JP2006305146A - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2006305146A
JP2006305146A JP2005132744A JP2005132744A JP2006305146A JP 2006305146 A JP2006305146 A JP 2006305146A JP 2005132744 A JP2005132744 A JP 2005132744A JP 2005132744 A JP2005132744 A JP 2005132744A JP 2006305146 A JP2006305146 A JP 2006305146A
Authority
JP
Japan
Prior art keywords
vacuum
magnetic field
coil
heat shield
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005132744A
Other languages
Japanese (ja)
Other versions
JP4700999B2 (en
Inventor
Kunihito Suzuki
邦仁 鈴木
Hirobumi Motoshiromizu
博文 本白水
Seiji Inoue
誠二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2005132744A priority Critical patent/JP4700999B2/en
Publication of JP2006305146A publication Critical patent/JP2006305146A/en
Application granted granted Critical
Publication of JP4700999B2 publication Critical patent/JP4700999B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the bearing load of a heat shield of a magnetic resonance imaging apparatus (hereafter, an MRI apparatus). <P>SOLUTION: The MRI apparatus is comprised of coil containers 21 and 22 which accommodate annular superconducting coils 11 and 12 to generate a static magnetic field together with refrigerants, the heat shields 31 and 32 which are disposed to surround the coil containers, vacuum containers 41 and 42 which are disposed to surround the heat shield and keep the insides vacuum, connection pipes 61 and 62 which support the vacuum containers to be vertically opposed to each other with a space and connect the vacuum containers to each other, and magnetic field adjustors 83 and 84 which are disposed in the upper and lower vacuum containers, wherein the bearing loads of the heat shields are reduced by directly supporting the magnetic adjustors on upper walls or lower walls of the individual vacuum containers through supporting members 81 and 82. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気共鳴イメージング装置(以下、MRI装置)に係り、特に、開放型のMRI装置に関する。   The present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus), and more particularly to an open type MRI apparatus.

開放型のMRI装置は、被検体が横臥される観測領域を挟んで一対の超電導コイルを上下に配置し、上下一対の超電導コイル間を例えば2本の支柱で支持することにより、観測領域を広く開放して、被検体に閉塞感を与えない構造になっている。   An open-type MRI apparatus widens an observation area by arranging a pair of superconducting coils above and below the observation area where the subject is lying and supporting the pair of upper and lower superconducting coils with, for example, two columns. The structure is open and does not give the subject a feeling of obstruction.

すなわち、超電導コイルを冷媒が封入された円環状のコイル容器に収納し、そのコイル容器を円環状の熱シールドにより包囲し、さらに円筒状の真空容器に収納して構成されるライオスタットを、観測領域を挟んで上下に対向させて配置し、上下のクライオスタットを例えば2本の連結管で連結して構成している。連結管内に、上下のコイル容器を連結する冷媒管と、その冷媒管を包囲して上下の熱シールドを連結する熱シールド管を配置している。また、観測領域に傾斜磁場を印加するための傾斜磁場コイル(以下、GCと省略する。)が、上下の真空容器に支持させてそれぞれ設けられている。さらに、観測領域に形成される静磁場の均一性を調整するために、上下の真空容器の内部に磁性体(一般に、鉄)からなる磁場調整体が配置される。   In other words, a superconducting coil is stored in an annular coil container filled with a refrigerant, the coil container is surrounded by an annular heat shield, and further a riostat configured by storing in a cylindrical vacuum container is observed. For example, two upper and lower cryostats are connected by two connecting pipes. A refrigerant pipe that connects the upper and lower coil containers and a heat shield pipe that surrounds the refrigerant pipe and connects the upper and lower heat shields are disposed in the connecting pipe. In addition, gradient magnetic field coils (hereinafter abbreviated as GC) for applying a gradient magnetic field to the observation region are provided to be supported by upper and lower vacuum vessels, respectively. Furthermore, in order to adjust the uniformity of the static magnetic field formed in the observation region, a magnetic field adjuster made of a magnetic material (generally iron) is disposed inside the upper and lower vacuum vessels.

このように構成されるMRI装置においては、静磁場の均一性を保持するとともに、静磁場の変動を抑制して、計測されるMR画像に悪影響を与えないようにするため、上下の超電導コイルの相対位置を保持することが重要である。そのため、クライオスタットを構成するコイル容器、熱シールド及び真空容器の支持関係を健全に保ち、かつ、高い断熱性能を有した支持を実現することが肝要である。   In the MRI apparatus configured as described above, in order to maintain the uniformity of the static magnetic field and suppress the fluctuation of the static magnetic field so as not to adversely affect the measured MR image, It is important to maintain the relative position. Therefore, it is important to realize a support having a high heat insulation performance while maintaining a healthy support relationship between the coil container, the heat shield, and the vacuum container constituting the cryostat.

そこで、特許文献1では、静磁場発生源である相対向する永久磁石が取り付けられた一対のベース継鉄相互間の支持を補強して、一対の永久磁石が対向する開口部ギャップを固定することにより、一対の永久磁石の相対位置を保持することが提案されている。これにより、特に、輸送時等の変形を抑制することができるとしている。   Therefore, Patent Document 1 reinforces the support between a pair of base yokes attached with opposing permanent magnets, which are static magnetic field generation sources, and fixes an opening gap where the pair of permanent magnets face each other. Thus, it has been proposed to maintain the relative position of the pair of permanent magnets. Thereby, in particular, it is possible to suppress deformation during transportation.

また、特許文献2には、超電導コイルが収納された冷却容器を3本の支持棒で真空容器の内壁に支持させ、冷却容器の支持系の支持剛性のバランスを取ることで、外部加振に対してほぼ同じ振動をするようにして、静磁場の変動を抑制することが提案されている。   In Patent Document 2, a cooling container containing a superconducting coil is supported on the inner wall of a vacuum container by three support rods, and the support rigidity of the cooling container support system is balanced, so that external excitation can be achieved. On the other hand, it has been proposed to suppress the fluctuation of the static magnetic field by causing substantially the same vibration.

特開2002−325743号公報JP 2002-325743 A 特開2002−159466号公報JP 2002-159466 A

ところで、GCにはパルス状の電流が流され、かつ静磁場中に設置されているため、GCの導体にパルス電流に応じたローレンツ力が作用して、GCに振動を誘発する。このGCの振動が支持部材等を介して静磁場発生源である超電導コイルに伝達して、超電導コイルが例えばミクロンオーダーで振動すると、静磁場が時間的に変動するからMR画像に悪影響を与える。   By the way, since a pulsed current flows through the GC and is installed in a static magnetic field, a Lorentz force corresponding to the pulse current acts on the GC conductor to induce vibration in the GC. When the vibration of the GC is transmitted to the superconducting coil that is a static magnetic field generation source through the support member or the like, and the superconducting coil vibrates in the micron order, for example, the static magnetic field fluctuates with time, and thus the MR image is adversely affected.

