JP2009001857A - Slab extraction ratio determining method of continuous heating furnace - Google Patents

Slab extraction ratio determining method of continuous heating furnace Download PDF

Info

Publication number
JP2009001857A
JP2009001857A JP2007163563A JP2007163563A JP2009001857A JP 2009001857 A JP2009001857 A JP 2009001857A JP 2007163563 A JP2007163563 A JP 2007163563A JP 2007163563 A JP2007163563 A JP 2007163563A JP 2009001857 A JP2009001857 A JP 2009001857A
Authority
JP
Japan
Prior art keywords
slab
furnace
heating
temperature
extraction ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007163563A
Other languages
Japanese (ja)
Inventor
Koji Narihara
浩二 成原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007163563A priority Critical patent/JP2009001857A/en
Publication of JP2009001857A publication Critical patent/JP2009001857A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a slab extraction ratio determining method of a continuous heating furnace having a plurality of heating furnaces, and capable of smoothly and adequately controlling the operation of the heating furnaces even when the combustion is performed in the heating furnaces while hot slabs and cold slabs are mixed therein. <P>SOLUTION: In the slab extraction ratio determining method, the slab extraction ratio is calculated by using the coefficient indicating the heating capacity of heating furnaces and the load factor indicating the heating load of slabs in a continuous heating furnace having a plurality of slab heating furnaces. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱間圧延材料の連続式加熱炉のスラブ抽出比の決定方法に関する。   The present invention relates to a method for determining a slab extraction ratio of a continuous heating furnace for hot rolled material.

熱間圧延材料の連続式加熱炉において、炉内に装入されたスラブは、予熱帯、加熱帯および均熱帯を通過し、その間に、加熱炉抽出口において圧延目標抽出温度に達するように順次加熱昇温される。このような連続式加熱炉の加熱温度の管理は、通常、各ゾーンの温度設定を行い、この温度にスラブが加熱されるように燃焼管理が行われる。   In a continuous heating furnace for hot-rolled material, the slab charged in the furnace passes through the pre-tropical zone, heating zone and soaking zone, and in order to reach the rolling target extraction temperature at the heating furnace outlet. The temperature is raised by heating. In order to manage the heating temperature of such a continuous heating furnace, the temperature of each zone is usually set, and combustion management is performed so that the slab is heated to this temperature.

また、連続式加熱炉は、圧延能力に対して加熱能力が上回るように2炉構成として、第一加熱炉と第二加熱炉から交互にスラブを抽出して熱間圧延を行う加熱炉の操炉方式が採用されている。   Further, the continuous heating furnace has a two-furnace configuration so that the heating capacity exceeds the rolling capacity, and the operation of the heating furnace that performs hot rolling by alternately extracting slabs from the first heating furnace and the second heating furnace. A furnace method is adopted.

さらにスラブの加熱不足による圧延ラインの停止等を生じさせないように、また加熱炉の運用を安定させるために、第一加熱炉と第二加熱炉のスラブの抽出比は1:1と固定する場合が多い。   Furthermore, in order to prevent the rolling line from being stopped due to insufficient heating of the slab and to stabilize the operation of the heating furnace, the slab extraction ratio of the first heating furnace and the second heating furnace is fixed at 1: 1. There are many.

上述したケースは、加熱対象となるスラブの厚さ、幅等の寸法が同一サイズのものが大量にある場合は、安定して成り立つ。近年、省エネルギーの観点から連続鋳造装置で鋳造された熱片スラブ(以下、熱片と略記する場合がある)を、なるべく高温で連続式加熱炉に装入する熱片装入が盛んになっているが、熱片スラブにプラスして、スラブヤードに貯留された、冷片スラブ(以下、冷片と略記する場合がある)やスラブサイズが薄い軽分塊スラブ等をも混在させて運用せざるを得ない場合も多くある。   The case described above is stable when there are a large number of slabs to be heated that have the same size, such as thickness and width. In recent years, from the viewpoint of energy saving, hot strip slabs (hereinafter sometimes abbreviated as hot strips) cast by a continuous casting apparatus have been actively introduced into a continuous heating furnace at as high a temperature as possible. However, in addition to the hot piece slab, cold slabs (hereinafter sometimes abbreviated as cold pieces) stored in the slab yard or light slabs with a small slab size can be mixed and operated. There are many cases where this is unavoidable.

このような場合、スラブ抽出時の目標温度を全てのスラブにおいて満足させようとすると、各炉で急激な温度上昇や、必要以上に在炉時間が長くなる等の問題が起き、それによる燃料ロスを生じたり、逆に加熱不足による圧延ラインの停止を引き起こしたりする。   In such a case, trying to satisfy the target temperature at the time of slab extraction in all slabs causes problems such as a rapid temperature rise in each furnace and a longer in-furnace time than necessary, resulting in fuel loss. Or the rolling line is stopped due to insufficient heating.

これらの解決策として、特許文献1には、第二加熱炉に装入されるスラブが第一加熱炉に装入されるスラブとは、鋼種が異なり、在炉時間に制約があるとき、第二加熱炉からのスラブの抽出を優先させることにより、在炉時間の変動によるスラブの過加熱による劣化や加熱不足を来さないようにする技術が開示されている。   As these solutions, in Patent Document 1, the slab charged in the second heating furnace is different from the slab charged in the first heating furnace when the steel type is different and the in-furnace time is limited. A technique is disclosed in which priority is given to extraction of a slab from a two-heating furnace so as not to cause deterioration due to overheating of the slab and insufficient heating due to fluctuations in the in-furnace time.

しかし、本方法によっても、スラブサイズや鋼種が複数になると加熱炉からの抽出ピッチが制限され、加熱炉がネック工程となって操業効率が低下するという問題がある。
特開平11−12656号公報
However, even with this method, when there are a plurality of slab sizes and steel types, the extraction pitch from the heating furnace is limited, and the heating furnace becomes a bottleneck process and there is a problem that the operation efficiency decreases.
Japanese Patent Laid-Open No. 11-12656

そこで、本発明は、複数の加熱炉を有する連続式加熱炉で、熱片スラブ、冷片スラブを混在させて加熱炉の燃焼を行う場合でも、加熱炉を円滑且つ適切に運用管理できる連続式加熱炉のスラブ抽出比決定方法を提供することを目的とする。   Therefore, the present invention is a continuous heating furnace having a plurality of heating furnaces, and even when the heating furnace is burned by mixing the hot piece slab and the cold piece slab, the heating furnace can be operated smoothly and appropriately. It aims at providing the slab extraction ratio determination method of a heating furnace.

本発明は、上述のような従来技術の問題を解決すべく、なされたものである。   The present invention has been made to solve the above-described problems of the prior art.

すなわち、第一の発明は、複数のスラブ加熱炉を有する連続式加熱炉において、加熱炉の加熱能力を表す係数とスラブの加熱負荷を表す負荷係数を用いて、スラブの抽出比を算出することを特徴とするスラブ抽出比決定方法である。   That is, the first invention calculates a slab extraction ratio in a continuous heating furnace having a plurality of slab heating furnaces, using a coefficient representing the heating capacity of the heating furnace and a load coefficient representing the heating load of the slab. Is a method for determining a slab extraction ratio.

第二の発明は、前記の負荷係数が、スラブ加熱に必要となる在炉時間を各スラブのスラブ厚さ、炉装入温度、抽出目標スラブ温度と加熱帯出側スラブ温度との温度差のそれぞれに関して係数化したものであることを特徴とする第一の発明に記載のスラブ抽出比決定方法である。   According to a second aspect of the present invention, the load factor indicates the in-furnace time required for slab heating, the slab thickness of each slab, the furnace charging temperature, the temperature difference between the extraction target slab temperature and the heating zone slab temperature, respectively. The slab extraction ratio determination method according to the first aspect of the invention is characterized in that the coefficient is converted into a coefficient.

第三の発明は、式(1)を用いてスラブの抽出比を算出することを特徴とする、第二の発明に記載のスラブ抽出比決定方法である。   A third invention is the slab extraction ratio determination method according to the second invention, wherein the slab extraction ratio is calculated using the equation (1).

Figure 2009001857
Figure 2009001857

スラブの抽出比を算出し決定するにあたり、スラブの加熱負荷を表す負荷係数を用いることによって、過加熱や加熱不足を減少させることができる。   In calculating and determining the extraction ratio of the slab, overheating and insufficient heating can be reduced by using a load coefficient representing the heating load of the slab.

本発明が適用される、連続式加熱炉の設備構成の一例を図2に示す。   An example of the equipment configuration of a continuous heating furnace to which the present invention is applied is shown in FIG.

図2は、連続式加熱炉の側面図であり、装入側からスラブが炉内に装入され、予熱帯で予熱され矢印方向に順次送られて行き、加熱帯で抽出目標温度に向けて本格的に加熱され、均熱帯で、スラブ外面と中心部との温度差が無くなるように均熱化され、抽出目標温度に到達したら抽出側から搬出され、熱間圧延に供される。スラブの加熱に使用された燃焼ガスは、スラブの流に対向して予熱帯の方向に流れ、煙道から排出される。   FIG. 2 is a side view of the continuous heating furnace, in which the slab is charged into the furnace from the charging side, preheated in the pre-tropical zone and sequentially sent in the direction of the arrow, toward the extraction target temperature in the heating zone. It is heated in earnest, soaking in the tropical zone, soaking so that there is no temperature difference between the outer surface of the slab and the center, and when reaching the extraction target temperature, it is carried out from the extraction side and subjected to hot rolling. Combustion gas used to heat the slab flows in the pretropical direction opposite to the slab flow and is discharged from the flue.

図1は連続式加熱炉の平面図であり、連続式加熱炉が2炉(1号炉、2号炉)ある例である。1号炉と2号炉の運用で、各炉はスラブが2列配列となっている。このような加熱炉の配列での一番単純なスラブ抽出例は、1号炉の1列目のスラブを抽出し、次いで2列目のスラブ、さらに2号炉の3列目のスラブ、4列目のスラブが抽出されて、この順番が繰り返されていく。この場合のスラブの抽出比は1号炉:2号炉=2本:2本=1:1である。   FIG. 1 is a plan view of a continuous heating furnace, which is an example in which there are two continuous heating furnaces (No. 1 furnace, No. 2 furnace). In the operation of the No. 1 and No. 2 furnaces, each furnace has two rows of slabs. The simplest example of slab extraction in such a heating furnace arrangement is to extract the first slab of the first furnace, then the second slab, and then the second slab of the second furnace, 4 The slabs in the row are extracted and this order is repeated. The extraction ratio of the slab in this case is 1st furnace: 2nd furnace = 2 pieces: 2 pieces = 1: 1.

しかし、このようなスラブの抽出ができるのは、1号炉と2号炉の加熱能力が等しく且つスラブの品種(スラブ寸法、熱片、冷片等)が同じ場合である。なお、スラブの抽出比とはスラブの抽出本数比をいう。   However, such slabs can be extracted when the heating capacity of the No. 1 furnace and the No. 2 furnace are equal and the slab types (slab dimensions, hot pieces, cold pieces, etc.) are the same. The slab extraction ratio is the ratio of the number of slab extractions.

現実的には、各炉に装入されるスラブの品種には差異がある。例えば、軽分塊スラブを全量2号炉に装入すると、軽分塊スラブは、250mm断面スラブに対してスラブ厚が100mm程度となるので、抽出目標温度への到達時間も250mm断面スラブに比較して半分程度となる。なお、軽分塊スラブとは、板厚10mm以下の薄物鋼板を製造するためのスラブの呼称で、スラブ厚が通常のスラブに比較して薄くなっている。   In reality, there are differences in the slab varieties charged in each furnace. For example, when all the light slab slab is charged into the No. 2 furnace, the slab thickness of the light slab slab is about 100mm compared to the 250mm cross-section slab, so the time to reach the extraction target temperature is also compared with the 250mm cross-section slab. And about half. The light slab is a slab name for manufacturing a thin steel plate having a thickness of 10 mm or less, and the slab thickness is thinner than that of a normal slab.

そのため、軽分塊スラブを加熱する際の抽出比は通常、1号炉:2号炉=1:1に対して、1:2〜1:3に変更する必要がある。   Therefore, the extraction ratio when heating the light block slab usually needs to be changed to 1: 2 to 1: 3 with respect to the first furnace: second furnace = 1: 1.

一方、2号炉にも熱片を装入するようになると、冷片に合わせた抽出比では、熱片、軽分塊スラブでは、焼き過ぎが生じ、スケール傷が発生する可能性がある。また、在炉時間が必要以上に長くなり、燃料効率が低下する。   On the other hand, when a hot piece is also charged into the No. 2 furnace, the hot piece and the light slab slab may be over-baked and scale damage may occur in the extraction ratio matched to the cold piece. Further, the in-furnace time becomes longer than necessary, and the fuel efficiency is lowered.

このように、厚さや装入温度が異なるスラブが混在することになると、1号炉と2号炉でスラブの抽出比を変化させる加熱炉の運用方法が必要となる。   Thus, when slabs having different thicknesses and charging temperatures are mixed, an operation method of the heating furnace in which the extraction ratio of the slab is changed between the No. 1 furnace and the No. 2 furnace becomes necessary.

そのため、装入するスラブの品種(スラブ寸法、熱片、冷片等)に応じて抽出比を可変とした加熱炉の操業を行う必要がある。   Therefore, it is necessary to operate the heating furnace with a variable extraction ratio according to the type of slab to be charged (slab size, hot piece, cold piece, etc.).

以下にスラブの抽出比を可変とした加熱炉の操業方法におけるスラブ抽出比の決定方法について説明する。
1.スラブの加熱負荷の係数化
加熱能力、スラブ品種(スラブ寸法、熱片、冷片等)により抽出比を変更するためには、各スラブの加熱負荷を係数化する必要がある。
The method for determining the slab extraction ratio in the heating furnace operating method with variable slab extraction ratio will be described below.
1. Coefficientization of heating load of slab In order to change the extraction ratio depending on the heating capacity and slab type (slab size, hot piece, cold piece, etc.), it is necessary to make the heating load of each slab a coefficient.

そこで、スラブ厚、スラブ装入温度をパラメータとして、1号炉と2号炉について、スラブを炉に装入してから抽出温度1140℃に到達するまでの在炉時間を調べる試験を行った。   Then, the test which investigates the in-furnace time until it reaches extraction temperature 1140 degreeC after charging a slab into a furnace about the 1st furnace and the 2nd furnace was done for slab thickness and the slab charging temperature as a parameter.

試験水準は、スラブ厚は、100mm、150mm、180mm、250mmの4水準、 スラブ装入温度は、常温(冷片スラブ)、200℃、400℃、600℃(熱片スラブ)の4水準とし、抽出目標温度(スラブ平均温度)は1140℃とした。   The test level is 4 levels of slab thickness of 100 mm, 150 mm, 180 mm, 250 mm, and the slab charging temperature is 4 levels of normal temperature (cold slab), 200 ° C., 400 ° C., 600 ° C. (hot piece slab), The extraction target temperature (slab average temperature) was 1140 ° C.

スラブを予熱帯に装入してから1140℃に到達するまでの在炉時間で結果を評価した。試験結果を図3から図6に示す。   The result was evaluated based on the in-furnace time from the introduction of the slab into the pre-tropical zone until reaching 1140 ° C. The test results are shown in FIGS.

図3は、厚さ250mmのスラブを用いて、加熱炉への装入温度を常温、200℃、400℃、600℃と変化させた場合の1号炉(1CF)と2号炉(2CF)における抽出スラブ平均温度が1140℃に達するまでの在炉時間を試験した結果である。横軸に装入されるスラブの温度を、縦軸にスラブの装入から抽出までの在炉時間を示す。   Fig. 3 shows the furnace No. 1 (1CF) and No. 2 furnace (2CF) when the charging temperature to the heating furnace is changed to room temperature, 200 ° C, 400 ° C, 600 ° C using a slab having a thickness of 250 mm. It is the result of having tested the in-furnace time until extraction average slab temperature in 1140 reaches 1140 degreeC. The horizontal axis indicates the temperature of the slab charged, and the vertical axis indicates the in-furnace time from slab charging to extraction.

スラブ装入温度が高温になるほど、炉内に持ち込まれるスラブの潜熱が大きくなるのでスラブの焼き上がりは早くなり、在炉時間は短くなっている。2号炉のほうが在炉時間が長いのは、燃焼用バーナや炉床構造等の加熱炉の構造上の差によるものである。   The higher the slab charging temperature, the greater the latent heat of the slab brought into the furnace, so that the slab burns faster and the in-furnace time is shorter. The reason for the longer time in the No. 2 furnace is due to the difference in the structure of the heating furnace such as the combustion burner and the hearth structure.

図4は、図3で得られた在炉時間をもとに、スラブ温度400℃の熱片を1号炉に装入したときを基準にして、加熱における負荷係数(1号炉のスラブ装入温度400℃の熱片の在炉時間を1.0とした場合の各スラブの焼上りまでの必要在炉時間を表した数値)をスラブ装入温度別、炉別に表示したものである。従って基本的傾向は、図3に同じである。   FIG. 4 shows the load coefficient in heating (the slab loading of the first furnace) based on the time when the hot piece having a slab temperature of 400 ° C. was charged into the first furnace based on the in-furnace time obtained in FIG. The numerical value representing the required in-furnace time until the slab is burned up when the in-furnace time of a hot piece having a heat input temperature of 400 ° C. is 1.0 is displayed for each slab charging temperature and for each furnace. Therefore, the basic tendency is the same as in FIG.

図5は、スラブの温度を常温(20℃、冷片スラブ)として、スラブ厚を100mm、150mm、180mm、250mmと変化させたときの1号炉と2号炉における抽出スラブ平均温度が1140℃に達するまでの在炉時間を試験した結果である。スラブ厚は、スラブの焼上り時間(在炉時間)に大きく影響することがわかる。   FIG. 5 shows that the average temperature of the extracted slabs in the No. 1 furnace and No. 2 furnace is 1140 ° C. when the slab temperature is normal temperature (20 ° C., cold slab) and the slab thickness is changed to 100 mm, 150 mm, 180 mm, 250 mm. It is the result of having tested the in-furnace time until it reaches to. It can be seen that the slab thickness greatly affects the slab burn-up time (in-furnace time).

図6は、図5で得られた在炉時間をスラブ厚250mm、スラブ装入温度400℃の場合を基準として、図4の場合と同様に負荷係数化して、スラブ厚、炉別に表示したものである。基本的傾向は、図5に同じである。
2.抽出比の算出
抽出比の変更は、抽出温度に達するまでに時間を要するスラブの在炉時間を延ばすことにより、スラブの焼上りまでの必要在炉時間を確保する目的で行う。
FIG. 6 shows the in-furnace time obtained in FIG. 5 with the slab thickness of 250 mm and the slab charging temperature of 400 ° C. as a standard, and the load factor is converted into the slab thickness and the furnace as in the case of FIG. It is. The basic trend is the same as in FIG.
2. Calculation of extraction ratio The extraction ratio is changed for the purpose of securing the required in-furnace time until slab burn-up by extending the in-furnace time of the slab that takes time to reach the extraction temperature.

連続式加熱炉の在炉時間は、抽出比が 1号炉:2号炉=1:1の場合、スラブ幅と圧延ピッチにより決定される(式(3))。   The in-furnace time of the continuous heating furnace is determined by the slab width and the rolling pitch when the extraction ratio is No. 1 furnace: No. 2 furnace = 1: 1 (formula (3)).

抽出比1:1(2本:2本)の場合(図1)
在炉時間=炉長(m)/スラブ幅(m)/圧延ピッチ(本/Hr)×4・・・・(3)
しかし、焼上りまでに必要な在炉時間は加熱炉の加熱能力、スラブ品種により異なり、抽出比を変更することにより在炉時間を調整することができる。
When the extraction ratio is 1: 1 (2: 2) (FIG. 1)
Furnace time = furnace length (m) / slab width (m) / rolling pitch (main / Hr) × 4 (3)
However, the in-furnace time required to burn up differs depending on the heating capacity of the heating furnace and the slab type, and the in-furnace time can be adjusted by changing the extraction ratio.

抽出比の算出では、スラブの焼上りに、大きな影響を及ぼす加熱帯(図1)に着目し、加熱帯に存在するスラブの品種及び加熱実績を考慮する。すなわち、図4、6に示した負荷係数を用いて算出する。   In the calculation of the extraction ratio, attention is paid to the heating zone (FIG. 1) that has a great influence on the slab burn-up, and the slab varieties existing in the heating zone and the heating results are taken into consideration. That is, it calculates using the load coefficient shown in FIG.

具体的には、負荷係数を、K1、K2、K3の3つのパラメータとし、式(1)を用いて算出することが望ましい。   Specifically, it is desirable to calculate the load coefficient using Equation (1) with three parameters K1, K2, and K3.

αは、1号炉の加熱能力を1とした場合の2号炉の加熱能力を在炉時間から係数化したもので、本実施例では、図4、6の1号炉と2号炉との在炉時間差から、1号炉を1.0とした場合、2号炉は0.86となる。即ち、同じ条件のスラブを1号炉と2号炉に装入した場合、2号炉の方がスラブが目標抽出温度に到達するのに時間を要することがわかる。従って、αは、加熱炉の構造等の特性により決定される加熱能力を表す係数である。   α is obtained by converting the heating capacity of the No. 2 furnace from the in-furnace time when the heating capacity of the No. 1 furnace is 1, and in this embodiment, the No. 1 and No. 2 furnaces in FIGS. From the difference in in-furnace time, when the first furnace is 1.0, the second furnace is 0.86. That is, when slabs having the same conditions are charged into the No. 1 and No. 2 furnaces, it can be seen that the No. 2 furnace requires more time for the slabs to reach the target extraction temperature. Therefore, α is a coefficient representing the heating capacity determined by characteristics such as the structure of the heating furnace.

K1はスラブ厚の違いによる在炉時間への影響度を係数化した負荷係数で、100mm厚のスラブに対して、250mm厚スラブが目標抽出温度に到達するのに要する時間は、約2.6倍となる。   K1 is a load coefficient obtained by converting the influence on the in-furnace time due to the difference in the slab thickness. The time required for the 250 mm slab to reach the target extraction temperature is about 2.6 times for the 100 mm slab. Doubled.

K2は、連続式加熱炉に装入するスラブの温度(炉装入温度)の在炉時間への影響度を係数化した負荷係数で、スラブ温度400℃を1.0とした場合の係数を示している。スラブの装入温度が高温になるほど、炉内に持込まれる潜熱は大きくなるので、スラブが目標抽出温度に到達するのに要する時間は、短くなる。   K2 is a load coefficient obtained by coefficientizing the influence of the temperature of the slab charged into the continuous heating furnace (furnace charging temperature) on the in-furnace time, and the coefficient when the slab temperature 400 ° C. is 1.0. Show. The higher the slab charging temperature, the greater the latent heat that is brought into the furnace, and the shorter the time required for the slab to reach the target extraction temperature.

K3は、連続式加熱炉の抽出目標スラブ温度と加熱帯出側スラブ温度(均熱帯入側スラブ温度)との差を係数化した負荷係数で、温度差が大きい程均熱帯に在炉する時間が長くなることを意味するので、この場合は、加熱帯に燃料を投入して温度上昇を図る必要がでてくる。   K3 is a load coefficient obtained by coefficientizing the difference between the extraction target slab temperature of the continuous heating furnace and the heating zone outlet side slab temperature (equilibrium entry slab temperature). The larger the temperature difference, the longer the time spent in the soaking zone. In this case, it is necessary to add fuel to the heating zone to increase the temperature.

また、上述した負荷係数は、例えば表1に示すように予めテーブル化しておくのが良い。   Further, the load coefficient described above is preferably tabulated in advance as shown in Table 1, for example.

Figure 2009001857
Figure 2009001857

Figure 2009001857
Figure 2009001857

なお、本発明のスラブの抽出比は、連続式加熱炉の温度管理を自動制御する場合やマニアル管理する場合のいずれにも使える。   In addition, the extraction ratio of the slab of the present invention can be used both when the temperature management of the continuous heating furnace is automatically controlled and when the manual management is performed.

式(2)及び表1の加熱能力を表す係数α(=0.86)、負荷係数K1、K2、K3を用いて、本発明の抽出比決定方法を適用することによって、スラブ運用が変化しても急激な加熱炉内温度の上昇を抑えられ、燃料原単位の減少に寄与した。また、在路時間の増加に伴うスケール傷不良を0.02%低減でき、スラブの焼遅れによる不熱発生率を0.2%低減できた。   By applying the extraction ratio determination method of the present invention using the coefficient α (= 0.86) and the load coefficients K1, K2, and K3 representing the heating capacity in the equation (2) and Table 1, the slab operation is changed. However, the rapid rise in the furnace temperature was suppressed, contributing to a reduction in fuel consumption. Moreover, the scale flaw defect accompanying the increase in route time could be reduced by 0.02%, and the non-heat generation rate due to slab firing delay could be reduced by 0.2%.

本発明の方法はビレット等の加熱炉にも応用できる。
The method of the present invention can also be applied to a heating furnace such as a billet.

連続式加熱炉の平面図である。It is a top view of a continuous heating furnace. 連続式加熱炉の一例を示す側面図である。It is a side view which shows an example of a continuous heating furnace. スラブ装入温度と在炉時間の関係を示す図である。It is a figure which shows the relationship between slab charging temperature and in-furnace time. スラブ装入温度と負荷係数の関係を示す図である。It is a figure which shows the relationship between slab charging temperature and a load coefficient. スラブ厚と在炉時間の関係を示す図である。It is a figure which shows the relationship between slab thickness and in-furnace time. スラブ厚と負荷係数の関係を示す図である。It is a figure which shows the relationship between slab thickness and a load coefficient.

Claims (3)

複数のスラブ加熱炉を有する連続式加熱炉において、加熱炉の加熱能力を表す係数とスラブの加熱負荷を表す負荷係数を用いて、スラブの抽出比を算出することを特徴とするスラブ抽出比決定方法。   In a continuous heating furnace having a plurality of slab heating furnaces, a slab extraction ratio is determined by calculating a slab extraction ratio using a coefficient indicating the heating capacity of the heating furnace and a load coefficient indicating the heating load of the slab. Method. 前記の負荷係数が、スラブ加熱に必要となる在炉時間を各スラブのスラブ厚さ、炉装入温度、抽出目標スラブ温度と加熱帯出側スラブ温度との温度差のそれぞれに関して係数化したものであることを特徴とする請求項1記載のスラブ抽出比決定方法。   The load factor is a factorization of the in-furnace time required for slab heating with respect to each slab thickness, furnace charging temperature, temperature difference between the extraction target slab temperature and the heating zone slab temperature. The slab extraction ratio determination method according to claim 1, wherein the slab extraction ratio is determined. 式(1)を用いてスラブの抽出比を算出することを特徴とする請求項2記載のスラブ抽出比決定方法。
Figure 2009001857
The slab extraction ratio determination method according to claim 2, wherein the slab extraction ratio is calculated using equation (1).
Figure 2009001857
JP2007163563A 2007-06-21 2007-06-21 Slab extraction ratio determining method of continuous heating furnace Pending JP2009001857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007163563A JP2009001857A (en) 2007-06-21 2007-06-21 Slab extraction ratio determining method of continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007163563A JP2009001857A (en) 2007-06-21 2007-06-21 Slab extraction ratio determining method of continuous heating furnace

Publications (1)

Publication Number Publication Date
JP2009001857A true JP2009001857A (en) 2009-01-08

Family

ID=40318561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007163563A Pending JP2009001857A (en) 2007-06-21 2007-06-21 Slab extraction ratio determining method of continuous heating furnace

Country Status (1)

Country Link
JP (1) JP2009001857A (en)

Similar Documents

Publication Publication Date Title
RU2600772C2 (en) Method and plant for producing metal strip
JP5846066B2 (en) Slab cooling method
JP5181803B2 (en) Heating method of heated material
RU2585913C2 (en) Method of producing sheet of normalised silicon steel
JP2009001857A (en) Slab extraction ratio determining method of continuous heating furnace
WO2020175670A1 (en) Slow-cooling cover for slab and cooling method
JP4079098B2 (en) Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP6229632B2 (en) Rolling order determination system and rolling order determination method for hot rolling
JP2006274401A (en) Method for automatically controlling combustion in continuous heating furnace
JP2009226453A (en) Method of and apparatus for deciding rolling order in hot rolling, and method of and device for manufacturing hot-rolled steel plate
JP4935305B2 (en) Heating control method for continuous heating furnace
JP4408195B2 (en) Billet furnace operation method
JP5526648B2 (en) Metal slab heating method
JP4935696B2 (en) Method and apparatus for creating rolling schedule in hot rolling mill
JP5003019B2 (en) Steel manufacturing method using continuous heating furnace
JP5181679B2 (en) Heating furnace and temperature control method for heated material
JP2746011B2 (en) Heating furnace combustion control method
JP2009255107A (en) Method of preventing crack in rolling caused by change of set temperature of heating furnace in 18-8 stainless steel
JP2005048202A (en) Method for manufacturing hot-rolled steel sheet
JP2005213578A (en) High carbon steel or the like produced by applying soaking index, and method of producing the same
WO2019163607A1 (en) Operating method for metal refining furnace
JP6254754B2 (en) Heating method of heated material
JP5633414B2 (en) Heating furnace control method and thick steel plate manufacturing method
Tiitto et al. Localised electric heating to improve the quality of steel slabs and billets
JP4133358B2 (en) Manufacturing method of hot-rolled steel sheet