JP2009003310A - Electroabsorption type optical modulator, semiconductor optical integrated device and control method of them - Google Patents

Electroabsorption type optical modulator, semiconductor optical integrated device and control method of them Download PDF

Info

Publication number
JP2009003310A
JP2009003310A JP2007165848A JP2007165848A JP2009003310A JP 2009003310 A JP2009003310 A JP 2009003310A JP 2007165848 A JP2007165848 A JP 2007165848A JP 2007165848 A JP2007165848 A JP 2007165848A JP 2009003310 A JP2009003310 A JP 2009003310A
Authority
JP
Japan
Prior art keywords
optical modulator
layer
electroabsorption
quantum well
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007165848A
Other languages
Japanese (ja)
Other versions
JP4920506B2 (en
Inventor
Wataru Kobayashi
亘 小林
Takeshi Tsuzuki
健 都築
Takayuki Yamanaka
孝之 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007165848A priority Critical patent/JP4920506B2/en
Publication of JP2009003310A publication Critical patent/JP2009003310A/en
Application granted granted Critical
Publication of JP4920506B2 publication Critical patent/JP4920506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroabsorption type optical modulator which operates in a high-temperature environment (wide temperature range) and is capable of long-distance transmission, to provide a semiconductor optical integrated device equipped with the electroabsorption optical modulator, and to provide a control method of the electroabsorption optical modulator and the semiconductor optical integrated element. <P>SOLUTION: The electroabsorption optical modulator has a quantum well structure 3 constituted of a well layer including In, Ga and As and a barrier layer containing Al, In, Ga and As, wherein a conduction band offset value of the quantum well structure 3 is set to be 120 meV or higher, in order to operate the electroabsorption optical modulator at a high temperature and is set to be 250 meV or lower, in order to transmit an optical signal modulated by the electroabsorption optical modulator over a long distance. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電界吸収型光変調器、半導体光集積素子及びこれらの制御方法に係り、特に光通信用モジュール、光通信システムに用いて好適な半導体光集積素子に関する。   The present invention relates to an electroabsorption optical modulator, a semiconductor optical integrated device, and control methods thereof, and more particularly to a semiconductor optical integrated device suitable for use in an optical communication module and an optical communication system.

光ファイバ通信の広がりに伴い、メトロアクセス系通信(〜80km)では、現在温調クーラー付で動作させている半導体レーザと光変調器を、温調クーラー無しで動作させ、それらを低コスト化させる、という需要が広がっている。このような需要を満たすために、半導体レーザと光変調器には、高温の環境温度下でも大きな特性劣化が見られないよう高性能化することが求められている。   With the spread of optical fiber communications, metro access communications (up to 80km) operate semiconductor lasers and optical modulators that are currently operated with temperature control coolers without temperature control coolers, thereby reducing costs. , Demand is growing. In order to satisfy such demands, it is required that semiconductor lasers and optical modulators have high performance so that no significant characteristic deterioration is observed even at high ambient temperatures.

多重量子井戸構造の電界吸収型光変調器(以下EA変調器と称する)の高温動作化を考えた場合、従来のP系半導体材料(InGaAsP系材料)に比べ、Al系半導体材料(InGaAlAs系材料)を用いて光変調器を作製し良好な特性を得たという報告が数多くされている。(非特許文献1)   When considering high-temperature operation of an electroabsorption optical modulator (hereinafter referred to as an EA modulator) having a multiple quantum well structure, an Al-based semiconductor material (InGaAlAs-based material) as compared with a conventional P-based semiconductor material (InGaAsP-based material). There have been many reports that optical modulators have been fabricated using) and obtained good characteristics. (Non-Patent Document 1)

多重量子井戸構造をもつEA変調器は励起子吸収の物理現象を利用して光の強度をオン/オフする。励起子は電子と正孔が互いに束縛しあっている状態であるが、励起子吸収の強さは、励起子の束縛エネルギーの増大、励起子強度の増大、波動関数の閉じ込めの増大に伴い、増大する。励起子吸収を増大させるためには量子井戸層内部への電子の波動関数の閉じ込めを大きくすればよい。図1はAl系半導体材料と、P系半導体材料のバンド模式図を示している。Al系半導体材料はP系半導体材料に比べ、量子井戸構造を作製した際、伝導帯オフセット値(以下ΔEcと称する)が大きい特徴を持つことが知られている。大きなΔEc値をもつ量子井戸構造は波動関数の閉じ込めが大きく、そのため励起子吸収が強く現れる。よって、近年Al系半導体材料を用いて電界吸収型光変調器を作製する報告が多々されている。(非特許文献2)   An EA modulator having a multiple quantum well structure uses the physical phenomenon of exciton absorption to turn on / off light intensity. An exciton is a state in which electrons and holes are bound to each other, but the exciton absorption strength increases with increasing exciton binding energy, exciton intensity, and confinement of the wave function. Increase. In order to increase exciton absorption, the confinement of the electron wave function within the quantum well layer may be increased. FIG. 1 shows a band schematic diagram of an Al-based semiconductor material and a P-based semiconductor material. It is known that an Al-based semiconductor material has a characteristic that a conduction band offset value (hereinafter referred to as ΔEc) is larger when a quantum well structure is produced than a P-based semiconductor material. A quantum well structure having a large ΔEc value has a large confinement of the wave function, so that exciton absorption appears strongly. Therefore, in recent years, there have been many reports on producing an electroabsorption optical modulator using an Al-based semiconductor material. (Non-Patent Document 2)

環境温度が高い状況では、電子のエネルギー分布が高エネルギー側にシフトする。ΔEc値が小さな量子井戸構造では、井戸層内の電子の波動関数が、井戸層内のエネルギー凖位内に閉じこもりにくくなる。そのため高温で動作させる観点からもΔEc値の大きな量子井戸構造は望ましい。図2は室温と高温の光吸収スペクトルの模式図を表している。ΔEc値が小さな量子井戸構造では高温になるに従って吸収係数が減少してくるのに対し、ΔEc値が大きな量子井戸構造では高温下でも吸収係数の変化が小さい。   In a situation where the ambient temperature is high, the energy distribution of electrons shifts to the high energy side. In a quantum well structure with a small ΔEc value, the wave function of electrons in the well layer is less likely to be confined within the energy level in the well layer. Therefore, a quantum well structure having a large ΔEc value is desirable from the viewpoint of operating at a high temperature. FIG. 2 shows a schematic diagram of light absorption spectra at room temperature and high temperature. In a quantum well structure with a small ΔEc value, the absorption coefficient decreases as the temperature increases, whereas in a quantum well structure with a large ΔEc value, the change in absorption coefficient is small even at high temperatures.

だが、長距離伝送について考えた場合、ΔEc値の大きな量子井戸構造が必ずしも良いとは限らない。EA変調器は変調時に波長チャーピングが生じ、これによるファイバ伝送後の波形劣化が問題となる。つまり波長チャーピングにより、変調後の光信号スペクトルは変調前に比べて広がることになる。この光信号を光ファイバで伝送すると、ファイバ媒質の分散の効果による波形劣化が起こり、伝送特性に好ましくない影響を及ぼす。この現象は伝送速度が速いほど、また伝送距離が長いほど顕著になる。   However, when considering long-distance transmission, a quantum well structure having a large ΔEc value is not always good. In the EA modulator, wavelength chirping occurs at the time of modulation, and this causes a problem of waveform deterioration after fiber transmission. That is, due to wavelength chirping, the optical signal spectrum after modulation becomes wider than before modulation. When this optical signal is transmitted through an optical fiber, waveform deterioration occurs due to the dispersion effect of the fiber medium, which adversely affects transmission characteristics. This phenomenon becomes more prominent as the transmission speed is faster and the transmission distance is longer.

波長チャーピングは伝送時の光吸収量の変化が大きいほど、大きくなる。光をオン/オフする際の光吸収量の変化が大きいほど波長チャーピングは大きくなる。Al系半導体材料ではΔEc値が大きく、そのため励起子吸収が大きく、図2のΔEc値大のような吸収スペクトルを持つ。それに対して、P系半導体材料では、ΔEc値が小さいため、図2のΔEc値小のような吸収スペクトルを持つ。光をオン/オフする際の光吸収量の変化はΔEc値が大きいものの方が大きい。即ちΔEc値を大きくとると、波長チャーピングも大きくなり、長距離伝送ができなくなってくることが問題になっていた。   Wavelength chirping increases as the change in light absorption during transmission increases. The greater the change in the amount of light absorption when turning light on / off, the greater the wavelength chirping. The Al-based semiconductor material has a large ΔEc value, and therefore exciton absorption is large, and has an absorption spectrum similar to the large ΔEc value in FIG. On the other hand, since the P-based semiconductor material has a small ΔEc value, it has an absorption spectrum as small as the ΔEc value in FIG. The change in the amount of light absorption when turning on / off light is larger when the ΔEc value is larger. That is, when the ΔEc value is increased, the wavelength chirping is increased, and long-distance transmission becomes impossible.

M,R,Gokhale 等、Optical Fiber Communications Conference 、2003、PD42M, R, Gokhale, etc., Optical Fiber Communications Conference, 2003, PD42 H.Arimoto 等、Electronics letters vo141 、No.1、pp35-37H.Arimoto et al., Electronics letters vo141, No.1, pp35-37

上記のことから、高温動作と長距離伝送を両立することは難しいと考えられていた。   From the above, it has been considered difficult to achieve both high-temperature operation and long-distance transmission.

従って、本発明の目的は上記の事情に鑑み、高温環境下で動作し(即ち0℃から85℃の広い温度範囲で動作し)、且つ、この全温度範囲で長距離伝送が可能な、Al系半導体材料を用いた低チャープの多重量子井戸構造を有するEA変調器を提供し、また、このEA変調器を備えた半導体光集積素子及びこれらの制御方法を提供することにある。   Therefore, in view of the above circumstances, the object of the present invention is to operate in a high temperature environment (that is, operate in a wide temperature range from 0 ° C. to 85 ° C.) and to enable long-distance transmission in this entire temperature range. It is an object of the present invention to provide an EA modulator having a low chirp multiple quantum well structure using a semiconductor material, and to provide a semiconductor optical integrated device including the EA modulator and a control method thereof.

上記目的を達成するために、本発明者はEA変調器及びこれを備えた半導体光集積素子における量子井戸構造の井戸層及び障壁層の組成と前記量子井戸構造のΔEc値を提供する。更に、これらのEA変調器及び半導体光集積素子の制御方法を提供する。具体的には本発明のEA変調器、半導体光集積素子及びこれらの制御方法は次のような特徴を有する。   In order to achieve the above object, the present inventor provides an EA modulator and a composition of a well layer and a barrier layer of a quantum well structure and a ΔEc value of the quantum well structure in a semiconductor optical integrated device including the EA modulator. Furthermore, a method for controlling these EA modulators and semiconductor optical integrated devices is provided. Specifically, the EA modulator, the semiconductor optical integrated device and the control method thereof according to the present invention have the following characteristics.

即ち、上記の目的を達成する第1発明の電界吸収型光変調器は、InとGaとAsを有する井戸層と、AlとInとGaとAsを有する障壁層とからなる量子井戸構造を有し、
前記量子井戸構造の伝導帯オフセット値が、120meV以上250meV以下であることを特徴とする。
That is, the electroabsorption optical modulator of the first invention that achieves the above object has a quantum well structure including a well layer having In, Ga, and As and a barrier layer having Al, In, Ga, and As. And
The conduction band offset value of the quantum well structure is 120 meV or more and 250 meV or less.

また、第2発明の電界吸収型光変調器は、第1発明の電界吸収型光変調器において、
前記伝導帯オフセット値を、前記電界吸収型光変調器を高温で動作させるために120meV以上とし、前記電界吸収型光変調器により変調された光信号を長距離伝送させるために250meV以下とすることを特徴とする。
The electroabsorption optical modulator of the second invention is the electroabsorption optical modulator of the first invention.
The conduction band offset value is 120 meV or more for operating the electroabsorption optical modulator at a high temperature, and 250 meV or less for transmitting the optical signal modulated by the electroabsorption optical modulator over a long distance. It is characterized by.

また、第3発明の電界吸収型光変調器は、第1又は第2発明の電界吸収型光変調器において、
前記障壁層が、In(1−y−z)Ga(y)Al(z)As層(0.11≦y≦0.24、0.18≦z≦0.31)であることを特徴とする。
The electroabsorption optical modulator of the third invention is the electroabsorption optical modulator of the first or second invention.
The barrier layer is an In (1-yz) Ga (y) Al (z) As layer (0.11 ≦ y ≦ 0.24, 0.18 ≦ z ≦ 0.31). To do.

また、第4発明の電界吸収型光変調器は、第1〜第3発明の何れかの電界吸収型光変調器において、
前記井戸層が、In(x)Ga(1−x)As層(0.46≦x≦0.49)であることを特徴とする。
The electroabsorption optical modulator of the fourth invention is the electroabsorption optical modulator of any of the first to third inventions,
The well layer is an In (x) Ga (1-x) As layer (0.46 ≦ x ≦ 0.49).

また、第5発明の電界吸収型光変調器は、第4発明の電界吸収型光変調器において、
前記井戸層の厚さが、7nm以上10nm以下であることを特徴とする。
The electroabsorption optical modulator of the fifth invention is the electroabsorption optical modulator of the fourth invention.
The well layer has a thickness of 7 nm to 10 nm.

また、第6発明の電界吸収型光変調器は、第1〜第5発明の何れかの電界吸収型光変調器において、
前記多重量子井戸構造の両側を埋め込む半導体結晶が、Ruドープ半絶縁性半導体結晶であることを特徴とする。
The electroabsorption optical modulator of the sixth invention is the electroabsorption optical modulator of any of the first to fifth inventions,
The semiconductor crystal filling both sides of the multiple quantum well structure is a Ru-doped semi-insulating semiconductor crystal.

また、第7発明の電界吸収型光変調器は、第1〜第6発明の何れかの電界吸収型光変調器において、
環境温度の変化に応じて、前記電界吸収型光変調器への印加電圧を、消光比が低下し且つチャープパラメータ値が負値となる印加電圧範囲で変化させることを特徴とする。
The electroabsorption optical modulator of the seventh invention is the electroabsorption optical modulator of any of the first to sixth inventions,
The voltage applied to the electroabsorption optical modulator is changed in accordance with a change in environmental temperature in an applied voltage range in which the extinction ratio is lowered and the chirp parameter value is a negative value.

また、第8発明の半導体光集積素子は、第1〜第7発明の何れかの電界吸収型光変調器と、DFBレーザとを同一基板上にモノリシック集積したことを特徴とする。   A semiconductor optical integrated device of the eighth invention is characterized in that the electroabsorption optical modulator of any of the first to seventh inventions and a DFB laser are monolithically integrated on the same substrate.

また、第9発明の半導体光集積素子は、第8発明の半導体光集積素子において、
前記DFBレーザが、埋め込み型構造であってRuドープ半絶縁性埋め込み層を有することを特徴とする。
The semiconductor optical integrated device of the ninth invention is the semiconductor optical integrated device of the eighth invention,
The DFB laser has a buried structure and has a Ru-doped semi-insulating buried layer.

また、第10発明の電界吸収型光変調器の制御方法は、第1〜第6発明の何れかの電界吸収型光変調器の制御方法であって、
環境温度の変化に応じて、前記電界吸収型光変調器への印加電圧を、消光比が低下し且つチャープパラメータ値が負値となる印加電圧範囲で変化させることを特徴とする。
A control method for an electroabsorption optical modulator according to a tenth aspect of the invention is the control method for an electroabsorption optical modulator according to any of the first to sixth aspects, wherein
The voltage applied to the electroabsorption optical modulator is changed in accordance with a change in environmental temperature in an applied voltage range in which the extinction ratio is lowered and the chirp parameter value is a negative value.

また、第11発明の半導体光集積素子の制御方法は、第1〜第6発明の何れかの電界吸収型光変調器と、DFBレーザとを同一基板上にモノリシック集積してなる半導体光集積素子の制御方法であって、
環境温度の変化に応じて、前記電界吸収型光変調器への印加電圧を、消光比が低下し且つチャープパラメータ値が負値となる印加電圧範囲で変化させることを特徴とする。
The semiconductor optical integrated device control method according to the eleventh aspect of the invention is a semiconductor optical integrated device obtained by monolithically integrating the electroabsorption optical modulator of any of the first to sixth inventions and a DFB laser on the same substrate. Control method,
The voltage applied to the electroabsorption optical modulator is changed in accordance with a change in environmental temperature in an applied voltage range in which the extinction ratio is lowered and the chirp parameter value is a negative value.

本発明によれば、電界吸収型光変調器における量子井戸構造の伝導帯オフセット値(ΔEc)を、120meV以上250meV以下としたことにより、電界吸収型光変調器を高温環境下で(即ち広い温度範囲で)動作させることができ、しかも、電界吸収型光変調器により変調された光信号を長距離伝送させることもできる。   According to the present invention, the conduction band offset value (ΔEc) of the quantum well structure in the electroabsorption optical modulator is set to 120 meV or more and 250 meV or less, so that the electroabsorption optical modulator can be operated in a high temperature environment (that is, a wide temperature range). In addition, the optical signal modulated by the electroabsorption optical modulator can be transmitted over a long distance.