そこで、GCの振動が超電導コイルが収容されたコイル容器に伝わり難くするため、コイル容器を熱シールドを介して真空容器に支持させるとともに、GCを独立して真空容器に支持させることが行われている。さらに、特願2003−376367号に、上下のコイル容器及び熱シールドのうち、下のコイル容器を熱シールドを介して下の(床側の)真空容器にのみ固定し、上のコイル容器と熱シールドは上の真空容器に対して自由状態とすることにより、真空容器に支持されたGCの振動が超伝導コイルに伝わり難くした構造が提案されている。   Therefore, in order to make it difficult for the vibration of the GC to be transmitted to the coil container in which the superconducting coil is accommodated, the coil container is supported by the vacuum container via the heat shield, and the GC is supported by the vacuum container independently. Yes. Further, in Japanese Patent Application No. 2003-376367, of the upper and lower coil containers and the heat shield, the lower coil container is fixed only to the lower (floor side) vacuum container via the heat shield, and the upper coil container and the heat shield are heated. A structure has been proposed in which the shield is free from the upper vacuum vessel so that the vibration of the GC supported by the vacuum vessel is not easily transmitted to the superconducting coil.

しかし、従来、磁場調整体を熱シールドに支持させて設けていることから、輸送等において装置が衝撃を受けると、熱シールドに過大な負荷がかかるという問題がある。特に、真空容器に対して自由状態に保持された上の熱シールドに曲げや軸力で過大な負荷がかかる。このような問題について、特許文献1、2では、何ら考慮されていない。   However, since the magnetic field adjusting body is conventionally supported by the heat shield, there is a problem that an excessive load is applied to the heat shield when the device receives an impact during transportation or the like. In particular, an excessive load is applied to the heat shield held in a free state with respect to the vacuum vessel by bending or axial force. Patent Documents 1 and 2 do not consider such a problem at all.

そこで、本発明は、熱シールドの支持負荷を軽減することを課題とする。   Then, this invention makes it a subject to reduce the support load of a heat shield.

上記の課題を解決するため、本発明は、静磁場を発生する環状の超電導コイルを冷媒と共に収納するコイル容器と、該コイル容器を包囲して設けられた熱シールドと、前記熱シールドを包囲して設けられ内部が真空に保持された真空容器と、前記真空容器を空間を空けて上下に対向させて支持するとともに上下の前記真空容器を相互に連結する連結管と、上下の前記真空容器内に設置された磁性体からなる磁場調整体とを備えてなるMRI装置において、前記磁場調整体を支持部材を介して前記各真空容器の上壁又は底壁に支持することを特徴とする。つまり、磁場調整体を真空容器に直接支持することにより、熱シールドの支持負荷を軽減することを特徴とする。これにより、熱シールドを軽量化でき、GCの振動による超電導コイル、コイル容器及び熱シールドの応答変位を改善して、誤差磁場を低減できる。   In order to solve the above-described problems, the present invention provides a coil container that houses an annular superconducting coil that generates a static magnetic field together with a refrigerant, a heat shield that surrounds the coil container, and surrounds the heat shield. A vacuum vessel provided inside and maintained in a vacuum, a connecting pipe that supports the vacuum vessel so as to be opposed to each other vertically with a space therebetween, and connects the upper and lower vacuum vessels to each other, and the upper and lower vacuum vessels In the MRI apparatus comprising a magnetic field adjusting body made of a magnetic material installed in the apparatus, the magnetic field adjusting body is supported on an upper wall or a bottom wall of each vacuum vessel via a support member. That is, the support load of the heat shield is reduced by directly supporting the magnetic field adjusting body on the vacuum vessel. Thereby, a heat shield can be reduced in weight, the response displacement of a superconducting coil, a coil container, and a heat shield due to GC vibration can be improved, and an error magnetic field can be reduced.

この場合において、磁場調整体を支持する支持部材は、断熱性及び減衰性の少なくとも一方を有することが好ましい。断熱性を有する場合は、支持部材を介して真空容器から放熱される熱量を低減できるから、コイル容器の冷媒を冷却する冷凍機の負荷の増大を抑えることができる。また、減衰性を有する場合は、真空容器から磁場調整体に伝わる振動を減衰させて、磁場均一度の変動を抑えることができる。   In this case, it is preferable that the support member that supports the magnetic field adjuster has at least one of heat insulation and attenuation. In the case of heat insulation, the amount of heat radiated from the vacuum vessel through the support member can be reduced, so that an increase in the load on the refrigerator that cools the refrigerant in the coil vessel can be suppressed. Moreover, when it has a damping property, the vibration transmitted from the vacuum vessel to the magnetic field adjusting body can be attenuated, and the fluctuation of the magnetic field uniformity can be suppressed.

また、本発明は、静磁場を発生する環状の超電導コイルと、該超電導コイルを冷媒と共に収納するコイル容器と、該コイル容器を包囲して設けられた熱シールドと、前記熱シールドを包囲して設けられ内部が真空に保持された真空容器と、前記真空容器を空間を空けて上下に対向させて支持するとともに上下の前記真空容器を相互に連結する連結管と、上下の前記コイル容器を連結して前記連結管内に設けられた冷媒管と、上下の熱シールドを連結するとともに前記冷媒管を包囲して前記連結管内に設けられた熱シールド管と、上下の前記真空容器の対向面の内側にそれぞれ配置された傾斜磁場コイルと、上下の前記真空容器内に設置された磁性体からなる磁場調整体とを備えてなるMRI装置に適用できる。   The present invention also provides an annular superconducting coil that generates a static magnetic field, a coil container that houses the superconducting coil together with a refrigerant, a heat shield that surrounds the coil container, and surrounds the heat shield. A vacuum vessel provided inside is maintained in vacuum, a connecting pipe that supports the vacuum vessel so as to face the upper and lower sides with a space therebetween, and connects the upper and lower vacuum vessels to each other, and the upper and lower coil vessels are connected. And connecting the refrigerant pipe provided in the connecting pipe with the upper and lower heat shields and surrounding the refrigerant pipe, the heat shield pipe provided in the connecting pipe, and the inner sides of the opposing surfaces of the upper and lower vacuum vessels Can be applied to an MRI apparatus including a gradient magnetic field coil disposed in each of the above and the magnetic field adjustment body made of a magnetic body installed in the upper and lower vacuum vessels.

この場合、上の前記真空容器内に設けられた前記磁場調整体を第1の支持部材を介して上の前記熱シールドに支持し、下の前記真空容器内に設けられた前記磁場調整体を第2の支持部材を介して下の前記真空容器の底壁に支持して構成することができる。   In this case, the magnetic field adjuster provided in the upper vacuum vessel is supported by the upper heat shield via the first support member, and the magnetic field adjuster provided in the lower vacuum vessel is It can be configured to be supported on the bottom wall of the lower vacuum vessel via the second support member.

また、これに代えて、磁場調整体を第1の支持部材を介して各真空容器の上壁又は底壁に支持するとともに、傾斜磁場コイルを第2の支持部材を介して磁場調整体に支持して構成することができる。この場合は、傾斜磁場コイルを、真空容器の上壁又は底壁から浮かして配置することができ、これにより真空容器に直接伝達する傾斜磁場コイルの振動を低減できる。特に、第1と第2の支持部材は、断熱性及び減衰性の少なくとも一方を有するものとすることにより、振動及び冷凍機負荷の増大を抑制できる。   Alternatively, the magnetic field adjustment body is supported on the upper wall or the bottom wall of each vacuum vessel via the first support member, and the gradient magnetic field coil is supported on the magnetic field adjustment body via the second support member. Can be configured. In this case, the gradient magnetic field coil can be arranged so as to float from the upper wall or the bottom wall of the vacuum vessel, and thereby the vibration of the gradient magnetic field coil that is directly transmitted to the vacuum vessel can be reduced. In particular, the first and second support members can have at least one of heat insulation and damping, thereby suppressing vibration and increase in refrigerator load.

また、傾斜磁場コイルと磁場調整体が設置された空間と熱シールドとの間に隔壁を設け、傾斜磁場コイルと磁場調整体が設置された空間の真空度を真空容器内の真空度よりも低くして構成することができる。   In addition, a partition wall is provided between the space where the gradient magnetic field coil and the magnetic field adjustment body are installed and the heat shield, and the degree of vacuum in the space where the gradient magnetic field coil and the magnetic field adjustment body are installed is lower than the degree of vacuum in the vacuum vessel. Can be configured.

上述したように、本発明によれば、熱シールドの負荷荷重を軽減できるから、輸送等の衝撃に対する熱シールド自体の強度及び支持力を低減できる。その結果、熱シールド支持構造からの熱侵入量を軽減でき、冷凍機の負荷の増加を抑制できるだけでなく、GCの振動による超電導コイルの応答変位を改善して、誤差磁場を低減できる。   As described above, according to the present invention, since the load on the heat shield can be reduced, the strength and supporting force of the heat shield itself against impacts such as transportation can be reduced. As a result, the amount of heat intrusion from the heat shield support structure can be reduced and the increase in the load of the refrigerator can be suppressed, and the response displacement of the superconducting coil due to the vibration of the GC can be improved to reduce the error magnetic field.

また、上下のコイル容器はそれぞれ上下の熱シールドに支持され、上下の熱シールドの連結体は、下の真空容器の底壁に支持された構成の場合、つまり、下の熱シールドのみで超伝導コイルとコイル容器と熱シールドからなる連結体を下の真空容器の底壁に固定した構造とすることができる。これによれば、GCの振動が超電導コイルに伝わり難い支持構造となる。この場合は、輸送等の衝撃を受けた際に、衝撃力により大きく変形し、熱シールド支持に曲げや軸力で過大な荷重負荷が生じ、熱シールド支持が損傷してしまうおそれがあるが、本発明によれば、磁場調整体を真空容器に直接支持させたことにより、熱シールドに加わる負荷荷重を軽減できるので、輸送等の衝撃を受けた際の損傷発生を抑制できる。   In addition, the upper and lower coil containers are respectively supported by the upper and lower heat shields, and the connection body of the upper and lower heat shields is supported by the bottom wall of the lower vacuum container, that is, only the lower heat shield is superconductive. It can be set as the structure which fixed the connection body which consists of a coil, a coil container, and a heat shield to the bottom wall of the lower vacuum container. According to this, it becomes a support structure in which the vibration of GC is not easily transmitted to the superconducting coil. In this case, when receiving an impact such as transportation, it is greatly deformed by the impact force, and the heat shield support may be bent or have an excessive load load due to axial force, which may damage the heat shield support. According to the present invention, the load applied to the heat shield can be reduced by directly supporting the magnetic field adjusting body on the vacuum vessel, so that the occurrence of damage when receiving an impact such as transportation can be suppressed.

本発明によれば、GCの振動が超電導コイルに伝わり難い支持構造を採用しても、輸送等の衝撃に起因する熱シールドの支持負荷を軽減して、損傷発生を抑制できる。   According to the present invention, even if a support structure in which the vibration of the GC is not easily transmitted to the superconducting coil is adopted, the support load of the heat shield due to an impact such as transportation can be reduced, and the occurrence of damage can be suppressed.

以下、本発明の実施例を図面を参照して説明する。まず、本発明が適用可能なMRI装置の概要構成を図6に示す。図示のように、MRI装置は、超電導コイル(図示せず)、該超電導コイルを冷媒と共に収納するコイル容器(図示せず)、該コイル容器を包囲し、且つ内部が真空に保持された真空容器41、42と、上下のコイル容器間の冷媒を連結するように撮像空間99を挟んで配置された連結管61、62と、前記冷媒を冷却する冷凍機50からなる超電導磁石装置80と、被検体を乗せるベッド98と、被検体からの核磁気共鳴信号を解析する制御装置100とから構成され、真空容器41、42を相互に離間して相対向するように配置すると共に、両真空容器41、42間に垂直に磁場空間を形成し、ベッド98に乗った被検体に対して断層撮影を行うものである。以下に、本発明が適用されたMRI装置の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 6 shows a schematic configuration of an MRI apparatus to which the present invention can be applied. As shown in the figure, the MRI apparatus includes a superconducting coil (not shown), a coil container (not shown) that houses the superconducting coil together with a refrigerant, a vacuum container that surrounds the coil container and is maintained in a vacuum. 41, 42, connecting pipes 61, 62 arranged with an imaging space 99 sandwiched so as to connect the refrigerant between the upper and lower coil containers, a superconducting magnet device 80 including a refrigerator 50 for cooling the refrigerant, A bed 98 on which a specimen is placed and a control device 100 for analyzing a nuclear magnetic resonance signal from the subject are arranged. The vacuum containers 41 and 42 are arranged so as to be spaced apart from each other and face each other. , 42 is formed vertically to form a magnetic field space, and tomography is performed on the subject on the bed 98. Embodiments of the MRI apparatus to which the present invention is applied will be described below.

図1に、本発明の実施例1を示す。図示のように、本実施例は、静磁場を発生する環状の上下一対の超電導コイル11、12と、超電導コイル11、12を冷媒19と共に収納する円環状の上下一対のコイル容器21、22と、コイル容器21、22を包囲して設けられた円環状の上下一対の熱シールド31、32と、熱シールド31、32を包囲して設けられ内部が真空に保持された円筒状の上下一対の真空容器41、42とにより、上下一対のクライオスタット51、52が構成されている。   FIG. 1 shows a first embodiment of the present invention. As shown in the figure, this embodiment includes a pair of upper and lower annular superconducting coils 11 and 12 that generate a static magnetic field, and a pair of annular upper and lower coil containers 21 and 22 that store the superconducting coils 11 and 12 together with a refrigerant 19. A pair of upper and lower annular heat shields 31 and 32 provided surrounding the coil containers 21 and 22 and a pair of upper and lower cylindrical shapes provided surrounding the heat shields 31 and 32 and maintained in a vacuum. The vacuum vessels 41 and 42 constitute a pair of upper and lower cryostats 51 and 52.

このように構成されるクライオスタット51、52は、複数(図示例では2本)の連結管61、62により上下の真空容器41、42を空間を空けて対向させて支持される。また、連結管61、62は、上下の真空容器41、42を相互に連結するとともに、上下のコイル容器21、22を連結する冷媒管と、上下の熱シールド31、32を連結する熱シールド管が挿通されるようになっている。   The cryostats 51 and 52 configured as described above are supported by a plurality of (two in the illustrated example) connecting pipes 61 and 62 with the upper and lower vacuum vessels 41 and 42 facing each other with a space therebetween. The connecting pipes 61 and 62 connect the upper and lower vacuum containers 41 and 42 to each other, and connect the upper and lower coil containers 21 and 22 to the refrigerant pipes and the upper and lower heat shields 31 and 32. Is to be inserted.

コイル容器21、22は、複数の垂直方向の支持部材71、72を介して、また、複数の横方向の支持部材73、74を介して熱シールド31、32の内壁に支持されている。熱シールド31、32の連結体は、下の真空容器42の底壁においてのみ支持されている。つまり、下の熱シールド32を複数の垂直方向の支持部材75を介して、また、複数の横方向の支持部材76を介して、真空容器42の底壁に支持されている。これらの支持部材71、72、73、74、75、76は、熱伝導率の小さい非磁性の材料、例えば、ガラス繊維補強エポキシ樹脂などの繊維補強合成樹脂材料で形成されている。   The coil containers 21 and 22 are supported on the inner walls of the heat shields 31 and 32 via a plurality of vertical support members 71 and 72 and a plurality of lateral support members 73 and 74. The connection body of the heat shields 31 and 32 is supported only on the bottom wall of the lower vacuum vessel 42. That is, the lower heat shield 32 is supported on the bottom wall of the vacuum vessel 42 via a plurality of vertical support members 75 and a plurality of lateral support members 76. These support members 71, 72, 73, 74, 75, and 76 are made of a nonmagnetic material having a low thermal conductivity, for example, a fiber reinforced synthetic resin material such as a glass fiber reinforced epoxy resin.

また、上下の真空容器41、42が対向する面の内側に、上下一対の傾斜磁場コイル(GC)101、102が取り付けられている。一対の熱シールド31、32の空心部に磁性体(例えば、鉄)からなる上下一対の磁場調整体83、84が設けられている。磁場調整体83は複数の支持部材81を介して真空容器41の上壁に支持されている。また、磁場調整体84は複数の支持部材82を介して真空容器42の底壁に支持されている。   A pair of upper and lower gradient magnetic field coils (GC) 101 and 102 are attached to the inside of the surface where the upper and lower vacuum vessels 41 and 42 face each other. A pair of upper and lower magnetic field adjusters 83 and 84 made of a magnetic material (for example, iron) are provided in the air cores of the pair of heat shields 31 and 32. The magnetic field adjuster 83 is supported on the upper wall of the vacuum vessel 41 via a plurality of support members 81. The magnetic field adjuster 84 is supported on the bottom wall of the vacuum vessel 42 via a plurality of support members 82.

このように構成されることから、本実施例によれば、磁場調整体83、84を真空容器41、42に直接支持していることから、熱シールド31、32の支持負荷を軽減することができる。これにより、熱シールド31、32を軽量化でき、GCの振動による超電導コイル、コイル容器及び熱シールドの応答変位を改善して、誤差磁場を低減できる。さらに、常温である磁場調整体83、84を、冷却が施された熱シールド31、32から支持を切り離したから、熱侵入量を減少させて、冷凍機の負荷を低減できる。   With this configuration, according to the present embodiment, since the magnetic field adjusters 83 and 84 are directly supported by the vacuum vessels 41 and 42, the support load of the heat shields 31 and 32 can be reduced. it can. Thereby, the heat shields 31 and 32 can be reduced in weight, the response displacement of the superconducting coil, the coil container, and the heat shield due to GC vibration can be improved, and the error magnetic field can be reduced. Furthermore, since the support of the magnetic field adjusters 83 and 84 at room temperature is separated from the cooled heat shields 31 and 32, the amount of heat penetration can be reduced, and the load on the refrigerator can be reduced.

特に、熱シールド31、32の負荷荷重を軽減できるから、輸送等の衝撃に対する熱シールド自体の強度及び支持力を低減できる。その結果、支持部材75、76からなる熱シールド支持構造を軽量化できるから、それらの支持構造からの熱侵入量を低減でき、冷凍機の負荷の増加を抑制できるだけでなく、GCの振動による超電導コイルの応答変位を改善して、誤差磁場を低減できる。   In particular, since the load on the heat shields 31 and 32 can be reduced, the strength and supporting force of the heat shield itself against impacts such as transportation can be reduced. As a result, since the heat shield support structure comprising the support members 75 and 76 can be reduced in weight, the amount of heat intrusion from these support structures can be reduced, the increase in the load on the refrigerator can be suppressed, and superconductivity due to the vibration of the GC An error magnetic field can be reduced by improving the response displacement of the coil.

また、熱シールド31、32の負荷荷重を軽減できるから、下の熱シールドのみで超伝導コイル11、12とコイル容器21、22と熱シールド31、32からなる連結体を、下(床側)の真空容器42の底壁に固定する構造を採用できる。また、この場合は、輸送等の衝撃を受けた際に、衝撃力により大きく変形し、熱シールド支持に曲げや軸力で過大な荷重負荷が生じが、熱シールドに加わる負荷荷重が軽減されているので、輸送等の衝撃を受けた際の損傷発生を抑制できる。   In addition, since the load applied to the heat shields 31 and 32 can be reduced, the connected body composed of the superconducting coils 11 and 12, the coil containers 21 and 22, and the heat shields 31 and 32 can be formed below (floor side) only by the lower heat shield. A structure of fixing to the bottom wall of the vacuum vessel 42 can be employed. Also, in this case, when receiving an impact such as transportation, it is greatly deformed by the impact force, and an excessive load load is generated by bending or axial force on the heat shield support, but the load load applied to the heat shield is reduced. Therefore, it is possible to suppress the occurrence of damage when receiving an impact such as transportation.

本実施例において、磁場調整体83、84を支持する支持部材81、82は、非磁性の金属材料(例えば、ステンレス、チタン、アルミニウム、銅、真鍮など)を用いることができる。これによれば、剛性が高いから、GCの振動に伴う磁場調整体83、84の振動を抑制できる。また、製作性に優れるから、支持強度に応じて種々の形状に対応できる。   In the present embodiment, the support members 81 and 82 that support the magnetic field adjusters 83 and 84 can be made of a nonmagnetic metal material (for example, stainless steel, titanium, aluminum, copper, brass, etc.). According to this, since the rigidity is high, it is possible to suppress the vibration of the magnetic field adjusters 83 and 84 due to the vibration of the GC. Moreover, since it is excellent in manufacturability, it can respond to various shapes according to the support strength.

また、支持部材81、82は、非磁性の繊維補強合成樹脂材料FRP(例えば、CFRP、AFRP、GFRPなど)を用いることが好ましい。これによれば、軽量で、かつ剛性が高いから、GCの振動に伴う磁場調整体83、84の振動を抑制できる。特に、FRPは断熱性を有するから、支持部材FRPを介して真空容器41、42からの熱侵入を低減できる。また、室温変化が生じた際にも、磁場均一度に悪影響を与える磁場調整体83、84の熱膨張による形状変化を最低限に留めることができ、室温変化が生じた場合でも磁場均一度の安定効果が望める。   The support members 81 and 82 are preferably made of a nonmagnetic fiber-reinforced synthetic resin material FRP (for example, CFRP, AFRP, GFRP, etc.). According to this, since it is lightweight and has high rigidity, it is possible to suppress the vibration of the magnetic field adjusters 83 and 84 accompanying the vibration of the GC. In particular, since FRP has heat insulation properties, it is possible to reduce heat intrusion from the vacuum vessels 41 and 42 via the support member FRP. In addition, even when a change in room temperature occurs, the shape change due to the thermal expansion of the magnetic field adjusters 83 and 84 that adversely affect the magnetic field uniformity can be kept to a minimum. A stable effect can be expected.

さらに、支持部材81、82は、減衰性を有するゴム(例えば、天然ゴム、磯プレンゴムなど)を用いることができる。これによれば、真空容器41、42から伝動される振動を減衰させて、磁場均一度の変動を抑えることができる。また、ある程度の断熱性を確保できる。また、支持部材81、82に減衰性能を持たせることで、真空容器41、42に外部振動が生じた際にも、磁場均一度に悪影響を与える磁場調整体83、84の振動変位による位置変化を最低限に留めることができ、磁場均一度の安定効果が望める。   Further, the supporting members 81 and 82 can be made of rubber having a damping property (for example, natural rubber, coconut rubber, etc.). According to this, the vibration transmitted from the vacuum vessels 41 and 42 can be attenuated, and fluctuations in the magnetic field uniformity can be suppressed. Moreover, a certain amount of heat insulation can be secured. Further, by providing the support members 81 and 82 with a damping performance, even when external vibrations are generated in the vacuum vessels 41 and 42, position changes due to vibration displacement of the magnetic field adjusters 83 and 84 that adversely affect the magnetic field uniformity. Can be kept to a minimum, and a stable magnetic field uniformity effect can be expected.

図2に本発明の実施例2を示す。本実施例が、実施例1と相違する点は、上側の磁場調整体83を、支持部材85を介して熱シールド31の内側の側面に支持させたことにある。その他は、実施例1と同一であるから、同一の符号を付して説明を省略する。なお、支持部材85の材料は、実施例1と同様に、非磁性の金属、FRP又はゴムを用いることができる。   FIG. 2 shows a second embodiment of the present invention. The present embodiment is different from the first embodiment in that the upper magnetic field adjusting body 83 is supported on the inner side surface of the heat shield 31 via the support member 85. Since others are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted. As the material of the support member 85, nonmagnetic metal, FRP, or rubber can be used as in the first embodiment.

本実施例によれば、拘束端に近い床側の磁場調整体84のみ床側の真空容器42に支持部材82により支持し、拘束端から遠く揺れが比較的大きい上側の真空容器41では、磁場調整体83を熱シールド31に支持部材85によって支持することで、GCの振動による磁場均一度に直結する磁場調整体83の振動と、超伝導コイル11の振動との差を小さくすることができる。また、熱シールド31、32の連結体の負荷質量の低減効果も期待できる。   According to the present embodiment, only the floor-side magnetic field adjusting body 84 close to the restraint end is supported by the support member 82 on the floor-side vacuum vessel 42, and the upper vacuum vessel 41 that is far from the restraint end and has a relatively large shaking is magnetic field. By supporting the adjustment body 83 on the heat shield 31 by the support member 85, the difference between the vibration of the magnetic field adjustment body 83 directly connected to the magnetic field uniformity due to the vibration of GC and the vibration of the superconducting coil 11 can be reduced. . Moreover, the reduction effect of the load mass of the connection body of the heat shields 31 and 32 can also be expected.

図3に、本発明の実施例3を示す。本実施例が、実施例1と相違する点は、GC101及びGC102を真空容器41、42の対向面の内面から浮かせ、支持部材90、91を介して磁場調整体83、84にそれぞれ支持させたことにある。その他は、実施例1と同一であるから、同一の符号を付して説明を省略する。なお、支持部材90、91の材料は、実施例1と同様に、非磁性の金属、FRP又はゴムを用いることができる。また、支持部材81、82と支持部材90、91の材料を変えて、適宜組み合わせることができる。   FIG. 3 shows a third embodiment of the present invention. The difference between the present embodiment and the first embodiment is that the GC 101 and the GC 102 are floated from the inner surfaces of the opposing surfaces of the vacuum vessels 41 and 42 and supported by the magnetic field adjusters 83 and 84 via the support members 90 and 91, respectively. There is. Since others are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted. In addition, the material of the support members 90 and 91 can use a nonmagnetic metal, FRP, or rubber | gum similarly to Example 1. FIG. Further, the materials of the support members 81 and 82 and the support members 90 and 91 can be changed and combined as appropriate.

本実施例によれば、真空容器41、42に直接伝達するGC101及びGC102の振動を低減できる。特に、実施例1の効果に加えて、GC101及びGC102を磁場調整体83、84に支持させることにより、GC101及びGC102を真空容器41、42の内部に格納できる。そして、十分な剛性を有した磁場調整体83、84に抱き合わせることが可能となり、GC101及びGC102を真空中でもしっかりと固定できる。特に、被検体の入る観測領域の赤道面側の真空容器からの放射による騒音低減も期待できる。また、更に赤道面側の真空容器にはGC101及びGC102を支持する必要がなくなるため、板厚を薄くでき、質量を減らすことも可能となる。その結果、開放型MRI装置に重要な赤道面側の真空容器間のスペースを広く取ることができ、被検体に対する寸法制限が緩くなるという効果がある。   According to the present embodiment, the vibrations of the GC 101 and the GC 102 that are directly transmitted to the vacuum containers 41 and 42 can be reduced. In particular, in addition to the effects of the first embodiment, the GC 101 and the GC 102 can be stored in the vacuum containers 41 and 42 by supporting the GC 101 and the GC 102 on the magnetic field adjusters 83 and 84. And it becomes possible to tie to the magnetic field adjustment bodies 83 and 84 with sufficient rigidity, and GC101 and GC102 can be firmly fixed even in a vacuum. In particular, noise reduction due to radiation from the vacuum vessel on the equator plane side of the observation region where the subject enters can be expected. Further, since it is not necessary to support the GC 101 and the GC 102 in the vacuum container on the equator plane side, the plate thickness can be reduced and the mass can be reduced. As a result, the space between the vacuum vessels on the equator plane side, which is important for the open-type MRI apparatus, can be widened, and there is an effect that dimensional restrictions on the subject are relaxed.

図4に、本発明の実施例4を示す。本実施例が実施例3と異なる点は、GC101及びGC102と磁場調整体83、84が設置された空間103、104と、熱シールド31、32との間に隔壁88、89を設け、空間103、104の真空度を真空容器41、42内の真空度よりも低くしたことにある。その他は、実施例3と同一であるから、同一の符号を付して説明を省略する。   FIG. 4 shows a fourth embodiment of the present invention. This embodiment is different from the third embodiment in that partition walls 88 and 89 are provided between the spaces 103 and 104 in which the GC 101 and the GC 102 and the magnetic field adjusting bodies 83 and 84 are installed and the heat shields 31 and 32, and the space 103 , 104 is made lower than the vacuum degree in the vacuum vessels 41 and 42. Since others are the same as those of the third embodiment, the same reference numerals are given and description thereof is omitted.

本実施例によれば、GC101及びGC102、磁場調整体83、84、支持部材81、82と支持部材90、91と、超電導コイル11、12及び熱シールド31、32とを、別々の真空容器に格納することになる。したがって、空間103、104の真空度は、GCの振動の遮音効果や室温変化の影響を磁場調整体83、84に急激に与えない程度で十分である。その結果、実施例3の効果に加えて、空間103、104の真空シール部の小型軽量化や、真空容器の熱シールドに対する内表面積減少による熱進入量削減効果が得られる。これにより、冷凍機負荷も低減でき、製作性向上による磁場均一度の向上効果が期待できる。   According to this embodiment, GC 101 and GC 102, magnetic field adjusters 83 and 84, support members 81 and 82, support members 90 and 91, superconducting coils 11 and 12, and heat shields 31 and 32 are placed in separate vacuum containers. Will be stored. Therefore, the degree of vacuum in the spaces 103 and 104 is sufficient so that the magnetic field adjusters 83 and 84 are not suddenly affected by the sound insulation effect of the vibration of GC and the influence of room temperature change. As a result, in addition to the effects of the third embodiment, it is possible to obtain the effect of reducing the heat penetration amount by reducing the size and weight of the vacuum seal portions of the spaces 103 and 104 and reducing the inner surface area of the heat shield of the vacuum vessel. Thereby, the refrigerator load can also be reduced and the improvement effect of the magnetic field uniformity by the improvement of manufacturability can be expected.

なお、支持部材81、82と支持部材90、91の材料は、実施例1と同様に、非磁性の金属、FRP又はゴムを用いることができる。また、支持部材81、82と支持部材90、91の材料を変えて、適宜組み合わせることができる。   In addition, the material of the support members 81 and 82 and the support members 90 and 91 can use a nonmagnetic metal, FRP, or rubber similarly to the first embodiment. Further, the materials of the support members 81 and 82 and the support members 90 and 91 can be changed and combined as appropriate.

図5に、本発明の実施例5を示す。本実施例が、実施例4と異なる点は、GC101及びGC102を実施例1と同様に真空容器41、42に取り付けたことにある。その他は、実施例4と同一であるから、同一の符号を付して説明を省略する。   FIG. 5 shows a fifth embodiment of the present invention. This embodiment is different from the fourth embodiment in that the GC 101 and the GC 102 are attached to the vacuum vessels 41 and 42 as in the first embodiment. Since others are the same as those of the fourth embodiment, the same reference numerals are given and description thereof is omitted.

本実施例によれば、実施例1の効果に加えて、磁場調整体及びその支持部材を超電導コイルや熱シールドとを別々の容器に格納しているから、空間103、104の真空度は、GCの振動の遮音効果や室温変化の影響を磁場調整体83、84に急激に与えない程度で十分である。その結果、実施例1の効果に加えて、空間103、104の真空シール部の小型軽量化や、真空容器の熱シールドに対する内表面積減少による熱進入量削減効果が得られる。これにより、冷凍機負荷も低減でき、製作性向上による磁場均一度の向上効果が期待できる。   According to the present embodiment, in addition to the effects of the first embodiment, the magnetic field adjuster and its supporting member are stored in separate containers for the superconducting coil and the heat shield. It is sufficient that the sound insulation effect of the GC vibration and the influence of the room temperature change are not suddenly given to the magnetic field adjusters 83 and 84. As a result, in addition to the effects of the first embodiment, the effect of reducing the amount of heat penetration can be obtained by reducing the size and weight of the vacuum seal portions of the spaces 103 and 104 and reducing the inner surface area of the heat shield of the vacuum vessel. Thereby, the refrigerator load can also be reduced and the improvement effect of the magnetic field uniformity by the improvement of manufacturability can be expected.

以上説明した実施例1〜5では、磁場調整体を真空容器に直接固定し、磁場調整体を常温とし、室温変化が生じた場合にも真空容器との間に時間変化がなだらかな断熱支持とすることで、温度変化による磁場調整体の形状変化を最小に抑え、磁場均一度への影響を考慮しつつ、熱シールドの付加質量を低減できる。その結果、熱シールドの剛性も小さくてすみ、熱シールドの必要板厚減少及び熱シールド支持の小型軽量化による質量低減も可能である。   In Examples 1 to 5 described above, the magnetic field adjuster is directly fixed to the vacuum vessel, the magnetic field adjuster is set to room temperature, and even when a change in room temperature occurs, the heat insulating support with a gentle time change between the vacuum vessel and By doing so, it is possible to minimize the change in the shape of the magnetic field adjuster due to the temperature change, and to reduce the additional mass of the heat shield while considering the influence on the magnetic field uniformity. As a result, the rigidity of the heat shield can be reduced, and the required thickness of the heat shield can be reduced, and the mass can be reduced by reducing the size and weight of the heat shield support.

本発明の磁気共鳴イメージング装置の実施例1の断面図である。It is sectional drawing of Example 1 of the magnetic resonance imaging apparatus of this invention. 本発明の磁気共鳴イメージング装置の実施例2の断面図である。It is sectional drawing of Example 2 of the magnetic resonance imaging apparatus of this invention. 本発明の磁気共鳴イメージング装置の実施例3の断面図である。It is sectional drawing of Example 3 of the magnetic resonance imaging apparatus of this invention. 本発明の磁気共鳴イメージング装置の実施例4の断面図である。It is sectional drawing of Example 4 of the magnetic resonance imaging apparatus of this invention. 本発明の磁気共鳴イメージング装置の実施例5の断面図である。It is sectional drawing of Example 5 of the magnetic resonance imaging apparatus of this invention. 本発明が適用可能な磁気共鳴イメージング装置の一例の斜視外観図である。1 is a perspective external view of an example of a magnetic resonance imaging apparatus to which the present invention can be applied.

符号の説明Explanation of symbols

11、12 超電導コイル
19 冷媒
21、22 コイル容器
31、32 熱シールド
41、42 真空容器
51、52 クライオスタット
61、62 連結管
71、72、73、74 支持部材
75、76 支持部材
81、82、85 支持部材
83、84 磁場調整体
90、91 支持部材
101、102 傾斜磁場コイル
11, 12 Superconducting coil 19 Refrigerant 21, 22 Coil container 31, 32 Heat shield 41, 42 Vacuum container 51, 52 Cryostat 61, 62 Connecting pipe 71, 72, 73, 74 Support member 75, 76 Support member 81, 82, 85 Support member 83, 84 Magnetic field adjusting body 90, 91 Support member 101, 102 Gradient magnetic field coil

Claims (12)

静磁場を発生する環状の超電導コイルを冷媒と共に収納するコイル容器と、該コイル容器を包囲して設けられた熱シールドと、前記熱シールドを包囲して設けられ内部が真空に保持された真空容器と、前記真空容器を空間を空けて上下に対向させて支持するとともに上下の前記真空容器を相互に連結する連結管と、上下の前記真空容器内に設置された磁性体からなる磁場調整体と、前記磁場調整体を前記各真空容器の上壁又は底壁に支持する支持部材とを備えてなる磁気共鳴イメージング装置。 A coil container that houses an annular superconducting coil that generates a static magnetic field together with a refrigerant, a heat shield that surrounds the coil container, and a vacuum container that surrounds the heat shield and is maintained in a vacuum And a connecting pipe that supports the vacuum vessel in a vertical direction with a space therebetween and connects the upper and lower vacuum vessels to each other, and a magnetic field adjuster made of a magnetic material installed in the upper and lower vacuum vessels, A magnetic resonance imaging apparatus comprising: a support member that supports the magnetic field adjusting body on an upper wall or a bottom wall of each vacuum vessel. 前記支持部材は、断熱性及び減衰性の少なくとも一方を有することを特徴とする請求項1に記載の磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 1, wherein the support member has at least one of heat insulation and attenuation. 前記コイル容器を包囲して前記真空容器内に設けられた熱シールドを備え、前記磁場調整体が設置された空間と前記熱シールドとの間に隔壁を設け、前記磁場調整体が設置された空間の真空度を前記真空容器内の真空度よりも低くしたことを特徴とする請求項1に記載の磁気共鳴イメージング装置。 A space provided with a heat shield provided in the vacuum vessel so as to surround the coil container, and provided with a partition wall between the space where the magnetic field adjuster is installed and the heat shield, and where the magnetic field adjuster is installed The magnetic resonance imaging apparatus according to claim 1, wherein the degree of vacuum is lower than the degree of vacuum in the vacuum container. 前記磁場調整体が設置された空間に傾斜磁場コイルが設置されてなることを特徴とする請求項3に記載の磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 3, wherein a gradient magnetic field coil is installed in a space in which the magnetic field adjusting body is installed. 静磁場を発生する環状の超電導コイルと、該超電導コイルを冷媒と共に収納するコイル容器と、該コイル容器を包囲して設けられた熱シールドと、前記熱シールドを包囲して設けられ内部が真空に保持された真空容器と、前記真空容器を空間を空けて上下に対向させて支持するとともに上下の前記真空容器を相互に連結する連結管と、上下の前記コイル容器を連結して前記連結管内に設けられた冷媒管と、上下の熱シールドを連結するとともに前記冷媒管を包囲して前記連結管内に設けられた熱シールド管と、上下の前記真空容器の対向面の内側にそれぞれ配置された傾斜磁場コイルと、上下の前記真空容器内に設置された磁性体からなる磁場調整体とを備え、上の前記真空容器内に設けられた前記磁場調整体を第1の支持部材を介して上の前記熱シールドに支持し、下の前記真空容器内に設けられた前記磁場調整体を第2の支持部材を介して下の前記真空容器の底壁に支持してなる磁気共鳴イメージング装置。 An annular superconducting coil that generates a static magnetic field; a coil container that houses the superconducting coil together with a refrigerant; a heat shield that surrounds the coil container; and a vacuum that surrounds the heat shield and has an internal vacuum A holding vacuum vessel, a connecting tube that supports the vacuum vessel so as to face each other vertically with a space therebetween, and connects the upper and lower vacuum vessels to each other, and connects the upper and lower coil vessels to each other in the connecting tube. The refrigerant pipe provided and the upper and lower heat shields and the heat shield pipe provided in the connection pipe so as to surround the refrigerant pipe, and the inclination arranged respectively inside the opposing surfaces of the upper and lower vacuum vessels A magnetic field coil and a magnetic field adjuster made of a magnetic material installed in the upper and lower vacuum vessels, and the magnetic field adjuster provided in the upper vacuum vessel is disposed above the first support member. Supported in serial heat shield, a magnetic resonance imaging apparatus comprising supporting the bottom wall of the vacuum vessel of the lower through the second support member the magnetic field adjustment member provided in the vacuum chamber below. 上下の前記コイル容器はそれぞれ上下の前記熱シールドに支持され、上下の前記熱シールドの連結体は、下の前記真空容器の底壁に支持されてなることを特徴とする請求項5に記載の磁気共鳴イメージング装置。 6. The upper and lower coil containers are respectively supported by the upper and lower heat shields, and a connection body of the upper and lower heat shields is supported by a bottom wall of the lower vacuum container. Magnetic resonance imaging device. 前記第1と第2の支持部材は、断熱性及び減衰性の少なくとも一方を有することを特徴とする請求項5に記載の磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 5, wherein the first and second support members have at least one of heat insulation and attenuation. 環状の超電導コイルと、該超電導コイルを冷媒と共に収納するコイル容器と、該コイル容器を包囲して設けられた熱シールドと、前記熱シールドを包囲して設けられ内部が真空に保持された真空容器と、前記真空容器を空間を空けて上下に対向させて支持するとともに上下の前記真空容器を相互に連結する連結管と、上下の前記コイル容器を連結して前記連結管内に設けられた冷媒管と、上下の熱シールドを連結するとともに前記冷媒管を包囲して前記連結管内に設けられた熱シールド管と、上下の前記真空容器の対向面の内側にそれぞれ配置された傾斜磁場コイルと、上下の前記真空容器内に設置された磁性体からなる磁場調整体とを備え、前記磁場調整体を第1の支持部材を介して前記各真空容器の上壁又は底壁に支持するとともに、前記傾斜磁場コイルを第2の支持部材を介して前記磁場調整体に支持してなる磁気共鳴イメージング装置。 An annular superconducting coil, a coil container that houses the superconducting coil together with a refrigerant, a heat shield that surrounds the coil container, and a vacuum container that surrounds the heat shield and is maintained in a vacuum A connecting pipe that supports the vacuum container in an up-down direction with a space therebetween, and connects the upper and lower vacuum containers to each other; and a refrigerant pipe provided in the connecting pipe by connecting the upper and lower coil containers And a heat shield tube that is connected to the upper and lower heat shields and surrounds the refrigerant tube and is provided in the connection tube; a gradient magnetic field coil that is disposed inside the opposing surfaces of the upper and lower vacuum vessels; A magnetic field adjusting body made of a magnetic material installed in the vacuum container, and supporting the magnetic field adjusting body on the upper wall or the bottom wall of each vacuum container via a first support member, Magnetic resonance imaging apparatus the gradient coils via the second supporting member formed by supporting the magnetic field adjustment member. 上下の前記コイル容器はそれぞれ上下の前記熱シールドに支持され、上下の前記熱シールドの連結体は、下の前記真空容器の底壁に支持されてなることを特徴とする請求項8に記載の磁気共鳴イメージング装置。 9. The upper and lower coil containers are supported by the upper and lower heat shields, respectively, and the connection body of the upper and lower heat shields is supported by a bottom wall of the lower vacuum container. Magnetic resonance imaging device. 前記傾斜磁場コイルは、前記真空容器の上壁又は底壁から浮かして配置されたことを特徴とする請求項8に記載の磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 8, wherein the gradient magnetic field coil is disposed so as to float from an upper wall or a bottom wall of the vacuum container. 前記傾斜磁場コイルと前記磁場調整体が設置された空間と前記熱シールドとの間に隔壁を設け、前記傾斜磁場コイルと前記磁場調整体が設置された空間の真空度を前記真空容器内の真空度よりも低くしたことを特徴とする請求項8に記載の磁気共鳴イメージング装置。 A partition wall is provided between the space in which the gradient magnetic field coil and the magnetic field adjustment body are installed and the heat shield, and the degree of vacuum in the space in which the gradient magnetic field coil and the magnetic field adjustment body are installed is set to a vacuum in the vacuum vessel. The magnetic resonance imaging apparatus according to claim 8, wherein the magnetic resonance imaging apparatus is lower than the degree. 前記第1と第2の支持部材は、断熱性及び減衰性の少なくとも一方を有することを特徴とする請求項8に記載の磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 8, wherein the first and second support members have at least one of heat insulation and attenuation.
JP2005132744A 2005-04-28 2005-04-28 Magnetic resonance imaging system Expired - Fee Related JP4700999B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132744A JP4700999B2 (en) 2005-04-28 2005-04-28 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132744A JP4700999B2 (en) 2005-04-28 2005-04-28 Magnetic resonance imaging system

Publications (2)

Publication Number Publication Date
JP2006305146A true JP2006305146A (en) 2006-11-09
JP4700999B2 JP4700999B2 (en) 2011-06-15

Family

ID=37472715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132744A Expired - Fee Related JP4700999B2 (en) 2005-04-28 2005-04-28 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4700999B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305033A (en) * 2005-04-28 2006-11-09 Hitachi Ltd Magnetic resonance imaging apparatus
JP2008124400A (en) * 2006-11-15 2008-05-29 Hitachi Ltd Superconducting magnet device, and magnetic resonance imaging apparatus
JP2008125841A (en) * 2006-11-21 2008-06-05 Hitachi Ltd Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
WO2008126895A1 (en) * 2007-04-10 2008-10-23 Hitachi Medical Corporation Superconducting magnet apparatus, magnetic resonance imaging device, and magnetic field inhomogeneity compensation method
JP2009004693A (en) * 2007-06-25 2009-01-08 Hitachi Ltd Superconductive magnet device and magnetic resonance imaging device
JP2009172129A (en) * 2008-01-24 2009-08-06 Hitachi Ltd Superconducting magnet apparatus and magnetic resonance imaging apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116718A (en) * 1997-06-26 1999-01-22 Mitsubishi Electric Corp Superconducting magnet
JPH11137535A (en) * 1997-11-13 1999-05-25 Hitachi Medical Corp Magnetic resonance imaging device
JP2000037366A (en) * 1998-07-23 2000-02-08 Kobe Steel Ltd Superconductive magnet device
JP2001052918A (en) * 1999-04-23 2001-02-23 General Electric Co <Ge> Device and method for superconducting magnet having pole piece
JP2002065635A (en) * 2000-08-28 2002-03-05 Hitachi Ltd Magnet for generating uniform magnetic field and magnetic resonance imaging apparatus using the same
JP2004298303A (en) * 2003-03-31 2004-10-28 Toshiba Medical System Co Ltd Mri apparatus
JP2005137530A (en) * 2003-11-06 2005-06-02 Hitachi Ltd Magnetic resonance imaging apparatus
JP2005144132A (en) * 2004-04-09 2005-06-09 Hitachi Ltd Superconductive magnet device and magnetic resonance imaging device using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116718A (en) * 1997-06-26 1999-01-22 Mitsubishi Electric Corp Superconducting magnet
JPH11137535A (en) * 1997-11-13 1999-05-25 Hitachi Medical Corp Magnetic resonance imaging device
JP2000037366A (en) * 1998-07-23 2000-02-08 Kobe Steel Ltd Superconductive magnet device
JP2001052918A (en) * 1999-04-23 2001-02-23 General Electric Co <Ge> Device and method for superconducting magnet having pole piece
JP2002065635A (en) * 2000-08-28 2002-03-05 Hitachi Ltd Magnet for generating uniform magnetic field and magnetic resonance imaging apparatus using the same
JP2004298303A (en) * 2003-03-31 2004-10-28 Toshiba Medical System Co Ltd Mri apparatus
JP2005137530A (en) * 2003-11-06 2005-06-02 Hitachi Ltd Magnetic resonance imaging apparatus
JP2005144132A (en) * 2004-04-09 2005-06-09 Hitachi Ltd Superconductive magnet device and magnetic resonance imaging device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305033A (en) * 2005-04-28 2006-11-09 Hitachi Ltd Magnetic resonance imaging apparatus
JP4521311B2 (en) * 2005-04-28 2010-08-11 株式会社日立製作所 Magnetic resonance imaging system
JP2008124400A (en) * 2006-11-15 2008-05-29 Hitachi Ltd Superconducting magnet device, and magnetic resonance imaging apparatus
JP2008125841A (en) * 2006-11-21 2008-06-05 Hitachi Ltd Superconducting magnet apparatus and nuclear magnetic resonance imaging apparatus
WO2008126895A1 (en) * 2007-04-10 2008-10-23 Hitachi Medical Corporation Superconducting magnet apparatus, magnetic resonance imaging device, and magnetic field inhomogeneity compensation method
JP2008259558A (en) * 2007-04-10 2008-10-30 Hitachi Ltd Magnetic homogeneity adjuster, superconductive magnet unit using it and magnetic resonance imaging device
US8198897B2 (en) 2007-04-10 2012-06-12 Hitachi Medical Corporation Superconductive magnetic device, magnetic resonance imaging apparatus and magnetic field inhomogeneity compensation method
JP2009004693A (en) * 2007-06-25 2009-01-08 Hitachi Ltd Superconductive magnet device and magnetic resonance imaging device
JP2009172129A (en) * 2008-01-24 2009-08-06 Hitachi Ltd Superconducting magnet apparatus and magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP4700999B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4908960B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP5025164B2 (en) Equipment for heat shielding superconducting magnets
US7126448B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
JP2008034846A (en) Cryostat having cryogenic temperature vessel supported within outer vacuum vessel
JP4700999B2 (en) Magnetic resonance imaging system
US7432712B2 (en) Magnetic resonance imaging apparatus
JP2010272633A (en) Superconducting magnet
JP2009172129A (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus
JP2007000254A (en) Superconduction electromagnet apparatus for mri
US11810711B2 (en) Cryostat assembly having a resilient, heat-conducting connection element
JP5013950B2 (en) Annular enclosure with an array of recesses or protrusions to reduce mechanical resonance
JP4341375B2 (en) Magnetic resonance imaging system
JP4641297B2 (en) Cryogenic cooling system
US20100109824A1 (en) Unitary multi-cell concentric cylindrical box girder coldmass apparatus for open air mri to avoid superconducting magnet quench
JP4521311B2 (en) Magnetic resonance imaging system
JP5268716B2 (en) Magnetic resonance imaging system
JP2005144132A (en) Superconductive magnet device and magnetic resonance imaging device using the same
JP6296631B2 (en) Magnetic resonance imaging system
JP3856086B2 (en) Magnetic resonance imaging system
JP2010016025A (en) Superconducting device
JP4118015B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus using the same
JP2018023407A (en) Magnetic resonance imaging device
JP4843469B2 (en) Magnetic resonance imaging system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R150 Certificate of patent or registration of utility model

Ref document number: 4700999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees