JP2009002007A - Soil improving method - Google Patents

Soil improving method Download PDF

Info

Publication number
JP2009002007A
JP2009002007A JP2007162524A JP2007162524A JP2009002007A JP 2009002007 A JP2009002007 A JP 2009002007A JP 2007162524 A JP2007162524 A JP 2007162524A JP 2007162524 A JP2007162524 A JP 2007162524A JP 2009002007 A JP2009002007 A JP 2009002007A
Authority
JP
Japan
Prior art keywords
improved
improvement
ground
walls
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007162524A
Other languages
Japanese (ja)
Other versions
JP5062559B2 (en
Inventor
Yoichi Taji
陽一 田地
Yasuhiro Shamoto
康広 社本
Hiroshi Kazama
広志 風間
Takeyoshi Fukutake
毅芳 福武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2007162524A priority Critical patent/JP5062559B2/en
Publication of JP2009002007A publication Critical patent/JP2009002007A/en
Application granted granted Critical
Publication of JP5062559B2 publication Critical patent/JP5062559B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an effective and proper soil improving method which can bring about an excellent improvement effect even at a low improvement rate by improving a static compaction effect brought about by a plastic gel. <P>SOLUTION: A ground material composed of the plastic gel is statically pressurized and injected into the ground to be improved, so that the original ground can be peripherally pushed open to become solid and an improved body can be formed by the solidification of the grout material. In that case, many improved piles are formed by being disposed in a state that peripheral surfaces of them are brought at least into contact with one another, so that the integral improved body can be formed of all the improved piles. A wall-shaped improved wall 10 or an improved block in a lattice shape in a plan view is suitably used as the improved body. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は軟弱地盤や砂地盤を対象とする地盤改良工法、特に静的締め固め工法の範疇に属する地盤改良工法に関する。   The present invention relates to a ground improvement method for soft ground and sand ground, and more particularly to a ground improvement method belonging to the category of static compaction methods.

この種の地盤改良工法としてはサンドコンパクションパイル工法やロッドコンパクションパイル工法が周知であるが、近年、特許文献1〜2に示すような可塑状ゲルによる静的締め固め工法が開発され、軟弱地盤の側方流動や砂地盤の液状化の防止対策として広く普及する気運にある。
これは、地盤に注入するグラウト材としてフライアッシュやセメントベントナイトを主成分とする可塑状ゲルを使用し、それを地盤中に静的に加圧注入していくことによってその注入圧で周囲地盤を徐々に押し広げて締め固めるとともに、最終的にはグラウト材の固結による杭状の改良杭を形成することを主眼とするものである。
特開2003−105745号公報 特開2006−257281号公報
As this type of ground improvement method, sand compaction pile method and rod compaction pile method are well known, but in recent years, static compaction method using plastic gel as shown in Patent Documents 1 and 2 has been developed. It is in the mood to spread widely as a preventive measure against lateral flow and liquefaction of sand ground.
This is because a plastic gel mainly composed of fly ash or cement bentonite is used as a grout material to be injected into the ground, and the surrounding ground is grounded by the injection pressure by statically injecting it into the ground. The main objective is to form a pile-like improved pile by consolidation of the grout material, while gradually expanding and compacting.
JP 2003-105745 A JP 2006-257281 A

上記工法ではグラウト材としての可塑状ゲルを注入するための注入孔を対象地盤に正方形配列ないし正三角形配列(千鳥状配列)のパターンで形成し、したがって最終的に形成される多数の改良杭の配列パターンもそのまま正方形配列ないし正三角形配列となるが、そのような配列パターンでは必ずしも充分な改良効果が得られない場合もある。
そのため、上記工法において充分な改良効果を得るためには注入孔の間隔を密にして改良率を充分に大きくする必要もあり、そのために工費および工期がかさむものとなるのでその点では改善の余地を残しているものである。
In the above method, the injection holes for injecting the plastic gel as the grout material are formed in the target ground in a pattern of square array or equilateral triangle array (staggered array), and therefore a large number of improved piles finally formed The arrangement pattern is also a square arrangement or an equilateral triangle arrangement as it is, but such an arrangement pattern may not always provide a sufficient improvement effect.
Therefore, in order to obtain a sufficient improvement effect in the above construction method, it is necessary to increase the improvement rate sufficiently by narrowing the interval between the injection holes, which increases the construction cost and the construction period, so there is room for improvement in that respect. Is what is left.

上記事情に鑑み、本発明は可塑状ゲルによる静的締め固め効果をより高めることにより、低改良率であっても優れた改良効果が得られ、以て工費削減と工期短縮を図ることのできる有効適切な地盤改良工法を提供することを目的としている。   In view of the above circumstances, the present invention can further improve the static compaction effect by the plastic gel, so that an excellent improvement effect can be obtained even at a low improvement rate, thereby reducing the construction cost and the construction period. The purpose is to provide an effective and appropriate ground improvement method.

本発明は、改良対象の地盤中に可塑状ゲルからなるグラウト材を静的に加圧注入することにより、原地盤を周囲に押し広げて密実化するとともに、グラウト材の固化による改良体を形成する地盤改良工法であって、多数の改良杭をそれらの周面が少なくとも接する状態で並べて形成することによって、それら改良杭の全体で一体の壁状ないしブロック状の改良体を形成することを特徴とするものである。   The present invention statically injects a grout material composed of a plastic gel into the ground to be improved, thereby spreading and solidifying the original ground around the ground, and an improved body by solidifying the grout material. It is a ground improvement method to be formed, and by forming a large number of improved piles side by side with their peripheral surfaces at least in contact with each other, an integral wall-like or block-like improved body is formed over the improved piles. It is a feature.

本発明においては、多数の改良杭を1方向に並べて形成することによって、それら改良杭の全体で1面の壁状をなす改良壁を形成し、該改良壁を改良対象領域内に所定間隔をおいて略平行に配列した状態で複数形成することが好適である。
また、多数の改良杭を互いに直交する2方向に並べて形成することによって、それら改良杭の全体で2方向の改良壁が互いに直交して平面視格子状をなす改良ブロックを形成することも好適である。
なお、改良壁の厚さと間隔とにより決定される改良率に基づいて、改良により改良壁間の中心位置に生じる体積ひずみを算定し、該体積ひずみと改良前の間隙比とに基づいて改良後の地盤の間隙比を算定することにより、該間隙比に基づいて改良後の地盤のN値を算定し評価することが可能である。
In the present invention, by forming a large number of improved piles arranged in one direction, an improved wall having a wall shape on one side is formed as a whole, and the improved walls are spaced from each other within a region to be improved. In this case, it is preferable to form a plurality in a state of being arranged substantially in parallel.
In addition, it is also preferable to form an improved block in which a plurality of improved piles are arranged in two directions orthogonal to each other so that the improved walls in the two directions are orthogonal to each other to form a lattice shape in plan view. is there.
Based on the improvement rate determined by the thickness and spacing of the improved wall, the volume strain generated at the center position between the improved walls is calculated by the improvement, and the post-improvement is calculated based on the volume strain and the gap ratio before the improvement. By calculating the gap ratio of the ground, it is possible to calculate and evaluate the N value of the improved ground based on the gap ratio.

本発明の地盤改良工法によれば、多数の改良杭を一体化して改良壁や改良ブロックの形態の改良体を形成することにより、改良杭を単に独立に配列する従来一般の工法と比較して、改良率が同等であれば改良効果を格段に向上させることができ、したがって同等の改良率を得るために必要な改良率は充分に小さくて済み、いずれにしても従来工法に比べて低改良率で優れた改良効果が得られ、地盤改良に要する工費削減と工期短縮を図ることができる。   According to the ground improvement method of the present invention, a large number of improved piles are integrated to form an improved body in the form of an improved wall or improved block, compared to a conventional general method in which the improved piles are simply arranged independently. If the improvement rate is the same, the improvement effect can be greatly improved. Therefore, the improvement rate required to obtain the equivalent improvement rate is sufficiently small, and in any case, the improvement rate is lower than the conventional method. The improvement effect which is excellent in the rate can be obtained, and it is possible to reduce the construction cost and the construction period required for the ground improvement.

また、本発明の地盤改良工法では、改良体の形態と改良率を決定することのみで、簡易な演算式による算定あるいはそれに基づいて作成可能な簡易なチャートを使用して改良効果を定量的に評価することができ、所望の改良効果を得るために必要な改良率を容易に決定することができる。   In the ground improvement method of the present invention, the improvement effect can be quantitatively determined only by determining the form and improvement rate of the improved body, using a simple calculation formula or a simple chart that can be created based on the calculation formula. It is possible to evaluate and to easily determine the improvement rate necessary to obtain a desired improvement effect.

図1〜図2は本発明の第1実施形態を示すものである。これは、本発明の地盤改良工法を護岸1の背後の地盤に対する側方流動防止対策として実施する場合の適用例である。
すなわち、大地震時に護岸1が被害を受けて海側に倒壊ないし傾斜した場合には、その背後の地盤が海側に向かって流動するという側方流動が生じて、そこにある構造物2の倒壊や傾斜、支持杭3の損傷といった重大な被害が想定されるのであることから、本第1実施形態では護岸1と構造物2との間の地盤に対して地盤改良を行って図1〜図2に示すような壁状の改良壁10を所定間隔で複数形成することにより、護岸1が万一倒壊してもそれら改良壁10によって側方流動が生じることを防止し、以て構造物2や支持杭3の構造的な安全性や信頼性を確保するものとしている。
1 to 2 show a first embodiment of the present invention. This is an application example when the ground improvement method of the present invention is implemented as a countermeasure for preventing lateral flow with respect to the ground behind the revetment 1.
That is, when the revetment 1 is damaged and collapses or tilts to the sea side during a major earthquake, a lateral flow occurs in which the ground behind it flows toward the sea side. Since serious damages such as collapse, inclination, and damage to the support pile 3 are assumed, the ground improvement is performed on the ground between the revetment 1 and the structure 2 in the first embodiment, and FIG. By forming a plurality of wall-shaped improved walls 10 as shown in FIG. 2 at a predetermined interval, even if the revetment 1 breaks down, side walls are prevented from being generated by the improved walls 10, thereby The structural safety and reliability of 2 and the support pile 3 are ensured.

本第1実施形態の地盤改良工法は、特許文献1〜2に示したように可塑状ゲルからなるグラウト材を原地盤に静的に加圧注入することによる静的締め固め工法を基本とするものであるが、従来工法では多数の改良杭を間隔をおいて単に正方形ないし正三角形の配列パターンで独立に形成するものであるのに対し、本実施形態では図2に示すように多数の改良杭5を少なくとも周面が接する状態で1方向に並べて形成して、それら改良杭5の全体で1面の壁状の改良壁10を形成し、かつそれらの改良壁10を所定間隔をおいて略平行な状態で配列した状態で複数形成するものである。   The ground improvement method of the first embodiment is based on a static compaction method by statically injecting a grout material made of plastic gel into the original ground as shown in Patent Documents 1 and 2. However, in the conventional method, a large number of improved piles are simply formed in a square or equilateral triangular arrangement pattern at intervals, whereas in this embodiment, a large number of improved piles are provided as shown in FIG. The piles 5 are formed side by side in a state where at least the peripheral surfaces are in contact with each other to form a wall-like improved wall 10 of one surface as a whole, and the improved walls 10 are spaced at a predetermined interval. A plurality are formed in a state of being arranged in a substantially parallel state.

この場合、個々の改良杭5の形成工程(グラウト材の加圧注入による静的締め固め工程)は基本的には従来工法をそのまま採用可能であり、たとえば図2(b)に示すように地盤中に注入管6を差し込んで可塑状ゲルからなるグラウト材を加圧注入していけば良い。ただし、従来工法では各改良杭5をそれぞれ独立に形成するように注入間隔を設定するのであるが、本実施形態ではそれらの周面どうしが少なくとも接するように、あるいは多少は重複するように、注入間隔を密に設定することになる。   In this case, the conventional process can be used as it is for the process of forming the individual improved piles 5 (static compaction process by pressure injection of grout material). For example, as shown in FIG. What is necessary is just to press-inject the grout material which consists of plastic gel by inserting the injection | pouring pipe | tube 6 in it. However, in the conventional construction method, the injection interval is set so that each improved pile 5 is formed independently, but in this embodiment, the injection is performed so that their peripheral surfaces are at least in contact with each other or are somewhat overlapped. The interval will be set closely.

また、多数の改良杭5の形成順序は適宜で良く、たとえば形成するべき改良壁10の一方の側部から他方の側部に向かって1本ずつ順次形成していくことでも良いし、あるいは改良杭5を1本ないし数本ずつ、とびとびに交互に形成していって最終的には全てを連続させても良い。勿論、可能であれば多数の改良杭5を一度にまとめて形成することでも良い。
また、各改良杭5の形成(各改良杭5による静的締め固め工程)に際しては、深部から表層部に向かって順次行うことでも良いし、必要に応じて深部よりも表層部を先行するようにしても良い。
さらに、必要であれば図2(a)に示しているように、改良壁10の間にさらに他の改良杭5を適宜間隔で形成しても良く、それにより改良壁10間における締め固め効果をより高めることが可能である。
Further, the order of formation of the large number of improved piles 5 may be appropriate. For example, the improved piles 5 may be formed one by one sequentially from one side portion of the improved wall 10 to be formed to the other side portion. One or several piles 5 may be alternately formed at a time, and finally all may be made continuous. Of course, if possible, a large number of improved piles 5 may be formed together at one time.
Moreover, in the formation of each improved pile 5 (static compaction process by each improved pile 5), it may be performed sequentially from the deep part toward the surface layer part, and the surface layer part may precede the deep part as necessary. Anyway.
Further, if necessary, as shown in FIG. 2 (a), other improved piles 5 may be formed at appropriate intervals between the improved walls 10 so that the compacting effect between the improved walls 10 can be achieved. Can be further increased.

上記のように多数の改良杭5を互いに接するように連続的に一体に形成して壁状の改良壁10を形成することにより、その改良壁10の全体が地中壁として機能して地盤に対する補強効果が得られることはもとより、それら改良壁10を略平行に設けることによってそれらの間に残される原地盤も両側の改良壁10から効果的に締め固められて自ずと圧密されて密実化する。
それにより、原地盤全体に対する優れた締め固め効果が得られ、後述するように改良率をさほど大きくせずとも、すなわち改良壁10の厚さが小さくても、また改良壁10間の間隔が大きくても、充分な地盤改良効果が得られて優れた側方流動防止効果や液状化防止効果が得られる。
As described above, a large number of the improved piles 5 are continuously and integrally formed so as to be in contact with each other to form the wall-like improved wall 10, so that the entire improved wall 10 functions as an underground wall to the ground. In addition to obtaining the reinforcing effect, by providing the improved walls 10 in substantially parallel, the original ground left between them is also effectively compacted from the improved walls 10 on both sides and is naturally consolidated and solidified. .
As a result, an excellent compaction effect on the entire original ground can be obtained, and even if the improvement rate is not so large as described later, that is, the thickness of the improvement wall 10 is small, the interval between the improvement walls 10 is large. However, a sufficient ground improvement effect is obtained, and an excellent lateral flow prevention effect and liquefaction prevention effect are obtained.

図3〜図4は本発明の第2実施形態を示すものである。これは、第1実施形態と同様に護岸1と構造物2との間の原地盤に対して側方流動防止のための地盤改良を行うものであるが、第1実施形態においては複数の壁状の改良壁10を平行に形成していたのに対し、本第2実施形態ではそれに代えて格子状の改良ブロック20を形成するものとしている。
すなわち、本第2実施形態の改良ブロック20は、図4に示すように多数の改良杭5を互いに直交する2方向に並べて配列して全体として平面視格子状に形成されたもの、つまりこれは第1実施形態の改良壁10を直交状態で複数(図3(a)の場合では縦横それぞれ4面ずつ)組み合わせた状態でその全体を一体に形成したものである。なお、この場合も必要であれば図4に示すように格子の枡目内にさらに他の改良杭5を設けても良い。
これによれば、2方向の改良壁10を縦横に組み合わせたような頑強な格子状の改良ブロック20により原地盤に対するより優れた増強効果が得られることはもとより、格子の枡目内に残される原地盤も周囲から締め固められて自ずと充分に密実化し、したがって充分に低改良率であっても、すなわち両方向の改良壁10の厚さを大きくせずとも、また格子の枡目をさほど小さくせずとも、原地盤全体に対する優れた改良効果が得られる。
3 to 4 show a second embodiment of the present invention. This is to improve the ground for preventing lateral flow with respect to the original ground between the revetment 1 and the structure 2 as in the first embodiment, but in the first embodiment, a plurality of walls are provided. In the second embodiment, a lattice-like improvement block 20 is formed instead of the parallel improvement wall 10.
That is, as shown in FIG. 4, the improved block 20 of the second embodiment has a large number of improved piles 5 arranged side by side in two directions orthogonal to each other and formed as a whole in a plan view lattice shape. The improved wall 10 of the first embodiment is integrally formed in a state where a plurality of the improved walls 10 are combined in an orthogonal state (in the case of FIG. 3A, four in each of the vertical and horizontal directions). In this case, if necessary, another improved pile 5 may be provided in the grid of the lattice as shown in FIG.
According to this, not only a more excellent reinforcing effect on the original ground can be obtained by the robust grid-like improvement block 20 in which the two-direction improvement walls 10 are combined vertically and horizontally, but it is left in the grid of the grid. The original ground is also compacted from the surroundings and naturally becomes sufficiently solid, so even if the improvement rate is sufficiently low, that is, without increasing the thickness of the improvement wall 10 in both directions, the grid area is also made very small. Even if it does not, the outstanding improvement effect with respect to the whole original ground is acquired.

次に、上記の改良壁10や改良ブロック20の形成による地盤改良工法を実施する際の設計手法、およびそれによる地盤改良効果の評価手法について、図5〜図6を参照して説明する。
本手法は、出願人が既に提案したサンドコンパクションパイル工法における締め固め効果を評価するための手法(特開平10−237856号公報参照)を基本としつつ、改良体の形態に対応して改良壁間に生じる体積ひずみに着目して改良後の密度増加を算定することにより、改良体の形態に対応した改良効果を推定するものである。
Next, a design method for carrying out the ground improvement method by forming the improved wall 10 and the improved block 20 and a method for evaluating the ground improvement effect by the method will be described with reference to FIGS.
This method is based on the method for evaluating the compaction effect in the sand compaction pile method already proposed by the applicant (see Japanese Patent Application Laid-Open No. 10-237856), and between the improved walls corresponding to the form of the improved body. The improvement effect corresponding to the form of the improved body is estimated by calculating the density increase after the improvement by paying attention to the volume strain generated in the above.

(1)改良率および地盤の体積ひずみ
図5(a)に示すように、改良杭5の半径をR、改良壁10の有効厚さをdとして、
2R・d=πR
の関係から、
d=πR/2
とする。
また、改良壁10の間隔(中心間距離)をAとすると、その場合の改良率δは
δ=d/A
として表される。
その場合、改良により改良壁10間の中心位置に生じる体積ひずみεν
εν=d/(A−d)=δ/(1−δ)
として表される。
また、図5(b)に示すような格子状の改良ブロック20の場合、両方向の有効厚さをdとして、上記と同じく、
d=πR/2
とする。また、1方向の間隔(中心間距離)をA、直交方向の間隔(同)をBとすると、両方向の改良率δ、δはそれぞれ
δ=d/A
δ=d/B
であり、その場合の両方向の改良壁10間の中心位置(つまり格子の枡目の中心位置)における体積ひずみεν
εν=δ/(1−δ)+δ/(1−δ
となる。
なお、参考までに通常のように改良杭5を独立に正方形配列する場合には、図5(c)に示すように個々の改良杭5の半径をR、その中心から正方形配列の中心位置までの距離をRとすると、改良率δは
δ=(R/R
であり、平均的な体積ひずみεν
εν=R /(R −R )=δ/(1−δ)
である。
(1) Improvement rate and volumetric strain of the ground As shown in FIG. 5 (a), the radius of the improved pile 5 is R 0 and the effective thickness of the improved wall 10 is d.
2R 0 · d = πR 0 2
From the relationship
d = πR 0/2
And
Further, if the interval (distance between centers) of the improved walls 10 is A, the improvement rate δ in that case is δ = d / A
Represented as:
In that case, the volume strain ε ν generated at the center position between the improved walls 10 due to the improvement is ε ν = d / (A−d) = δ / (1−δ).
Represented as:
Further, in the case of the lattice-like improved block 20 as shown in FIG. 5B, the effective thickness in both directions is d,
d = πR 0/2
And Also, assuming that the interval in one direction (center distance) is A and the interval in the orthogonal direction (same) is B, the improvement rates δ A and δ B in both directions are δ A = d / A, respectively.
δ B = d / B
In this case, the volume strain ε ν at the center position between the improved walls 10 in both directions (that is, the center position of the lattice mesh) is ε ν = δ A / (1-δ A ) + δ B / (1-δ B )
It becomes.
For reference, when the improved piles 5 are independently arranged in a square pattern as usual, the radius of each improved pile 5 is set to R 0 and the center position of the square arrangement from the center as shown in FIG. When the distance to the R m, the improvement ratio δ δ = (R 0 / R m) 2
And the average volume strain ε ν is ε ν = R 0 2 / (R m 2 −R 0 2 ) = δ / (1-δ)
It is.

(2)改良によるN値の増加
改良前の地盤のN値をNとし、地盤の有効上載圧σ’と細粒分含有率Fの影響を補正した補正N値をNとすると、補正N値Nは(1)式で求められる。
(1)式におけるΔNは細粒分含有率Fに対するN値の補正値であり、これは建築基礎構造設計指針の簡易液状化判定法などを参考に決定することができる。

Figure 2009002007
(2) Increase in N value due to improvement When N value of the ground before improvement is N, and N a is a corrected N value that corrects the effects of the effective upper loading pressure σ v ′ and fine grain content F c of the ground, The corrected N value N a is obtained by equation (1).
ΔN f in the equation (1) is a correction value of the N value for the fine particle content F c , which can be determined with reference to the simple liquefaction determination method of the building foundation structure design guideline.
Figure 2009002007

(1)式で求められる補正N値Nから、(2)式として示した一連の式により、改良前の地盤の相対密度D、改良前の地盤の間隙比eが求められ、その間隙比eと、体積ひずみενとに基づいて、改良後の地盤の間隙比e’が求められる。ここでの体積ひずみενは、改良壁10を形成する場合はその改良率δに基づいて求め、また改良ブロック20を形成する場合には両方向の改良率δ、δに対応して求めるものである。
そして、その結果から、改良後の地盤の相対密度D’、改良後の補正N値N’が逆算により順次求められ、さらにその結果から(1)’式により改良後のN値N’を求めることができる。

Figure 2009002007
From the corrected N value N a obtained by the equation (1), the relative density D r of the ground before improvement and the gap ratio e 0 of the ground before improvement are obtained by a series of equations shown as the equation (2), Based on the gap ratio e 0 and the volumetric strain ε ν , the improved ground gap ratio e 0 ′ is obtained. The volume strain ε ν here is obtained based on the improvement rate δ when the improved wall 10 is formed, and is obtained corresponding to the improvement rates δ A and δ B in both directions when the improved block 20 is formed. Is.
From the result, the improved relative density D r ′ of the ground and the corrected N value N a ′ after the improvement are sequentially obtained by back calculation, and from the result, the improved N value N ′ by the formula (1) ′. Can be requested.
Figure 2009002007

なお、(2)式におけるemax、eminはそれぞれ砂の最大間隙比および最少間隙比であり、それらの値は原位置の採取土より求めることが望ましいが、簡便には細粒分含有率Fを用いて(3)式にて求めることができる。

Figure 2009002007
In addition, e max and e min in the formula (2) are the maximum sand gap ratio and the minimum sand gap ratio, respectively, and these values are preferably obtained from the in-situ collected soil. with F c (3) can be obtained by expression.
Figure 2009002007

また、(2)式におけるαは、細粒分の多い砂では地盤改良で地面が持ち上がるため改良効果が減じることの影響を考慮したパラメータであり、これは(4)式で求められる。

Figure 2009002007
In addition, α in the equation (2) is a parameter that takes into account the effect that the improvement effect is reduced because the ground is lifted by the ground improvement in sand with a lot of fine particles, and is obtained by the equation (4).
Figure 2009002007

(3)設計および評価のためのチャート
以上の演算による結果から図6に示すようなチャートを作成することができ、そのチャートを用いることで改良率δを決定するための設計や、それに基づく改良効果の評価を簡易に行うことができる。
図6に示すチャートは、改良による補正N値の増加量(原地盤の補正N値Naに対する増加量ΔNa)を、改良体の形態ごとに、改良率δと細粒分含有率Fcをパラメータとして示すものである。図示しているチャートはいずれも改良率δが15%の場合に適用するものであって、(a)が改良壁10に適用するもの、(b)が改良ブロック20に適用するものであり、(c)は参考までに独立の改良杭5を正方形配列した場合に適用するものである。
このチャートから、改良率δを15%とする場合においては、たとえば原地盤の補正N値Na=15であり、その細粒分含有率Fc=10%であるとすると、(a)に示すように改良壁10による場合にはN値の増加量は44になり、(b)に示すように改良ブロック20による場合にはN値の増加量は70になることが分かる。
それに対し、従来工法により独立の改良杭5を単に正方形配列する場合には、(c)に示すようにN値の増加量は28でしかなく、改良率δが同じであっても改良効果に大きな差が生じることが分かる。
(3) Chart for design and evaluation A chart as shown in FIG. 6 can be created from the result of the above calculation, and a design for determining the improvement rate δ by using the chart, and an improvement based thereon The effect can be easily evaluated.
The chart shown in FIG. 6 shows the amount of increase in the correction N value due to the improvement (increase amount ΔNa relative to the correction N value Na of the ground), using the improvement rate δ and the fine particle content Fc as parameters for each form of improvement. It is shown. All the charts shown are applied when the improvement rate δ is 15%, (a) is applied to the improved wall 10, (b) is applied to the improved block 20, (C) is applied when the independent improved piles 5 are arranged in a square for reference.
From this chart, when the improvement rate δ is set to 15%, for example, when the correction N value Na of the ground is 15 and the fine particle content Fc is 10%, as shown in FIG. In the case of the improved wall 10, the increase amount of the N value is 44, and as shown in (b), the increase amount of the N value is 70 in the case of the improved block 20.
On the other hand, when the independent improved piles 5 are simply arranged in a square by the conventional method, the increase amount of the N value is only 28 as shown in (c), and even if the improvement rate δ is the same, the improvement effect can be obtained. It turns out that a big difference arises.

以上のように、本発明の地盤改良工法によれば、多数の改良杭5を一体化して改良壁10や改良ブロック20の形態の改良体を形成することにより、改良杭5を単に間隔をおいて独立に配列する従来一般の工法と比較して、改良率が同等であれば改良効果を格段に向上させることができ、したがって同等の改良率を得るために必要な改良率は充分に小さくて済み、いずれにしても従来工法に比べて低改良率であっても優れた改良効果が得られ、地盤改良に要する工費削減と工期短縮を図ることができる。   As described above, according to the ground improvement method of the present invention, a large number of improved piles 5 are integrated to form an improved body in the form of improved wall 10 or improved block 20, so that the improved piles 5 are simply spaced apart. Compared to the conventional general arrangement method that is arranged independently, if the improvement rate is equivalent, the improvement effect can be remarkably improved. Therefore, the improvement rate necessary to obtain the equivalent improvement rate is sufficiently small. In any case, even if the improvement rate is low compared with the conventional method, an excellent improvement effect can be obtained, and the construction cost and the construction period required for ground improvement can be reduced.

また、本発明の地盤改良工法では、改良体の形態ごとに、改良率を決定することのみで、上記の演算式あるいはチャートを使用して改良効果(N値の増加量)を定量的に評価することができ、したがって所望の改良効果を得るために必要な改良率を上記の演算式あるいはチャートを用いて容易に決定することができる。   Further, in the ground improvement method of the present invention, the improvement effect (increase in N value) is quantitatively evaluated using only the above calculation formula or chart only by determining the improvement rate for each form of the improved body. Therefore, the improvement rate necessary for obtaining a desired improvement effect can be easily determined using the above-described arithmetic expression or chart.

以上で本発明の実施形態を説明したが、上記実施形態はあくまで好適な一例であって、本発明は上記実施形態に限定されるものでは勿論ない。
たとえば、上記実施形態では本発明における改良体として壁状の改良壁10と格子状の改良ブロック20を例示するに留めたが、本発明における改良体は可塑状ゲルからなるグラウト材による多数の改良杭を壁状ないしブロック状に一体に形成するものであれば良く、その限りにおいて改良体の形態は任意であって、上記実施形態に示したもの以外にも様々な形態が考えられ、特に改良ブロック20の形態としてはたとえば図7〜図10に示すものも好適に採用可能である。
図7および図8に示す改良ブロック21、22は、いずれも2方向の改良壁10により周囲を箱状に取り囲んでその内側に1方向の改良壁10のみを形成したもの(言い換えると、図3に示した格子状の改良ブロック20から内部の改良壁10を一部省略して簡略化したもの)、図9に示す改良ブロック23は、メインとなる改良壁10とそれを支持するべく直交方向に複数のバットレス状の改良壁10を設けたもの、図10に示すものは多数の改良杭を六角形状に配列して全体としてハニカム状の改良ブロック24としたものである。
Although the embodiments of the present invention have been described above, the above embodiments are merely suitable examples, and the present invention is not limited to the above embodiments.
For example, in the above embodiment, only the wall-like improvement wall 10 and the lattice-like improvement block 20 are exemplified as the improvement body in the present invention, but the improvement body in the present invention has many improvements by the grout material made of plastic gel. As long as the piles are integrally formed in a wall shape or a block shape, the form of the improved body is arbitrary as long as it is formed, and various forms other than those shown in the above embodiment are conceivable, and particularly improved As the form of the block 20, for example, those shown in FIGS.
The improved blocks 21 and 22 shown in FIG. 7 and FIG. 8 are both formed by surrounding the periphery in a box shape by the two-way improvement wall 10 and forming only the one-way improvement wall 10 inside thereof (in other words, FIG. 3 9 is simplified by partially omitting the internal improvement wall 10 from the grid-like improvement block 20 shown in FIG. 9), and the improvement block 23 shown in FIG. 9 is a main improvement wall 10 and an orthogonal direction to support it. 10 provided with a plurality of buttress-like improved walls 10 and the one shown in FIG. 10 are a plurality of improved piles arranged in a hexagonal shape to form a honeycomb-like improved block 24 as a whole.

また、上記実施形態では本発明の地盤改良工法を護岸の背後地盤に対する側方流動防止対策として適用する場合について説明したが、本発明は側方流動防止対策としてのみならず、たとえば建物周囲や建物直下の地盤に対する対策としても有効であるし、軟弱地盤の液状化防止対策や沈下防止対策、支持力増強対策、地下掘削時の山留め変形防止といった様々な目的の地盤改良全般に広く適用可能であることはいうまでもない。   In the above embodiment, the ground improvement method according to the present invention is applied as a side flow prevention measure against the back ground of the revetment. However, the present invention is not only a side flow prevention measure, for example, around buildings or buildings. It is effective as a countermeasure for the ground directly below, and is widely applicable to various ground improvements for various purposes such as measures for preventing liquefaction and subsidence of soft ground, measures for strengthening bearing capacity, and prevention of deformation due to anchoring during underground excavation. Needless to say.

本発明の地盤改良工法の第1実施形態を示すものである。1 shows a first embodiment of a ground improvement method according to the present invention. 同、改良壁を示す図である。It is a figure showing an improvement wall same as the above. 本発明の地盤改良工法の第2実施形態を示すものである。The 2nd Embodiment of the ground improvement construction method of this invention is shown. 同、改良ブロックを示す図である。It is a figure which shows an improvement block same as the above. 本発明および従来の地盤改良工法において形成する各改良体による改良率と体積ひずみについての説明図であるIt is explanatory drawing about the improvement rate and volume strain by each improvement body formed in this invention and the conventional ground improvement construction method. 同、各改良体による改良効果を示すチャートである。It is a chart which shows the improvement effect by each improvement body same as the above. 本発明の他の実施形態を示す図である。It is a figure which shows other embodiment of this invention. 同、さらに他の実施形態を示す図である。It is a figure which shows other embodiment same as the above. 同、さらに他の実施形態を示す図である。It is a figure which shows other embodiment same as the above. 同、さらに他の実施形態を示す図である。It is a figure which shows other embodiment same as the above.

符号の説明Explanation of symbols

1 護岸
2 構造物
3 支持杭
5 改良杭
6 注入管
10 改良壁(改良体)
20 改良ブロック(改良体)
21〜24 改良ブロック(改良体)
DESCRIPTION OF SYMBOLS 1 Revetment 2 Structure 3 Support pile 5 Improved pile 6 Injection pipe 10 Improved wall (improved body)
20 Improved blocks (improved)
21-24 Improved block (improved)

Claims (5)

改良対象の地盤中に可塑状ゲルからなるグラウト材を静的に加圧注入することにより、原地盤を周囲に押し広げて密実化するとともに、グラウト材の固化による改良体を形成する地盤改良工法であって、
多数の改良杭をそれらの周面が少なくとも接する状態で並べて形成することによって、それら改良杭の全体で一体の壁状ないしブロック状の改良体を形成することを特徴とする地盤改良工法。
Ground improvement to form an improved body by solidifying the grout material by statically injecting the grout material made of plastic gel into the ground to be improved by pressing and spreading the ground to the periphery. Construction method,
A ground improvement construction method characterized in that a large number of improved piles are formed side by side so that their peripheral surfaces are in contact with each other, thereby forming an integrated wall-like or block-like improved body in the whole of the improved piles.
請求項1記載の地盤改良工法であって、
多数の改良杭をそれらの周面が少なくとも接する状態で1方向に並べて形成することによって、それら改良杭の全体で1面の壁状をなす改良壁を形成し、該改良壁を改良対象領域内に所定間隔をおいて略平行に配列した状態で複数形成することを特徴とする地盤改良工法。
The ground improvement method according to claim 1,
By forming a large number of improved piles side by side in a state where their peripheral surfaces are at least in contact with each other, an improved wall having a wall shape of one surface is formed as a whole, and the improved walls are arranged in the improvement target region. A ground improvement construction method characterized in that a plurality of them are formed in a state of being arranged substantially parallel to each other at a predetermined interval.
請求項1記載の地盤改良工法であって、
多数の改良杭をそれらの周面が少なくとも接する状態で互いに直交する2方向に並べて形成することによって、それら改良杭の全体で2方向の改良壁が互いに直交して平面視格子状をなす改良ブロックを形成することを特徴とする地盤改良工法。
The ground improvement method according to claim 1,
An improved block in which a large number of improved piles are arranged side by side in two directions orthogonal to each other with their peripheral surfaces at least in contact with each other, so that the improved walls in the two directions are orthogonal to each other and form a planar view lattice shape The ground improvement construction method characterized by forming.
請求項2または3記載の地盤改良工法であって、
改良壁の厚さと間隔とにより決定される改良率に基づいて、改良により改良壁間の中心位置に生じる体積ひずみを算定し、該体積ひずみと改良前の間隙比とに基づいて改良後の地盤の間隙比を算定し、該間隙比に基づいて改良後の地盤のN値を算定し評価することを特徴とする地盤改良工法。
The ground improvement method according to claim 2 or 3,
Based on the improvement rate determined by the thickness and spacing of the improved walls, the volume strain generated at the center position between the improved walls is calculated by the improvement, and the ground after the improvement is calculated based on the volume strain and the gap ratio before the improvement. A ground improvement construction method characterized by calculating a gap ratio of the ground and calculating and evaluating an N value of the ground after improvement based on the gap ratio.
請求項4記載の地盤改良工法であって、下式により改良後の地盤のN値を算定し評価することを特徴とする地盤改良工法。
Figure 2009002007
ここで、N、N’:改良前後の地盤のN値
、N’:改良前後の地盤の補正N値
σν’:有効上載圧
ΔN:細粒分による補正
、D’:改良前後の地盤の相対密度
、e’:改良前後の地盤の間隙比
max、emin:砂の最大、最少間隙比
α:地盤の盛り上がりによる体積増加率
α=0.00158×F 1.389
:細粒分含有率
εν:改良壁間の中心位置に生じる体積ひずみ
(1方向の改良壁の場合)
εν=δ/(1−δ)
δ:改良率
δ=d/A
d:改良壁の有効厚さ
d=πR/2
:改良杭の半径
A:改良壁の間隔(改良壁の中心間距離)
(直交2方向の改良壁による格子状の改良ブロックの場合)
εν={δ/(1−δ)}+{δ/(1−δ)}
δ、δ:2方向の改良率
δ=d/A
δ=d/B
d:2方向の改良壁の有効厚さ
d=πR/2
:改良杭の半径
A,B:2方向の改良壁の間隔(改良壁の中心間距離)
The ground improvement construction method according to claim 4, wherein the N value of the ground after the improvement is calculated and evaluated by the following formula.
Figure 2009002007
Here, N, N ′: N value of ground before and after improvement N a , N a ′: Correction N value of ground before and after improvement
σ ν ': Effective upper pressure
ΔN f : Correction by fine grain D r , D r ': Relative density of ground before and after improvement e 0 , e 0 ': Ground ratio before and after improvement e max , e min : Maximum sand and minimum gap ratio
α: Volume increase rate due to ground swell
α = 0.00158 × F c 1.389
F c : Fine grain content
ε ν : Volume strain generated at the center between improved walls
(In the case of an improved wall in one direction)
ε ν = δ / (1-δ)
δ: Improvement rate
δ = d / A
d: Effective thickness of the improved wall
d = πR 0/2
R 0 : radius of improved pile
A: Distance between improved walls (center distance between improved walls)
(In the case of a grid-like improved block with improved walls in two orthogonal directions)
[epsilon] v = {[delta] A / (1- [delta] A )} + {[delta] B / (1- [delta] B )}.
δ A , δ B : Improvement rate in two directions
δ A = d / A
δ B = d / B
d: Effective thickness of improved wall in two directions
d = πR 0/2
R 0 : radius of improved pile
A, B: Distance between improved walls in two directions (center distance between improved walls)
JP2007162524A 2007-06-20 2007-06-20 Ground improvement method Expired - Fee Related JP5062559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007162524A JP5062559B2 (en) 2007-06-20 2007-06-20 Ground improvement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162524A JP5062559B2 (en) 2007-06-20 2007-06-20 Ground improvement method

Publications (2)

Publication Number Publication Date
JP2009002007A true JP2009002007A (en) 2009-01-08
JP5062559B2 JP5062559B2 (en) 2012-10-31

Family

ID=40318686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007162524A Expired - Fee Related JP5062559B2 (en) 2007-06-20 2007-06-20 Ground improvement method

Country Status (1)

Country Link
JP (1) JP5062559B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209528A (en) * 2009-03-06 2010-09-24 Shimizu Corp Lateral flow countermeasure structure
JP2011111787A (en) * 2009-11-26 2011-06-09 Nomu:Kk Soil improvement construction method
JP2016196803A (en) * 2015-04-03 2016-11-24 学校法人関東学院 Improved ground and ground improving method
CN109440758A (en) * 2018-12-10 2019-03-08 兰州德科工程材料有限公司 A kind of geotechnical grid and its manufacturing method
JP2019049100A (en) * 2017-09-07 2019-03-28 国立研究開発法人 海上・港湾・航空技術研究所 Construction method using equivalent improvement rate for compaction method
AT519819A3 (en) * 2017-04-04 2019-11-15 Weber Joachim PROCESS FOR FOLLOWING GROUND FASTENING
KR20200012695A (en) * 2017-09-29 2020-02-05 조인트 스탁 컴퍼니 “로제네르고아톰” Method of Foundation Compaction Stacked into Soft Mineral Soil

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615114A (en) * 1984-06-20 1986-01-10 Takenaka Komuten Co Ltd Ground improvement work for preventing liquefaction
JPH10219676A (en) * 1997-02-12 1998-08-18 Shimizu Corp Ground sideways flow preventive structure
JPH10237856A (en) * 1997-02-27 1998-09-08 Shimizu Corp Construction mehtod for soil improvement using both pile and sand compaction pile
JPH11323894A (en) * 1998-05-20 1999-11-26 Shimizu Corp Method for soil improvement
JP2001090092A (en) * 1999-09-20 2001-04-03 Kyokado Eng Co Ltd Method for preventing liquefaction of sandy ground, by grouting
JP2002285536A (en) * 2001-03-23 2002-10-03 Yasushi Sasaki Ground improvement method supposing liquefaction resulting from earthquake
JP2003105745A (en) * 2001-10-02 2003-04-09 Kyokado Eng Co Ltd Improvement work method of soft ground
JP2005200870A (en) * 2004-01-14 2005-07-28 Shimizu Corp Liquefaction preventive structure of structure foundation ground

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615114A (en) * 1984-06-20 1986-01-10 Takenaka Komuten Co Ltd Ground improvement work for preventing liquefaction
JPH10219676A (en) * 1997-02-12 1998-08-18 Shimizu Corp Ground sideways flow preventive structure
JPH10237856A (en) * 1997-02-27 1998-09-08 Shimizu Corp Construction mehtod for soil improvement using both pile and sand compaction pile
JPH11323894A (en) * 1998-05-20 1999-11-26 Shimizu Corp Method for soil improvement
JP2001090092A (en) * 1999-09-20 2001-04-03 Kyokado Eng Co Ltd Method for preventing liquefaction of sandy ground, by grouting
JP2002285536A (en) * 2001-03-23 2002-10-03 Yasushi Sasaki Ground improvement method supposing liquefaction resulting from earthquake
JP2003105745A (en) * 2001-10-02 2003-04-09 Kyokado Eng Co Ltd Improvement work method of soft ground
JP2005200870A (en) * 2004-01-14 2005-07-28 Shimizu Corp Liquefaction preventive structure of structure foundation ground

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209528A (en) * 2009-03-06 2010-09-24 Shimizu Corp Lateral flow countermeasure structure
JP2011111787A (en) * 2009-11-26 2011-06-09 Nomu:Kk Soil improvement construction method
JP2016196803A (en) * 2015-04-03 2016-11-24 学校法人関東学院 Improved ground and ground improving method
AT519819A3 (en) * 2017-04-04 2019-11-15 Weber Joachim PROCESS FOR FOLLOWING GROUND FASTENING
AT519819B1 (en) * 2017-04-04 2024-02-15 Weber Joachim METHOD FOR SUBSEQUENT SOIL CONSOLIDATION
JP2019049100A (en) * 2017-09-07 2019-03-28 国立研究開発法人 海上・港湾・航空技術研究所 Construction method using equivalent improvement rate for compaction method
KR20200012695A (en) * 2017-09-29 2020-02-05 조인트 스탁 컴퍼니 “로제네르고아톰” Method of Foundation Compaction Stacked into Soft Mineral Soil
KR102319795B1 (en) 2017-09-29 2021-11-03 조인트 스탁 컴퍼니 “로제네르고아톰” Method of compaction of foundations laid with soft mineral soils
CN109440758A (en) * 2018-12-10 2019-03-08 兰州德科工程材料有限公司 A kind of geotechnical grid and its manufacturing method

Also Published As

Publication number Publication date
JP5062559B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5062559B2 (en) Ground improvement method
JP6944164B1 (en) Ground improvement method and improved ground structure
Choudhary et al. Uplift capacity of horizontal anchor plate in geocell reinforced sand
JP6301718B2 (en) Method for suppressing level difference in roadbed material laid across concrete and earth structures
Li et al. Centrifuge study on the effect of the SCP improvement geometry on the mitigation of liquefaction-induced embankment settlement
Taha et al. Numerical and experimental evaluation of bearing capacity factor Nγ of strip footing on sand slopes
JP7440864B2 (en) Embankment reinforcement method
CN112014256B (en) Hydraulic physical model structure and slope stability judging method
JP5957398B2 (en) Sabo dam and construction method of sabo dam
JP5319880B2 (en) Retaining wall
JP5090203B2 (en) Fill dam still water structure and construction method
JP6681115B2 (en) Method for designing the structure for countermeasures against liquefaction of ground
Zhou et al. Deformation and crack development of a nailed loose fill slope subjected to water infiltration
JP5030299B2 (en) Liquefaction resistant structure of sandy ground
KR101129678B1 (en) Mesh foundation construction method using hollow blocks
Oblak et al. Numerical assessment of fragility curves for embankments on liquefiable ground
MX2012010360A (en) Block for construction and method to build walls with said block.
JP5863915B1 (en) Liquefaction countermeasure structure on site
JP4183137B2 (en) Seismic structure
TW201529932A (en) Construction and landfill method for soft foundation and foundation with liquefaction potential, and structural body bag
JP2013108299A (en) Soil improvement method for preventing liquefaction upon earthquake
JP5242904B2 (en) Design method of avalanche load resistance dam body
JP7469608B2 (en) Support structure, gravity breakwater and construction method of gravity breakwater
Hamidi et al. The application of dynamic compaction on Marjan Island
JP2024004251A (en) Ground reinforcement structure and design method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees