JP2009000253A - X-ray image photographing apparatus and x-ray image photographing method - Google Patents

X-ray image photographing apparatus and x-ray image photographing method Download PDF

Info

Publication number
JP2009000253A
JP2009000253A JP2007163353A JP2007163353A JP2009000253A JP 2009000253 A JP2009000253 A JP 2009000253A JP 2007163353 A JP2007163353 A JP 2007163353A JP 2007163353 A JP2007163353 A JP 2007163353A JP 2009000253 A JP2009000253 A JP 2009000253A
Authority
JP
Japan
Prior art keywords
ray
ray sensor
rays
irradiation
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007163353A
Other languages
Japanese (ja)
Other versions
JP4522437B2 (en
Inventor
Koji Takekoshi
康治 竹越
Tsukasa Sako
司 酒向
Toshio Kameshima
登志男 亀島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007163353A priority Critical patent/JP4522437B2/en
Priority to US12/143,058 priority patent/US7572057B2/en
Publication of JP2009000253A publication Critical patent/JP2009000253A/en
Application granted granted Critical
Publication of JP4522437B2 publication Critical patent/JP4522437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To confirm the positional relation of an X-ray tube and an X-ray sensor and to control an X-ray generation device according to the positional relation of both of them. <P>SOLUTION: In the step S101, the photographing of a stationary image is performed and X rays are subjected to exposure illumination to irradiate the X-ray sensor and converted to an electric signal to be captured as digital data. In the step S102, an irradiation field is recognized from the photographic result of the stationary image and the positional relation of the X-ray tube and the X-ray sensor is judged in the step S103 while it is judged whether the X-ray irradiation region T extracted in the step S102 comes within the X-ray sensor. If the whole region T is in the X-ray sensor, continuous photographing is permitted in the step S104 to be started in the step S105. If the region T comes outside of the X-ray sensor, an initial state is restored. The irradiation field is recognized in the step S106 and position judgment is succeedingly performed in the step S107. If the whole region T comes within the X-ray sensor, step processing is performed in the step S108 and, if the whole region T comes outside of the X-ray sensor, stop processing is performed in the step S109. X-ray fluoroscopic photographing is judged to be performed in the step S108 and, if the fluoroscopic photographing is succeeded, the irradiation field is recognized in the step S106 and, if the fluoroscopic photographing is completed, photographing is finished. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、X線撮影の動作を制限する機能を備えたX線画像撮影装置及び撮影方法に関するものである。   The present invention relates to an X-ray imaging apparatus and an imaging method having a function of restricting X-ray imaging operations.

従来から、病院などではX線撮影装置として、増感紙とX線写真フイルムを組み合わせたフイルムスクリーンシステムが良く使われている。この方法によれば、被写体を通過したX線は増感紙によってX線の強度に比例した可視光に変換され、X線写真フイルムを感光させ、X線画像をフイルム上に形成する。このフイルムをシャーカステンと呼ばれる観察装置を用いることで読影作業を行っている。また特許文献1のように、イメージインテンシファイアを用いてX線透視像をCRTに表示する透視撮影を行うX線TV装置も医用現場では広く利用されている。   Conventionally, a film screen system combining an intensifying screen and an X-ray photographic film is often used as an X-ray imaging apparatus in hospitals. According to this method, the X-rays that have passed through the subject are converted into visible light proportional to the X-ray intensity by the intensifying screen, the X-ray photographic film is exposed, and an X-ray image is formed on the film. Interpretation of this film is performed by using an observation device called Schaukasten. Further, as in Patent Document 1, an X-ray TV apparatus that performs fluoroscopic imaging in which an X-ray fluoroscopic image is displayed on a CRT using an image intensifier is also widely used in the medical field.

近年では、FPD(Flat Panel Detector)を用いた高分解能の固体X線検出器が提案されている。これにより、特許文献2のようにX線源とX線センサの間に被写体を配置し、被写体を透過したX線量を電気信号に変換することで、被写体のX線像をデジタルデータとして得る方法が実現されている。   In recent years, a high-resolution solid X-ray detector using an FPD (Flat Panel Detector) has been proposed. Thus, as in Patent Document 2, a subject is placed between an X-ray source and an X-ray sensor, and an X-ray image of the subject is obtained as digital data by converting the X-ray dose transmitted through the subject into an electrical signal. Is realized.

また、最近では特許文献3のように、センサ部を携帯型として撮影が行えるカセッテタイプのX線画像撮影装置も実用化されている。   Recently, as in Patent Document 3, a cassette type X-ray imaging apparatus capable of imaging with a sensor unit as a portable type has been put into practical use.

一方、非特許文献1のように、カセッテタイプのセンサを用いてX線透視を行う場合には、X線照射野の受像面に対する一致がJIS規格などで規定されている。更に、特許文献4のようにX線発生装置側から平面センサに電磁波を発信することにより、撮影位置を決定する方法が提案されている。   On the other hand, as in Non-Patent Document 1, when X-ray fluoroscopy is performed using a cassette type sensor, the coincidence of the X-ray irradiation field with the image receiving surface is defined by the JIS standard or the like. Furthermore, a method for determining the imaging position by transmitting an electromagnetic wave from the X-ray generator side to the flat sensor as in Patent Document 4 has been proposed.

特開平5−064081号公報JP-A-5-064081 特許第3066944号公報Japanese Patent No. 3066944 特開2004−73354号公報JP 2004-73354 A 特許第3624106号公報Japanese Patent No. 3624106 「JISハンドブック2005放射線(能)」、C0601−1−3 医用電気機器 日本規格工業会"JIS Handbook 2005 Radiation (Noh)", C0601-1-3 Medical Electrical Equipment Japan Standards Industry Association

図9はX線平面検出器とX線照射領域との関係を示す模式図である。カセッテタイプの平面検出器1を用いてX線透視を行う場合には、所定の位置に平面検出器1を配置し、この平面検出器1上に被写体を配置させてX線撮影を行う。その際に、X線管から発するX線の照射領域と平面検出器1の関係は、平面検出器1の直交する2つの主軸に沿ったX線照射領域Tの境界と、平面検出器1の対応する境界とのずれは、X線管の焦点と平面検出器1間の距離の3%を越えてはならないとされている。また、両主軸上のずれの総和は、X線管の焦点と平面検出器1間の距離の4%を越えてはならないとされている。   FIG. 9 is a schematic diagram showing the relationship between the X-ray flat panel detector and the X-ray irradiation area. When performing X-ray fluoroscopy using the cassette type flat detector 1, the flat detector 1 is disposed at a predetermined position, and an object is disposed on the flat detector 1 to perform X-ray imaging. At that time, the relationship between the X-ray emission region emitted from the X-ray tube and the flat detector 1 is such that the boundary between the X-ray irradiation region T along two orthogonal principal axes of the flat detector 1 and the flat detector 1 The deviation from the corresponding boundary should not exceed 3% of the distance between the focal point of the X-ray tube and the flat detector 1. Further, the sum of the deviations on both the main axes should not exceed 4% of the distance between the focal point of the X-ray tube and the flat detector 1.

平面検出器1、X線照射領域Tは、平面検出器1の主軸AyとX線照射領域Tとのずれx1、x2と、平面検出器1の主軸AxとX線照射領域Tとのずれy1、y2は次の式を満たす必要がある。なお、DはX線管の焦点から平面検出器1までの距離を表している。
|x1|+|x2|≦0.03・D
|y1|+|y2|≦0.03・D
|x1|+|x2|+|y1|+|y2|≦0.04・D
The flat detector 1 and the X-ray irradiation area T are different from each other in the deviations x1 and x2 between the main axis Ay of the flat detector 1 and the X-ray irradiation area T, and the deviation y1 between the main axis Ax of the flat detector 1 and the X-ray irradiation area T. , Y2 must satisfy the following formula. Note that D represents the distance from the focal point of the X-ray tube to the flat detector 1.
| X1 | + | x2 | ≦ 0.03 · D
| Y1 | + | y2 | ≦ 0.03 · D
| X1 | + | x2 | + | y1 | + | y2 | ≦ 0.04 · D

しかし、特許文献4に開示する発明では、センサ位置の検出は可能であるが、X線撮影を制御する手段がないため、X線源と平面検出器の位置関係が全く合致していない場合であっても、X線の曝射ができるという問題がある。   However, in the invention disclosed in Patent Document 4, although the sensor position can be detected, there is no means for controlling the X-ray imaging, and therefore the positional relationship between the X-ray source and the flat panel detector does not match at all. Even if it exists, there exists a problem that X-ray exposure can be performed.

また、特許文献3に開示の発明も同様にX線撮影を制御する手段がなく、更に、X線源と平面検出器の位置関係は考慮されておらず、X線が全く平面検出器を照射しない位置関係であっても透視用X線を照射するという問題がある。   Similarly, the invention disclosed in Patent Document 3 also has no means for controlling X-ray imaging, and further, the positional relationship between the X-ray source and the flat detector is not taken into consideration, and the X-ray irradiates the flat detector at all. However, there is a problem that X-rays for fluoroscopy are irradiated even if the positional relationship is not.

また、当初は全てのX線が平面検出器に照射される位置関係にあるとしても、その後に何らかの理由によりX線が平面検出器に全く当たらず、X線が漏洩するような位置関係となっても、透視用X線を出射し続けるという問題がある。   In addition, even if there is initially a positional relationship in which all the X-rays are applied to the flat detector, the X-rays do not hit the flat detector at all for some reason and the X-rays leak. However, there is a problem that X-rays for fluoroscopy are continuously emitted.

本発明の目的は、上述の問題点を解消し、平面検出器に対するX線の位置関係を認識してX線撮影動作を制御するX線画像撮影装置及び撮影方法撮影方法を提供することにある。   An object of the present invention is to provide an X-ray imaging apparatus and imaging method imaging method that solves the above-described problems and recognizes the positional relationship of X-rays with respect to a flat detector and controls the X-ray imaging operation. .

上記目的を達成するための本発明に係るX線画像撮影装置の技術的特徴は、X線を照射するためのX線源と、該X線源から照射されたX線を平面検出器で検出することによりX線画像を形成するX線撮影装置であって、X線照射領域を認識する照射野認識手段と、該照射野認識手段で認識した前記X線照射領域を基に前記X線源と前記平面検出器の位置関係を判定する位置判定手段と、該位置判定手段で判定した結果に基づいてX線撮影動作を制御する制御手段とを有することにある。   In order to achieve the above object, the technical feature of the X-ray imaging apparatus according to the present invention is that an X-ray source for irradiating X-rays and detecting the X-rays emitted from the X-ray source by a flat detector. An X-ray imaging apparatus for forming an X-ray image by performing an irradiation field recognition unit for recognizing an X-ray irradiation region, and the X-ray source based on the X-ray irradiation region recognized by the irradiation field recognition unit And a position determining means for determining a positional relationship between the flat detector and a control means for controlling an X-ray imaging operation based on a result determined by the position determining means.

また、本発明に係るX線画像撮影撮影方法の技術的特徴は、X線源からX線を照射する工程と、照射されたX線を平面検出器で検出することによりX線画像を形成する工程と、X線を照射したX線照射領域を認識する工程と、認識した前記X線照射領域を基に前記X線源と前記平面検出器の位置関係を判定する工程と、判定した結果に基づいてX線撮影動作を制御する工程とを備えることにある。   The technical feature of the X-ray image photographing method according to the present invention is that an X-ray image is formed by irradiating an X-ray from an X-ray source and detecting the irradiated X-ray with a flat detector. A step of recognizing an X-ray irradiation region irradiated with X-rays, a step of determining a positional relationship between the X-ray source and the flat detector based on the recognized X-ray irradiation region, and a result of the determination And a step of controlling the X-ray imaging operation based on the above.

本発明に係るX線画像撮影装置及び撮影方法によれば、X線源と平面検出器の位置関係が全ての照射X線が平面検出器を照射する位置にあることを確保し場合にのみ透視撮影を行うことが可能となる。また、X線透視中にX線が平面検出器を全く照射せず、X線が漏洩する場合には自動的にX線照射を停止することにより、不要なX線の照射や被曝を防止することが可能になる。   According to the X-ray imaging apparatus and imaging method according to the present invention, only when the positional relationship between the X-ray source and the flat detector ensures that all irradiation X-rays are at positions where the flat detector is irradiated. Shooting can be performed. In addition, when X-rays do not irradiate the flat detector at all during X-ray fluoroscopy and X-rays leak, the X-ray irradiation is automatically stopped to prevent unnecessary X-ray irradiation and exposure. It becomes possible.

本発明を図1〜図8に図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiment shown in FIGS.

図1は回診車に搭載したX線画像撮影装置のシステム構成図である。移動可能な回診車11は、X線源から成るX線発生部12、平面検出器であるX線センサ13、表示部14、フットペダル15を備え、一般的なX線撮影を行うための構成を有している。   FIG. 1 is a system configuration diagram of an X-ray imaging apparatus mounted on a roundabout car. A movable round-trip wheel 11 includes an X-ray generation unit 12 composed of an X-ray source, an X-ray sensor 13 that is a flat panel detector, a display unit 14, and a foot pedal 15, and is configured to perform general X-ray imaging. have.

X線発生部12はX線管、X線絞りなどのX線を発生するための機構を備え、X線センサ13はX線発生部12によって照射されたX線を受光し、画像信号を取得する検出器である。表示部14はCRTや液晶ディスプレイなどの一般的なモニタによって構成され、画像データやGUI(グラフィカルユーザインタフェース)などを画面に表示し、フットペダル15はX線の照射や停止を指示するための入力装置である。   The X-ray generation unit 12 includes a mechanism for generating X-rays such as an X-ray tube and an X-ray diaphragm, and the X-ray sensor 13 receives the X-rays irradiated by the X-ray generation unit 12 and acquires an image signal. Detector. The display unit 14 is configured by a general monitor such as a CRT or a liquid crystal display, and displays image data, a GUI (graphical user interface), and the like on a screen. The foot pedal 15 is an input for instructing irradiation or stopping of X-rays. Device.

なお、X線撮影装置にはフットペダル15の他に図示しないキーボード、マウスなどの一般的な入力装置も含まれており、ユーザによる操作を入力できる機構を備えている。また、回診車11の筐体中には、X線撮影装置を制御するための制御装置が内蔵されている。   Note that the X-ray imaging apparatus includes a general input device such as a keyboard and a mouse (not shown) in addition to the foot pedal 15, and includes a mechanism for inputting a user operation. In addition, a control device for controlling the X-ray imaging apparatus is incorporated in the casing of the round-wheel 11.

図2はブロック回路構成図であり、回診車11の筐体中に配置された制御部21には、X線発生部12、X線センサ13、照射野認識部22、位置判定部23が接続されている。照射野認識部22、位置判定部23は制御部21と同様に回診車11の筐体内に配置され、制御部21、照射野認識部22、位置判定部23は、図示しないCPU(中央処理装置)のプログラムの実行による機能するようになっている。なお、CPUはLSIやASIC等でも構成することができる。   FIG. 2 is a block circuit configuration diagram, and an X-ray generation unit 12, an X-ray sensor 13, an irradiation field recognition unit 22, and a position determination unit 23 are connected to the control unit 21 arranged in the housing of the round-wheel 11. Has been. The irradiation field recognizing unit 22 and the position determining unit 23 are arranged in the case of the round wheel 11 similarly to the control unit 21. ) Function by executing the program. The CPU can also be configured with an LSI, an ASIC, or the like.

図3はX線撮影装置の動作フローチャート図である。先ず、ステップS101で制御部21の制御により静止画撮影を実施する。静止画撮影では、X線発生部12から曝射されたX線が被写体を通ってX線センサ13に照射され、X線センサ13により電気信号に変換されデジタルデータとして取り込まれる。静止画撮影は1枚の画像を意味しており、照射野認識が行える程度の画像が得られれば充分である。従って、X線の照射条件は通常静止画撮影の条件を用いてもよいし、透視時の条件を用いても問題はない。   FIG. 3 is an operation flowchart of the X-ray imaging apparatus. First, in step S101, still image shooting is performed under the control of the control unit 21. In still image shooting, the X-rays emitted from the X-ray generation unit 12 pass through the subject and are irradiated to the X-ray sensor 13, converted into electric signals by the X-ray sensor 13, and captured as digital data. Still image shooting means one image, and it is sufficient to obtain an image that can recognize the irradiation field. Accordingly, the X-ray irradiation condition may be a normal still image shooting condition or a fluoroscopic condition.

次に、ステップS102で静止画撮影結果から照射野認識を行う。照射野認識処理は制御部21の制御により照射野認識部22で行われる。照射野認識とは、X線センサ13に照射されるX線照射領域Tを画像解析処理することによって抽出する公知の技術であり、この照射野認識を行うことにより、X線センサ13上に照射されるX線の領域を知ることができる。   Next, in step S102, irradiation field recognition is performed from the still image shooting result. The irradiation field recognition process is performed by the irradiation field recognition unit 22 under the control of the control unit 21. Irradiation field recognition is a known technique for extracting an X-ray irradiation region T irradiated to the X-ray sensor 13 by performing image analysis processing. By performing this irradiation field recognition, irradiation onto the X-ray sensor 13 is performed. It is possible to know the X-ray region.

なお、一般にX線照射領域はX線発生装置の条件によって様々に変更可能となっている。図4はX線発生装置であるX線発生部12の模式図であり、通常のX線発生部12の出射側には開口部が設けられ、照射角度θはこの開口部により予め決定されている。開口部にはX線絞り24が設けられており、このX線絞り24の開閉、位置調整によって、X線照射領域Tを自在に変更可能なようになっている。従って、X線絞り24の調整によりX線照射のターゲット角度やX線照射領域Tの形状を様々に変化させることができる。X線照射領域Tの形状はX線絞り24の形状によって、四角形のみならず、六角形や八角形や円形のものもあり得る。   In general, the X-ray irradiation region can be variously changed depending on the conditions of the X-ray generator. FIG. 4 is a schematic diagram of the X-ray generator 12 which is an X-ray generator. An opening is provided on the emission side of the normal X-ray generator 12, and the irradiation angle θ is determined in advance by this opening. Yes. An X-ray diaphragm 24 is provided in the opening, and the X-ray irradiation area T can be freely changed by opening / closing and adjusting the position of the X-ray diaphragm 24. Therefore, by adjusting the X-ray diaphragm 24, the target angle of X-ray irradiation and the shape of the X-ray irradiation region T can be variously changed. Depending on the shape of the X-ray diaphragm 24, the X-ray irradiation region T may have a hexagonal shape, an octagonal shape, or a circular shape.

次に、ステップS103で位置判定を行う。位置判定は制御部21の制御により位置判定部23で行われ、ステップS102で抽出したX線照射領域TがX線センサ13内に納まっているかを判定する。具体的には、X線センサ13の周囲の辺とX線照射領域Tの周囲の辺が何れも交差しない場合は、X線センサ13に照射されるX線照射領域TがX線センサ13内に包含されていると判定する。   Next, position determination is performed at step S103. The position determination is performed by the position determination unit 23 under the control of the control unit 21, and it is determined whether the X-ray irradiation region T extracted in step S <b> 102 is within the X-ray sensor 13. Specifically, when the sides around the X-ray sensor 13 and the sides around the X-ray irradiation region T do not intersect, the X-ray irradiation region T irradiated to the X-ray sensor 13 is within the X-ray sensor 13. Is determined to be included.

図5はX線照射領域TがX線センサ13内に包含される場合の例であり、X線センサ13の周囲の辺とX線照射領域Tの周囲の辺が何れも交差していない。なお、X線がX線センサ13を全く照射しなかった場合は、照射野認識部22はX線照射領域Tを認識できずエラーとなる。   FIG. 5 shows an example in which the X-ray irradiation region T is included in the X-ray sensor 13, and the sides around the X-ray sensor 13 and the sides around the X-ray irradiation region T do not intersect. If the X-ray does not irradiate the X-ray sensor 13 at all, the irradiation field recognition unit 22 cannot recognize the X-ray irradiation region T, resulting in an error.

一方、図6に示すように、X線センサ13の周囲の辺とX線照射領域Tの周囲の辺の何れかが交差する場合は、X線センサ13に照射されるX線照射領域TがX線センサ13内に包含されていないと判定する。X線センサ13とX線照射領域Tが重なっているため、X線センサ13の周囲の辺とX線照射領域Tの周囲の辺が交差している。   On the other hand, as shown in FIG. 6, when any of the sides around the X-ray sensor 13 intersects with the sides around the X-ray irradiation region T, the X-ray irradiation region T irradiated to the X-ray sensor 13 is It is determined that it is not included in the X-ray sensor 13. Since the X-ray sensor 13 and the X-ray irradiation region T overlap, the side around the X-ray sensor 13 and the side around the X-ray irradiation region T intersect.

また、位置判定を行う他の方法としては、ステップS102で抽出したX線照射領域Tの周囲の辺とX線センサ13の周囲の辺が一致する辺がない場合に、X線照射領域TがX線センサ13内に納まっていると判定する。X線照射領域Tの周囲の辺とX線センサ13の周囲の辺が一致する辺がある場合に、X線照射領域TがX線センサ13内に納まっていないと判定する。   As another method for determining the position, when there is no side where the side around the X-ray irradiation region T extracted in step S102 matches the side around the X-ray sensor 13, the X-ray irradiation region T is It is determined that it is within the X-ray sensor 13. When there is a side where the side around the X-ray irradiation region T and the side around the X-ray sensor 13 coincide, it is determined that the X-ray irradiation region T is not contained in the X-ray sensor 13.

このように、位置判定の結果、X線照射領域Tが全てX線センサ13内に納まっていればステップS104に、X線照射領域TがX線センサ13の外にはみ出していれば初期状態に戻る。   As described above, if the X-ray irradiation region T is entirely within the X-ray sensor 13 as a result of the position determination, the process proceeds to step S104. If the X-ray irradiation region T protrudes outside the X-ray sensor 13, the initial state is set. Return.

次に、ステップS104で制御部21によりX線透視撮影許可を行い、GUIでユーザが透視モードを選択できるようにする方法や、制御部21が外部から透視要求があった場合に、正常に透視動作を行う方法などがある。   Next, in step S104, the control unit 21 permits X-ray fluoroscopic imaging so that the user can select a fluoroscopy mode on the GUI, or when the control unit 21 has received a fluoroscopy request from the outside, the fluoroscopy is normally performed. There is a method to perform the operation.

ここでX線透視撮影とは、X線を連続して被写体に照射し、被写体を透過したX線をX線センサ13で電気信号に変換し、連続的にモニタ表示することで、動きのある像をリアルタイムで確認するための撮影である。ここでは、連続的に撮影される撮影手技全般を指し、透視撮影の他にもシネ撮影やDSAと呼ばれる造影差分撮影なども含まれる。X線透視撮影許可と同時に、X線発生部12やX線センサ13が移動しないようにロックを掛けてもよい。   Here, X-ray fluoroscopic imaging means that there is a movement by continuously irradiating a subject with X-rays, converting the X-rays that have passed through the subject into electrical signals by the X-ray sensor 13 and continuously displaying them on a monitor. This is a shooting for confirming the image in real time. Here, it refers to all imaging techniques that are taken continuously, and includes cine imaging and contrast difference imaging called DSA in addition to fluoroscopic imaging. A lock may be applied so that the X-ray generation unit 12 and the X-ray sensor 13 do not move simultaneously with the X-ray fluoroscopic imaging permission.

次に、ステップS105でX線透視撮影を開始する。透視撮影は制御部21の制御の基で、X線発生部12で連続的に曝射したX線をX線センサ13で順次に取り込み表示する。   Next, X-ray fluoroscopic imaging is started in step S105. In the fluoroscopic imaging, the X-rays continuously exposed by the X-ray generator 12 are sequentially captured and displayed by the X-ray sensor 13 under the control of the controller 21.

次に、ステップS106で照射野認識を実行する。照射野認識は制御部21の制御により照射野認識部22により行われる。ここでの照射野認識の処理自体はステップS102で行われた処理と同様であるが、処理を施す画像がステップS102では静止画像であるが、本ステップS106では透視画像の1フレームを利用して照射野認識を行う。ここで、照射野認識を行う画像は撮影フレームレートに応じて変更可能であり、全フレームに対して処理してもよいし、或る一定時間毎に処理をするようにしてもよい。   Next, irradiation field recognition is performed at step S106. Irradiation field recognition is performed by the irradiation field recognition unit 22 under the control of the control unit 21. The irradiation field recognition process itself is the same as the process performed in step S102, but the image to be processed is a still image in step S102, but in this step S106, one frame of a fluoroscopic image is used. Perform irradiation field recognition. Here, the image for the irradiation field recognition can be changed according to the shooting frame rate, and may be processed for all the frames, or may be processed at certain time intervals.

続いて、ステップS107で位置判定を行う。位置判定は制御部21の制御により位置判定部23で判定され、この判定方法はステップS103と同じ処理である。位置判定の結果、X線照射領域Tが全てX線センサ13内に納まっていればステップS108に、X線照射領域TがX線センサ13の外にはみ出していればステップS109の処理を行う。   Subsequently, position determination is performed in step S107. The position determination is determined by the position determination unit 23 under the control of the control unit 21, and this determination method is the same processing as step S103. If the X-ray irradiation area T is entirely within the X-ray sensor 13 as a result of the position determination, the process proceeds to step S108, and if the X-ray irradiation area T protrudes outside the X-ray sensor 13, the process of step S109 is performed.

ステップS108でX線透視撮影中の判断をする。透視中の判断は例えばフットペダル15などの曝射指示部が曝射指示状態である場合に透視中であるとし、或いはX線発生部12がX線を照射中は透視中であると云える。何れにしても、これらの情報は制御部21が制御しているため判断可能である。ここで、透視撮影が継続中であればステップS106に、透視撮影が終了していれば撮影を終了する。   In step S108, determination is made during X-ray fluoroscopic imaging. Judgment during fluoroscopy can be considered as fluoroscopy when, for example, the exposure instruction unit such as the foot pedal 15 is in the exposure command state, or it can be said that fluoroscopy is being performed while the X-ray generation unit 12 is irradiating X-rays. . In any case, these pieces of information can be determined because the control unit 21 controls them. Here, if the fluoroscopic imaging is continuing, the process proceeds to step S106, and if the fluoroscopic imaging is completed, the imaging is ended.

ステップS109では、透視撮影を停止する。透視撮影の停止は制御部21がX線発生部12に曝射の停止指示を行うことで停止する。この他にも、X線センサ13の透視画像読み取り動作の停止なども行われる。   In step S109, fluoroscopic imaging is stopped. The fluoroscopic imaging is stopped when the control unit 21 instructs the X-ray generation unit 12 to stop the exposure. In addition, the fluoroscopic image reading operation of the X-ray sensor 13 is stopped.

図7は実施例2の動作フローチャート図であり、実施例1の図3と同じステップ番号は同一の処理を示している。実施例2は実施例1を繰り返し行う場合で、ステップS201でX線透視許可確認を行う。透視許可の確認は制御部21で行われる処理であり、透視撮影許可状態かどうかを確認する。確認した結果、透視撮影許可状態であればステップS105の処理に移動し、透視撮影不可状態であればステップS101の処理に移行する。   FIG. 7 is an operation flowchart of the second embodiment, and the same step numbers as those in FIG. 3 of the first embodiment indicate the same processing. The second embodiment is a case where the first embodiment is repeatedly performed, and X-ray fluoroscopic permission confirmation is performed in step S201. The confirmation of the fluoroscopic permission is a process performed by the control unit 21 and confirms whether or not the fluoroscopic imaging permission state is set. As a result of the confirmation, if the fluoroscopic imaging is permitted, the process proceeds to step S105. If the fluoroscopic imaging is not possible, the process proceeds to step S101.

ステップS106以降の処理は実施例1と同様であるが、ステップS109で透視撮影を停止した後に、ステップS202で透視撮影許可を解除する。透視撮影許可の解除は制御部21で行われ、例えばGUIでユーザが透視撮影モードを選択できないようにする方法や、制御部21が外部から透視撮影の要求を受信した場合であっても、透視撮影動作を行わないようにする方法などがある。   The processing after step S106 is the same as that of the first embodiment, but after the fluoroscopic imaging is stopped at step S109, the fluoroscopic imaging permission is canceled at step S202. The fluoroscopic imaging permission is canceled by the control unit 21. For example, even when a method for preventing the user from selecting the fluoroscopic imaging mode using the GUI or when the control unit 21 receives a fluoroscopic imaging request from the outside, There are methods to prevent shooting operations.

実施例1、2における位置判定方法では、X線センサ13の周囲の辺とX線照射領域Tの周囲の辺を用いて判定を行った。本実施例3では、X線センサ13の周囲の辺を用いる代りに、X線センサ13の内側にある閾値によりマージン幅を設定し、X線センサ13よりも僅かに内側の辺を用いて判定を行う。   In the position determination methods in the first and second embodiments, the determination was performed using the sides around the X-ray sensor 13 and the sides around the X-ray irradiation region T. In the third embodiment, instead of using the peripheral side of the X-ray sensor 13, a margin width is set by a threshold value inside the X-ray sensor 13, and the determination is performed using a side slightly inside the X-ray sensor 13. I do.

図8は実施例3の位置判定の説明図であり、X線センサ13の内側の一定距離に設けた四角形BをX線センサ13の周囲の辺の代りに位置判定に利用する。例えば、四角形BはX線センサ13の周囲から概略1cmほど内側に設定されている。なお、上述の撮影方法のプログラムは、ディスク、フロッピなどの記憶媒体に記憶させてX線画像撮影装置に供給することもできる。   FIG. 8 is an explanatory diagram of position determination according to the third embodiment. A square B provided at a fixed distance inside the X-ray sensor 13 is used for position determination instead of a side around the X-ray sensor 13. For example, the rectangle B is set approximately 1 cm from the periphery of the X-ray sensor 13. Note that the program of the above-described imaging method can be stored in a storage medium such as a disk or a floppy and supplied to the X-ray imaging apparatus.

実施例1のX線画像撮影装置のシステム構成図である。1 is a system configuration diagram of an X-ray imaging apparatus according to Embodiment 1. FIG. ブロック回路構成図である。It is a block circuit block diagram. 実施例1の動作フローチャート図である。FIG. 3 is an operation flowchart of the first embodiment. X線発生部の模式図である。It is a schematic diagram of a X-ray generation part. X線照射領域がX線センサ内に包含されている状態の説明図である。It is explanatory drawing of the state in which the X-ray irradiation area | region is included in the X-ray sensor. X線照射領域がX線センサ内に包含されない状態の説明図である。It is explanatory drawing of the state where an X-ray irradiation area | region is not included in an X-ray sensor. 実施例2の動作フローチャート図である。FIG. 6 is an operation flowchart of the second embodiment. 実施例3の位置判定用四角形の説明図である。It is explanatory drawing of the square for position determination of Example 3. FIG. X線照射領域とセンサ面の不一致の場合の説明図である。It is explanatory drawing in the case of mismatching of an X-ray irradiation area | region and a sensor surface.

符号の説明Explanation of symbols

11 回診車
12 X線発生部
13 X線センサ
14 表示部
15 フットペダル
21 制御部
22 照射野認識部
23 位置判定部
24 X線絞り
T X線照射領域
11 rounds 12 X-ray generation unit 13 X-ray sensor 14 display unit 15 foot pedal 21 control unit 22 irradiation field recognition unit 23 position determination unit 24 X-ray diaphragm T X-ray irradiation region

Claims (7)

X線を照射するためのX線源と、該X線源から照射されたX線を平面検出器で検出することによりX線画像を形成するX線撮影装置であって、X線照射領域を認識する照射野認識手段と、該照射野認識手段で認識した前記X線照射領域を基に前記X線源と前記平面検出器の位置関係を判定する位置判定手段と、該位置判定手段で判定した結果に基づいてX線撮影動作を制御する制御手段とを有することを特徴とするX線画像撮影装置。   An X-ray imaging apparatus for forming an X-ray image by detecting an X-ray source for irradiating X-rays and an X-ray irradiated from the X-ray source by a flat detector, An irradiation field recognizing unit for recognizing, a position determining unit for determining a positional relationship between the X-ray source and the flat panel detector based on the X-ray irradiation area recognized by the irradiation field recognizing unit, and a determination by the position determining unit And an X-ray imaging apparatus characterized by comprising control means for controlling an X-ray imaging operation based on the result. 前記制御手段は前記位置判定の結果に基づいて、X線透視撮影を可能とする状態に制御を行うことを特徴とする請求項1に記載のX線画像撮影装置。   The X-ray imaging apparatus according to claim 1, wherein the control unit controls the X-ray fluoroscopic imaging based on a result of the position determination. 前記制御手段は前記位置判定の結果に基づいて、X線透視撮影中にX線透視撮影を停止することを特徴とする請求項1に記載のX線画像撮影装置。   The X-ray imaging apparatus according to claim 1, wherein the control unit stops X-ray fluoroscopic imaging during X-ray fluoroscopic imaging based on the result of the position determination. 前記位置判定手段は、認識した前記X線照射領域が前記平面検出器の面に包含されているか否かを判定することを特徴とする請求項1に記載のX線画像撮影装置。   The X-ray imaging apparatus according to claim 1, wherein the position determination unit determines whether or not the recognized X-ray irradiation region is included in a surface of the flat detector. 前記位置判定手段は、認識した前記X線照射領域の位置判定を、前記平面検出器の或る一定距離だけ内側に設定された領域を用いて行うことを特徴とする請求項1に記載のX線画像撮影装置。   The X-ray irradiation area according to claim 1, wherein the position determination means performs position determination of the recognized X-ray irradiation area using an area set inside a certain distance of the flat panel detector. Line image photographing device. X線源からX線を照射する工程と、照射されたX線を平面検出器で検出することによりX線画像を形成する工程と、X線を照射したX線照射領域を認識する工程と、認識した前記X線照射領域を基に前記X線源と前記平面検出器の位置関係を判定する工程と、判定した結果に基づいてX線撮影動作を制御する工程とを備えることを特徴とするX線画像撮影方法。   A step of irradiating X-rays from an X-ray source, a step of forming an X-ray image by detecting the irradiated X-rays with a flat detector, a step of recognizing an X-ray irradiation region irradiated with X-rays, And a step of determining a positional relationship between the X-ray source and the flat panel detector based on the recognized X-ray irradiation region, and a step of controlling an X-ray imaging operation based on the determined result. X-ray imaging method. 請求項6の撮影方法を実施するためのプログラムを記憶した記憶媒体。   A storage medium storing a program for carrying out the photographing method according to claim 6.
JP2007163353A 2007-06-21 2007-06-21 X-ray imaging apparatus and imaging method Active JP4522437B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007163353A JP4522437B2 (en) 2007-06-21 2007-06-21 X-ray imaging apparatus and imaging method
US12/143,058 US7572057B2 (en) 2007-06-21 2008-06-20 Radiography control apparatus and radiography control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007163353A JP4522437B2 (en) 2007-06-21 2007-06-21 X-ray imaging apparatus and imaging method

Publications (2)

Publication Number Publication Date
JP2009000253A true JP2009000253A (en) 2009-01-08
JP4522437B2 JP4522437B2 (en) 2010-08-11

Family

ID=40317314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007163353A Active JP4522437B2 (en) 2007-06-21 2007-06-21 X-ray imaging apparatus and imaging method

Country Status (1)

Country Link
JP (1) JP4522437B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021045359A (en) * 2019-09-19 2021-03-25 コニカミノルタ株式会社 Radiographic system, photographing controller, radiographic method, and radiographic program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204188A (en) * 1994-01-11 1995-08-08 Hitachi Medical Corp X-ray radiographic system
JPH10201750A (en) * 1997-01-17 1998-08-04 Canon Inc Radiographic device
JPH10324523A (en) * 1997-03-25 1998-12-08 Toda Kogyo Corp Production of cobalt oxide fine particulate powder
JP2000023953A (en) * 1998-04-30 2000-01-25 Konica Corp Irradiation field recognizing method
JP2001167248A (en) * 1999-12-06 2001-06-22 Canon Inc Device, system and method for processing image and storage medium
JP2003117009A (en) * 2001-10-11 2003-04-22 Mitsubishi Electric Corp Radiotherapy device
US20070223657A1 (en) * 2006-03-23 2007-09-27 General Electric Company Method for aligning radiographic inspection system
US20080112541A1 (en) * 2005-06-14 2008-05-15 Varian Medical Systems Technologies, Inc. Self-alignment of radiographic imaging system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07204188A (en) * 1994-01-11 1995-08-08 Hitachi Medical Corp X-ray radiographic system
JPH10201750A (en) * 1997-01-17 1998-08-04 Canon Inc Radiographic device
JPH10324523A (en) * 1997-03-25 1998-12-08 Toda Kogyo Corp Production of cobalt oxide fine particulate powder
JP2000023953A (en) * 1998-04-30 2000-01-25 Konica Corp Irradiation field recognizing method
JP2001167248A (en) * 1999-12-06 2001-06-22 Canon Inc Device, system and method for processing image and storage medium
JP2003117009A (en) * 2001-10-11 2003-04-22 Mitsubishi Electric Corp Radiotherapy device
US20080112541A1 (en) * 2005-06-14 2008-05-15 Varian Medical Systems Technologies, Inc. Self-alignment of radiographic imaging system
US20070223657A1 (en) * 2006-03-23 2007-09-27 General Electric Company Method for aligning radiographic inspection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021045359A (en) * 2019-09-19 2021-03-25 コニカミノルタ株式会社 Radiographic system, photographing controller, radiographic method, and radiographic program

Also Published As

Publication number Publication date
JP4522437B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
KR102187814B1 (en) Medical apparatus, and method for controlling medical apparatus
KR102169948B1 (en) Medical apparatus and method
JP6566939B2 (en) System and method for detecting the possibility of collision between an object and a patient in a medical procedure
JP6342437B2 (en) Radiation tomography system and control program therefor
US20130184537A1 (en) Medical image diagnosis apparatus and computer-readable medium
JP2013078479A (en) Moving-body tracking radiation therapy system
US7572057B2 (en) Radiography control apparatus and radiography control method
JP6104618B2 (en) X-ray diagnostic apparatus and control program
JP2016034300A (en) Image diagnostic device and imaging method
US9161728B2 (en) X-ray diagnosis apparatus and X-ray diagnosis assisting method
JP4519887B2 (en) X-ray imaging apparatus and imaging method
JP2009100947A (en) X-ray equipment, its control method, program and storage medium
JP2008206740A (en) Radiation imaging system, radiation imaging method and program
JP2009297284A (en) Radiation image photographing apparatus and method
JP5595184B2 (en) Radiographic imaging apparatus and radiographic imaging method
CN107530553B (en) Radiation therapy system
US11324461B2 (en) X-ray imaging apparatus
JP4522437B2 (en) X-ray imaging apparatus and imaging method
US20150279030A1 (en) Image Processing Apparatus, Image Processing Method, And Non-Transitory Storage Medium Storing Program
JP2017164426A (en) Radiography apparatus
JP5202574B2 (en) X-ray imaging apparatus and imaging method
JP2010158298A (en) Tomographic image capturing apparatus and tomographic image capturing method
JP7235856B2 (en) radiography system
JP2008125610A (en) Radiographic x-ray equipment
JP5959972B2 (en) X-ray diagnostic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091022

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20091218

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Ref document number: 4522437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3