以下にP系半導体材料を用いて作製された量子井戸構造のΔEc値と、Al系半導体材料を用いて作製された量子井戸構造のΔEc値についての特徴を列挙する。また、長距離伝送が可能なΔEc値についての計算結果を述べる。また、高温動作が可能なΔEc値の実験結果を述べる。本発明では電界吸収型光変調器における量子井戸構造のΔEc値に着目し、幅広い温度範囲で動作すること、長距離伝送を可能とすることを両立する前記量子井戸構造のΔEc値を与える。従って、幅広い温度範囲で動作すること、長距離伝送を可能とすることを両立する前記量子井戸構造を作製することが可能となり、本発明の目的であるEA変調器を実現できる。   The features of the ΔEc value of a quantum well structure manufactured using a P-based semiconductor material and the ΔEc value of a quantum well structure manufactured using an Al-based semiconductor material are listed below. In addition, the calculation results for the ΔEc value that enables long-distance transmission will be described. In addition, experimental results of ΔEc value capable of high temperature operation will be described. In the present invention, attention is paid to the ΔEc value of the quantum well structure in the electroabsorption optical modulator, and the ΔEc value of the quantum well structure that provides both operation in a wide temperature range and enabling long-distance transmission is provided. Therefore, it is possible to produce the quantum well structure that can operate in a wide temperature range and enable long-distance transmission, and an EA modulator that is an object of the present invention can be realized.

図3は、Al組成とΔEc値の関係の計算結果を示している。これは量子井戸構造の井戸層:In0.485Ga0.515As(歪−0.4%固定)、障壁層:In(1−x−y)Ga(y)Al(x)As(歪+0.4%固定)とした場合の結果である。Al組成を増やしていくと、ΔEc値は増加していくことが分かる。
(1) P系半導体材料で量子井戸構造を作製する場合、組成によって異なるが、ΔEc値は80meV〜150meV、価電子帯オフセット値(以下ΔEvと称する)は70meV〜100meV程度になる。
(2) Al系半導体材料で量子井戸構造を作成する場合は図3に示されているように、容易にΔEc>100meVを達成することができ、400meV程度までΔEcを大きくできる。またΔEv=40meV〜150meV程度と大きく変化させることができる。
FIG. 3 shows the calculation result of the relationship between the Al composition and the ΔEc value. This is a well layer of quantum well structure: In 0.485 Ga 0.515 As (strain −0.4% fixed), barrier layer: In (1-xy) Ga (y) Al (x) As (strain + 0.4%) (Fixed) results. It can be seen that the ΔEc value increases as the Al composition increases.
(1) When a quantum well structure is made of a P-based semiconductor material, the ΔEc value is 80 meV to 150 meV, and the valence band offset value (hereinafter referred to as ΔEv) is about 70 meV to 100 meV, although it varies depending on the composition.
(2) When a quantum well structure is made of an Al-based semiconductor material, ΔEc> 100 meV can be easily achieved as shown in FIG. 3, and ΔEc can be increased to about 400 meV. In addition, ΔEv can be greatly changed to about 40 meV to 150 meV.

図4は、長距離伝送を可能とするΔEc値についての計算結果を示している。上記井戸層を用いて、障壁層の組成を変化させ、量子井戸構造のΔEc値が120,160,250meVのときのそれぞれのチャープパラメータ値の計算結果が図4に示されている。80km以上の長距離伝送を可能とするためにはチャープパラメータ値が負値のネガティブチャープになっていることが求められる。   FIG. 4 shows the calculation results for the ΔEc value that enables long-distance transmission. FIG. 4 shows calculation results of respective chirp parameter values when the composition of the barrier layer is changed using the well layer and the ΔEc values of the quantum well structure are 120, 160, and 250 meV. In order to enable long-distance transmission of 80 km or more, the chirp parameter value is required to be a negative negative chirp.

図4に示すように、チャープパラメータ値はΔEcの値にかかわらず、印加電圧が1.5V程度のときにピークを示し、1.5V以上で減少する傾向にある。ΔEcが120meVのときは印加電圧全範囲においてチャープパラメータ値は負値を示す。ΔEcが160meVのときは印加電圧が−2.7V以下でチャープパラメータ値は負値を示す。ΔEcが250meVのときは印加電圧が−4V以下でチャープパラメータ値は負値を示す。このように、ΔEcが250meV以下の量子井戸構造を用いた場合、印加電圧を−4V以下にしてEA変調器を動作させれば、チャープパラメータ値が負値になるので長距離伝送を実現することができる。ここでEA変調器を動作させる場合の耐圧は高々−20V程度であり、これ以上の電圧を印加するとpn接合特性の劣化に伴いEA変調器の動作特性が劣化する。   As shown in FIG. 4, the chirp parameter value shows a peak when the applied voltage is about 1.5V, and tends to decrease when the applied voltage is 1.5V or more, regardless of the value of ΔEc. When ΔEc is 120 meV, the chirp parameter value shows a negative value in the entire applied voltage range. When ΔEc is 160 meV, the applied voltage is −2.7 V or less and the chirp parameter value is negative. When ΔEc is 250 meV, the applied voltage is -4 V or less and the chirp parameter value is negative. As described above, when a quantum well structure having ΔEc of 250 meV or less is used, if the EA modulator is operated with an applied voltage of −4 V or less, the chirp parameter value becomes a negative value, thereby realizing long-distance transmission. Can do. Here, the withstand voltage when the EA modulator is operated is at most about −20 V, and when a voltage higher than this is applied, the operating characteristics of the EA modulator deteriorate with the deterioration of the pn junction characteristics.

次に、広い温度範囲(0℃から85℃まで)でEA変調器を使用する場合について説明する。図7はΔEcが170meVの量子井戸構造を用いた場合の消光特性の0℃から85℃までの温度変化を示すものである。DFBレーザ発振波長とEA変調器の量子井戸構造の組成によって決まる吸収端波長の差をデチユーニング量(以下Δλと称する)というが、ここではΔλ=120nmである。
この特性曲線において逆方向のDC電圧印加により急激に消光比が低下する部分が変調器動作時の導波光をオン/オフ切替する性能に関係する。実際に使用する際は、各温度でこの急激に変化する部分のDC電圧を印加している状態で、変調振幅電圧を印加することで高速に光をオン/オフする。例えば、印加電圧を−2V〜−4Vで変化させる場合には、DC電圧を−3V印加した状態で変調振幅電圧幅を2Vとして印加すればよい。従って、温度変化に応じてDC電圧を変化させることが、広い温度範囲でEA変調器を良好に動作させるために有効である。図7より、ΔEcが170meVの量子井戸構造を用いた場合、0℃から85℃までの温度変化に対して印加電圧を−2V〜−6Vの範囲で変化させることが有効であることがわかる。例えば、DC電圧を−3V〜−5Vの範囲で変化させて変調振幅電圧幅を2Vとして印加すればよい。ここでDC電圧の範囲はΔλの量によって変化する。Δλが小さい場合にはDC電圧の低い方にシフトし、Δλが大きい場合にはDC電圧の高い方にシフトする。このように、DC電圧を変化させることによって広い温度範囲においてEA変調器を良好に動作させることが出来る。
実際には、サーミスタなどの温度センサで温度を測定し、その温度に応じたDC電圧を印加する。この場合、温度変化に応じてDC電圧を変化させるが、変調振幅電圧は一定にして動作させても良い。例えば、ΔEc=160meVの素子を用いる場合、−2.7V以下のDC電圧でチャープパラメータ値は負値となる。その場合、例えば下記の表1に例示するように、DC電圧は温度に対して線形的に変化するようにかけて伝送実験を行っても、伝送は成功する。

Figure 2009003310
各温度に対してそのDC電圧を、例えばデータシートとして記憶させておき、そのデータに基づいて制御することにより、全温度に対応することができることになる。
なお、ここではDC電圧を温度に対して線形的に変化させて制御したが、非線形的に変化させてもよいし、事前に取得したデータに基づいて変化させてもよい。但し、線形的に変化させた方がデータ処理が簡便で計算が速くできるので制御速度の点で有効である。 Next, a case where the EA modulator is used in a wide temperature range (from 0 ° C. to 85 ° C.) will be described. FIG. 7 shows a change in temperature from 0 ° C. to 85 ° C. of the extinction characteristic when a quantum well structure having ΔEc of 170 meV is used. The difference between the DFB laser oscillation wavelength and the absorption edge wavelength determined by the composition of the quantum well structure of the EA modulator is referred to as a detuning amount (hereinafter referred to as Δλ), where Δλ = 120 nm.
In this characteristic curve, the portion where the extinction ratio suddenly decreases due to the application of a DC voltage in the reverse direction is related to the performance of switching on / off the guided light during the operation of the modulator. In actual use, light is turned on / off at a high speed by applying a modulation amplitude voltage in a state where a DC voltage of this rapidly changing portion is applied at each temperature. For example, when the applied voltage is changed from −2 V to −4 V, the modulation amplitude voltage width may be set to 2 V while the DC voltage is applied to −3 V. Therefore, changing the DC voltage in accordance with the temperature change is effective for operating the EA modulator satisfactorily over a wide temperature range. From FIG. 7, it can be seen that, when a quantum well structure having ΔEc of 170 meV is used, it is effective to change the applied voltage in the range of −2V to −6V with respect to the temperature change from 0 ° C. to 85 ° C. For example, the DC voltage may be changed in the range of −3V to −5V and the modulation amplitude voltage width may be applied as 2V. Here, the range of the DC voltage varies depending on the amount of Δλ. When Δλ is small, it shifts to a lower DC voltage, and when Δλ is large, it shifts to a higher DC voltage. Thus, by changing the DC voltage, the EA modulator can be favorably operated over a wide temperature range.
Actually, the temperature is measured by a temperature sensor such as a thermistor, and a DC voltage corresponding to the temperature is applied. In this case, the DC voltage is changed according to the temperature change, but the modulation amplitude voltage may be kept constant. For example, when an element with ΔEc = 160 meV is used, the chirp parameter value becomes a negative value with a DC voltage of −2.7 V or less. In that case, for example, as illustrated in Table 1 below, even if the transmission experiment is performed such that the DC voltage changes linearly with respect to the temperature, the transmission is successful.
Figure 2009003310
By storing the DC voltage for each temperature, for example, as a data sheet and controlling based on the data, it is possible to cope with all temperatures.
Here, the DC voltage is controlled by linearly changing with respect to the temperature, but may be changed nonlinearly or may be changed based on data acquired in advance. However, the linear change is more effective in terms of control speed because the data processing is simpler and the calculation is faster.

次に広い温度範囲での長距離伝送について説明する。
図7の特性曲線において消光比が低下する部分の傾きがチャープパラメータ値と相関する。図7においてこの傾きは0℃から85℃まででほとんど同程度であるので、0℃から85℃までの温度範囲でチャープパラメータ値はほぼ一定であると考えられる。このことは、図4のチャープパラメータ値の印加電圧依存性は0℃から85℃までの温度範囲でほとんど変化しないことを意味する。
図4より、Δλ=120nmで0℃から85℃までの温度範囲でΔEcが160meV以下の量子井戸構造を用いた場合、DC電圧を−2.7V以下で動作させればチャープパラメータ値が負値になるので、EA変調器で変調された光信号を長距離伝送することができる。前述したように温度変化に応じて、DC電圧を−2V〜−6Vの範囲で変化させると広い温度範囲でEA変調器を良好に動作できることから、広い温度範囲に対応するためにこのDC電圧範囲で変化させることが長距離伝送を実現するために有効である。このようにΔEcの値に応じて印加電圧を変化させることによって広い温度範囲において長距離伝送が可能となる。
Next, long-distance transmission over a wide temperature range will be described.
The slope of the portion where the extinction ratio decreases in the characteristic curve of FIG. 7 correlates with the chirp parameter value. In FIG. 7, since this slope is almost the same from 0 ° C. to 85 ° C., the chirp parameter value is considered to be substantially constant in the temperature range from 0 ° C. to 85 ° C. This means that the applied voltage dependency of the chirp parameter value in FIG. 4 hardly changes in the temperature range from 0 ° C. to 85 ° C.
From FIG. 4, when using a quantum well structure in which ΔEc is 160 meV or less in a temperature range from 0 ° C. to 85 ° C. with Δλ = 120 nm, the chirp parameter value is negative if the DC voltage is operated at −2.7 V or less. Therefore, the optical signal modulated by the EA modulator can be transmitted over a long distance. As described above, when the DC voltage is changed in the range of −2 V to −6 V according to the temperature change, the EA modulator can be operated well in a wide temperature range. It is effective to realize long distance transmission. Thus, long distance transmission is possible in a wide temperature range by changing the applied voltage according to the value of ΔEc.

即ち、環境温度の変化に応じて、EA変調器への印加電圧を、消光比が低下し且つチャープパラメータ値が負値となる印加電圧範囲(−4V〜−6V)で変化させることが、高温動作(広い環境温度範囲での動作)と伝送距離の長距離化とを両立させるために有効である。   That is, according to the change of the environmental temperature, the applied voltage to the EA modulator is changed in the applied voltage range (−4V to −6V) in which the extinction ratio is decreased and the chirp parameter value is a negative value. This is effective in achieving both the operation (operation in a wide ambient temperature range) and the extension of the transmission distance.

図5は上記井戸層を用いて障壁層組成を変化させ、量子井戸構造のΔEc値が120meV、160meV、250meVのときのEA変調器の消光特性の実験結果を示す。消光特性は変調器を動作させるときに導波する光をオン/オフ切替する性能に直結するものであり、良好な変調器特性を達成するためには消光比差が絶対値で最低限5dB必要である。特に、ΔEcが120meVの量子井戸構造を用いた場合、印加電圧が−4Vのときに消光比が−2dB、−6Vのときに消光比が−8dBになるので、印加電圧が−4Vから−6Vの範囲で変調すれば、言い換えればDCバイアスを−5V印加して2Vの変調振幅電圧幅で変調すれば、5dB以上の消光比差(6dB)が得られる。また、ΔEc値が160meV、250meVの量子井戸構造を用いた場合には、10dB以上の消光比差が得られる。従って、ΔEc値が120meV以上の量子井戸構造を用いれば、5dB以上の消光比差が得られ、良好な変調器特性が得られる。よってΔEc値は120meVより大きくすることが望ましいことが分かる。   FIG. 5 shows the experimental results of the extinction characteristics of the EA modulator when the well layer is used to change the barrier layer composition and the ΔEc value of the quantum well structure is 120 meV, 160 meV, and 250 meV. The extinction characteristic is directly linked to the ability to switch on / off the guided light when operating the modulator, and the extinction ratio difference must be at least 5 dB in absolute value to achieve good modulator characteristics. It is. In particular, when a quantum well structure with ΔEc of 120 meV is used, the extinction ratio is −2 dB when the applied voltage is −4 V, and the extinction ratio is −8 dB when the applied voltage is −6 V. Therefore, the applied voltage is from −4 V to −6 V In other words, if a DC bias is applied with -5V and modulation is performed with a modulation amplitude voltage width of 2V, an extinction ratio difference (6 dB) of 5 dB or more can be obtained. Further, when a quantum well structure having ΔEc values of 160 meV and 250 meV is used, an extinction ratio difference of 10 dB or more can be obtained. Therefore, if a quantum well structure having a ΔEc value of 120 meV or more is used, an extinction ratio difference of 5 dB or more can be obtained, and good modulator characteristics can be obtained. Therefore, it can be seen that the ΔEc value is desirably larger than 120 meV.

上述したことから量子井戸構造のΔEc値が120meV〜250meVの値の範囲になるように設定すれば、幅広い温度範囲でのEA変調器の動作と、EA変調器で変調された光信号の長距離伝送とを両立させることができるようになる。   From the above, if the ΔEc value of the quantum well structure is set to be in the range of 120 meV to 250 meV, the operation of the EA modulator in a wide temperature range and the long distance of the optical signal modulated by the EA modulator It becomes possible to make transmission compatible.

以下、本発明の実施例を図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施例1]
図6は、本発明による量子井戸構造を有するEA変調器の断面図である。以下に、本EA変調器の構成を、その作製方法とともに説明する。
[Example 1]
FIG. 6 is a cross-sectional view of an EA modulator having a quantum well structure according to the present invention. Below, the structure of this EA modulator is demonstrated with the preparation method.

図6に示すように、n−InP基板1上にMOCVD法により、PL波長1.1μmの無歪InGaAlAsガイド層2、量子井戸構造3、その上にPL波長1.1μmの無歪InGaAlAsガイド層4、p−InPオーバークラッド層5を順次成長した。ここで量子井戸構造3は膜厚8nmの量子井戸層In0.473Ga0.526As1と、膜厚5nmの量子障壁層In0.5855Ga0.172Al0.242As1の8周期構造である。その後、メサストライプ幅が2μmになるように、逆メサ状のリッジ構造のメサストライプを形成し、ストライプの側壁を有機物膜6で埋め込む。具体的には有機物膜6にBCB膜を用いた。更にp電極7、n電極8を形成し、共振器長約200μmになるようにへき開した。この作成法により波長1.55μmの光を制御するEA変調器を作製した。 As shown in FIG. 6, a strain-free InGaAlAs guide layer 2 having a PL wavelength of 1.1 μm and a quantum well structure 3 are formed on an n-InP substrate 1 by MOCVD, and a strain-free InGaAlAs guide layer having a PL wavelength of 1.1 μm is formed thereon. 4. A p-InP overclad layer 5 was grown sequentially. Here, the quantum well structure 3 is an 8-period structure of a quantum well layer In 0.473 Ga 0.526 As 1 having a thickness of 8 nm and a quantum barrier layer In 0.5855 Ga 0.172 Al 0.242 As 1 having a thickness of 5 nm. Thereafter, a mesa stripe having an inverted mesa-shaped ridge structure is formed so that the mesa stripe width becomes 2 μm, and the sidewall of the stripe is embedded with the organic film 6. Specifically, a BCB film was used as the organic film 6. Further, a p-electrode 7 and an n-electrode 8 were formed and cleaved so that the resonator length was about 200 μm. By this production method, an EA modulator that controls light having a wavelength of 1.55 μm was produced.

試作した素子(EA変調器)は高温動作(広い環境温度範囲での動作)と伝送距離の長距離化とを両立したΔEc=170meVを有し、実際に環境温度が0℃から85℃で80km伝送をした後、波形劣化がないことを示した。図7は各温度の消光特性を表しており、0℃から85℃の範囲の全ての温度で15dB以上の消光比を得た。また図8は80km伝送後の波形を表し、80km伝送後も波形劣化がないことを示した。   The prototype device (EA modulator) has ΔEc = 170 meV that combines high-temperature operation (operation in a wide environmental temperature range) and longer transmission distance, and the actual ambient temperature is 0 to 85 ° C and 80 km. After transmission, it showed no waveform degradation. FIG. 7 shows the extinction characteristics at each temperature, and an extinction ratio of 15 dB or more was obtained at all temperatures ranging from 0 ° C. to 85 ° C. FIG. 8 shows a waveform after 80 km transmission, and shows that there is no waveform deterioration after 80 km transmission.

[実施例2]
図9は本発明による量子井戸構造を有するEA変調器とDFBレーザを同一基板上にモノリシック集積したEA−DFBレーザ(半導体光集積素子)の断面図、図10は図9のa−a線矢視断面図、図11は図9のb−b線矢視断面図である。以下に、本EA−DFBレーザの構成を、その作製方法とともに説明する。
[Example 2]
FIG. 9 is a sectional view of an EA-DFB laser (semiconductor optical integrated device) in which an EA modulator having a quantum well structure and a DFB laser according to the present invention are monolithically integrated on the same substrate, and FIG. 10 is an aa line arrow in FIG. FIG. 11 is a sectional view taken along the line bb in FIG. 9. Below, the structure of this EA-DFB laser is demonstrated with the preparation method.

まずDFBレーザ部11の構成について説明する。図9、図10及び図11に示すように、n−InP基板12上にPL波長1.15μmの無歪のInGaAlAsガイド層13を成長し、その上に活性層を成長する。この活性層は量子井戸構造14からなり、この量子井戸構造14はPL波長1.55μm,+1.0%の圧縮歪のInGaAlAsの厚さ7nmの井戸層と、PL波長1.20μm,−0.4%の引張歪のInGaAlAsの厚さ10nmの障壁層の8周期からなる。この量子井戸活性層14の上にInGaAlAsガイド層15を成長し、p−InAlAs層16を成長し、更にその上にp−InGaAsP層(回折格子)17を形成する。   First, the configuration of the DFB laser unit 11 will be described. As shown in FIGS. 9, 10 and 11, an unstrained InGaAlAs guide layer 13 having a PL wavelength of 1.15 μm is grown on an n-InP substrate 12, and an active layer is grown thereon. This active layer is composed of a quantum well structure 14, which has a PL wavelength of 1.55 μm, + 1.0% compressive strain InGaAlAs 7 nm thick well layer, and a PL wavelength of 1.20 μm, −0. It consists of 8 periods of a 10 nm thick barrier layer of InGaAlAs with 4% tensile strain. An InGaAlAs guide layer 15 is grown on the quantum well active layer 14, a p-InAlAs layer 16 is grown, and a p-InGaAsP layer (diffraction grating) 17 is formed thereon.

上述したDFBレーザ部11と本発明の電界吸収型光変調器部19を結合するためには、バットジョイント技術を用いる。具体的にはレーザ構造成長層上にSiO2マスクを付け、ウェットエッチングにより、量子井戸活性層14を幅が15μm、長さが450μmの島形状に形成する。即ち幅15μm、長さ450μmの領域にのみ量子井戸活性層14を残した状態にする。その状態で変調器構造を成長することにより、DFBレーザ部分の周りに変調器構造が成長され、集積化される。 In order to couple the above-described DFB laser unit 11 and the electroabsorption optical modulator unit 19 of the present invention, a butt joint technique is used. Specifically, a SiO 2 mask is attached on the laser structure growth layer, and the quantum well active layer 14 is formed into an island shape having a width of 15 μm and a length of 450 μm by wet etching. That is, the quantum well active layer 14 is left only in a region having a width of 15 μm and a length of 450 μm. By growing the modulator structure in that state, the modulator structure is grown and integrated around the DFB laser portion.

電界吸収型光変調器部分19の構成は上記実施例1と同じである。即ち、膜厚8nmの量子井戸層In0.473Ga0.526As1と、膜厚5nmの量子障壁層In0.5855Ga0.172Al0.242As1の8周期の量子井戸構造21を有する構成である。詳述すると、上記実施例1と同様にn−InP基板12上にInGaAlAsガイド層20、量子井戸構造21、InGaAlAsガイド層24、InGaAsPガイド層25を順に成長する。ここで、InGaAsPガイド層25は、InGaAlAsガイド層24の表面が露出して酸化されることを防止するための層である。 The configuration of the electroabsorption optical modulator portion 19 is the same as that of the first embodiment. That is, the quantum well structure 21 has an 8-period quantum well structure 21 of an 8 nm-thick quantum well layer In 0.473 Ga 0.526 As 1 and a 5 nm-thick quantum barrier layer In 0.5855 Ga 0.172 Al 0.242 As 1 . More specifically, the InGaAlAs guide layer 20, the quantum well structure 21, the InGaAlAs guide layer 24, and the InGaAsP guide layer 25 are grown on the n-InP substrate 12 in the same manner as in the first embodiment. Here, the InGaAsP guide layer 25 is a layer for preventing the surface of the InGaAlAs guide layer 24 from being exposed and oxidized.

バットジョイントの後に、マスクを除去し、全面に層厚1.6μmのp−InPオーバークラッド層18を成長した。このp−InPオーバークラッド層18の上にp−InGaAsPコンタクト層26を成長した。再度SiO2を堆積しフォトリソグラフィ技術によりストライプ状のマスクを新しく形成する。これをマスクにしてRIE(反応性イオンエッチング)により、幅2μmのメサストライプを形成した。引き続き、メサストライプの両側に、MOVPE法により電流ブロック層として、RuドープのInP層27を層厚3μm成長させた。Ruの原料として、ビスエチルシクロペンタディエニルルテニウム(bis(ethylcycloPentadienyl)ruthenium(II))を用いた。 After the butt joint, the mask was removed, and a p-InP overclad layer 18 having a layer thickness of 1.6 μm was grown on the entire surface. A p-InGaAsP contact layer 26 was grown on the p-InP overclad layer 18. SiO 2 is deposited again, and a striped mask is newly formed by photolithography. Using this as a mask, a mesa stripe having a width of 2 μm was formed by RIE (reactive ion etching). Subsequently, a Ru-doped InP layer 27 was grown as a current blocking layer on both sides of the mesa stripe by a MOVPE method to a thickness of 3 μm. Bisethylcyclopentadienyl ruthenium (II) was used as a Ru raw material.

更に、SiO2からなるマスクをHFにより除去し、EA変調器部19のオーバークラッド層18をメサストライプ状に加工し、電気的な絶縁を行うために、DFBレーザ部11とEA変調器部19の間のコンタクト層を除去した。その後、全面に有機物膜28を塗布し、EA変調器のメサ脇のみを残して有機物膜を除去する。その後、各p電極22を形成し、n−InP基板12を研磨した後にn電極23を形成して、へき開を行う。 Further, the mask made of SiO 2 is removed by HF, the over cladding layer 18 of the EA modulator section 19 is processed into a mesa stripe shape, and electrical insulation is performed, so that the DFB laser section 11 and the EA modulator section 19 are electrically insulated. The contact layer between was removed. Thereafter, an organic film 28 is applied to the entire surface, and the organic film is removed leaving only the mesa side of the EA modulator. Thereafter, each p-electrode 22 is formed, and after polishing the n-InP substrate 12, an n-electrode 23 is formed and cleaved.

本実施例2のEA−DFBレーザによれば、85℃での光出力10mW、特性温度80k、10Gbit/sで変調時の動的消光比10dB以上を得た。   According to the EA-DFB laser of Example 2, a dynamic extinction ratio of 10 dB or more during modulation was obtained at an optical output of 10 mW at 85 ° C., a characteristic temperature of 80 k, and 10 Gbit / s.

[実施例3]
図12は本発明による量子井戸構造を有するEA変調器とDFBレーザを同一基板上にモノリシック集積したEA−DFBレーザ(半導体光集積素子)の断面図、図13は図12のc−c線矢視断面図である。集積化にはバットジョイントではなく、装荷型と呼ばれる構造を用いる。
[Example 3]
FIG. 12 is a cross-sectional view of an EA-DFB laser (semiconductor optical integrated device) in which an EA modulator having a quantum well structure and a DFB laser according to the present invention are monolithically integrated on the same substrate, and FIG. FIG. For integration, a structure called a loading type is used instead of a butt joint.

図12及び図13に示すように、同一のn−InP基板31上に本発明のEA変調器層(量子井戸構造35)を成長し、更にその上にDFBレーザの活性層(LD量子井戸構造40)を成長する。その後、EA変調器部の上のDFBレーザ部の活性層のみをRIEもしくは、硫酸と過酸化水素の混合溶液でウェットエッチングする。この構造は装荷型と呼ばれ、簡単なプロセスで作成可能なEA−DFBレーザ構造である。   As shown in FIGS. 12 and 13, an EA modulator layer (quantum well structure 35) of the present invention is grown on the same n-InP substrate 31, and further an active layer (LD quantum well structure) of a DFB laser is further formed thereon. 40) grow. Thereafter, only the active layer of the DFB laser part on the EA modulator part is wet etched with RIE or a mixed solution of sulfuric acid and hydrogen peroxide. This structure is called a loading type and is an EA-DFB laser structure that can be produced by a simple process.

具体的には、n−InP基板31上にPL波長1.15μmの無歪のInGaAlAsガイド層34を成長し、その後本発明のEA変調器層(量子井戸構造35)を成長する。このEA変調器層量子井戸構造35は膜厚8nmの量子井戸層In0.473Ga0.526As1と、膜厚5nmの量子障壁層In0.5855Ga0.172Al0.242As1の8周期構造である。その後、無歪のInGaAlAsガイド層36とInPエッチストップ層37とInGaAsPのエッチストップ層38を成長する。更にその上に、レーザガイド層のInGaAlAs層39を成長し、その上に活性層40を成長する。活性層40は量子井戸構造からなり、PL波長1.55μm、+1.0%の圧縮歪のInGaAlAsの厚さ7nmの井戸層と、PL波長1.20μm、−0.4%の引張歪のInGaAlAsの厚さ10nmの障壁層の6周期からなる。活性層40の上にInGaAlAsガイド層41を成長し、p−InAlAs層42を成長し、更にその上にp−InGaAsP層(回折格子)43を形成し、p−InP回折格子積み増し層48でp−InGaAsP層(回折格子)43を埋め込む。 Specifically, an unstrained InGaAlAs guide layer 34 having a PL wavelength of 1.15 μm is grown on the n-InP substrate 31, and then an EA modulator layer (quantum well structure 35) of the present invention is grown. The EA modulator layer quantum well structure 35 has an eight-period structure of a quantum well layer In 0.473 Ga 0.526 As 1 having a thickness of 8 nm and a quantum barrier layer In 0.5855 Ga 0.172 Al 0.242 As 1 having a thickness of 5 nm. Thereafter, an unstrained InGaAlAs guide layer 36, an InP etch stop layer 37, and an InGaAsP etch stop layer 38 are grown. Further, an InGaAlAs layer 39 as a laser guide layer is grown thereon, and an active layer 40 is grown thereon. The active layer 40 has a quantum well structure, a PL layer of 1.55 μm, a compressive strained InGaAlAs 7 nm thick well layer, a PL wavelength of 1.20 μm, a tensile strained InGaAlAs of −0.4%. Consisting of 6 periods of a 10 nm thick barrier layer. An InGaAlAs guide layer 41 is grown on the active layer 40, a p-InAlAs layer 42 is grown, a p-InGaAsP layer (diffraction grating) 43 is formed thereon, and a p-InP diffraction grating stacking layer 48 is used for p -An InGaAsP layer (diffraction grating) 43 is embedded.

DFBレーザ部32の上にSiO2マスクを付け、ウェットエッチングにより、InPエッチストップ層37までエッチングを行いDFBレーザ部32を形成する。量子井戸活性層40を幅が40μm、長さが450μmの島形状に形成する。その状態でSiO2マスクをHFによりはがし、全面にp−InPオーバークラッド層44を成長し、その上にp−InGaAsPコンタクト層47を成長する。 A SiO 2 mask is attached on the DFB laser part 32, and etching is performed up to the InP etch stop layer 37 by wet etching to form the DFB laser part 32. The quantum well active layer 40 is formed in an island shape having a width of 40 μm and a length of 450 μm. In this state, the SiO 2 mask is peeled off with HF, a p-InP overclad layer 44 is grown on the entire surface, and a p-InGaAsP contact layer 47 is grown thereon.

その後SiO2を堆積しフォトリソグラフィ技術によりストライプ状のマスクを新しく形成する。これをマスクにしてRIE(反応性イオンエッチング)により、幅2μmで高さ1.6μm程度のメサストライプを形成した。更にその後全面に有機物膜49を成長し、この有機物膜49をEA変調器部33の脇のみを残して除去する。その後、各p電極45を形成し、n−InP基板31を研磨した後にn電極46を形成して、へき開を行う。 Thereafter, SiO 2 is deposited and a stripe mask is newly formed by photolithography. Using this as a mask, a mesa stripe having a width of 2 μm and a height of about 1.6 μm was formed by RIE (reactive ion etching). Thereafter, an organic film 49 is grown on the entire surface, and the organic film 49 is removed leaving only the sides of the EA modulator section 33. Thereafter, each p-electrode 45 is formed, and after polishing the n-InP substrate 31, an n-electrode 46 is formed and cleaved.

本実施例3のEA−DFBレーザによれば、85℃での光出力6mW、特性温度70k、10Gbit/sで変調時の動的消光比10dB以上を得た。また80km伝送後の波形が劣化しないことも確認された。   According to the EA-DFB laser of Example 3, an optical output of 6 mW at 85 ° C., a characteristic temperature of 70 k, and a dynamic extinction ratio of 10 dB or more during modulation were obtained at 10 Gbit / s. It was also confirmed that the waveform after 80 km transmission did not deteriorate.

[実施例4]
本実施例4は上記実施例1とほぼ同じ構造でEA変調器層量子井戸構造のみが異なる。即ち図6のEA変調器層量子井戸構造3において、膜厚8nmの量子井戸層In0.5888Ga0.398Al0.0714As1と、膜厚5nmの量子障壁層In0.4707Ga0.3441Al0.1852As1の8周期構造を用いたものである。
本実施例ではInGaAlAs層を井戸層に用いた例を述べた。前述のものはInGaAs層を井戸層に用いていたが、この理由は、井戸層に引張歪を導入しているためである。井戸層に圧縮歪を導入しInGaAlAs層を井戸層に用いて、上述のΔEc値を持つように量子井戸構造を形成しても構わないこととする。
[Example 4]
The fourth embodiment is substantially the same as the first embodiment, except for the EA modulator layer quantum well structure. That is, in the EA modulator layer quantum well structure 3 of FIG. 6, an 8-period structure of a quantum well layer In 0.5888 Ga 0.398 Al 0.0714 As 1 with a thickness of 8 nm and a quantum barrier layer In 0.4707 Ga 0.3441 Al 0.1852 As 1 with a thickness of 5 nm. Is used.
In this embodiment, the example in which the InGaAlAs layer is used for the well layer has been described. In the above, the InGaAs layer is used for the well layer, because the tensile strain is introduced into the well layer. The quantum well structure may be formed so as to have the above-described ΔEc value by introducing compressive strain into the well layer and using the InGaAlAs layer as the well layer.

[実施例5]
本実施例5は上記実施例1とほぼ同じ構造でEA変調器層量子井戸構造のみが異なる。即ち図6のEA変調器層量子井戸構造3において、膜厚10nmの量子井戸層In0.473Ga0.526As1と、膜厚10nmの量子障壁層In0.5855Ga0.172Al0.242As1の10周期構造を用いたものである。
[Example 5]
The fifth embodiment has substantially the same structure as that of the first embodiment except for the EA modulator layer quantum well structure. That is, in the EA modulator layer quantum well structure 3 of FIG. 6, a 10-period structure of a quantum well layer In 0.473 Ga 0.526 As 1 with a thickness of 10 nm and a quantum barrier layer In 0.5855 Ga 0.172 Al 0.242 As 1 with a thickness of 10 nm is used. It was.

このように、上記実施例1〜4で示した井戸層厚8nm、障壁層厚5nmの8周期の量子井戸構造以外の構造を用いてもよい。特に井戸層厚は7nm以上10nm以下であることが有効である。   As described above, a structure other than the 8-period quantum well structure having the well layer thickness of 8 nm and the barrier layer thickness of 5 nm shown in the first to fourth embodiments may be used. In particular, it is effective that the well layer thickness is 7 nm or more and 10 nm or less.

本発明は半導体光変調器(電界吸収型光変調器)における高温動作・長距離化を両立させ、この光変調器とDFBレーザとを集積することによって温度調節用クーラー無しの低コストな変調光源(半導体光集積素子)を実現可能とし、この変調光源を温度調節用クーラー無しの低コストな光伝送システムに適用可能である。   The present invention achieves both high-temperature operation and long distance in a semiconductor optical modulator (electroabsorption optical modulator), and integrates the optical modulator and a DFB laser to provide a low-cost modulated light source without a temperature control cooler. (Semiconductor optical integrated device) can be realized, and this modulated light source can be applied to a low-cost optical transmission system without a temperature control cooler.

P系半導体材料とAl系半導体材料のバンド模式図である。It is a band schematic diagram of a P-type semiconductor material and an Al-type semiconductor material. ΔEcの大きさと吸収係数の関係の模式図である。It is a schematic diagram of the relationship between the magnitude of ΔEc and the absorption coefficient. Al組成とΔEcの関係の計算結果を示す図である。It is a figure which shows the calculation result of the relationship between Al composition and (DELTA) Ec. EA変調器DCバイアスとチャープパラメータ値のΔEc依存性の計算結果を示す図である。It is a figure which shows the calculation result of (DELTA) Ec dependence of EA modulator DC bias and a chirp parameter value. ΔEc値とEA変調器消光特性の実験結果を示す図である。It is a figure which shows the experimental result of (DELTA) Ec value and EA modulator extinction characteristic. 本発明の実施例1に関わる半導体変調器(EA変調器)の断面図である。It is sectional drawing of the semiconductor modulator (EA modulator) in connection with Example 1 of this invention. 本発明の実施例1のEA変調器の消光特性の温度依存性を示す図である。It is a figure which shows the temperature dependence of the extinction characteristic of the EA modulator of Example 1 of this invention. 本発明の実施例1のEA変調器の光伝送特性の波形の様子を示す図である。It is a figure which shows the mode of the waveform of the optical transmission characteristic of the EA modulator of Example 1 of this invention. 本発明の実施例2に関わるEA−DFBレーザ(半導体光集積素子)の断面図である。It is sectional drawing of the EA-DFB laser (semiconductor optical integrated element) in connection with Example 2 of this invention. 図9のa−a線矢視断面図である。FIG. 10 is a cross-sectional view taken along line aa in FIG. 9. 図9のb−b線矢視断面図Bb line arrow sectional view of FIG. 本発明の実施例3に関わるEA−DFBレーザ(半導体光集積素子)の断面図である。It is sectional drawing of the EA-DFB laser (semiconductor optical integrated element) in connection with Example 3 of this invention. 図12のc−c線矢視断面図である。FIG. 13 is a cross-sectional view taken along the line cc in FIG. 12.

符号の説明Explanation of symbols

1 n−InP基板
2 In0.527Ga0.235Al0.2377Asガイド層
3 In0.473Ga0.526As1/In0.5855Ga0.172Al0.242As1量子井戸構造
4 In0.527Ga0.235Al0.2377Asガイド層
5 p−InPオーバークラッド層
6 BCB膜
7 p電極
8 n電極
11 DFBレーザ部
12 n−InP基板
13 In0.527Ga0.235Al0.2377Asガイド層
14 In0.67Ga0.22Al0.11As1/In0.48Ga0.34Al0.18As1量子井戸構造
15 In0.527Ga0.235Al0.2377Asガイド層
16 p−InAlAs層
17 p−InGaAsP層(回折格子)
18 p−InPオーバークラッド層
19 EA変調器部
20 In0.527Ga0.235Al0.2377Asガイド層
21 In0.473Ga0.526As1/In0.5855Ga0.172Al0.242As1量子井戸構造
22 p電極
23 n電極
24 In0.527Ga0.235Al0.2377Asガイド層
25 InGaAsPガイド層
26 p−InGaAsPコンタクト層
27 RuドープのInP層
28 有機物膜
31 n−InP基板
32 DFBレーザ部
33 EA変調器部
34 In0.527Ga0.235Al0.2377Asガイド層
35 In0.473Ga0.526As1/In0.5855Ga0.172Al0.242As1EA変調器層量子井戸構造
36 In0.527Ga0.235Al0.2377Asガイド層
37 InPエッチストップ層
38 InGaAsPエッチストップ層
39 In0.527Ga0.235Al0.2377Asガイド層
40 In0.67Ga0.22Al0.11As1/In0.48Ga0.34Al0.18As1LD量子井戸構造
41 In0.527Ga0.235Al0.2377Asガイド層
42 p−InAlAs層
43 p−InGaAsP層(回折格子)
44 p−InPオーバークラッド層
45 p電極
46 n電極
47 p−InGaAsPコンタクト層
48 p−InP回折格子積み増し層
49 有機物膜
1 n-InP substrate 2 In 0.527 Ga 0.235 Al 0.2377 As guide layer 3 In 0.473 Ga 0.526 As 1 / In 0.5855 Ga 0.172 Al 0.242 As 1 quantum well structure 4 In 0.527 Ga 0.235 Al 0.2377 As guide layer 5 p-InP overclad Layer 6 BCB film 7 p electrode 8 n electrode 11 DFB laser part 12 n-InP substrate 13 In 0.527 Ga 0.235 Al 0.2377 As guide layer 14 In 0.67 Ga 0.22 Al 0.11 As 1 / In 0.48 Ga 0.34 Al 0.18 As 1 quantum well structure 15 In 0.527 Ga 0.235 Al 0.2377 As guide layer 16 p-InAlAs layer 17 p-InGaAsP layer (diffraction grating)
18 p-InP overclad layer 19 EA modulator portion 20 In 0.527 Ga 0.235 Al 0.2377 As guide layer 21 In 0.473 Ga 0.526 As 1 / In 0.5855 Ga 0.172 Al 0.242 As 1 quantum well structure 22 p electrode 23 n electrode 24 In 0.527 Ga 0.235 Al 0.2377 As guide layer 25 InGaAsP guide layer 26 p-InGaAsP contact layer 27 Ru-doped InP layer 28 Organic film 31 n-InP substrate 32 DFB laser part 33 EA modulator part 34 In 0.527 Ga 0.235 Al 0.2377 As guide layer 35 In 0.473 Ga 0.526 As 1 / In 0.5855 Ga 0.172 Al 0.242 As 1 EA modulator layer quantum well structure 36 In 0.527 Ga 0.235 Al 0.2377 As guide layer 37 InP etch stop layer 38 InGaAsP etch stop layer 39 In 0.527 Ga 0.235 Al 0.2377 As Id layer 40 In 0.67 Ga 0.22 Al 0.11 As 1 / In 0.48 Ga 0.34 Al 0.18 As 1 LD quantum well structure 41 In 0.527 Ga 0.235 Al 0.2377 As guide layer 42 p-InAlAs layer 43 p-InGaAsP layer (diffraction grating)
44 p-InP over clad layer 45 p electrode 46 n electrode 47 p-InGaAsP contact layer 48 p-InP diffraction grating additional layer 49 organic film

Claims (11)

InとGaとAsを有する井戸層と、AlとInとGaとAsを有する障壁層とからなる量子井戸構造を有し、
前記量子井戸構造の伝導帯オフセット値が、120meV以上250meV以下であることを特徴とする電界吸収型光変調器。
A quantum well structure including a well layer including In, Ga, and As and a barrier layer including Al, In, Ga, and As;
An electroabsorption optical modulator, wherein the conduction band offset value of the quantum well structure is 120 meV or more and 250 meV or less.
前記伝導帯オフセット値を、前記電界吸収型光変調器を高温で動作させるために120meV以上とし、前記電界吸収型光変調器により変調された光信号を長距離伝送させるために250meV以下とすることを特徴とする請求項1に記載の電界吸収型光変調器。   The conduction band offset value is 120 meV or more for operating the electroabsorption optical modulator at a high temperature, and 250 meV or less for transmitting the optical signal modulated by the electroabsorption optical modulator over a long distance. The electroabsorption optical modulator according to claim 1. 前記障壁層が、In(1−y−z)Ga(y)Al(z)As層(0.11≦y≦0.24、0.18≦z≦0.31)であることを特徴とする請求項1又は2に記載の電界吸収型光変調器。   The barrier layer is an In (1-yz) Ga (y) Al (z) As layer (0.11 ≦ y ≦ 0.24, 0.18 ≦ z ≦ 0.31). The electroabsorption optical modulator according to claim 1 or 2. 前記井戸層が、In(x)Ga(1−x)As層(0.46≦x≦0.49)であることを特徴とする請求項1〜3の何れか1項に記載の電界吸収型光変調器。   The electroabsorption according to claim 1, wherein the well layer is an In (x) Ga (1-x) As layer (0.46 ≦ x ≦ 0.49). Type optical modulator. 前記井戸層の厚さが、7nm以上10nm以下であることを特徴とする請求項4に記載の電界吸収型光変調器。   The electroabsorption optical modulator according to claim 4, wherein the well layer has a thickness of 7 nm to 10 nm. 前記多重量子井戸構造の両側を埋め込む半導体結晶が、Ruドープ半絶縁性半導体結晶であることを特徴とする請求項1〜5の何れか1項に記載の電界吸収型光変調器。   6. The electroabsorption optical modulator according to claim 1, wherein the semiconductor crystal filling both sides of the multiple quantum well structure is a Ru-doped semi-insulating semiconductor crystal. 環境温度の変化に応じて、前記電界吸収型光変調器への印加電圧を、消光比が低下し且つチャープパラメータ値が負値となる印加電圧範囲で変化させることを特徴とする請求項1〜6の何れか1項に記載の電界吸収型光変調器。   The applied voltage to the electroabsorption optical modulator is changed in the applied voltage range in which the extinction ratio is lowered and the chirp parameter value is a negative value according to a change in environmental temperature. 7. The electroabsorption optical modulator according to any one of 6 above. 請求項1〜7の何れか1項に記載の電界吸収型光変調器と、DFBレーザとを同一基板上にモノリシック集積したことを特徴とする半導体光集積素子。   8. A semiconductor optical integrated device, wherein the electroabsorption optical modulator according to claim 1 and a DFB laser are monolithically integrated on the same substrate. 前記DFBレーザが、埋め込み型構造であってRuドープ半絶縁性埋め込み層を有することを特徴とする請求項8に記載の半導体集積素子。   9. The semiconductor integrated device according to claim 8, wherein the DFB laser has a buried structure and has a Ru-doped semi-insulating buried layer. 請求項1〜6の何れか1項に記載の電界吸収型光変調器の制御方法であって、
環境温度の変化に応じて、前記電界吸収型光変調器への印加電圧を、消光比が低下し且つチャープパラメータ値が負値となる印加電圧範囲で変化させることを特徴とする電界吸収型光変調器の制御方法。
A method for controlling an electroabsorption optical modulator according to any one of claims 1 to 6,
An electroabsorption light characterized by changing an applied voltage to the electroabsorption optical modulator in an applied voltage range in which the extinction ratio is reduced and the chirp parameter value is a negative value in accordance with a change in environmental temperature. Modulator control method.
請求項1〜6の何れか1項に記載の電界吸収型光変調器と、DFBレーザとを同一基板上にモノリシック集積してなる半導体光集積素子の制御方法であって、
環境温度の変化に応じて、前記電界吸収型光変調器への印加電圧を、消光比が低下し且つチャープパラメータ値が負値となる印加電圧範囲で変化させることを特徴とする半導体光集積素子の制御方法。
A method for controlling a semiconductor optical integrated device, wherein the electroabsorption optical modulator according to any one of claims 1 to 6 and a DFB laser are monolithically integrated on the same substrate,
A semiconductor optical integrated device characterized in that the applied voltage to the electroabsorption optical modulator is changed in the applied voltage range in which the extinction ratio is lowered and the chirp parameter value is a negative value in accordance with a change in environmental temperature. Control method.
JP2007165848A 2007-06-25 2007-06-25 Electroabsorption optical modulator Active JP4920506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007165848A JP4920506B2 (en) 2007-06-25 2007-06-25 Electroabsorption optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165848A JP4920506B2 (en) 2007-06-25 2007-06-25 Electroabsorption optical modulator

Publications (2)

Publication Number Publication Date
JP2009003310A true JP2009003310A (en) 2009-01-08
JP4920506B2 JP4920506B2 (en) 2012-04-18

Family

ID=40319727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165848A Active JP4920506B2 (en) 2007-06-25 2007-06-25 Electroabsorption optical modulator

Country Status (1)

Country Link
JP (1) JP4920506B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283104A (en) * 2009-06-04 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device
JP2011155157A (en) * 2010-01-28 2011-08-11 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device and method of controlling the same
JP2011221370A (en) * 2010-04-13 2011-11-04 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter
JP2012175352A (en) * 2011-02-21 2012-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter and optical transmitter drive condition setting device
JP2013093622A (en) * 2013-02-18 2013-05-16 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device control method
JP2013157645A (en) * 2013-05-22 2013-08-15 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser and distributed feedback laser integrated with electroabsorption modulator
JP2014197869A (en) * 2014-05-27 2014-10-16 日本電信電話株式会社 Optical transmitter and drive condition setting device for optical transmitter
JP2016092124A (en) * 2014-10-31 2016-05-23 三菱電機株式会社 Optical modulator integrated semiconductor laser
JP2018093002A (en) * 2016-11-30 2018-06-14 日本オクラロ株式会社 Array semiconductor optical element, optical transmitter module, optical module and manufacturing methods of the same
JP2021193756A (en) * 2016-09-26 2021-12-23 日本ルメンタム株式会社 Optical semiconductor element, optical module, and method for manufacturing optical semiconductor element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9395563B2 (en) 2013-08-01 2016-07-19 Samsung Electronics Co., Ltd. Electro-optic modulator and optic transmission modulator including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148575A (en) * 2000-11-15 2002-05-22 Mitsubishi Electric Corp Optical modulator and optical modulator integtation type laser diode
JP2005064080A (en) * 2003-08-08 2005-03-10 Furukawa Electric Co Ltd:The Semiconductor element and its fabricating process
JP2006303147A (en) * 2005-04-20 2006-11-02 Opnext Japan Inc Optical semiconductor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148575A (en) * 2000-11-15 2002-05-22 Mitsubishi Electric Corp Optical modulator and optical modulator integtation type laser diode
JP2005064080A (en) * 2003-08-08 2005-03-10 Furukawa Electric Co Ltd:The Semiconductor element and its fabricating process
JP2006303147A (en) * 2005-04-20 2006-11-02 Opnext Japan Inc Optical semiconductor element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283104A (en) * 2009-06-04 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device
JP2011155157A (en) * 2010-01-28 2011-08-11 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device and method of controlling the same
JP2011221370A (en) * 2010-04-13 2011-11-04 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter
JP2012175352A (en) * 2011-02-21 2012-09-10 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter and optical transmitter drive condition setting device
JP2013093622A (en) * 2013-02-18 2013-05-16 Nippon Telegr & Teleph Corp <Ntt> Optical semiconductor device control method
JP2013157645A (en) * 2013-05-22 2013-08-15 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser and distributed feedback laser integrated with electroabsorption modulator
JP2014197869A (en) * 2014-05-27 2014-10-16 日本電信電話株式会社 Optical transmitter and drive condition setting device for optical transmitter
JP2016092124A (en) * 2014-10-31 2016-05-23 三菱電機株式会社 Optical modulator integrated semiconductor laser
JP2021193756A (en) * 2016-09-26 2021-12-23 日本ルメンタム株式会社 Optical semiconductor element, optical module, and method for manufacturing optical semiconductor element
JP7267370B2 (en) 2016-09-26 2023-05-01 日本ルメンタム株式会社 Optical semiconductor device, optical module, and method for manufacturing optical semiconductor device
JP2018093002A (en) * 2016-11-30 2018-06-14 日本オクラロ株式会社 Array semiconductor optical element, optical transmitter module, optical module and manufacturing methods of the same
JP7046484B2 (en) 2016-11-30 2022-04-04 日本ルメンタム株式会社 Array semiconductor optical elements, optical transmission modules, optical modules, and methods for manufacturing them.

Also Published As

Publication number Publication date
JP4920506B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4920506B2 (en) Electroabsorption optical modulator
CN106532434B (en) The method of lamination selective area growth production multi-wavelength integreted phontonics transmitting chip
US20080291952A1 (en) Optical semiconductor device
US10355454B2 (en) Optical semiconductor device, optical module, and method for manufacturing optical semiconductor device
WO2005117217A1 (en) Semiconductor optical element and manufacturing method thereof
CA2139140C (en) A method for fabricating a semiconductor photonic integrated circuit
JPH09318918A (en) Semiconductor optical modulator
Nakamura et al. 1.3-/spl mu/m AlGaInAs strain compensated MQW-buried-heterostructure lasers for uncooled 10-gb/s operation
Wang et al. 1.55-μm AlGaInAs-InP laterally coupled distributed feedback laser
WO2011098824A1 (en) Semiconductor device
EP0614253B1 (en) Multi-quantum well (MQW) structure laser diode/modulator integrated light source
JP3809941B2 (en) Electroabsorption optical modulator
JPH07249829A (en) Distributed feedback semiconductor laser
Suematsu et al. Single-mode semiconductor lasers for long-wavelength optical fiber communications and dynamics of semiconductor lasers
US9819153B2 (en) Optical semiconductor device and manufacturing method thereof
Sakiano et al. 25.8 Gbps direct modulation AlGaInAs DFB lasers with Ru-doped InP buried heterostructure for 70° C operation
JP2010283104A (en) Optical semiconductor device
US6924162B2 (en) Process of manufacturing a semiconductor device
JP3331568B2 (en) Embedded semiconductor laser
JP2014206557A (en) Electric field absorption modulator, semiconductor optical element, and optical module
JP2010278278A (en) Optical semiconductor device
Inaba et al. High-power 1.55-/spl mu/m mass-transport-grating DFB lasers for externally modulated systems
JP2013165288A (en) Optical semiconductor device
JP2009194149A (en) Semiconductor optical integrated element and construction method therefor
Paoletti et al. Uncooled 20 Gb/s direct modulation of high yield, highly reliable 1300 nm InGaAlAs ridge DFB lasers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Ref document number: 4920506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350