JP2009000601A - Magnetic separator and carrier for electrophotography magnetically-separated by the magnetic separator - Google Patents

Magnetic separator and carrier for electrophotography magnetically-separated by the magnetic separator Download PDF

Info

Publication number
JP2009000601A
JP2009000601A JP2007162433A JP2007162433A JP2009000601A JP 2009000601 A JP2009000601 A JP 2009000601A JP 2007162433 A JP2007162433 A JP 2007162433A JP 2007162433 A JP2007162433 A JP 2007162433A JP 2009000601 A JP2009000601 A JP 2009000601A
Authority
JP
Japan
Prior art keywords
magnetic
hollow cylindrical
magnetic separator
cylindrical body
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007162433A
Other languages
Japanese (ja)
Other versions
JP5152623B2 (en
Inventor
Jun Ichisugi
潤 一杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007162433A priority Critical patent/JP5152623B2/en
Publication of JP2009000601A publication Critical patent/JP2009000601A/en
Application granted granted Critical
Publication of JP5152623B2 publication Critical patent/JP5152623B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic separator which is capable of conducting the precise separation not only in case where a powder material including a magnetic material and non-magnetic material of which the magnetic characteristics has a big difference but also in case where a powder material including a strong magnetic material and a weak magnetic material of which the magnetic characteristics has not a big difference, and in case where the separation is conducted by means of the threshold value. <P>SOLUTION: In the magnetic separator having at least a hollow cylindrical tube comprised of a non-magnetic material, a magnetic pole generating member arranged in the hollow cylindrical tube, a driving part to rotate the hollow cylindrical tube, a holding part to fix and hold the magnetic pole generating member, a supply part to supply the powder material to the surface of the hollow cylindrical tube and a recovery part to recover the powder material, it is characterized in that a plurality of hollow cylindrical tubes are equipped and arranged so that the hollow cylindrical tubes are in proximity and neighbored with each other, and in that the powder material is transferred between the hollow cylindrical tubes arranged in proximity to reach the recovery part. It is preferable that the powder material is transferred with vibration. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、粉末状物質の磁性の強弱を精密に分離する回転ローラーを備えた磁選機に係り、特に多量の強磁性の粉末状物質から少量の弱磁性もしくは非磁性の粉末状物質を精密に分離する磁選機及び該磁選機により磁選された電子写真用キャリアに関する。   The present invention relates to a magnetic separator equipped with a rotating roller for accurately separating the magnetic strength of a powdery substance, and in particular, a small amount of weakly magnetic or nonmagnetic powdery substance from a large amount of ferromagnetic powdery substance precisely. The present invention relates to a magnetic separator to be separated and an electrophotographic carrier magnetically selected by the magnetic separator.

磁選機とは、各種産業分野において粉末状物質の製造工程にて取り扱う原材料や製品等の良品の中に、原材料の純度や製品の品質を低下させる原因となる不良品等が混入している場合に、良品と不良品の磁性の有無、若しくは強弱の差を利用して良品と不良品の分離を行うものである。このような分離方法は、現在さまざまな工業分野にて原材料や製品として扱われている金属粉末等の磁性粉に対してのみではなく、特に電子写真用キャリアのように精密な磁気特性の分布を必要とされる対象物に対しても行われる。   A magnetic separator is a case where defective products that cause deterioration in the purity of raw materials or products are mixed in non-defective products such as raw materials and products handled in the manufacturing process of powdered substances in various industrial fields. In addition, the non-defective product and the defective product are separated using the presence or absence of magnetism between the non-defective product and the defective product, or the difference in strength. Such separation methods are not only for magnetic powders such as metal powders, which are currently handled as raw materials and products in various industrial fields, but also for the distribution of precise magnetic properties, especially for electrophotographic carriers. This is also done for the required objects.

一般に、磁選機を用いた磁選工程において、良品と不良品との間に磁性体と非磁性体のように、磁性の有無という磁気特性としての明確な違いがある場合、良品と不良品の混在品に対して磁石を用いることで、これらを容易に分離することが出来る。   In general, in the magnetic separation process using a magnetic separator, if there is a clear difference between the non-defective product and the non-defective product in terms of magnetic properties such as the presence or absence of magnetism, a mixture of good and defective products These can be easily separated by using a magnet for the product.

しかし、良品と不良品の磁気特性が、強磁性体と弱磁性体のようにその差が大きくない場合や、ある閾値で分離するというような場合には問題が生じる。例えば外部磁場が1000〔Oe〕の条件下で強磁性体の磁化を70〔Am2/kg〕、弱磁性体の磁化を40
〔Am2/kg〕とし、これらが一様に混在しているような粉末状物質から後者の弱磁性
体のみを除去するのは困難である。また粒子毎の磁化が40〜70〔Am2/kg〕まで
連続的に分布を持つような粉末状物質に対し、磁化が55〔Am2/kg〕以下の粒子の
みを除去するというように、磁性の閾値をもって分離を行う場合は、これらの良品と不良品を精度良く分離することは困難であった。更には強磁性体が多く含まれる粉末状物質から、その中に少量含まれる弱磁性体を精度良く分離するのは極めて困難であった。
However, a problem arises when the difference between the magnetic properties of the non-defective product and the defective product is not large, such as a ferromagnetic material and a weak magnetic material, or when the magnetic properties are separated at a certain threshold. For example, when the external magnetic field is 1000 [Oe], the magnetization of the ferromagnetic material is 70 [Am 2 / kg], and the magnetization of the weak magnetic material is 40.
[Am 2 / kg] It is difficult to remove only the latter weak magnetic material from a powdery substance in which these are uniformly mixed. In addition, for a powdery substance having a continuous magnetization from 40 to 70 [Am 2 / kg], only particles having a magnetization of 55 [Am 2 / kg] or less are removed. When separation is performed with a magnetic threshold, it is difficult to accurately separate these non-defective products and defective products. Furthermore, it has been extremely difficult to accurately separate a weak magnetic substance contained in a small amount from a powdery substance containing a large amount of ferromagnetic substance.

その理由は、強磁性体と弱磁性体は常に混在し、弱磁性体が強磁性体中に巻き込まれた状態となっており、強磁性体の磁石への吸着力により弱磁性体も磁石側へ束縛されてしまい、また弱磁性体自体も磁性を持っているために磁石に吸着してしまい、これら要因により結果として外部に排出され難いことに起因する。   The reason is that the ferromagnetic material and the weak magnetic material are always mixed, and the weak magnetic material is entrained in the ferromagnetic material. This is because the weak magnetic material itself has magnetism and is attracted to the magnet, and as a result, it is difficult to be discharged outside.

また、磁性体を磁石に接触させると磁石の磁界に追従した磁性体による穂立ち(以下、磁気穂という)が出来るが、磁気穂の中間に弱磁性体が存在している場合に、磁選ドラム等の部材の回転による遠心力で磁気穂の弱磁性体の部分から分離されると、その先端に存在していた強磁性体まで排出され、結果として分離精度が著しく低下することとなる。   In addition, when the magnetic material is brought into contact with the magnet, the magnetic material can follow the magnetic field of the magnet (hereinafter referred to as “magnetic ear”), but when a weak magnetic material exists in the middle of the magnetic material, the magnetic separation drum is used. When the magnetic material is separated from the weak magnetic material portion of the magnetic spike by the centrifugal force generated by the rotation of the member, the ferromagnetic material existing at the tip of the magnetic material is discharged, and as a result, the separation accuracy is significantly lowered.

具体的な事例を挙げると、特許文献1、2に開示されている磁選機は、基本的に非磁性体が主成分であり、非磁性体が大部分を占める粉末状物質から、その中に少量含まれる磁性体を分離除去する手段である。そのような使用用途では精度の良い分離に有効であるが、そもそも非磁性体を分離除去し、磁性体を回収できる機構となっていないため、磁性体が大部分を占め、その中に少量含まれる非磁性体を分離除去するという使用用途には不適である。   To give a concrete example, the magnetic separators disclosed in Patent Documents 1 and 2 are basically composed of a non-magnetic material as a main component, and the non-magnetic material is mostly composed of a powdery substance. It is a means for separating and removing a magnetic substance contained in a small amount. In such applications, it is effective for high-precision separation, but since there is no mechanism for separating and removing non-magnetic materials and collecting magnetic materials in the first place, magnetic materials occupy most of them, and a small amount is contained in them. It is unsuitable for the usage of separating and removing nonmagnetic materials.

特許文献3に開示されている磁選機は、磁性体が大部分を占め、その中に非磁性体が少量含まれる粉末状物質に対し、非磁性体を分離除去して磁性体のみを回収する機構を有する。しかし、磁選処理を行う中空ドラムが1本しかないため、例えば全て磁性体からなり
、その中で様々な磁性の強さを有する物質が混在しているような粉末状物質に対し、ある磁性の閾値よりも低い成分のみを除去するというような磁選処理を行う場合は、分離除去したい磁性の低い物質自体も磁性により中空ドラム表面に引き付けられているために、精度良い分離ができない。分離するためには、中空ドラムの回転数を上げる、若しくは磁束密度を下げる等の手段を取らざるを得ず、その結果、回収するべき磁性の高い成分も除去してしまい、分離精度が低下するばかりか、収率低下という問題も発生することとなる。
特開2006−116453 特許第2932880号 特開平11−309383
In the magnetic separator disclosed in Patent Document 3, the magnetic material occupies most of the powdered material containing a small amount of the non-magnetic material, and the non-magnetic material is separated and removed to recover only the magnetic material. It has a mechanism. However, since there is only one hollow drum that performs magnetic separation processing, for example, it is made of a magnetic material, and a certain magnetic material is used for a powdery material in which materials having various magnetic strengths are mixed. When performing magnetic separation such as removing only components lower than the threshold value, the substance having low magnetism to be separated / removed itself is attracted to the surface of the hollow drum by magnetism, so that separation with high accuracy cannot be performed. In order to separate, it is necessary to take measures such as increasing the number of revolutions of the hollow drum or lowering the magnetic flux density, and as a result, the highly magnetic components to be recovered are also removed, resulting in a decrease in separation accuracy. In addition, there is a problem that the yield is reduced.
JP 2006-116453 A Japanese Patent No. 2932880 JP-A-11-309383

本発明の目的は、上記従来の磁選機の問題点を解決することによって、磁性体と非磁性体のように磁気特性に明確に大きな差がある場合のみならず、強磁性体と弱磁性体のように磁気特性の差が大きくない場合や、ある閾値で分離するという場合においても、精度良く分離する磁選機を提供することである。更に、この磁選機によって、弱磁性体を含まない電子写真用キャリアを効率よく製造することである。   The object of the present invention is to solve the above-mentioned problems of the conventional magnetic separator, not only when there is a clear large difference in magnetic properties, such as a magnetic material and a non-magnetic material, but also a ferromagnetic material and a weak magnetic material. Thus, it is an object of the present invention to provide a magnetic separator that accurately separates even when the difference in magnetic characteristics is not large or when separation is performed at a certain threshold. Furthermore, this magnetic separator is to efficiently produce an electrophotographic carrier that does not contain a weak magnetic material.

上記の目的を達成するために、本発明は以下の構成を有する。
(1)本発明の磁選機は、少なくとも非磁性材料からなる中空円筒体と、中空円筒体の内部に配置された磁極発生部材と、中空円筒体を回転させる駆動部と、磁極発生部材を固定保持する保持部と、中空円筒体の表面へ粉末状物質を供給する供給部と、粉末状物質を回収する回収部を有しており、前記中空円筒体を複数備え、且つこれら中空円筒体が近接して隣り合うように配置されていることを特徴としている。
In order to achieve the above object, the present invention has the following configuration.
(1) A magnetic separator according to the present invention fixes a hollow cylindrical body made of at least a nonmagnetic material, a magnetic pole generating member disposed inside the hollow cylindrical body, a drive unit for rotating the hollow cylindrical body, and a magnetic pole generating member A holding unit for holding, a supply unit for supplying a powdery substance to the surface of the hollow cylindrical body, and a recovery unit for recovering the powdered substance, comprising a plurality of the hollow cylindrical bodies, and these hollow cylindrical bodies It is characterized by being arranged adjacent to each other.

中空円筒体内部に配置される磁極発生部材は、磁極発生が可能であれば種類は問わない。例えば永久磁石を用いれば磁選機の機構がシンプルになるという利点がある。他方、電磁石を用いれば磁選を行う粉末状物質の磁気特性値に合わせ、任意に磁束密度を調整できるという利点がある。   The magnetic pole generating member disposed inside the hollow cylindrical body may be of any type as long as it can generate a magnetic pole. For example, if a permanent magnet is used, there is an advantage that the mechanism of the magnetic separator becomes simple. On the other hand, if an electromagnet is used, there is an advantage that the magnetic flux density can be arbitrarily adjusted in accordance with the magnetic property value of the powdery substance subjected to magnetic separation.

この磁極発生部材を保持部によって固定し、中空円筒体を回転させることで、磁極発生部材により形成された中空円筒体表面に形成される磁界上を粉末状物質が通過して行く。中空円筒体表面は、円周方向に複数の磁極が存在している。磁極中央では粉末状物質による磁気穂が形成されるが、磁極中央から位置がずれると磁気穂が横に寝た状態となり、次の磁極へ移動すると再び磁気穂が形成される。中空円筒体が1回転する間にこの繰り返しを行い、粉末状物質中の強磁性体、弱磁性体及び非磁性体の入れ替わりが行われる。更に、中空円筒体表面へ供給された粉末状物質が中空円筒体表面を移動している最中に、常に粉末状物質を振動させるのが好ましい。粉末状物質を振動させることによって、粉末状物質中の強磁性体、弱磁性体及び非磁性体の入れ替わりがより頻繁に行われることとなる。   By fixing the magnetic pole generating member by the holding portion and rotating the hollow cylindrical body, the powdery substance passes over the magnetic field formed on the surface of the hollow cylindrical body formed by the magnetic pole generating member. The surface of the hollow cylinder has a plurality of magnetic poles in the circumferential direction. At the center of the magnetic pole, a magnetic spike is formed by a powdery substance, but when the position shifts from the center of the magnetic pole, the magnetic spike lies down sideways, and when it moves to the next magnetic pole, the magnetic spike is formed again. This is repeated while the hollow cylinder rotates once, and the ferromagnetic material, the weak magnetic material, and the nonmagnetic material in the powdery substance are replaced. Furthermore, it is preferable to always vibrate the powdery substance while the powdery substance supplied to the surface of the hollow cylinder moves on the surface of the hollow cylinder. By oscillating the powdery substance, the ferromagnetic substance, the weak magnetic substance, and the nonmagnetic substance in the powdery substance are replaced more frequently.

本発明のように中空円筒体を複数近接して設置し、各中空円筒体内部に設置された磁極発生部材の位置・磁束密度をそれぞれ調整することで、粉末状物質中の強磁性体が複数の中空円筒体間を次から次へと移動するようになり、粉末状物質中に含まれる弱磁性体は中空円筒体間を移動できずに一つの中間円筒体表面に留まるか、非磁性体と同じように中空円筒体の回転による遠心力で磁選機外部へ排出されることとなる。本発明においては、この複数ある中空円筒体同士の強磁性体の受け渡しにより精度の良い磁選が可能となる。
(2)粉末状物質の移動経路において、下方に位置する中空円筒体から上方に位置する中空円筒体へと粉末状物質が上がっていく近接部を少なくとも1箇所以上有することが好ましく、移動経路全体に渡って下方から上方へ上がって行くようになっていることがより好
ましい。これにより、弱磁性体や非磁性体の重力による落下を利用して、より精度の良い分離が可能となる。
By installing a plurality of hollow cylinders close to each other as in the present invention and adjusting the position and magnetic flux density of the magnetic pole generating member installed inside each hollow cylinder, a plurality of ferromagnetic bodies in the powdery substance can be obtained. The weak magnetic material contained in the powdery substance cannot move between the hollow cylinders, but remains on the surface of one intermediate cylinder, or a non-magnetic material. In the same manner as above, the centrifugal force generated by the rotation of the hollow cylindrical body is discharged to the outside of the magnetic separator. In the present invention, accurate magnetic selection can be achieved by transferring the ferromagnetic material between the hollow cylinders.
(2) In the movement path of the powdery substance, it is preferable to have at least one proximity part where the powdery substance rises from the hollow cylinder located below to the hollow cylinder located above. It is more preferable that it goes up from the bottom to the top. This makes it possible to perform more accurate separation by utilizing the drop of weak magnetic material or non-magnetic material due to gravity.

(3)中空円筒体同士の近接部において、粉末状物質の移動経路の上流側に位置する中空円筒体の磁極発生部材により形成される磁束密度をB1〔T1〕、粉末状物質の移動経路の下流側に位置する中空円筒体内の磁極発生部材により形成される磁束密度をB2〔T〕としたとき、0≦Log(B2/B1)≦5の条件を満たすことが好ましく、0.5≦Log(B2/B1)≦2の条件を満たすことが特に好ましい。
ここで磁束密度の上記条件において、数値が5を超えた場合は、上流側に位置する中空円筒体の表面に形成される磁界に対し、下流側に位置する中空円筒体の表面に形成される磁界が過剰に強くなり、除去すべき弱磁性体も下流側に位置する中空円筒体に移動していまい磁選精度が著しく低下するおそれがある。
(4)中空円筒体表面へ供給された粉末状物質が中空円筒体表面を移動している最中に、粉末状物質に振動を与えることで、より精度の良い分離が可能となる。前述したように、強磁性体と弱磁性体は常に混在しており、弱磁性体が強磁性体中に巻き込まれた状態になっていると、強磁性体の磁石への吸着力により弱磁性体も磁石側へ束縛されて磁選機外部へ排出されない他、強磁性体と一体となって次の中空円筒体へ移動してしまい、分離精度が著しく低下する。その為、常に粉末状物質を振動させておくことで、粉末状物質中の強磁性体、弱磁性体及び非磁性体の入れ替わりを頻繁に行い、精度の良い分離が可能となる。
(3) B1 [T1] is the magnetic flux density formed by the magnetic pole generating member of the hollow cylindrical body located upstream of the moving path of the powdery substance in the proximity of the hollow cylindrical bodies, and the moving path of the powdered substance When the magnetic flux density formed by the magnetic pole generating member in the hollow cylindrical body located on the downstream side is B2 [T], it is preferable that the condition of 0 ≦ Log (B2 / B1) ≦ 5 is satisfied, and 0.5 ≦ Log It is particularly preferable that the condition (B2 / B1) ≦ 2 is satisfied.
Here, when the numerical value exceeds 5 in the above condition of the magnetic flux density, it is formed on the surface of the hollow cylindrical body located on the downstream side with respect to the magnetic field formed on the surface of the hollow cylindrical body located on the upstream side. The magnetic field becomes excessively strong, and the weak magnetic material to be removed also moves to the hollow cylindrical body located on the downstream side, which may significantly reduce the magnetic separation accuracy.
(4) While the powdery substance supplied to the surface of the hollow cylinder is moving on the surface of the hollow cylinder, the powdery substance is vibrated, thereby enabling more accurate separation. As described above, the ferromagnetic material and the weak magnetic material are always mixed. If the weak magnetic material is wound in the ferromagnetic material, the weak magnetic material is weakened by the attractive force of the ferromagnetic material to the magnet. The body is also constrained to the magnet side and is not discharged to the outside of the magnetic separator, and is moved together with the ferromagnetic body to the next hollow cylindrical body, so that the separation accuracy is significantly reduced. Therefore, by always vibrating the powdery substance, the ferromagnetic substance, the weak magnetic substance, and the nonmagnetic substance in the powdery substance are frequently exchanged, and accurate separation becomes possible.

粉末状物質に振動を与える手段としては、例えば、図2に記載の振動子(16)により中空円筒体2を振動させる手段が挙げられる。中空円筒体を振動させる手段は、粉末状物質を振動させる直接的な手段である。また図3に記載の気体ノズル(17)により粉末状物質に気体を吹き付ける手段や、中空円筒体(2)に一定間隔をもって近接するように対向電極板(21)を設け、交流電圧電源(18)により中空円筒体(2)と対向電極板(21)の間に交流電圧を印加する手段等もある。気体を吹き付ける手段としては、気体の圧力は一定、若しくはパルス圧でも良い。中空円筒体に交流電圧を印加する手段としては、中空円筒体と近接して対向するように電極板等を設置し、中空円筒体2と電極板の間に交流電圧を印加する。このとき、中空円筒体の回転による攪拌作用で粉末状物質表面に発生する微小な電荷や、印加電界により粉末状物質に誘導される電荷により粉末状物質にクーロン力が働き、粉末状物質が中空円筒体と電極板の間を行き交い、この印加電圧の周波数を高めることで活発に粉末状物質が振動するようになる。
(5)複数ある中空円筒体各々の近接している部位の間隔は、3mmから50mmの範囲であることが好ましく、10mmから20mmの範囲がより好ましい。間隔が狭くなり過ぎると弱磁性体や非磁性体も中空円筒体間を移動し易くなる。一方、間隔が広くなり過ぎると強磁性体が中空円筒体間を移動出来なくなる。
As a means for giving vibration to the powdery substance, for example, a means for vibrating the hollow cylindrical body 2 by the vibrator (16) shown in FIG. The means for vibrating the hollow cylinder is a direct means for vibrating the powdery substance. Further, means for blowing gas to the powdered substance by the gas nozzle (17) shown in FIG. ) To apply an AC voltage between the hollow cylindrical body (2) and the counter electrode plate (21). As means for blowing the gas, the gas pressure may be constant or a pulse pressure. As a means for applying an AC voltage to the hollow cylinder, an electrode plate or the like is installed so as to face and face the hollow cylinder, and an AC voltage is applied between the hollow cylinder 2 and the electrode plate. At this time, the Coulomb force acts on the powdery substance due to the minute charge generated on the surface of the powdery substance due to the stirring action by the rotation of the hollow cylindrical body or the charge induced to the powdery substance by the applied electric field, and the powdery substance becomes hollow. The powdery substance vibrates actively by moving between the cylindrical body and the electrode plate and increasing the frequency of the applied voltage.
(5) The interval between the adjacent portions of the plurality of hollow cylindrical bodies is preferably in the range of 3 mm to 50 mm, and more preferably in the range of 10 mm to 20 mm. If the interval is too narrow, weak magnetic bodies and non-magnetic bodies also easily move between the hollow cylindrical bodies. On the other hand, if the distance is too wide, the ferromagnetic material cannot move between the hollow cylinders.

(6)中空円筒体表面の少なくとも一部が凹凸形状を有していることが好ましい。一例として、図4に示すような中空円筒体(2)の表面に網目状の凹部(20)が設けられた形状などが挙げられる。表面の凹凸形状で粉末状物質の搬送力を上げることで、中空円筒体表面上での粉末状物質の移動を活発にし、粉末状物質中の強磁性体、弱磁性体及び非磁性体の入れ替わりを頻繁に行い、より精度の良い分離が可能となる。
(7)中空円筒体表面へ供給された粉末状物質が中空円筒体表面を移動している最中に、中空円筒体各々の回転が時計回りと反時計回りの2方向に入れ替わることで、より精度の良い分離が可能となる。前述したように、中空円筒体表面は、円周方向に複数の磁極が存在しており、磁極中央では粉末状物質による磁気穂が形成されるが、磁極中央から位置がずれると磁気穂が横に寝た状態となり、次の磁極へ移動すると再び磁気穂が形成され、中空円筒体が1回転する間にこの繰り返しを行い、粉末状物質中の強磁性体、弱磁性体及び非磁性体の入れ替わりが頻繁に行われる。このとき、時計回りと反時計回りを入れ替える
ことで、中空円筒体1本当りに対する粉末状物質の表面移動距離が延長されて入れ替わり回数が増え、弱磁性体や非磁性体の磁選機外部への排出が促進される。
(6) It is preferable that at least a part of the surface of the hollow cylindrical body has an uneven shape. As an example, a shape in which a mesh-shaped recess (20) is provided on the surface of a hollow cylindrical body (2) as shown in FIG. By increasing the conveying power of the powdery substance with the irregular shape of the surface, the movement of the powdery substance on the surface of the hollow cylindrical body is activated, and the ferromagnetic substance, weak magnetic substance and nonmagnetic substance in the powdery substance are replaced. Is performed frequently, and more accurate separation becomes possible.
(7) While the powdery substance supplied to the surface of the hollow cylinder is moving on the surface of the hollow cylinder, the rotation of each hollow cylinder is switched in two directions, clockwise and counterclockwise. Separation with high accuracy is possible. As described above, the surface of the hollow cylindrical body has a plurality of magnetic poles in the circumferential direction, and a magnetic spike is formed by a powdery substance at the center of the magnetic pole. When moving to the next magnetic pole, the magnetic spike is formed again, and this process is repeated while the hollow cylinder rotates once, and the ferromagnetic material, weak magnetic material and nonmagnetic material in the powdery substance are Replacement is frequent. At this time, by switching the clockwise and counterclockwise directions, the surface movement distance of the powdery substance per hollow cylinder is extended and the number of times of replacement increases, and the weak magnetic material and the non-magnetic material are separated to the outside of the magnetic separator. Emissions are promoted.

(8)複数ある中空円筒体各々の回転数の平均値をR〔rpm〕、中空円筒体の半径をr〔cm〕、中空円筒体何れかの表面に供給される粉末状物質の供給速度をM〔kg/h〕としたとき、2≦1000(M/2πrR)≦80の条件を満たすことが好ましく、4≦1000(M/2πrR)≦20の条件を満たすことが特に好ましい。ここで2πrRは、単位時間あたりの粉末状物質の中空円筒体表面の移動距離を示す。M/2πrRが2未満の場合は、粉末状物質の供給速度に対し、単位時間あたりの粉末状物質の中空円筒体表面の移動距離が過剰に長くなるおそれがある。その結果、中空円筒体表面に形成される磁界により粉末状物質が磁化を帯びてしまい、装置壁面に付着する不具合が生じるおそれがある。また、M/2πrRが80を超えた場合は、単位時間あたりの粉末状物質の中空円筒体表面の移動距離に対し、粉末状物質の供給速度が過剰に高くなり、磁選精度が著しく低下するおそれがある。
(9)本発明は、上記(1)〜(8)の何れかに記載の手段にて電子写真用キャリアの磁選を行う磁選機である。
(8) The average value of the number of rotations of each of the plurality of hollow cylinders is R [rpm], the radius of the hollow cylinder is r [cm], and the supply speed of the powdery substance supplied to any surface of the hollow cylinder is When M [kg / h] is satisfied, the condition of 2 ≦ 1000 (M / 2πrR) ≦ 80 is preferably satisfied, and the condition of 4 ≦ 1000 (M / 2πrR) ≦ 20 is particularly preferable. Here, 2πrR represents the moving distance of the powdery substance on the surface of the hollow cylinder per unit time. When M / 2πrR is less than 2, the moving distance of the surface of the hollow cylindrical body of the powdery substance per unit time may be excessively longer than the supply speed of the powdery substance. As a result, the powdery substance is magnetized by the magnetic field formed on the surface of the hollow cylindrical body, which may cause a problem of adhering to the apparatus wall surface. In addition, when M / 2πrR exceeds 80, the supply speed of the powdery substance becomes excessively high with respect to the moving distance of the powdery substance per unit time on the surface of the hollow cylinder, and the magnetic separation accuracy may be significantly reduced. There is.
(9) The present invention is a magnetic separator that performs magnetic selection of an electrophotographic carrier by the means described in any one of (1) to (8) above.

(10)本発明は、上記(9)に記載の磁選機を使用して磁選された電子写真用キャリア粒子である。
一般的に、電子写真用キャリアは、鉄を主成分とする芯材粒子の表面に樹脂被膜を形成して得られるが、キャリアの核となる芯材粒子は、一般的に細かく粉砕されて粉末状になった磁性体とバインダー樹脂から成るスラリーを造粒し、その後、焼成工程での焼結を経て得られる。このとき、スラリー中の磁性体や樹脂成分の分散が不均一で芯材粒子内の成分比に偏りが生じたり、造粒〜焼結過程で芯材粒子内に空孔等の構造的欠陥が生じると、所望の磁化よりも低い磁化を持った芯材粒子が生成されることになる。また、所望の磁化を持った芯材粒子でも、キャリア化する際の機械装置による攪拌や運搬といったハンドリング作業にて、割れや角欠けといった構造破壊により磁化が所望の値よりも低下する場合がある。このような、磁化が所望の値よりも低い、いわゆる弱磁性体を核としたキャリアがキャリア製品内に混入していると、コピー機内の現像部にて使用される磁気ローラーから受ける磁気力が弱く、現像部内で弱磁性体から成るキャリアが飛散し、異常画像発生の原因に繋がる。そこで、キャリア製造工程の最終段階で、磁選処理を行い、異常画像の原因となる弱磁性体を除去することで画像を高品質に保つことができる。
(10) The present invention is a carrier particle for electrophotography magnetically selected using the magnetic separator described in (9) above.
In general, an electrophotographic carrier is obtained by forming a resin film on the surface of core material particles containing iron as a main component. Core material particles serving as the core of the carrier are generally finely pulverized into a powder. It is obtained by granulating a slurry made of a magnetic material and a binder resin, and then sintering in a firing step. At this time, the dispersion of the magnetic substance and resin component in the slurry is non-uniform, and the component ratio in the core particle is uneven, or there are structural defects such as vacancies in the core particle during the granulation to sintering process. When this occurs, core material particles having a magnetization lower than the desired magnetization are generated. Even in the case of core particles having a desired magnetization, the magnetization may be lower than a desired value due to structural breakage such as cracking or corner chipping in handling operations such as stirring and transportation by a mechanical device when forming a carrier. . When such a carrier having a magnetism lower than a desired value and having a so-called weak magnetic material as a nucleus is mixed in the carrier product, the magnetic force received from the magnetic roller used in the developing unit in the copier is increased. It is weak and the carrier made of a weak magnetic material scatters in the developing unit, leading to the occurrence of an abnormal image. Thus, in the final stage of the carrier manufacturing process, magnetic separation is performed, and the weak magnetic material that causes the abnormal image is removed, so that the image can be maintained in high quality.

本発明に係る磁選機によれば、磁性体と非磁性体のように磁気特性に明確な大きな差がある場合のみならず、強磁性体と弱磁性体のように磁気特性の差が大きくない場合や、ある閾値で分離するという場合においても、精度の良い磁選処理が可能であり、更に弱磁性体を含まない高品質な電子写真用キャリアを提供できる。   According to the magnetic separator according to the present invention, not only when there is a clear and large difference in magnetic characteristics such as a magnetic body and a non-magnetic body, but also the difference in magnetic characteristics is not as large as that of a ferromagnetic body and a weak magnetic body. Even in the case of separation with a certain threshold value, it is possible to perform magnetic separation with high accuracy and to provide a high-quality electrophotographic carrier that does not contain a weak magnetic material.

以下、本発明について実施の形態を挙げて説明を行う。尚、これらは本発明の一態様に過ぎず、本発明の技術的範囲を限定するものではない。
本発明に係る磁選機の一態様としては、例えば図1、図2、図3、図4に示すような装置がある。
Hereinafter, the present invention will be described with reference to embodiments. In addition, these are only one aspect | mode of this invention, and do not limit the technical scope of this invention.
As one aspect of the magnetic separator according to the present invention, there are apparatuses as shown in FIGS. 1, 2, 3, and 4, for example.

図1は磁選機の側面概念図、図2は磁選機の正面概念図、図3は磁選機に備えられた中空円筒体と磁極発生部材の側面の拡大図、図4は中空円筒体を正面から見た拡大図である。これら図1〜4において、(1)は磁選機外装、(2)は中空円筒体、(3)は磁極発生部材、(4)はシャフト、(5)は不良品回収部、(6)は粉末状物質の投入ホッパー、(7)は粉末状物質の投入トレイ、(8)は粉末状物質の投入方向、(9)は粉末状物
質の回収トレイ、(10)は粉末状物質の回収ホッパー、(11)は粉末状物質の排出方向、(12)は中空円筒体の回転方向、(13)は中空円筒体の近接ギャップ、(14)は磁極発生部材の保持部、(15)は中空円筒体を回転させる駆動部、(16)は振動子、(17)は気体ノズル、(18)は交流電圧電源、(19)はアース、(20)は網目状の凹部、(21)は対向電極板である。
1 is a conceptual side view of a magnetic separator, FIG. 2 is a conceptual front view of the magnetic separator, FIG. 3 is an enlarged view of a side surface of a hollow cylinder and a magnetic pole generating member provided in the magnetic separator, and FIG. 4 is a front view of the hollow cylinder. It is the enlarged view seen from. 1-4, (1) is a magnetic separator exterior, (2) is a hollow cylindrical body, (3) is a magnetic pole generating member, (4) is a shaft, (5) is a defective product collection unit, (6) is Powdered material charging hopper, (7) Powdered material charging tray, (8) Powdered material charging direction, (9) Powdered material recovery tray, (10) Powdered material recovery hopper , (11) is the discharge direction of the powdery substance, (12) is the rotation direction of the hollow cylinder, (13) is the proximity gap of the hollow cylinder, (14) is the holding part of the magnetic pole generating member, and (15) is hollow (16) is a vibrator, (17) is a gas nozzle, (18) is an AC voltage power source, (19) is ground, (20) is a mesh-shaped recess, and (21) is facing. It is an electrode plate.

図1に示す如く本実施形態に係る磁選機は、磁選工程において投入ホッパー(6)から投入トレイ(7)を介して投入方向(8)の方向へ粉末状物質を投入し、最下段の中空円筒体(2)へ粉末状物質を供給する。中空円筒体の回転(12)により、粉末状物質は中空円筒体上部へ移動し、中空円筒体間の近接する部位の間隔(以下、「近接ギャップ」とも言う。)(13)において、上部に位置する中空円筒体の磁界に引き付けられ、上部の中空円筒体へ移動する。これらを繰り返し、磁選機最上部まで達した粉末状物質は、回収トレイ(9)を介して排出方向(11)の方向へ排出され、回収ホッパー(10)により回収され、次工程へ供給される。   As shown in FIG. 1, the magnetic separator according to the present embodiment, in the magnetic separation process, throws the powdery substance from the feeding hopper (6) through the feeding tray (7) in the feeding direction (8), and forms the bottom hollow. A powdery substance is supplied to the cylindrical body (2). Due to the rotation (12) of the hollow cylinder, the powdery substance moves to the upper part of the hollow cylinder, and in the interval between adjacent parts between the hollow cylinders (hereinafter also referred to as “proximity gap”) (13), It is attracted by the magnetic field of the hollow cylinder located and moves to the upper hollow cylinder. By repeating these steps, the powdery substance that has reached the top of the magnetic separator is discharged in the discharge direction (11) through the recovery tray (9), recovered by the recovery hopper (10), and supplied to the next step. .

次に、実施例および比較例により本発明をさらに詳細に説明する。
[実験方法]
磁選機の磁選精度について評価を行う為、粉末状物質サンプルとして、異なる磁性を有するキャリアA、キャリアB、そして非磁性体Cを用いる。ここで、キャリアAは強磁性体、キャリアBは弱磁性体であり、それぞれ外部磁場1000〔Oe〕での磁化が70〔Am2/kg〕、及び40〔Am2/kg〕である。非磁性体Cは磁性を持たないため、磁化は0〔Am2/kg〕である。先ず、キャリアAとキャリアBをA:B=7:3、キャ
リアAと非磁性体CをA:C=7:3の比率で混ぜて、それぞれ混合粉末AB、ACを作製する。これらを別々に磁選機にて磁選処理し、混合粉末AB、ACよりそれぞれキャリアB、非磁性体Cを分離除去する作業を行う。そして、磁選処理された混合粉末AB´、AC´の磁化を測定し、以下式で定義される磁選分級精度Dを評価する。キャリアAに混ぜたキャリアB及び非磁性体Cを、キャリアAから完全に分離除去することができれば磁選分級精度は理論上100%となるため、磁選分級精度が高い程、磁選機の磁選精度が高いことになる。
・磁選分級精度D(%)=100×(Y−X)/(A−X)
(A:キャリアAの磁化,X:磁選前の混合粉末の磁化,Y:磁選後の混合粉末の磁化)
磁化の測定にはVSM計測機を用い、外部磁場1000〔Oe〕に印加してサンプルの磁化を測定した。
Next, the present invention will be described in more detail with reference to examples and comparative examples.
[experimental method]
In order to evaluate the magnetic separation accuracy of the magnetic separator, a carrier A, a carrier B, and a non-magnetic material C having different magnetism are used as powdery material samples. Here, the carrier A is a ferromagnetic material, and the carrier B is a weak magnetic material, and the magnetization in an external magnetic field of 1000 [Oe] is 70 [Am 2 / kg] and 40 [Am 2 / kg], respectively. Since the non-magnetic material C does not have magnetism, the magnetization is 0 [Am 2 / kg]. First, carrier A and carrier B are mixed at a ratio of A: B = 7: 3, and carrier A and nonmagnetic material C are mixed at a ratio of A: C = 7: 3 to prepare mixed powders AB and AC, respectively. These are separately subjected to magnetic separation using a magnetic separator, and the work of separating and removing the carrier B and the non-magnetic material C from the mixed powders AB and AC, respectively, is performed. Then, the magnetizations of the mixed powders AB ′ and AC ′ subjected to the magnetic separation treatment are measured, and the magnetic separation classification accuracy D defined by the following equation is evaluated. If the carrier B and the non-magnetic material C mixed with the carrier A can be completely separated and removed from the carrier A, the magnetic separation accuracy is theoretically 100%. Therefore, the higher the magnetic separation accuracy, the more magnetic separation accuracy of the magnetic separator is. It will be expensive.
Magnetic classification accuracy D (%) = 100 × (Y−X) / (A−X)
(A: Magnetization of carrier A, X: Magnetization of mixed powder before magnetic selection, Y: Magnetization of mixed powder after magnetic selection)
For measurement of magnetization, a VSM measuring device was used, and the magnetization of the sample was measured by applying to an external magnetic field 1000 [Oe].

[実験条件]
(比較例1の実験条件)
比較例1として、ドラム式磁選機を用いて磁選処理を行った。ドラム式磁選機は、産業界では最も広く利用されているタイプの一つであり、鉱業・窯業・化学・食品等、様々な分野で使用されている汎用性の高い機構を持った磁選機である。ドラム上部より粉末AB、及びACをドラム表面に供給し、ドラム表面を回転させる。ドラム真下よりも若干下流に位置する場所に粉末回収部を設置し、落下してくる磁選処理済みの粉末を回収した。弱磁性体や非磁性体はドラム真下に到達するまでに重力とドラム回転による遠心力で不良品回収部に落下する構造となっている。
[Experimental conditions]
(Experimental conditions of Comparative Example 1)
As Comparative Example 1, a magnetic separation process was performed using a drum type magnetic separator. The drum type magnetic separator is one of the most widely used types in the industry. It is a magnetic separator with a highly versatile mechanism used in various fields such as mining, ceramics, chemistry, and food. is there. Powder AB and AC are supplied to the drum surface from the top of the drum, and the drum surface is rotated. A powder recovery unit was installed at a location located slightly downstream of the drum, and the falling magnetically treated powder was recovered. The weak magnetic material and the non-magnetic material are structured to fall to the defective product collection unit by gravity and the centrifugal force generated by the drum rotation before reaching just below the drum.

(比較例2の実験条件)
本発明で提案する磁選機の一例である図1に示す磁選機を用い、ここから中空円筒体1本のみを残して、それ以外の中空円筒体を取り除いた構造とし、粉末に振動を与えずに磁選処理を行った。これは、本発明で提案する複数の中空円筒体間の近接ギャップを粉末が移動する特徴と、粉末に振動を与える特徴を無くしており、これより本発明の効果をより
顕著に表す比較実験とした。構造としては、比較例1のドラム式磁選機に近いものとなっている。
(Experimental conditions of Comparative Example 2)
The magnetic separator shown in FIG. 1, which is an example of the magnetic separator proposed in the present invention, is used in a structure in which only one hollow cylinder is left and the other hollow cylinders are removed, and the powder is not vibrated. A magnetic separation process was performed. This eliminates the feature that the powder moves in the proximity gap between the plurality of hollow cylinders proposed in the present invention and the feature that gives vibration to the powder, and this is a comparative experiment that more significantly represents the effect of the present invention. did. The structure is similar to the drum type magnetic separator of Comparative Example 1.

(実施例1の実験条件)
本発明で提案する磁選機の一例である図1に示す磁選機を用い、中空円筒体2本のみを残して、それ以外の中空円筒体を取り除いた構造とし、磁選機底部に設置した振動子を振動させることで、装置全体を振動させて粉末に振動を与え、磁選処理を行った。なお中空円筒体の表面には図4に示す網目状の凹凸形状が形成されており、磁選手段の近接ギャップ等は以下の表1に示すとおりである。
(実施例2の実験条件)
本発明で提案する磁選機の一例である図1に示す磁選機を用い、中空円筒体を4本とし、磁選機底部に設置した振動子を振動させることで、装置全体を振動させて粉末に振動を与え、磁選処理を行った。
(実施例3の実験条件)
本発明で提案する磁選機の一例である図1に示す磁選機を用い、中空円筒体を6本とし、磁選機底部に設置した振動子を振動させることで、装置全体を振動させて粉末に振動を与え、磁選処理を行った。
(Experimental conditions of Example 1)
1 is an example of a magnetic separator proposed in the present invention. The vibrator is installed at the bottom of the magnetic separator, with only two hollow cylinders remaining and the other hollow cylinders removed. The whole apparatus was vibrated to give vibration to the powder, and a magnetic separation process was performed. 4 is formed on the surface of the hollow cylindrical body, and the proximity gap and the like of the magnetic separation means are as shown in Table 1 below.
(Experimental conditions of Example 2)
The magnetic separator shown in FIG. 1, which is an example of the magnetic separator proposed in the present invention, has four hollow cylinders and vibrates the vibrator installed at the bottom of the magnetic separator, thereby vibrating the entire apparatus into powder. Vibration was applied and magnetic separation processing was performed.
(Experimental conditions of Example 3)
The magnetic separator shown in FIG. 1, which is an example of the magnetic separator proposed in the present invention, has six hollow cylindrical bodies, and the vibrator installed at the bottom of the magnetic separator is vibrated to vibrate the entire apparatus into powder. Vibration was applied and magnetic separation processing was performed.

(実施例4の実験条件)
本発明で提案する磁選機の一例である図1に示す磁選機を用い、ここから中空円筒体2本のみを残して、それ以外の中空円筒体を取り除いた構造とし、粉末に振動を与えずに磁選処理を行った。
上記比較例1又は2、実施例1〜4の実験を行う上で、磁選処理速度、処理量、磁選する粉末の粒径を以下のように設定した。また、比較例1又は2、実施例1〜4の磁選処理の実験条件を表1に示す。
(Experimental conditions of Example 4)
The magnetic separator shown in FIG. 1, which is an example of the magnetic separator proposed in the present invention, is used in a structure in which only two hollow cylinders are left and the other hollow cylinders are removed, and the powder is not vibrated. A magnetic separation process was performed.
In conducting the experiments of Comparative Example 1 or 2 and Examples 1 to 4, the magnetic separation treatment speed, the treatment amount, and the particle size of the powder to be magnetic separation were set as follows. Table 1 shows the experimental conditions of the magnetic separation process of Comparative Example 1 or 2, and Examples 1 to 4.

(1)粉末の供給速度: 30kg/h
(2)処理量: 30kg
(3)キャリアA、B及び非磁性体Cの平均粒径:50μm
比較例1又は2、実施例1〜4の磁選分級精度の評価結果を表2に、画像評価を表3に示す。尚、これらは本発明の一態様に過ぎず、本発明はこれらに限定されない。
(1) Powder supply rate: 30 kg / h
(2) Processing volume: 30kg
(3) Average particle size of carriers A and B and non-magnetic material C: 50 μm
The evaluation results of the magnetic classification accuracy of Comparative Example 1 or 2 and Examples 1 to 4 are shown in Table 2, and the image evaluation is shown in Table 3. In addition, these are only one aspect | mode of this invention, and this invention is not limited to these.

キャリアA及び上記の比較例1又は2及び実施例1〜4の磁選処理で得られた混合粉末にトナーを5wt%の比率で混合して現像剤を得た。磁選処理の効果について画像評価をし易くするため、高磁性体であるキャリアAを使用しても異常画像が発生する条件にコピー機を設定し、得られた現像剤を用いて画像出力を行った。画像評価に際しては異常画像の個数にて評価を行った。画像評価は、株式会社リコー社製のimagioMPC3000を使用して行った。     Toner was mixed with carrier A and the mixed powder obtained by the magnetic separation process of Comparative Example 1 or 2 and Examples 1 to 4 at a ratio of 5 wt% to obtain a developer. In order to make it easy to evaluate the effect of the magnetic separation process, the copier is set under the condition that an abnormal image is generated even when the carrier A, which is a high magnetic material, is used, and image output is performed using the obtained developer. It was. When evaluating the image, the number of abnormal images was evaluated. Image evaluation was performed using imagio MPC3000 manufactured by Ricoh Co., Ltd.

本発明に係る磁選機は、各種産業分野で用いられる粉末状物質の磁選など、粉末状技術全般への応用が可能である。例えば、電子写真用キャリアの分野に限定されず、各種産業分野で用いられる金属粉末原材料、金属粉末製品等に対する磁選機として利用できる。   The magnetic separator according to the present invention can be applied to general powdery technologies such as magnetic separation of powdery substances used in various industrial fields. For example, the present invention is not limited to the field of electrophotographic carriers, and can be used as a magnetic separator for metal powder raw materials, metal powder products and the like used in various industrial fields.

本発明に係る磁選機の一態様を示す側面概念図である。It is a side conceptual diagram showing one mode of a magnetic separator concerning the present invention. 本発明に係る磁選機の一態様を示す正面概念図である。It is a front conceptual diagram which shows the one aspect | mode of the magnetic separator based on this invention. 磁選機に備えられた中空円筒体と磁極発生部材の側面の拡大図である。It is an enlarged view of the side surface of the hollow cylindrical body and magnetic pole generating member with which the magnetic separator was equipped. 中空円筒体を正面から見た拡大図である。It is the enlarged view which looked at the hollow cylinder from the front.

符号の説明Explanation of symbols

1 磁選機外装
2 中空円筒体
3 磁極発生部材
4 シャフト
5 不良品回収部
6 投入ホッパー
7 投入トレイ
9 回収トレイ
10 粉末状物質の回収ホッパー
13 中空円筒体の近接ギャップ
14 保持部
15 駆動部
16 振動子
17 気体ノズル
20 網目状の凹部
21 対向電極板
DESCRIPTION OF SYMBOLS 1 Magnetic separator exterior 2 Hollow cylinder 3 Magnetic pole generating member 4 Shaft 5 Defective product collection | recovery part 6 Input hopper 7 Input tray 9 Recovery tray 10 Powdery substance recovery hopper 13 Proximity gap of hollow cylindrical body 14 Holding part 15 Drive part 16 Vibration Child 17 Gas nozzle 20 Reticulated recess 21 Counter electrode plate

Claims (12)

少なくとも非磁性材料からなる中空円筒体と、該中空円筒体の内部に配置された磁極発生部材と、該中空円筒体を回転させる駆動部と、該磁極発生部材を固定保持する保持部と、該中空円筒体の表面へ粉末状物質を供給する供給部と、粉末状物質を回収する回収部とを有する磁選機であって、該中空円筒体を複数具備し、且つこれら該中空円筒体が近接して隣り合うよう配置されており、近接して配置された該中空円筒体間を移動させて該回収部へ到達させることを特徴とする磁選機。 A hollow cylindrical body made of at least a non-magnetic material, a magnetic pole generating member disposed inside the hollow cylindrical body, a driving unit for rotating the hollow cylindrical body, a holding unit for fixing and holding the magnetic pole generating member, A magnetic separator having a supply part for supplying a powdery substance to the surface of a hollow cylinder and a recovery part for collecting the powdery substance, comprising a plurality of the hollow cylinders, and these hollow cylinders being close to each other The magnetic separators are arranged so as to be adjacent to each other and move between the hollow cylindrical bodies arranged close to each other to reach the recovery unit. 前記中空円筒体が近接して配置された近接部において、下方に位置する該中空円筒体から上方に位置する該中空円筒体へと粉末状物質が移動していく部位を少なくとも1箇所以上有することを特徴とする請求項1に記載の磁選機。 In the proximity part where the hollow cylinders are arranged close to each other, at least one part where the powdery substance moves from the hollow cylinder located below to the hollow cylinder located above is provided. The magnetic separator according to claim 1. 前記中空円筒体が近接して配置された近接部において、粉末状物質の移動経路の上流側に位置する該中空円筒体の内部に配置された前記磁極発生部材により形成される磁界の磁束密度をB1〔T〕とし、粉末状物質の移動経路の下流側に位置する該中空円筒体の内部に配置された該磁極発生部材により形成される磁界の磁束密度をB2〔T〕としたとき、0≦Log(B2/B1)≦5の条件を満たすことを特徴とする請求項1又は2に記載の磁選機。 The magnetic flux density of the magnetic field formed by the magnetic pole generating member disposed inside the hollow cylindrical body located upstream of the movement path of the powdery substance at the proximity portion where the hollow cylindrical body is disposed in proximity. When B1 [T] and B2 [T], the magnetic flux density of the magnetic field formed by the magnetic pole generating member disposed inside the hollow cylindrical body located on the downstream side of the movement path of the powdery substance is 0 The magnetic separator according to claim 1, wherein a condition of ≦ Log (B2 / B1) ≦ 5 is satisfied. 前記中空円筒体に振動を与えることで粉末状物質を振動させることを特徴とする請求項1〜3の何れか一に記載の磁選機。 The magnetic separator according to any one of claims 1 to 3, wherein the powdery substance is vibrated by applying vibration to the hollow cylindrical body. 前記中空円筒体の表面を移動している粉末状物質に気体を吹き付けることで粉末状物質を振動させることを特徴とする請求項1〜3の何れか一に記載の磁選機。 The magnetic separator according to any one of claims 1 to 3, wherein the powdery substance is vibrated by blowing a gas onto the powdery substance moving on the surface of the hollow cylindrical body. 前記中空円筒体に近接するよう対向電極板を設け、該中空円筒体と該対向電極板の間に交流電圧を印加することで粉末状物質を振動させることを特徴とする請求項1〜3の何れか一に記載の磁選機。 The counter electrode plate is provided close to the hollow cylindrical body, and the powdered substance is vibrated by applying an AC voltage between the hollow cylindrical body and the counter electrode plate. Magnetic separator according to 1. 隣接する前記中空円筒体の近接間隔が、3mm〜50mmであることを特徴とする請求項1〜6の何れか一に記載の磁選機。 The magnetic separator according to any one of claims 1 to 6, wherein the adjacent interval between the adjacent hollow cylindrical bodies is 3 mm to 50 mm. 前記中空円筒体の表面の少なくとも一部が凹凸の形状を有していることを特徴とする請求項1〜7の何れか一に記載の磁選機。 The magnetic separator according to any one of claims 1 to 7, wherein at least a part of the surface of the hollow cylindrical body has an uneven shape. 一の前記中空円筒体が時計回りに回転し、隣接する他の中空円筒体が反時計回りに回転することを特徴とする請求項1〜8の何れか一に記載の磁選機。 The magnetic separator according to any one of claims 1 to 8, wherein one hollow cylinder rotates in a clockwise direction and another adjacent hollow cylinder rotates in a counterclockwise direction. 複数ある前記中空円筒体各々の回転数の平均値をR〔rpm〕、該中空円筒体の半径をr〔cm〕、該中空円筒体何れかの表面に供給される粉末状物質の供給速度をM〔kg/h〕としたとき、2≦1000(M/2πrR)≦80の条件を満たすことを特徴とする請求項1〜9の何れかに記載の磁選機。 The average value of the rotational speed of each of the plurality of hollow cylinders is R [rpm], the radius of the hollow cylinder is r [cm], and the supply speed of the powdery substance supplied to any surface of the hollow cylinder is The magnetic separator according to any one of claims 1 to 9, wherein when M [kg / h] is satisfied, a condition of 2 ≦ 1000 (M / 2πrR) ≦ 80 is satisfied. 前記粉末状物質が電子写真用キャリアであることを特徴とする請求項1〜10の何れか一に記載の磁選機。 The magnetic separator according to any one of claims 1 to 10, wherein the powdery substance is an electrophotographic carrier. 請求項11に記載の磁選機によって磁選されたことを特徴とする電子写真用キャリア。 An electrophotographic carrier that is magnetically selected by the magnetic separator according to claim 11.
JP2007162433A 2007-06-20 2007-06-20 Magnetic separator for electrophotographic carrier Expired - Fee Related JP5152623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007162433A JP5152623B2 (en) 2007-06-20 2007-06-20 Magnetic separator for electrophotographic carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162433A JP5152623B2 (en) 2007-06-20 2007-06-20 Magnetic separator for electrophotographic carrier

Publications (2)

Publication Number Publication Date
JP2009000601A true JP2009000601A (en) 2009-01-08
JP5152623B2 JP5152623B2 (en) 2013-02-27

Family

ID=40317579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007162433A Expired - Fee Related JP5152623B2 (en) 2007-06-20 2007-06-20 Magnetic separator for electrophotographic carrier

Country Status (1)

Country Link
JP (1) JP5152623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110385199A (en) * 2019-07-10 2019-10-29 中国矿业大学 A kind of three product fluidized bed dry type magnetic separators

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333155U (en) * 1986-08-18 1988-03-03
JPH01288351A (en) * 1988-05-13 1989-11-20 Asahi Chem Ind Co Ltd Apparatus for dispersing and separating toner in developer
JPH04949U (en) * 1990-04-20 1992-01-07
JPH06130733A (en) * 1992-10-08 1994-05-13 Xerox Corp Method of magnetism-agitation- area development
JPH08173840A (en) * 1994-12-26 1996-07-09 Canon Inc Separator
JP2003010728A (en) * 2001-06-28 2003-01-14 Sony Corp Device and method for magnetic separation
JP2005262058A (en) * 2004-03-17 2005-09-29 Nippon Magnetic Dressing Co Ltd Method and apparatus for magnetic sorting
JP2006251354A (en) * 2005-03-10 2006-09-21 Ricoh Co Ltd Carrier for electrophotographic developer, electrophotographic developer, method for manufacturing carrier for electrophotographic developer, electrophotographic developing method, image forming apparatus, and process cartridge

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333155U (en) * 1986-08-18 1988-03-03
JPH01288351A (en) * 1988-05-13 1989-11-20 Asahi Chem Ind Co Ltd Apparatus for dispersing and separating toner in developer
JPH04949U (en) * 1990-04-20 1992-01-07
JPH06130733A (en) * 1992-10-08 1994-05-13 Xerox Corp Method of magnetism-agitation- area development
JPH08173840A (en) * 1994-12-26 1996-07-09 Canon Inc Separator
JP2003010728A (en) * 2001-06-28 2003-01-14 Sony Corp Device and method for magnetic separation
JP2005262058A (en) * 2004-03-17 2005-09-29 Nippon Magnetic Dressing Co Ltd Method and apparatus for magnetic sorting
JP2006251354A (en) * 2005-03-10 2006-09-21 Ricoh Co Ltd Carrier for electrophotographic developer, electrophotographic developer, method for manufacturing carrier for electrophotographic developer, electrophotographic developing method, image forming apparatus, and process cartridge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110385199A (en) * 2019-07-10 2019-10-29 中国矿业大学 A kind of three product fluidized bed dry type magnetic separators

Also Published As

Publication number Publication date
JP5152623B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
US3489280A (en) Magnetic separator having field shaping poles
TWI604892B (en) Magnetic separator
US10307767B2 (en) Rotary drum-type magnetic separator
JP2008216443A (en) Magnet roller and manufacturing method therefor, magnetic particle carrier, developing device, process cartridge, and image forming apparatus
JP2018122218A (en) Magnetic force screening method and apparatus
JP2008233368A (en) Magnet roller, developer carrier, development device, process cartridge and image forming apparatus
JP5152623B2 (en) Magnetic separator for electrophotographic carrier
JP4157797B2 (en) Developing device, process cartridge, and image forming apparatus
JP2014200723A (en) Separation method and separation device of ferromagnetic body
JP2007334182A (en) Developer carrier, developing device, process cartridge and image forming apparatus
JP5842853B2 (en) Method and apparatus for separating ferromagnetic material
JP2018143908A (en) Magnetic separator
JP4871586B2 (en) Developer carrying member, developing device, process cartridge, and image forming apparatus
JP3968219B2 (en) Developing roller, method and apparatus for manufacturing the developing roller
JP2005013828A (en) Magnetic separator
JPS6197053A (en) Magnetic classifying apparatus
JPH0761593A (en) Conveying device for magnetic powdery material
JP2013176743A (en) Electrostatic sorting apparatus
JP2000117144A (en) Electrostatic ore separator used jointly with magnetic separator
JP2017202460A (en) Magnetic selector
AU2006204435A1 (en) Methods of separating feed materials using a magnetic roll separator
JPS58184983A (en) Toner recycling device of electrostatic recording device
RU109023U1 (en) ELECTROMAGNETIC ROLL SEPARATOR
CN117548227A (en) Iron remover for removing impurities from dry powder materials and multi-stage impurity removal control system
SU1481704A1 (en) Method for magnetic separation of single-component electrophotographic developer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5152623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees