機振動に対する対策として冷凍
機と冷凍機を設置するクライオスタット部との間にベロ
ーズ等のフレキ部を設置する方式が特開平11−167
19号公報に記載されている。この方式では確かにクラ
イオスタットと冷凍機コールドヘッド間の振動絶縁が図
られるであろうが、冷却性能を確保しつつ確実な振動絶
縁を施すためには、上記特許に記載されているような種
々の工夫をこらす必要があり、コスト増を招いている。Further, as a countermeasure against the vibration of the refrigerator, there is a system in which a flexible portion such as a bellows is installed between the refrigerator and a cryostat portion in which the refrigerator is installed.
No. 19 publication. This method will certainly provide vibration isolation between the cryostat and the cold head of the refrigerator, but in order to provide reliable vibration isolation while ensuring cooling performance, various methods such as those described in the patents mentioned above are used. It is necessary to devise a device, which causes an increase in cost.
【特許文献1】特開平10−179546号公報[Patent Document 1] Japanese Patent Laid-Open No. 10-179546
【特許文献2】特開平11−16719号公報[Patent Document 2] JP-A-11-16719
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
MRI装置用の超電導磁石では、以下のような問題点が
ある。However, the conventional superconducting magnet for an MRI apparatus has the following problems.
【0005】即ち、液体ヘリウムを冷却する冷凍機がコ
イル容器に直接設置されているため、冷凍機の振動が直
接コイル容器に伝わってしまい、この振動により内部に
収納されている超電導コイルも振動して、発生する磁束
が振れ、これが画像に対して悪影響を与えてしまい鮮明
な画像が得られない。That is, since the refrigerator for cooling liquid helium is directly installed in the coil container, the vibration of the refrigerator is directly transmitted to the coil container, and this vibration also vibrates the superconducting coil housed inside. The generated magnetic flux fluctuates, which adversely affects the image, and a clear image cannot be obtained.
【0006】また、従来は、冷却媒体タンクとコイル容
器とを一体に形成していたため、どうしても装置が大型
化してしまい、装置が大型化した場合には、被検体の入
る空間が制約されて狭いものとなり、検査時に被検体に
圧迫感を与えてしまうという問題があった。Further, conventionally, since the cooling medium tank and the coil container are integrally formed, the device inevitably becomes large, and when the device becomes large, the space into which the object to be examined is restricted is narrow. However, there is a problem in that the subject feels a sense of pressure during the examination.
【0007】本発明は、上記の点に鑑みなされたもの
で、その一つの目的は、超電導コイルが収納されている
コイル容器に冷凍機からの振動が伝わるのを少なくして
超電導コイルの発生磁束の振れを抑制し画像に悪影響を
与えないようにした超電導磁石及びそれを用いたMRI
装置を提供することにある。The present invention has been made in view of the above points, and an object thereof is to reduce the transmission of vibrations from a refrigerator to a coil container in which the superconducting coil is housed, and to generate a magnetic flux of the superconducting coil. Of a superconducting magnet that suppresses the shake of the image and does not adversely affect the image and MRI using the same
To provide a device.
【0008】本発明の他の目的は、装置を小型化したも
のであっても、被検体が入る空間を大きくとることがで
き、被検体に圧迫感を与えないMRI装置を提供するこ
とにある。It is another object of the present invention to provide an MRI apparatus which can take a large space for a subject and does not give a feeling of pressure to the subject even if the device is miniaturized. .
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に、本発明では、超電導コイルを冷却媒体と共に収納す
るコイル容器に冷却媒体を供給する冷却媒体タンクを前
記コイル容器とは別体に設け、かつ、該冷却媒体タンク
に冷却媒体を冷却する冷凍機を設置すると共に、冷却媒
体タンクとコイル容器とを冷却媒体流通用の通路で連絡
し、前記コイル容器に円環状の空間部を形成すると共
に、その空間部に強磁性体磁極を配置したことを特徴と
する。In order to achieve the above object, according to the present invention, a cooling medium tank for supplying a cooling medium to a coil container accommodating a superconducting coil together with a cooling medium is provided separately from the coil container. A refrigerator for cooling the cooling medium is installed in the cooling medium tank, the cooling medium tank and the coil container are connected by a passage for circulating the cooling medium, and an annular space is formed in the coil container. At the same time, a ferromagnetic magnetic pole is arranged in the space.
【0010】また、他の目的を達成するために、本発明
では、該超電導コイルを冷却媒体と共に収納するコイル
容器の冷却媒体を供給する冷却媒体タンクを前記コイル
容器とは別体に設け、かつ、コイル容器内の冷却媒体を
超電導を保つ必要最小限の量とするか、あるいは、前記
超電導磁石の中心から上下コイル容器の開放部を見たと
きに前記磁極で制限される上下方向の角度である視野角
が30°以上であるか、又は前記コイル容器に液体冷媒
を供給する冷却媒体タンクを前記コイル容器とは別体に
設け、これら両者を通路で連絡すると共に、超電導コイ
ルからの渡り線が前記冷却媒体タンク内で配線され、こ
の冷却媒体タンク内で渡り線と永久電流スイッチが接続
されていることを特徴とする。In order to achieve another object, according to the present invention, a cooling medium tank for supplying a cooling medium for a coil container accommodating the superconducting coil together with a cooling medium is provided separately from the coil container, and , The cooling medium in the coil container is set to the minimum necessary amount for maintaining superconductivity, or at the vertical angle limited by the magnetic poles when the opening of the upper and lower coil containers is seen from the center of the superconducting magnet. A certain viewing angle is 30 ° or more, or a cooling medium tank for supplying a liquid refrigerant to the coil container is provided separately from the coil container, and both are connected by a passage, and a crossover wire from the superconducting coil is provided. Is wired in the cooling medium tank, and the crossover and the permanent current switch are connected in the cooling medium tank.
【0011】さらに、本発明は、請求項1及至8のいず
れかに記載の超電導磁石と、被検体を乗せ、相対する前
記超電導磁石のコイル容器間を移動可能なベッドと、被
検体からの核磁気共鳴信号を解析する制御装置とを備え
たMRI装置としたことを特徴とする。Further, the present invention provides a superconducting magnet according to any one of claims 1 to 8, a bed on which a subject is placed and which is movable between coil containers of the superconducting magnet facing each other, and a nucleus from the subject. It is characterized in that it is an MRI apparatus provided with a control device for analyzing a magnetic resonance signal.
【0012】[0012]
【発明の実施の形態】以下、本発明の実施例を図面に従
って説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.
【0013】まず、MRI装置の概略構成について説明
する。MRI装置は図18に示す如く、超電導コイル
(図示せず)、該超電導コイルを冷却媒体(例えば液体
ヘリウム)と共に収納するコイル容器11,12、前記
冷却媒体を冷却する冷却媒体タンク41、及び冷却媒体
を冷却する冷凍機51から超電導磁石80と、被検体を
乗せるベッド90と、被検体からの核磁気共鳴信号を解
析する制御装置100とから構成され、前記コイル容器
11,12を相互に離間して相対向するするように配置
すると共に、両者コイル容器11,12間に磁場空間を
形成し、ここをベッド90に乗った被検体を通して断層
撮影を行うものである。First, a schematic structure of the MRI apparatus will be described. As shown in FIG. 18, the MRI apparatus includes a superconducting coil (not shown), coil containers 11 and 12 that house the superconducting coil together with a cooling medium (for example, liquid helium), a cooling medium tank 41 that cools the cooling medium, and a cooling. It is composed of a refrigerator 51 for cooling the medium, a superconducting magnet 80, a bed 90 on which a subject is placed, and a controller 100 for analyzing a nuclear magnetic resonance signal from the subject, and the coil containers 11 and 12 are separated from each other. Then, a magnetic field space is formed between the coil containers 11 and 12 while facing each other, and tomography is performed through the subject on the bed 90.
【0014】次に、上記MRI装置に採用される超電導
磁石の各実施例について以下に説明する。Next, each embodiment of the superconducting magnet used in the MRI apparatus will be described below.
【0015】図1,図2及び図3に超電導磁石の第1の
実施例を示す。図3は図1から磁極支持部材71,7
2、磁極81,82、サポート部材63を除いたもので
ある。FIGS. 1, 2 and 3 show a first embodiment of the superconducting magnet. FIG. 3 shows the magnetic pole support members 71, 7 from FIG.
2, the magnetic poles 81 and 82, and the support member 63 are removed.
【0016】該図に示す如く、本実施例は、コイル容器
11,12に冷却媒体を供給する冷却媒体タンク(以下
Heタンクという)41をコイル容器11,12とは別
体に設けると共に、該Heタンク41に前記冷凍機51
を設置し、かつ、前記Heタンク41とコイル容器1
1,12とをそれぞれ冷却媒体流通用の通路31,32
(配管)で接続している。そして、コイル容器11,1
2は通路31,32を介してHeタンク41に支持され
ている。As shown in the figure, in this embodiment, a cooling medium tank (hereinafter referred to as He tank) 41 for supplying a cooling medium to the coil containers 11 and 12 is provided separately from the coil containers 11 and 12. The refrigerator 51 is added to the He tank 41.
And the He tank 41 and the coil container 1 are installed.
1 and 12 are passages 31 and 32 for circulating the cooling medium, respectively.
(Piping) is connected. And the coil containers 11, 1
2 is supported by the He tank 41 via the passages 31 and 32.
【0017】コイル容器11,12には円環状の空間が
形成され、その中に強磁性体製の磁極81,82を設置
し、磁極81,82を含めた上コイル部と下コイル部の
支持を、サポート部材63にて行なうようにしている。An annular space is formed in the coil containers 11 and 12, and magnetic poles 81 and 82 made of a ferromagnetic material are installed in the space to support the upper coil portion and the lower coil portion including the magnetic poles 81 and 82. Is performed by the support member 63.
【0018】つまり、磁極81,82を備えた上下のコ
イル容器11,12を磁極支持部材71,72で支持
し、これを介して上下のコイル容器11,12がサポー
ト部材63に支持されている。この磁極支持部材71,
72は強磁性体で構成されている。That is, the upper and lower coil containers 11 and 12 having the magnetic poles 81 and 82 are supported by the magnetic pole support members 71 and 72, and the upper and lower coil containers 11 and 12 are supported by the support member 63 via the magnetic pole support members 71 and 72. . This magnetic pole support member 71,
72 is made of a ferromagnetic material.
【0019】コイル容器11,12とHeタンク41は
それぞれ通路31,32で接続され、これによりHeタ
ンク41からコイル容器11,12へ液体Heが供給さ
れる。上記した如く、Heタンク41には冷凍機51が
設置されているが、この冷凍機51はガス化した冷媒を
液化するためのものである。The coil containers 11 and 12 and the He tank 41 are connected by passages 31 and 32, respectively, whereby liquid He is supplied from the He tank 41 to the coil containers 11 and 12. As described above, the refrigerator 51 is installed in the He tank 41, and the refrigerator 51 is for liquefying the gasified refrigerant.
【0020】次に、図2に示す如く、コイル容器11,
12は、He容器112,122に超電導コイル11
3,123が冷却媒体と共に収納され、更にシールド板
111,121を備え、真空断熱されるとともに冷凍機
51にて冷却されている。超電導コイル113,123
からは超電導渡り線711がHeタンク41の内部まで
配線され、ここで超電導スイッチ602や保護抵抗60
1と接続されている。超電導コイルは液体He(4.2
K) により冷却され、この温度では電流の流れに対して
零点抵抗を有する。超電導コイルは超電導遷移温度未満
で超電導となる(即ち電流の流れに対してほぼ零点抵抗
を示す)低温または高温超電導体のような、任意の材料
で形成することもできる。Next, as shown in FIG. 2, the coil container 11,
12 is the superconducting coil 11 in the He containers 112 and 122.
3, 123 are housed together with a cooling medium, and further provided with shield plates 111, 121, which are vacuum-insulated and cooled by the refrigerator 51. Superconducting coils 113, 123
From here, a superconducting crossover 711 is wired to the inside of the He tank 41, where the superconducting switch 602 and the protective resistor 60 are connected.
It is connected to 1. Superconducting coil is liquid He (4.2
It is cooled by K) and has a zero resistance to current flow at this temperature. The superconducting coil can also be formed of any material, such as a low temperature or high temperature superconductor that becomes superconducting below the superconducting transition temperature (ie exhibits near zero resistance to the flow of current).
【0021】一般に低温超電導体は、絶対0度に近い温
度で超電導遷移を行う。高温超電導体は、絶対0度より
かなり高い温度で超電導遷移を行う。Generally, a low-temperature superconductor makes a superconducting transition at a temperature close to 0 degrees absolute. High-temperature superconductors make superconducting transitions at temperatures well above absolute 0 degrees.
【0022】一例として、低温超電導体としては、ニオ
ブ・チタンをフィラメントにして銅をマトリクスにした
ものが挙げられる。あるいはまた、他の低温超電導体ま
たは高温超電導体として類別された材料のような、超電
導に適したいずれかの材料を、この用途に利用すること
もできる。As an example, as the low-temperature superconductor, niobium-titanium is used as a filament and copper is used as a matrix. Alternatively, any material suitable for superconductivity can be utilized for this application, such as other materials categorized as low temperature or high temperature superconductors.
【0023】また、超電導コイル113,123はパワ
ーリード811に電源805を接続することにより励磁
される。励磁後は電源805はパワーリード811から
切り離す。The superconducting coils 113 and 123 are excited by connecting a power source 805 to the power lead 811. After the excitation, the power source 805 is disconnected from the power lead 811.
【0024】パワーリード811は低温部電流導入端子
812を経由して永久電流スイッチ602と保護抵抗6
01を挟む超電導渡り線711に接続されている。The power lead 811 is connected to the permanent current switch 602 and the protection resistor 6 via the low temperature part current introduction terminal 812.
01 is connected to a superconducting crossover 711.
【0025】Heタンク41には圧力センサ801が設
置されており、圧力センサ801からの出力信号は制御
ボックス802に取り込まれ、ヒータ803の通電量を
制御することにより、タンク内圧をほぼ一定にできるの
で、液体He量が適量に保たれる。A pressure sensor 801 is installed in the He tank 41, and an output signal from the pressure sensor 801 is fetched into a control box 802, and the energization amount of the heater 803 is controlled, whereby the tank internal pressure can be made substantially constant. Therefore, the amount of liquid He is maintained at an appropriate amount.
【0026】即ち、冷凍機51は連続的に運転され、液
体He量はHeタンク41内の圧力を検知してヒータ8
03によって制御される。That is, the refrigerator 51 is continuously operated, and the liquid He amount is detected by the pressure in the He tank 41 and the heater 8 is detected.
Controlled by 03.
【0027】本構成によればコイル容器11,12とH
eタンクが通路31,32を介して離れた位置にあるの
で、冷凍機51の振動がコイル容器11,12に伝播し
にくい構造となっている。従って、超電導コイルで形成
する磁場空間での磁場均一度に影響を与えるのを低減す
ることが可能となる。また、磁極81,82を設けてい
るので、不均一になりやすい中央部の磁場を磁石の増や
すことなく均一な磁場が形成せきるので安価にMRIを
構成できる。According to this configuration, the coil containers 11, 12 and H
Since the e-tank is located away from each other via the passages 31 and 32, the vibration of the refrigerator 51 does not easily propagate to the coil containers 11 and 12. Therefore, it is possible to reduce the influence on the magnetic field homogeneity in the magnetic field space formed by the superconducting coil. Further, since the magnetic poles 81 and 82 are provided, a uniform magnetic field can be formed without increasing the number of magnets in the central magnetic field, which tends to become non-uniform, so that the MRI can be constructed at low cost.
【0028】また、Heタンク41が磁場空間と遠ざか
ることにより、Heタンク41内部に永久電流スイッチ
602及び永久電流スイッチの超電導接続701を設置
することにより経験磁場が低減するので、これらの負荷
率を低く(余裕度を大きく)設定することが可能となり
コスト低減が達成されるとともに信頼性が向上する。ま
た、永久電流スイッチや超電導接続部をHeタンク内に
配置することによりコイル容器の大きさを必要最小限に
抑えることが可能となる。即ち、コイルを超伝導に保持
するに足る必要最小限の液体ヘリウム量とすることによ
り、コイル容器内の液体ヘリウムの量を削減できるの
で、コイル容器寸法を小型化できる。これにより、被検
体の入る空間をより広く取ることが可能になると共に、
被検体にとって圧迫感が少なくなる。さらに、画像を見
ながら手術するという、検査中の被検体に対するという
医療的アクセスがより容易となる。Further, since the He tank 41 is moved away from the magnetic field space, the permanent magnetic switch 602 and the superconducting connection 701 of the persistent current switch are installed inside the He tank 41 to reduce the empirical magnetic field. It is possible to set a low value (a large margin), cost reduction is achieved, and reliability is improved. Further, by disposing the permanent current switch and the superconducting connection portion in the He tank, it becomes possible to minimize the size of the coil container. That is, the amount of liquid helium in the coil container can be reduced by setting the necessary minimum amount of liquid helium to hold the coil in superconductivity, so that the size of the coil container can be reduced. This makes it possible to take a wider space for the subject,
The subject feels less oppressive. Furthermore, it becomes easier to perform a medical operation such as performing an operation while seeing an image, that is, a subject under examination.
【0029】図4は図1のコイル周辺を表す模式図であ
る。この図を用いて視野角を定義する。即ち、磁石8
1,82の中心0から上コイル11と下コイル12の開
放部を見たときに、磁極で制限される上下方向の角度を
視野角と呼ぶ。本実施例では、実施例1に述べたように
コイル容器をコンパクトにすることにより、磁極部高さ
(図中b寸法)よりもコイル容器高さ(図中a寸法)を
低くすることにより、視野角を大きくとることができ、
例えば30°以上の構成が可能である。FIG. 4 is a schematic view showing the periphery of the coil shown in FIG. The viewing angle is defined using this figure. That is, the magnet 8
When viewing the open portions of the upper coil 11 and the lower coil 12 from the center 0 of 1, 82, the vertical angle limited by the magnetic poles is called the viewing angle. In this embodiment, as described in the first embodiment, by making the coil container compact, the height of the coil container (dimension a in the figure) is lower than the height of the magnetic pole portion (dimension a in the figure). You can take a wide viewing angle,
For example, a configuration of 30 ° or more is possible.
【0030】図5の実施例2は、上述した実施例1に記
載されているコイル容器11,12とHeタンク41を
接続する通路31,32の途中にベローズ等の振動隔離
手段33,34を設けた例である。本発明は、冷凍機が
設置されている冷却媒体タンク41とコイル容器11,
12との間に通路を設けて距離を確保しているので本質
的に冷凍機振動を受けにくい構造であるが、さらに上記
のような振動隔離手段を通路31,32に設けることに
より、振動絶縁が確実なものとなる。In the second embodiment of FIG. 5, vibration isolation means 33, 34 such as bellows are provided in the middle of the passages 31, 32 connecting the coil containers 11, 12 and the He tank 41 described in the first embodiment. This is an example provided. The present invention relates to a cooling medium tank 41 in which a refrigerator is installed and a coil container 11,
Since a passage is provided between the passage 12 and 12 and the distance is secured, the structure is essentially resistant to vibration of the refrigerator. However, by providing the above-mentioned vibration isolation means in the passages 31 and 32, vibration isolation can be achieved. Will be certain.
【0031】これにより、冷凍機振動のコイル容器への
伝達をより効果的に抑制することが可能となる。This makes it possible to more effectively suppress transmission of refrigerating machine vibration to the coil container.
【0032】図6に超電導磁石の第3の実施例を示す。FIG. 6 shows a third embodiment of the superconducting magnet.
【0033】本実施例はコイル容器11,12に冷却媒
体を供給する冷却媒体タンク(以下Heタンクという)
41をコイル容器11,12とは別体に設けると共に、
該Heタンク41に前記冷凍機51を設置し、かつ、前
記Heタンク41とコイル容器11,12とを冷却媒体
流通用の通路31(配管)で接続しているものである。
そして、コイル容器11,12は支持部材61を介して
Heタンク41に支持されている。In this embodiment, a cooling medium tank for supplying a cooling medium to the coil containers 11 and 12 (hereinafter referred to as He tank).
41 is provided separately from the coil containers 11 and 12, and
The refrigerator 51 is installed in the He tank 41, and the He tank 41 and the coil containers 11 and 12 are connected by a passage 31 (pipe) for circulating a cooling medium.
The coil containers 11 and 12 are supported by the He tank 41 via the support member 61.
【0034】更に、上下のコイル容器11,12は連結
通路21で接続され、この中を液体He,Heガスが通
るとともに、コイル接続線等が通っている。また、コイ
ル容器11とHeタンク41は通路31で接続され、こ
れによりHeタンク41からコイル容器11へ液体He
が供給されるとともにHeガスはHeタンク41へ回収
されるようになっている。上記した如く、Heタンク4
1には冷凍機51が設置されているが、この冷凍機51
はHeタンク41へ回収されたHeガスを凝縮するため
のものである。Further, the upper and lower coil containers 11 and 12 are connected by a connection passage 21, through which liquid He and He gas pass, as well as coil connection lines and the like. Further, the coil container 11 and the He tank 41 are connected by the passage 31, so that the liquid He is transferred from the He tank 41 to the coil container 11.
Is supplied and the He gas is collected in the He tank 41. As mentioned above, He tank 4
1 has a refrigerator 51 installed.
Is for condensing the He gas collected in the He tank 41.
【0035】本構成によればコイル容器11,12とH
eタンクが通路31を介して離れた位置にあるので、冷
凍機51の振動がコイル容器11,12に伝播しにくい
構造となっている。従って、超電導コイルで形成する磁
場空間での磁場均一度に影響を与えるのを低減すること
が可能となる。According to this configuration, the coil containers 11, 12 and H
Since the e-tank is located at a position separated via the passage 31, the vibration of the refrigerator 51 is difficult to propagate to the coil containers 11 and 12. Therefore, it is possible to reduce the influence on the magnetic field homogeneity in the magnetic field space formed by the superconducting coil.
【0036】図7に超電導磁石の第4の実施例を示す。FIG. 7 shows a fourth embodiment of the superconducting magnet.
【0037】本実施例は、第3の実施例において上下の
コイル容器11,12をサポートするコイル容器支持部
材62をHeタンク41とは別に用意した場合の構成で
ある。このように構成してもその効果は第1の実施例と
同様だが、Heタンク41をコンパクトに構成できる場
合は、コイル容器支持部材62を設けた方が実施例1よ
りも合理的に構成できる。In this embodiment, a coil container support member 62 for supporting the upper and lower coil containers 11 and 12 in the third embodiment is prepared separately from the He tank 41. Even if configured in this way, the effect is similar to that of the first embodiment, but if the He tank 41 can be made compact, it is more rational to provide the coil container support member 62 than the first embodiment. .
【0038】図8に超電導磁石の第5の実施例を示す。FIG. 8 shows a fifth embodiment of the superconducting magnet.
【0039】本実施例は、第3の実施例の構成に加え、
強磁性体部材71,72をコイル容器11,12の外側
(コイル対向面とは反対側)に配置した場合である。こ
の構成でもその効果は第1の実施例と同様だが、強磁性
体部材71,72をこの位置に配置することにより、漏
れ磁場を低減させることが可能となる。場合によっては
アクティブシールド用コイルを強磁性体部材71,72
の上に配置して、磁場シールド性能を向上させることも
可能である。コイル容器11とHeタンク41は通路
(図示せず)を介して接続されている。In addition to the structure of the third embodiment, this embodiment
This is a case where the ferromagnetic members 71 and 72 are arranged outside the coil containers 11 and 12 (on the side opposite to the coil facing surface). Even with this configuration, the effect is similar to that of the first embodiment, but by arranging the ferromagnetic members 71 and 72 at this position, it is possible to reduce the leakage magnetic field. In some cases, the active shield coil may be replaced by the ferromagnetic members 71, 72.
It is also possible to arrange it on the top surface to improve the magnetic field shield performance. The coil container 11 and the He tank 41 are connected via a passage (not shown).
【0040】図9,図10に超電導磁石の第6の実施例
を示す。図10は、図9から磁極支持部材71,72、
磁極,サポート部材63を除いたものである。9 and 10 show a sixth embodiment of the superconducting magnet. FIG. 10 shows the magnetic pole support members 71, 72 from FIG.
The magnetic pole and the support member 63 are removed.
【0041】本実施例は、強磁性体部材71,72が外
側に配置されているコイル容器11,12をHeタンク
41とは別の部材63で支持した場合である。In this embodiment, the coil containers 11 and 12 having the ferromagnetic members 71 and 72 arranged outside are supported by a member 63 different from the He tank 41.
【0042】第4の実施例で述べた如く、Heタンク4
1をコンパクトに構成できる場合は、Heタンク41と
は別にサポート63を設けた方が安価にできる。また、
このサポートを強磁性体(鉄材)で構成すると上下の強
磁性体部材71,72と合わせて磁気回路が構成される
ことにより、漏洩磁場を抑制することがより効果的に可
能となる。As described in the fourth embodiment, the He tank 4
When 1 can be configured compactly, it is cheaper to provide the support 63 separately from the He tank 41. Also,
When this support is made of a ferromagnetic material (iron material), the magnetic circuit is configured together with the upper and lower ferromagnetic material members 71 and 72, so that the leakage magnetic field can be more effectively suppressed.
【0043】図11に超電導磁石の第7の実施例を示
す。FIG. 11 shows a seventh embodiment of the superconducting magnet.
【0044】本実施例は、コイル容器11a,12aに
円環状の空間を形成し、その中に強磁性体製の磁極8
1,82を設置し、磁極81,82を含めた上コイル部
と下コイル部の支持を、Heタンク41で兼用して行う
ようにしている。即ち、このHeタンク41に支持部材
64,65を介して磁極81,82が設置されたコイル
容器11a,12aを支持している。この支持部材6
4,65は非磁性体で構成されている。In this embodiment, an annular space is formed in the coil containers 11a and 12a, and a magnetic pole 8 made of a ferromagnetic material is formed in the space.
1, 82 are installed, and the He tank 41 also serves to support the upper coil portion and the lower coil portion including the magnetic poles 81 and 82. That is, the He tank 41 supports the coil containers 11a and 12a in which the magnetic poles 81 and 82 are installed via the support members 64 and 65. This support member 6
Reference numerals 4 and 65 are made of a non-magnetic material.
【0045】本実施例の構成でも上述した第3の実施例
と同様な効果が得られることは勿論、磁極81,82を
設けているので、磁場強度や磁場均一度によっては、こ
の磁極81,82がある方が安価に構成できる。In the structure of this embodiment, the same effects as those of the above-mentioned third embodiment can be obtained. Of course, since the magnetic poles 81 and 82 are provided, depending on the magnetic field strength and the magnetic field homogeneity, the magnetic pole 81, If 82 is provided, the cost can be reduced.
【0046】図12に超電導磁石の第8の実施例を示
す。FIG. 12 shows an eighth embodiment of the superconducting magnet.
【0047】本実施例は、コイル容器11,12の支持
をHeタンク41ではなく、Heタンク41とは別にサ
ポート部材63を設け、これを支持部材64,65を一
体にして支持している。本実施例でもその効果は上述し
た第1の実施例と同様であり、しかも、Heタンク41
をコンパクトに構成できる場合は、安価にできる。In this embodiment, the coil containers 11 and 12 are not supported by the He tank 41, but by a support member 63 provided separately from the He tank 41, and the support members 64 and 65 are integrally supported. The effect of this embodiment is similar to that of the first embodiment described above, and the He tank 41
If it can be configured compactly, the cost can be reduced.
【0048】図13に超電導磁石の第9の実施例を示
す。FIG. 13 shows a ninth embodiment of the superconducting magnet.
【0049】本実施例は、磁極を備えた上下のコイル容
器11,12を磁極支持部材71,72で覆い、これを
介してHeタンク41に支持している例である。この磁
極支持部材71,72は強磁性体で構成されている。本
実施例の構成とすることにより、上述した実施例と同様
の効果が得られることは勿論、漏洩磁場を低減させるた
めには有効である。更に、漏洩磁場を低減させるために
は、強磁性体の外側に磁場シールド用コイルを設置した
方が効果がある。In this embodiment, the upper and lower coil containers 11 and 12 having magnetic poles are covered with magnetic pole supporting members 71 and 72, and the He tank 41 is supported via the magnetic pole supporting members 71 and 72. The magnetic pole support members 71 and 72 are made of a ferromagnetic material. With the configuration of this embodiment, the same effects as those of the above-described embodiments can be obtained, and it is effective to reduce the leakage magnetic field. Further, in order to reduce the leakage magnetic field, it is more effective to install the magnetic field shield coil outside the ferromagnetic material.
【0050】図14,図15に超電導磁石の第10の実
施例を示す。図15は、図14から磁極支持部材71,
72、磁極,サポート部材63を除いたものである。14 and 15 show a tenth embodiment of a superconducting magnet. FIG. 15 shows the magnetic pole support members 71,
72, the magnetic pole, and the support member 63 are removed.
【0051】本実施例は、Heタンク41とは別にサポ
ート部材63を設け、これとコイル容器11,12を覆
うように設けられた磁極支持部材71,72を一体にし
てコイル容器11,12を支持し、しかも、磁極支持部
材71,72を強磁性体で構成すると共に、上下のコイ
ル容器11,12を連結するサポート部材63にも強磁
性を使用した場合である。In this embodiment, a support member 63 is provided separately from the He tank 41, and the magnetic pole support members 71 and 72 provided so as to cover the coil containers 11 and 12 are integrated to form the coil containers 11 and 12. In this case, the magnetic pole support members 71 and 72 are made of a ferromagnetic material and are also used as the support member 63 that connects the upper and lower coil containers 11 and 12.
【0052】本実施例の構成とすることにより、上述し
た実施例と同様な効果が得られることは勿論、磁極8
1,82に磁気回路を組みあわせることにより磁束を封
じ込め、より漏洩磁場を低減させることが可能となる。With the structure of this embodiment, the same effects as those of the above-mentioned embodiment can be obtained, and the magnetic pole 8 can be obtained.
By combining a magnetic circuit with 1, 82, the magnetic flux can be contained and the leakage magnetic field can be further reduced.
【0053】図16に示す実施例は、上下コイル部サポ
ート63が複数(本例では2本)の場合である。The embodiment shown in FIG. 16 is a case where there are a plurality of upper and lower coil portion supports 63 (two in this example).
【0054】図17に示す実施例は、相対向するコイル
容器11,12が左右に相対向するよう磁石が横置きに
配置された例である。本実施例では被検体が立ったまま
検査可能な装置の構成が可能となる。The embodiment shown in FIG. 17 is an example in which the magnets are horizontally arranged so that the coil containers 11 and 12 facing each other face each other on the left and right sides. In the present embodiment, it is possible to configure an apparatus capable of inspecting a subject while standing.
【0055】[0055]
【発明の効果】以上説明した本発明によれば、超電導コ
イルに対する冷凍機振動の影響を抑制することができる
ので、画像の乱れが防止できるという効果がある。ま
た、装置が小型化しても被検体が入る空間を大きく取る
ことができるので、被検体に圧迫感を与えないでMRI
装置に採用する場合には有効である。According to the present invention described above, the influence of the refrigerator vibration on the superconducting coil can be suppressed, so that the image disturbance can be prevented. Further, even if the apparatus is downsized, a large space for the subject can be taken, so that the MRI can be performed without giving a feeling of pressure to the subject.
It is effective when it is adopted in the device.
【図1】本発明の超電導磁石の一実施例を示す斜視図で
ある。FIG. 1 is a perspective view showing an embodiment of a superconducting magnet of the present invention.
【図2】本発明の他の実施例である超電導磁石の斜視図
である。FIG. 2 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図3】本発明の他の実施例である超電導磁石の斜視図
である。FIG. 3 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図4】本発明の他の実施例である超電導磁石の斜視図
である。FIG. 4 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図5】本発明の他の実施例である超電導磁石の斜視図
である。FIG. 5 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図6】本発明の他の実施例である超電導磁石の斜視図
である。FIG. 6 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図7】本発明の他の実施例である超電導磁石の斜視図
である。FIG. 7 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図8】本発明の他の実施例である超電導磁石の斜視図
である。FIG. 8 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図9】本発明の他の実施例である超電導磁石の斜視図
である。FIG. 9 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図10】本発明の他の実施例である超電導磁石の斜視
図である。FIG. 10 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図11】本発明の他の実施例である超電導磁石の斜視
図である。FIG. 11 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図12】本発明の他の実施例である超電導磁石の斜視
図である。FIG. 12 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図13】本発明の他の実施例である超電導磁石の斜視
図である。FIG. 13 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図14】本発明の他の実施例である超電導磁石の斜視
図である。FIG. 14 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図15】本発明の他の実施例である超電導磁石の斜視
図である。FIG. 15 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図16】本発明の他の実施例である超電導磁石の斜視
図である。FIG. 16 is a perspective view of a superconducting magnet which is another embodiment of the present invention.
【図17】本発明の超電導磁石を用いた磁気共鳴イメー
ジング装置の斜視図である。FIG. 17 is a perspective view of a magnetic resonance imaging apparatus using the superconducting magnet of the present invention.
11,12…コイル容器、21…連結通路、31,32
…通路、41…Heタンク、51…冷凍機、64,65
…支持部材、81,82…磁極、111…シールド板、
112…コイル用He容器、113…超電導コイル巻
線、601…保護抵抗、602…永久電流スイッチ、7
01…超電導接続、711…超電導渡り線。11, 12 ... Coil container, 21 ... Connection passage, 31, 32
... passage, 41 ... He tank, 51 ... refrigerator, 64, 65
... Support member, 81, 82 ... Magnetic pole, 111 ... Shield plate,
112 ... He container for coil, 113 ... Superconducting coil winding, 601 ... Protective resistance, 602 ... Permanent current switch, 7
01 ... Superconducting connection, 711 ... Superconducting crossover.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 24/06 510D (72)発明者 山本 勉 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内 (72)発明者 和田山 芳英 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 竹島 弘隆 東京都千代田区内神田一丁目1番14号 株 式会社日立メディコ内 (72)発明者 榊原 健二 東京都千代田区内神田一丁目1番14号 株 式会社日立メディコ内 (72)発明者 本名 孝男 茨城県ひたちなか市市毛885−16 Fターム(参考) 4C096 AA20 AB32 AB50 AD02 AD08 CA02 CA16 CA34 CA36 CA54─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme Coat (reference) G01N 24/06 510D (72) Inventor Tsutomu Yamamoto 3-1-1 Sachimachi, Hitachi City, Ibaraki Stock Company Hitachi, Ltd. Nuclear Business Division (72) Inventor Yoshihide Wadayama 7-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Hirotaka Takeshima 1-1, Uchikanda, Chiyoda-ku, Tokyo No. 14 Inside the Hitachi Medical Co. (72) Inventor Kenji Sakakibara 1-14-1 Uchida Kanda, Chiyoda-ku, Tokyo Inside the Hitachi Medical Co. (72) Inventor Takao Hona 885-16 Ichige Ichika, Hitachinaka City, Ibaraki Prefecture Term (reference) 4C096 AA20 AB32 AB50 AD02 AD08 CA02 CA16 CA34 CA36 CA54
Claims (9)
体と共に収納するコイル容器と、前記冷却媒体を冷却す
る冷凍機とを備え、前記コイル容器を相互に離間して相
対向するように配置すると共に、両者コイル容器間に磁
場空間を形成する超電導磁石において、前記コイル容器
に冷却媒体を供給する冷却媒体タンクを前記コイル容器
とは別体に設け、かつ、該冷却媒体タンクに前記冷凍機
を設置すると共に、冷却媒体タンクとコイル容器とを冷
却媒体流通用の通路で連絡し、前記コイル容器に円環状
の空間部を形成すると共に、その空間部に強磁性体磁極
を配置したことを特徴とする超電導磁石。1. A superconducting coil, a coil container for accommodating the superconducting coil together with a cooling medium, and a refrigerator for cooling the cooling medium, wherein the coil containers are spaced apart from each other and arranged to face each other. Together with the superconducting magnet that forms a magnetic field space between both coil containers, a cooling medium tank for supplying a cooling medium to the coil container is provided separately from the coil container, and the refrigerator is provided in the cooling medium tank. In addition to being installed, the cooling medium tank and the coil container are connected by a passage for circulating the cooling medium, an annular space portion is formed in the coil container, and a ferromagnetic magnetic pole is arranged in the space portion. And a superconducting magnet.
側に強磁性体部材を設けたことを特徴とする請求項1記
載の超電導磁石。2. The superconducting magnet according to claim 1, wherein a ferromagnetic member is provided on the side opposite to the surfaces of the coil containers facing each other.
ると共に、該連結通路の内部を前記各コイル容器内の超
電導コイルを接続するリード線が通っていることを特徴
とする請求項1,2又は3のいずれかに記載の超電導磁
石。3. The coil vessels are connected to each other by a connecting passage, and a lead wire for connecting a superconducting coil in each of the coil vessels passes through the inside of the connecting passage. The superconducting magnet according to any one of 2 and 3.
シブル部が設けられていることを特徴とする請求項1に
記載の超電導磁石。4. The superconducting magnet according to claim 1, wherein a flexible portion is provided in the middle of the passage for circulating the cooling medium.
体と共に収納するコイル容器と、前記冷却媒体を冷却す
る冷凍機とを備え、前記コイル容器を相互に離間して相
対向するように配置すると共に、両者コイル容器間に磁
場空間を形成する超電導磁石において、前記コイル容器
に冷却媒体を供給する冷却媒体タンクを前記コイル容器
とは別体に設け、かつ、コイル容器内の冷却媒体を超電
導を保つ必要最小限の量としたことを特徴とする超電導
磁石。5. A superconducting coil, a coil container for accommodating the superconducting coil together with a cooling medium, and a refrigerator for cooling the cooling medium, and the coil containers are arranged so as to be spaced apart from each other and face each other. Together with the superconducting magnet that forms a magnetic field space between both coil containers, a cooling medium tank for supplying a cooling medium to the coil container is provided separately from the coil container, and the cooling medium in the coil container is superconducting. A superconducting magnet characterized by having a minimum necessary amount to be maintained.
体と共に収納するコイル容器と、前記冷却媒体を冷却す
る冷凍機とを備え、前記コイル容器を相互に離間して相
対向するように配置すると共に、両者コイル容器間に磁
場空間を形成する超伝導磁石において、前記コイル容器
に円環状の空間部を形成すると共に、その空間部に強磁
性体磁極が配置され、かつ、前記超電導磁石の中心から
上下コイル容器の開放部を見たときに前記磁極で制限さ
れる上下方向の角度である視野角が30°以上であるこ
とを特徴とする超電導磁石。6. A superconducting coil, a coil container for accommodating the superconducting coil together with a cooling medium, and a refrigerator for cooling the cooling medium, wherein the coil containers are spaced apart from each other and arranged to face each other. In addition, in a superconducting magnet that forms a magnetic field space between both coil containers, an annular space portion is formed in the coil container, a ferromagnetic magnetic pole is arranged in the space portion, and the center of the superconducting magnet. A superconducting magnet having a viewing angle of 30 ° or more, which is an angle in the vertical direction limited by the magnetic poles when the open portions of the upper and lower coil containers are viewed from above.
体の支持部材を介して前記冷却媒体タンクに支持されて
いることを特徴とする請求項4又は5に記載の超電導磁
石。7. The superconducting magnet according to claim 4, wherein each coil container including the magnetic poles is supported by the cooling medium tank via a non-magnetic support member.
体と共に収納するコイル容器と、前記冷却媒体を冷却す
る冷凍機とを備え、前記コイル容器を相互に離間して相
対向するように配置すると共に、両者コイル容器間に磁
場空間を形成する超電導磁石において、前記コイル容器
に液体冷媒を供給する冷却媒体タンクを前記コイル容器
とは別体に設け、これら両者を通路で連絡すると共に、
前記超電導コイルからの渡り線が前記冷却媒体タンク内
4で配線され、この冷却媒体タンク内で渡り線と永久電
流スイッチが接続されている超電導磁石。8. A superconducting coil, a coil container for accommodating the superconducting coil together with a cooling medium, and a refrigerator for cooling the cooling medium, wherein the coil containers are spaced apart from each other and arranged to face each other. Along with, in a superconducting magnet that forms a magnetic field space between both coil containers, a cooling medium tank for supplying a liquid refrigerant to the coil container is provided separately from the coil container, and both are connected by a passage,
A superconducting magnet in which a connecting wire from the superconducting coil is wired in the cooling medium tank 4 and a connecting wire and a permanent current switch are connected in the cooling medium tank.
導磁石と、被検体を乗せ、相対する前記超電導磁石のコ
イル容器間を移動可能なベッドと、被検体からの核磁気
共鳴信号を解析する制御装置を有する磁気共鳴イメージ
ング装置。9. A superconducting magnet according to any one of claims 1 to 8, a bed on which a subject is placed and movable between coil coils of the superconducting magnet facing each other, and a nuclear magnetic resonance signal from the subject. A magnetic resonance imaging apparatus having a controller for analyzing.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002266204A JP4065747B2 (en) | 2001-09-12 | 2002-09-12 | Superconducting magnet and magnetic resonance imaging apparatus using the same |
US10/292,003 US6667676B2 (en) | 2001-09-12 | 2002-11-12 | Superconducting magnet and magnetic resonance imaging apparatus using the same |
US10/633,508 US6816051B2 (en) | 2001-09-12 | 2003-08-05 | Superconducting magnet and magnetic resonance imaging apparatus using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-275895 | 2001-09-12 | ||
JP2001275895 | 2001-09-12 | ||
JP2002266204A JP4065747B2 (en) | 2001-09-12 | 2002-09-12 | Superconducting magnet and magnetic resonance imaging apparatus using the same |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003159230A true JP2003159230A (en) | 2003-06-03 |
JP2003159230A5 JP2003159230A5 (en) | 2005-10-27 |
JP4065747B2 JP4065747B2 (en) | 2008-03-26 |
Family
ID=26622039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002266204A Expired - Fee Related JP4065747B2 (en) | 2001-09-12 | 2002-09-12 | Superconducting magnet and magnetic resonance imaging apparatus using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4065747B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007007393A (en) * | 2005-06-27 | 2007-01-18 | General Electric Co <Ge> | Apparatus and method for controlling cryocooler by adjusting cooler gas flow oscillating frequency |
JP2009004693A (en) * | 2007-06-25 | 2009-01-08 | Hitachi Ltd | Superconductive magnet device and magnetic resonance imaging device |
JP2009170715A (en) * | 2008-01-17 | 2009-07-30 | Sumitomo Electric Ind Ltd | Superconducting coil, and cooling device of superconducting coil |
JP2012139099A (en) * | 2012-04-16 | 2012-07-19 | Sumitomo Electric Ind Ltd | Superconducting motor |
JP2016039917A (en) * | 2010-02-24 | 2016-03-24 | ビューレイ・インコーポレイテッドViewRay Incorporated | Split magnetic resonance imaging system |
JP2017530328A (en) * | 2014-09-08 | 2017-10-12 | シーメンス ヘルスケア リミテッドSiemens Healthcare Limited | Equipment for cryogenic cooling |
JP2020035958A (en) * | 2018-08-31 | 2020-03-05 | ジャパンスーパーコンダクタテクノロジー株式会社 | Superconducting magnet device |
-
2002
- 2002-09-12 JP JP2002266204A patent/JP4065747B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007007393A (en) * | 2005-06-27 | 2007-01-18 | General Electric Co <Ge> | Apparatus and method for controlling cryocooler by adjusting cooler gas flow oscillating frequency |
JP2009004693A (en) * | 2007-06-25 | 2009-01-08 | Hitachi Ltd | Superconductive magnet device and magnetic resonance imaging device |
JP2009170715A (en) * | 2008-01-17 | 2009-07-30 | Sumitomo Electric Ind Ltd | Superconducting coil, and cooling device of superconducting coil |
JP2016039917A (en) * | 2010-02-24 | 2016-03-24 | ビューレイ・インコーポレイテッドViewRay Incorporated | Split magnetic resonance imaging system |
US10571536B2 (en) | 2010-02-24 | 2020-02-25 | Viewray Technologies, Inc. | Split magnetic resonance imaging system |
JP2012139099A (en) * | 2012-04-16 | 2012-07-19 | Sumitomo Electric Ind Ltd | Superconducting motor |
JP2017530328A (en) * | 2014-09-08 | 2017-10-12 | シーメンス ヘルスケア リミテッドSiemens Healthcare Limited | Equipment for cryogenic cooling |
US10712077B2 (en) | 2014-09-08 | 2020-07-14 | Siemens Healthcare Limited | Arrangement for cryogenic cooling |
JP2020035958A (en) * | 2018-08-31 | 2020-03-05 | ジャパンスーパーコンダクタテクノロジー株式会社 | Superconducting magnet device |
JP7022035B2 (en) | 2018-08-31 | 2022-02-17 | ジャパンスーパーコンダクタテクノロジー株式会社 | Superconducting magnet device |
Also Published As
Publication number | Publication date |
---|---|
JP4065747B2 (en) | 2008-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3711659B2 (en) | Open magnetic resonance imaging magnet | |
EP0817211B1 (en) | Superconducting magnet device and magnetic resonance imaging device using the same | |
US7714574B2 (en) | Superconducting magnet with refrigerator and magnetic resonance imaging apparatus using the same | |
JP4266232B2 (en) | Superconducting magnet apparatus and magnetic resonance imaging apparatus | |
US5574417A (en) | Open MRI magnet with homogeneous imaging volume | |
JP3663262B2 (en) | Open magnetic resonance imaging magnet | |
EP0770882B1 (en) | Open MRI superconductive magnet with cryogenic-fluid cooling | |
JPH09223620A (en) | Open type electromagnet | |
US8171741B2 (en) | Electrically conductive shield for refrigerator | |
US6201462B1 (en) | Open superconductive magnet having a cryocooler coldhead | |
JP2000279394A (en) | Open style magnet with shield | |
US6664876B2 (en) | Superconducting magnet and magnetic resonance imaging apparatus using the same | |
JP2003159230A (en) | Superconducting magnet and magnetic resonance imaging apparatus using the same | |
JP3871789B2 (en) | Passive shield superconducting magnet | |
US6667676B2 (en) | Superconducting magnet and magnetic resonance imaging apparatus using the same | |
JP4023703B2 (en) | Magnetic resonance imaging system | |
US7482808B2 (en) | Superconductive magnet apparatus and magnetic resonance imaging apparatus | |
JP4565721B2 (en) | Superconducting magnet device and MRI device | |
JP2003111745A (en) | Superconductive magnet for magnetic resonance imaging equipment | |
JP2001110626A (en) | Superconducting magnet | |
JP2000012325A (en) | Superconducting magnetic device | |
JP2005121455A (en) | Noise to mask ratio measuring arrangement | |
JP2006141614A (en) | Magnet system, method of installing magnet system, and magnetic resonance image diagnostic apparatus | |
WO2005117036A1 (en) | Electrically conductive shield for refrigerator | |
JP2000102520A (en) | Magnetic resonance imaging instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050902 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050902 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20070222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071022 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080107 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110111 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120111 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |