JP2008546690A5 - - Google Patents

Download PDF

Info

Publication number
JP2008546690A5
JP2008546690A5 JP2008516890A JP2008516890A JP2008546690A5 JP 2008546690 A5 JP2008546690 A5 JP 2008546690A5 JP 2008516890 A JP2008516890 A JP 2008516890A JP 2008516890 A JP2008516890 A JP 2008516890A JP 2008546690 A5 JP2008546690 A5 JP 2008546690A5
Authority
JP
Japan
Prior art keywords
oxidation
moles
aromatic compound
terephthalic acid
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008516890A
Other languages
Japanese (ja)
Other versions
JP2008546690A (en
Filing date
Publication date
Priority claimed from US11/154,163 external-priority patent/US7608732B2/en
Application filed filed Critical
Publication of JP2008546690A publication Critical patent/JP2008546690A/en
Publication of JP2008546690A5 publication Critical patent/JP2008546690A5/ja
Pending legal-status Critical Current

Links

Description

ここで図6〜7を参照し、液相供給物流を反応ゾーン28内に導入するための代替のシステムを説明する。この態様において、供給物流は4つの異なる高さで反応ゾーン28内に導入する。各高さは、それぞれの供給物分配システム76a,b,c,dを備える。各供給物分配システム76は、主供給管路78および連結管(manifold)80を含む。各連結管80は、容器シェル22の反応ゾーン28内に延びる挿入管路86,88にそれぞれ連結した少なくとも2つの出口82,84を備える。各挿入管路86,88は、供給物流を反応ゾーン28内に放出するためのそれぞれの供給物開口87,89を与える。供給物開口87,89は、好ましくは、実質的に同様の直径約7センチメートル未満、より好ましくは約0.25から約5センチメートルの範囲、および最も好ましくは0.4から2センチメートルの範囲を有する。各供給物分配システム76a,b,c,dの供給物開口87,89は、反対の方向で供給物流を反応ゾーン28内に導入するように直径方向において反対側にあることが好ましい。さらに、隣接する供給物分配システム76の、直径方向において反対側の供給物開口87,89は、相対的に互いに90度回転させた方向であることが好ましい。操作においては、液相供給物流は、主供給物管路78に充填し、続いて連結管80に入る。連結管80は、供給物流を、反応器20の反対側で供給物開口87,89を経由して同時に導入するために均等に分配する。 With reference now to FIGS. 6-7, an alternative system for introducing a liquid phase feed stream into reaction zone 28 will be described. In this embodiment, the feed stream is introduced into the reaction zone 28 at four different heights. Each height includes a respective feed distribution system 76a, b, c, d. Each feed distribution system 76 includes a main supply line 78 and a manifold 80. Each connecting tube 80 includes at least two outlets 82, 84 connected to insertion conduits 86, 88 that extend into the reaction zone 28 of the vessel shell 22, respectively. Each insertion line 86, 88 provides a respective feed opening 87, 89 for discharging the feed stream into the reaction zone 28. Feed openings 87, 89 are preferably substantially less than about 7 centimeters in diameter, more preferably in the range of about 0.25 to about 5 centimeters, and most preferably in the range of 0.4 to 2 centimeters. Have a range. The feed openings 87, 89 of each feed distribution system 76a, b, c, d are preferably diametrically opposed so as to introduce the feed stream into the reaction zone 28 in the opposite direction. Furthermore, the feed openings 87 , 89 on the opposite diametrical side of adjacent feed distribution systems 76 are preferably in a direction that is rotated 90 degrees relative to each other. In operation, the liquid phase feed stream fills the main feed line 78 and then enters the connecting line 80. The connecting tube 80 distributes the feed stream evenly for simultaneous introduction on the opposite side of the reactor 20 via feed openings 87, 89.

本発明のある態様において、反応ゾーン内に導入される全易酸化性化合物の少なくとも約10質量パーセントを酸化剤スパージャー経由で導入することが好ましく、より好ましくは易酸化性化合物の少なくとも約40質量パーセントを反応ゾーン内に酸化剤スパージャー経由で導入し、そして最も好ましくは易酸化性化合物の少なくとも80質量パーセントを反応ゾーン内に酸化剤スパージャー経由で導入する。易酸化性化合物の全部または一部を反応ゾーン内に酸化剤スパージャー経由で導入する場合、反応ゾーン内に導入される全分子酸素の少なくとも約10質量パーセントを同じ酸化剤スパージャー経由で導入することが好ましく、より好ましくは、分子酸素の少なくとも約40質量パーセントを同じ酸化剤スパージャー経由で導入し、そして最も好ましくは分子酸素の少なくとも80質量パーセントを同じ酸化剤スパージャー経由で導入する。易酸化性化合物の相当多くの部分が反応ゾーン内に酸化剤スパージャー経由で導入される場合、1つ以上の温度感知装置(例えば熱電対)を酸化剤スパージャー内に配置することが好ましい。このような温度検知器を採用して、酸化剤スパージャー内の温度が危険な程に高くならないことを確認する助けとすることができる。 In certain embodiments of the present invention, it is preferred to introduce at least about 10 weight percent of all oxidizable compounds introduced into the reaction zone via an oxidant sparger, more preferably at least about 40 weight of oxidizable compounds. Percent is introduced into the reaction zone via an oxidant sparger, and most preferably at least 80 weight percent of the oxidizable compound is introduced into the reaction zone via an oxidant sparger. When all or part of the oxidizable compound is introduced into the reaction zone via an oxidant sparger, at least about 10 weight percent of all molecular oxygen introduced into the reaction zone is introduced via the same oxidant sparger. it is preferred, more preferably, at least about 40 weight percent of the molecular oxygen introduced via the same oxidant sparger, and most preferably introducing at least 80 weight percent of the molecular oxygen through the same oxidant sparger. Where a significant portion of the oxidizable compound is introduced into the reaction zone via the oxidant sparger, it is preferred to place one or more temperature sensing devices (eg, thermocouples) within the oxidant sparger. Such a temperature detector can be employed to help ensure that the temperature in the oxidant sparger does not become dangerously high.

典型的には、T−max水平方向スライスは、反応媒体36の中心近傍に位置することになり、一方T−min水平方向スライスは、反応媒体36の底部近傍に位置することになる。好ましくは、T−min水平方向スライスは、15の最も下の水平方向スライスのうち最下の10の水平方向スライスの1つである。最も好ましくは、T−min水平方向スライスは、15の最も下の水平方向スライスのうち最下の5の水平方向スライスの1つである。例えば、図28は、T−min水平方向スライスを、反応器20の底部から2番目の水平方向スライスとして示す。好ましくは、T−max水平方向スライスは、30の離散水平方向スライスのうち中央の20の水平方向スライスの1つである。最も好ましくは、T−max水平方向スライスは、30の離散水平方向スライスのうち中央の14の水平方向スライスの1つである。例えば、図28は、T−max水平方向スライスを、反応器20の底部から20番目の水平方向スライス(すなわち中央の10の水平方向スライスの1つ)として示す。T−min水平方向スライスとT−max水平方向スライスとの間の垂直方向の間隔は、少なくとも約2Wであることが好ましく、より好ましくは少なくとも約4W、および最も好ましくは少なくとも6Wである。T−min水平方向スライスとT−max水平方向スライスとの間の垂直方向の間隔は、少なくとも約0.2Hであることが好ましく、より好ましくは少なくとも約0.4H、および最も好ましくは少なくとも0.6Hである。 Typically, the T-max horizontal slice will be located near the center of the reaction medium 36, while the T-min horizontal slice will be located near the bottom of the reaction medium 36. Preferably, the T-min horizontal slice is one of the bottom 10 horizontal slices of the 15 bottom horizontal slices. Most preferably, the T-min horizontal slice is one of the bottom 5 horizontal slices of the 15 bottom horizontal slices. For example, FIG. 28 shows a T-min horizontal slice as the second horizontal slice from the bottom of the reactor 20. Preferably, the T-max horizontal slice is one of the central 20 horizontal slices of the 30 discrete horizontal slices. Most preferably, the T- max horizontal slice is one of the central 14 horizontal slices of the 30 discrete horizontal slices. For example, FIG. 28 shows a T-max horizontal slice as the 20th horizontal slice from the bottom of the reactor 20 (ie, one of the central 10 horizontal slices). The vertical spacing between the T-min horizontal slice and the T-max horizontal slice is preferably at least about 2W, more preferably at least about 4W, and most preferably at least 6W. The vertical spacing between the T-min horizontal slice and the T-max horizontal slice is preferably at least about 0.2H, more preferably at least about 0.4H, and most preferably at least about 0.1. 6H.

溶媒または易酸化性化合物のいずれの起源でも、商業的用途の変換では、全体的な反応活性のレベルを得るために採用される温度、金属、ハロゲン、pHで測定される反応媒体の酸性度、水濃度の具体的な組合せが幅広くばらつくことに関わらず、炭素酸化物の生成が全体的な反応活性のレベルに強く関係することを発明者らは見出した。発明者らは、キシレンの部分酸化について、反応媒体の中間高さ、反応媒体の底部、および反応媒体の頂部でのトルイル酸の液相濃度を用いて全体的な反応活性のレベルを評価することが有用であることを見出した。 For either commercial or oxidizable compound origin, in conversion for commercial use, the reaction medium acidity measured in temperature, metal, halogen , pH employed to obtain the overall level of reaction activity. The inventors have found that the formation of carbon oxides is strongly related to the overall level of reaction activity, regardless of the wide variation in specific combinations of water concentrations. We evaluate the overall level of reaction activity for partial oxidation of xylene using the intermediate height of the reaction medium, the bottom of the reaction medium, and the liquid phase concentration of toluic acid at the top of the reaction medium. Found useful.

本発明をその好ましい態様を特に参照して詳細に説明したが、本発明の精神および範囲に含まれる範囲で変更および改変を行うことが可能であることが理解されよう。
[1] (a)芳香族化合物を酸化反応器に供給すること、
(b)前記酸化反応器に含まれる多相反応媒体の液相における前記芳香族化合物の少なくとも一部の、二酸化炭素,一酸化炭素,および/または酢酸メチルを生成する酸化によって粗テレフタル酸を生成させること、ならびに
(c)前記酸化の間、以下の特定範囲の以下の操作比率:
(i)生成される炭素酸化物のモル数の、供給される前記芳香族化合物のモル数に対する比を、約0.02:1から約0.24:1の範囲に維持すること、
(ii)生成される前記二酸化炭素のモル数の、供給される前記芳香族化合物のモル数に対する比を、約0.01:1から約0.21:1の範囲に維持すること、
(iii)生成される前記一酸化炭素のモル数の、供給される前記芳香族化合物のモル数に対する比を、約0.005:1から約0.09:1の範囲に維持すること、
(iv)生成される前記酢酸メチルのモル数の、供給される前記芳香族化合物のモル数に対する比を、約0.005:1から約0.09:1の範囲に維持すること、
のうち1つ以上を維持することを含む方法。
[2] 生成される炭素酸化物のモル数の、供給される前記芳香族化合物のモル数に対する前記比を、約0.02:1から約0.24:1の範囲に維持する、上記[1]に記載の方法。
[3] 生成される前記二酸化炭素のモル数の、供給される前記芳香族化合物のモル数に対する前記比を、約0.01:1から約0.21:1の範囲に維持する、上記[1]に記載の方法。
[4] 生成される前記一酸化炭素のモル数の、供給される前記芳香族化合物のモル数に対する前記比を、約0.005:1から約0.09:1の範囲に維持する、上記[1]に記載の方法。
[5] 生成される前記酢酸メチルのモル数の、供給される前記芳香族化合物のモル数に対する前記比を、約0.005:1から約0.09:1の範囲に維持する、上記[1]に記載の方法。
[6] 生成される炭素酸化物のモル数の供給される前記芳香族化合物のモル数に対する前記比を約0.02:1から約0.24:1の範囲に維持し、生成される前記二酸化炭素のモル数の供給される前記芳香族化合物のモル数に対する前記比を約0.01:1から約0.21:1の範囲に維持し、生成される前記一酸化炭素のモル数の供給される前記芳香族化合物のモル数に対する前記比を約0.005:1から約0.09:1の範囲に維持し、生成される前記酢酸メチルのモル数の供給される前記芳香族化合物のモル数に対する前記比を約0.005:1から約0.09:1の範囲に維持する、上記[1]に記載の方法。
[7] 前記操作比率のうち少なくとも1つを少なくとも12時間維持する、上記[1]に記載の方法。
[8] 前記操作比率のうち少なくとも2つを少なくとも12時間維持する、上記[1]に記載の方法。
[9] 前記操作比率のうち少なくとも3つを少なくとも12時間維持する、上記[1]に記載の方法。
[10] 前記操作比率の全てを少なくとも12時間維持する、上記[1]に記載の方法。
[11] 生成される炭素酸化物のモル数の供給される前記芳香族化合物のモル数に対する前記比を約0.05:1から約0.19:1の範囲に維持し、生成される前記二酸化炭素のモル数の供給される前記芳香族化合物のモル数に対する前記比を約0.04:1から約0.16:1の範囲に維持し、生成される前記一酸化炭素のモル数の供給される前記芳香族化合物のモル数に対する前記比を約0.015:1から約0.05:1の範囲に維持し、生成される前記酢酸メチルのモル数の供給される前記芳香族化合物のモル数に対する前記比を約0.01:1から約0.07:1の範囲に維持する、上記[1]に記載の方法。
[12] 前記操作比率の全てを少なくとも36時間維持する、上記[1]に記載の方法。
[13] 前記芳香族化合物が、パラキシレン、メタキシレン、パラトルアルデヒド、メタトルアルデヒド、パラトルイル酸、メタトルイル酸、アセトアルデヒド、およびこれらの2種以上の組合せからなる群から選択される、上記[1]に記載の方法。
[14] 前記芳香族化合物がパラキシレンである、上記[1]に記載の方法。
[15] 前記酸化によって前記芳香族化合物の少なくとも約50モルパーセントをテレフタル酸に変換させる、上記[1]に記載の方法。
[16] 前記酸化によって前記芳香族化合物の少なくとも約10質量パーセントが前記反応媒体中で固体を形成する、上記[1]に記載の方法。
[17] 前記酸化が熱を発生させ、前記酸化によって発生した熱の約50パーセント未満を熱交換面により前記反応媒体から除去する、上記[1]に記載の方法。
[18] 酸化剤流を前記酸化反応器に供給することを含み、前記酸化剤流が約50モルパーセント未満の分子酸素を含む、上記[1]に記載の方法。
[19] 前記酸化反応器が気泡塔反応器である、上記[1]に記載の方法。
[20] 前記反応媒体が固相、液相および気相を含む、上記[1]に記載の方法。
[21] 前記芳香族化合物がパラキシレンであり、前記酸化によって前記パラキシレンの少なくとも約90モルパーセントをテレフタル酸に変換し、前記酸化によって前記パラキシレンの少なくとも約50質量パーセントが前記反応媒体中に固体テレフタル酸を形成し、前記酸化によって熱が発生し、前記酸化によって発生した熱の約30パーセント未満を熱交換面により前記反応媒体から除去し、前記方法が、酸化剤流を前記反応器に供給することを含み、前記酸化剤流が約15から約30モルパーセントの分子酸素を含む、上記[1]に記載の方法。
[22] 前記反応媒体の液相中のパラトルイル酸の濃度が約8,000ppmw未満である、上記[1]に記載の方法。
[23] スラリーを前記酸化反応器から取出すことをさらに含み、前記スラリーが液体母液および前記粗テレフタル酸の固体粒子を含み、前記スラリーの代表試料が、組合された固体および液体のスラリー成分に基づいて、以下の特徴:
(v)約1,500ppmw未満のイソフタル酸(IPA)を含む、
(vi)約500ppmw未満のフタル酸(PA)を含む、
(vii)約500ppmw未満のトリメリット酸(TMA)を含む、
(viii)約2,000ppmw未満の安息香酸(BA)を含む、
のうち1つ以上を有する、上記[1]に記載の方法。
[24] 前記酸化反応器からの乾燥オフガス中の前記二酸化炭素の量が約0.1から約1.5モルパーセントの範囲であり、前記酸化反応器からの乾燥オフガス中の前記一酸化炭素の量が約0.05から約0.6モルパーセントの範囲であり、前記酸化反応器からの乾燥オフガス中の前記分子酸素の量が約0.1から約6モルパーセントの範囲である、上記[1]に記載の方法。
[25] 前記反応媒体を経由した芳香族化合物のモル残存比率が、約98から約99.9パーセントの範囲である、上記[1]に記載の方法。
[26] 前記酸化を、コバルトを含む触媒系の存在下で行う、上記[1]に記載の方法。
[27] 前記触媒系が、臭素およびマンガンをさらに含む、上記[17]に記載の方法。
[28] 前記粗テレフタル酸の実質的部分が固体粒子として存在し、前記粗テレフタル酸粒子の代表試料が、以下の特徴:
(ix)約12ppmw未満の4,4−ジカルボキシスチルベン(4,4−DCS)を含む、
(x)約800ppmw未満のイソフタル酸(IPA)を含む、
(xi)約100ppmw未満の2,6−ジカルボキシフルオレノン(2,6−DCF)を含む、
(xii)340ナノメートルでの透過率パーセント(%T 340 )が約25を超える、
のうち1つ以上を有する、上記[1]に記載の方法。
[29] 前記粗テレフタル酸の実質的部分が固体粒子として存在し、前記粗テレフタル酸粒子の代表試料が、本明細書で定義する時限溶解試験を受けた際に、1分間でTHF中に少なくとも約500ppmの濃度に溶解する、上記[1]に記載の方法。
[30] 前記粗テレフタル酸の実質的部分が固体粒子として存在し、前記粗テレフタル酸の代表試料の、本明細書で定義する時限溶解モデルにより決定される時間定数“C”が約0.5逆数分を超える、上記[1]に記載の方法。
[31] 前記粗テレフタル酸の少なくとも一部を二次酸化反応器において酸化させることをさらに含む、上記[1]に記載の方法。
[32] (a)芳香族化合物を酸化反応器に供給すること、
(b)前記芳香族化合物の少なくとも一部を、前記酸化反応器に含まれる多相反応媒体の液相において酸化させることによって粗テレフタル酸を生成させること、ならびに
(c)前記酸化の間、前記芳香族化合物のモル残存比率を約98パーセント超に維持すること、
を含む方法。
[33] 前記モル残存比率を約98.5から約99.8パーセントの範囲に維持する、上記[32]に記載の方法。
[34] 前記モル残存比率を約99から約99.7パーセントの範囲に維持する、上記[32]に記載の方法。
[35] 前記芳香族化合物が、パラキシレン、メタキシレン、パラトルアルデヒド、メタトルアルデヒド、パラトルイル酸、メタトルイル酸、アセトアルデヒド、およびこれらの2種以上の組合せからなる群から選択される、上記[32]に記載の方法。
[36] 前記酸化によって前記芳香族化合物の少なくとも約50モルパーセントをテレフタル酸に変換させる、上記[32]に記載の方法。
[37] 前記酸化によって前記芳香族化合物の少なくとも約10質量パーセントが前記反応媒体中で固体を形成する、上記[32]に記載の方法。
[38] 前記酸化が熱を発生させ、前記酸化によって発生した熱の約50パーセント未満を熱交換面により前記反応媒体から除去する、上記[32]に記載の方法。
[39] 酸化剤流を前記酸化反応器に供給することを含み、前記酸化剤流が約50モルパーセント未満の分子酸素を含む、上記[32]に記載の方法。
[40] 前記モル残存比率を少なくとも12時間維持する、上記[32]に記載の方法。
[41] 前記酸化反応器が気泡塔反応器である、上記[32]に記載の方法。
[42] 前記反応媒体が固相、液相および気相を含む、上記[32]に記載の方法。
[43] 前記芳香族化合物がパラキシレンであり、前記酸化によって前記パラキシレンの少なくとも約90モルパーセントをテレフタル酸に変換させ、前記酸化によって前記パラキシレンの少なくとも約50質量パーセントが前記反応媒体中に固体テレフタル酸を形成し、前記酸化によって熱が発生し、前記酸化によって発生した熱の約30パーセント未満を熱交換面により前記反応媒体から除去し、前記方法が、酸化剤流を前記反応器に供給することを含み、前記酸化剤流が約15から約30モルパーセントの分子酸素を含み、前記モル残存比率を少なくとも36時間維持する、上記[32]に記載の方法。
[44] 前記反応媒体の液相中のパラトルイル酸の濃度が約8,000ppmw未満である、上記[32]に記載の方法。
[45] 前記酸化を、コバルト、臭素およびマンガンを含む触媒系の存在下で行う、上記[32]に記載の方法。
[46] 前記粗テレフタル酸の少なくとも一部を二次酸化反応器において酸化させることをさらに含む、上記[32]に記載の方法。
The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
[1] (a) supplying an aromatic compound to the oxidation reactor;
(B) Producing crude terephthalic acid by oxidation of producing at least part of the aromatic compound in the liquid phase of the multiphase reaction medium contained in the oxidation reactor to produce carbon dioxide, carbon monoxide, and / or methyl acetate. As well as
(C) During the oxidation, the following operating ratios in the following specific ranges:
(I) maintaining the ratio of the number of moles of carbon oxide produced to the number of moles of said aromatic compound supplied in the range of about 0.02: 1 to about 0.24: 1;
(Ii) maintaining the ratio of the number of moles of carbon dioxide produced to the number of moles of aromatic compound supplied in the range of about 0.01: 1 to about 0.21: 1;
(Iii) maintaining a ratio of moles of the carbon monoxide produced to moles of the aromatic compound fed in the range of about 0.005: 1 to about 0.09: 1;
(Iv) maintaining the ratio of the number of moles of the methyl acetate produced to the number of moles of the aromatic compound fed in the range of about 0.005: 1 to about 0.09: 1;
Maintaining one or more of the methods.
[2] maintaining the ratio of the number of moles of carbon oxide produced to the number of moles of the aromatic compound fed in the range of about 0.02: 1 to about 0.24: 1 1].
[3] maintaining the ratio of the number of moles of carbon dioxide produced to the number of moles of aromatic compound supplied in the range of about 0.01: 1 to about 0.21: 1. 1].
[4] maintaining the ratio of moles of the carbon monoxide produced to moles of the aromatic compound supplied in the range of about 0.005: 1 to about 0.09: 1. The method according to [1].
[5] maintaining the ratio of the number of moles of the methyl acetate produced to the number of moles of the aromatic compound fed in the range of about 0.005: 1 to about 0.09: 1. 1].
[6] Maintaining the ratio of the number of moles of carbon oxide produced to the number of moles of the aromatic compound supplied in the range of about 0.02: 1 to about 0.24: 1 Maintaining the ratio of moles of carbon dioxide to moles of the aromatic compound supplied in the range of about 0.01: 1 to about 0.21: 1 and the number of moles of carbon monoxide produced. Maintaining the ratio to moles of the aromatics fed in the range of about 0.005: 1 to about 0.09: 1, and feeding the aromatics of moles of methyl acetate produced The method of [1] above, wherein the ratio to the number of moles is maintained in the range of about 0.005: 1 to about 0.09: 1.
[7] The method according to [1] above, wherein at least one of the operation ratios is maintained for at least 12 hours.
[8] The method according to [1] above, wherein at least two of the operation ratios are maintained for at least 12 hours.
[9] The method according to [1] above, wherein at least three of the operation ratios are maintained for at least 12 hours.
[10] The method according to [1] above, wherein all the operation ratios are maintained for at least 12 hours.
[11] Maintaining the ratio of the number of moles of carbon oxide produced to the number of moles of the aromatic compound supplied in the range of about 0.05: 1 to about 0.19: 1 Maintaining the ratio of moles of carbon dioxide to moles of the aromatic compound supplied in the range of about 0.04: 1 to about 0.16: 1; Maintaining said ratio to moles of said aromatics fed in a range of about 0.015: 1 to about 0.05: 1, and feeding said aromatics of moles of said methyl acetate produced The method of [1] above, wherein the ratio to the number of moles is maintained in the range of about 0.01: 1 to about 0.07: 1.
[12] The method according to [1] above, wherein all the operation ratios are maintained for at least 36 hours.
[13] Said [1 ] Method.
[14] The method according to [1] above, wherein the aromatic compound is para-xylene.
[15] The method according to [1], wherein the oxidation converts at least about 50 mole percent of the aromatic compound to terephthalic acid.
[16] The method of [1] above, wherein the oxidation causes at least about 10 weight percent of the aromatic compound to form a solid in the reaction medium.
[17] The method of [1] above, wherein the oxidation generates heat and less than about 50 percent of the heat generated by the oxidation is removed from the reaction medium by a heat exchange surface.
[18] The method of [1] above, comprising supplying an oxidant stream to the oxidation reactor, wherein the oxidant stream comprises less than about 50 mole percent molecular oxygen.
[19] The method according to [1] above, wherein the oxidation reactor is a bubble column reactor.
[20] The method according to [1] above, wherein the reaction medium includes a solid phase, a liquid phase, and a gas phase.
[21] The aromatic compound is para-xylene, the oxidation converts at least about 90 mole percent of the para-xylene to terephthalic acid, and the oxidation results in at least about 50 weight percent of the para-xylene being in the reaction medium. Forming solid terephthalic acid, heat is generated by the oxidation, and less than about 30 percent of the heat generated by the oxidation is removed from the reaction medium by a heat exchange surface, and the method includes transferring an oxidant stream to the reactor. The method of [1] above, wherein the oxidant stream comprises about 15 to about 30 mole percent molecular oxygen.
[22] The method according to [1] above, wherein the concentration of p-toluic acid in the liquid phase of the reaction medium is less than about 8,000 ppmw.
[23] further comprising removing slurry from the oxidation reactor, wherein the slurry comprises a liquid mother liquor and solid particles of the crude terephthalic acid, and the representative sample of the slurry is based on a combined solid and liquid slurry component The following features:
(V) containing less than about 1,500 ppmw isophthalic acid (IPA);
(Vi) containing less than about 500 ppmw phthalic acid (PA),
(Vii) containing less than about 500 ppmw trimellitic acid (TMA),
(Viii) comprises less than about 2,000 ppmw benzoic acid (BA),
The method according to [1] above, comprising one or more of the following.
[24] The amount of carbon dioxide in the dry offgas from the oxidation reactor ranges from about 0.1 to about 1.5 mole percent, and the amount of carbon monoxide in the dry offgas from the oxidation reactor. The amount ranges from about 0.05 to about 0.6 mole percent and the amount of molecular oxygen in the dry offgas from the oxidation reactor ranges from about 0.1 to about 6 mole percent. 1].
[25] The method according to [1] above, wherein the molar residual ratio of the aromatic compound via the reaction medium is in the range of about 98 to about 99.9 percent.
[26] The method according to [1] above, wherein the oxidation is performed in the presence of a catalyst system containing cobalt.
[27] The method according to [17] above, wherein the catalyst system further comprises bromine and manganese.
[28] A substantial portion of the crude terephthalic acid is present as solid particles, and a representative sample of the crude terephthalic acid particles has the following characteristics:
(Ix) comprising less than about 12 ppmw of 4,4-dicarboxystilbene (4,4-DCS);
(X) containing less than about 800 ppmw isophthalic acid (IPA);
(Xi) less than about 100 ppmw 2,6-dicarboxyfluorenone (2,6-DCF),
(Xii) the percent transmission at 340 nanometers (% T 340 ) is greater than about 25;
The method according to [1] above, comprising one or more of the following.
[29] A substantial portion of the crude terephthalic acid is present as solid particles and a representative sample of the crude terephthalic acid particles is at least in THF for 1 minute when subjected to a timed dissolution test as defined herein. The method according to [1] above, wherein the method is dissolved at a concentration of about 500 ppm.
[30] A substantial portion of the crude terephthalic acid is present as solid particles and a representative sample of the crude terephthalic acid has a time constant “C” determined by a timed dissolution model as defined herein of about 0.5. The method according to [1] above, which exceeds the reciprocal minutes.
[31] The method according to [1], further comprising oxidizing at least a part of the crude terephthalic acid in a secondary oxidation reactor.
[32] (a) supplying an aromatic compound to the oxidation reactor;
(B) generating crude terephthalic acid by oxidizing at least a portion of the aromatic compound in the liquid phase of the multiphase reaction medium contained in the oxidation reactor; and
(C) maintaining a molar residual ratio of the aromatic compound greater than about 98 percent during the oxidation;
Including methods.
[33] The method of [32] above, wherein the molar residual ratio is maintained in the range of about 98.5 to about 99.8 percent.
[34] The method of [32] above, wherein the molar residual ratio is maintained in the range of about 99 to about 99.7 percent.
[35] Said [32 ] Method.
[36] The method of [32] above, wherein the oxidation converts at least about 50 mole percent of the aromatic compound to terephthalic acid.
[37] The method of [32] above, wherein the oxidation causes at least about 10 weight percent of the aromatic compound to form a solid in the reaction medium.
[38] The method of [32] above, wherein the oxidation generates heat and less than about 50 percent of the heat generated by the oxidation is removed from the reaction medium by a heat exchange surface.
[39] The method of [32] above, comprising feeding an oxidant stream to the oxidation reactor, wherein the oxidant stream comprises less than about 50 mole percent molecular oxygen.
[40] The method according to [32], wherein the molar residual ratio is maintained for at least 12 hours.
[41] The method according to [32] above, wherein the oxidation reactor is a bubble column reactor.
[42] The method according to [32] above, wherein the reaction medium comprises a solid phase, a liquid phase, and a gas phase.
[43] The aromatic compound is para-xylene, the oxidation converts at least about 90 mole percent of the para-xylene to terephthalic acid, and the oxidation results in at least about 50 weight percent of the para-xylene being in the reaction medium. Forming solid terephthalic acid, heat is generated by the oxidation, and less than about 30 percent of the heat generated by the oxidation is removed from the reaction medium by a heat exchange surface, and the method includes transferring an oxidant stream to the reactor. The method of [32] above, wherein the oxidant stream comprises about 15 to about 30 mole percent molecular oxygen and the molar residual ratio is maintained for at least 36 hours.
[44] The method according to [32] above, wherein the concentration of p-toluic acid in the liquid phase of the reaction medium is less than about 8,000 ppmw.
[45] The method according to [32] above, wherein the oxidation is carried out in the presence of a catalyst system containing cobalt, bromine and manganese.
[46] The method according to [32], further comprising oxidizing at least a part of the crude terephthalic acid in a secondary oxidation reactor.

Claims (19)

(a)芳香族化合物を酸化反応器に供給すること、
(b)前記酸化反応器に含まれる多相反応媒体の液相における前記芳香族化合物の少なくとも一部の、二酸化炭素,一酸化炭素,および/または酢酸メチルを生成する酸化によって粗テレフタル酸を生成させること、ならびに
(c)前記酸化の間、以下の特定範囲の以下の操作比率:
(i)生成される炭素酸化物のモル数の、供給される前記芳香族化合物のモル数に対する比を、0.02:1から0.24:1の範囲に維持すること、
(ii)生成される前記二酸化炭素のモル数の、供給される前記芳香族化合物のモル数に対する比を、0.01:1から0.21:1の範囲に維持すること、
(iii)生成される前記一酸化炭素のモル数の、供給される前記芳香族化合物のモル数に対する比を、0.005:1から0.09:1の範囲に維持すること、
(iv)生成される前記酢酸メチルのモル数の、供給される前記芳香族化合物のモル数に対する比を、0.005:1から0.09:1の範囲に維持すること、
のうち1つ以上を維持することを含む方法。
(A) supplying an aromatic compound to the oxidation reactor;
(B) Producing crude terephthalic acid by oxidation of producing at least part of the aromatic compound in the liquid phase of the multiphase reaction medium contained in the oxidation reactor to produce carbon dioxide, carbon monoxide, and / or methyl acetate. And (c) during the oxidation, the following operating ratios of the following specific ranges:
(I) The ratio of the number of moles of carbon oxide produced to the number of moles of the aromatic compound supplied is set to 0 . 02: 1 or, et al. 0. Maintaining in the 24: 1 range,
(Ii) the number of moles of the carbon dioxide produced, the ratio moles of said aromatic compound fed, 0. 01: 1 or, et al. 0. Maintaining in the 21: 1 range,
(Iii) The ratio of the number of moles of the carbon monoxide produced to the number of moles of the aromatic compound supplied is 0 . 005: 1 or et al. 0. Maintaining a range of 09: 1,
(Iv) The ratio of the number of moles of the methyl acetate produced to the number of moles of the aromatic compound supplied is 0 . 005: 1 or et al. 0. Maintaining a range of 09: 1,
Maintaining one or more of the methods.
生成される炭素酸化物のモル数の供給される前記芳香族化合物のモル数に対する前記比を0.02:1から0.24:1の範囲に維持し、生成される前記二酸化炭素のモル数の供給される前記芳香族化合物のモル数に対する前記比を0.01:1から0.21:1の範囲に維持し、生成される前記一酸化炭素のモル数の供給される前記芳香族化合物のモル数に対する前記比を0.005:1から0.09:1の範囲に維持し、生成される前記酢酸メチルのモル数の供給される前記芳香族化合物のモル数に対する前記比を0.005:1から0.09:1の範囲に維持する、請求項1に記載の方法。 The ratio of the number of moles of carbon oxide produced to the number of moles of the aromatic compound supplied is 0 . 02: 1 or, et al. 0. 24: maintained at 1, and the ratio to the number of moles of said aromatic compound fed in the number of moles of the carbon dioxide produced 0. 01: 1 or, et al. 0. 21: maintained at 1, and the ratio number of moles the supplied the aromatic compounds of the carbon monoxide generated 0. 005: 1 or et al. 0. 09: maintained at 1, and the ratio to the number of moles of supplied of the number of moles of the methyl acetate produced the aromatic compound 0. 005: 1 or et al. 0. The method of claim 1, wherein the method is maintained in the range of 09: 1. 前記操作比率のうち少なくとも3つを少なくとも12時間維持する、請求項1に記載の方法。   The method of claim 1, wherein at least three of the operating ratios are maintained for at least 12 hours. 前記芳香族化合物がパラキシレンである、請求項1に記載の方法。   The method of claim 1, wherein the aromatic compound is para-xylene. 前記酸化が熱を発生させ、前記酸化によって発生した熱の50パーセント未満を熱交換面により前記反応媒体から除去する、請求項1に記載の方法。 The method of claim 1, wherein the oxidation generates heat and less than 50 percent of the heat generated by the oxidation is removed from the reaction medium by a heat exchange surface. 前記酸化反応器が気泡塔反応器である、請求項1に記載の方法。   The method of claim 1, wherein the oxidation reactor is a bubble column reactor. 前記芳香族化合物がパラキシレンであり、前記酸化によって前記パラキシレンの少なくとも90モルパーセントをテレフタル酸に変換し、前記酸化によって前記パラキシレンの少なくとも50質量パーセントが前記反応媒体中に固体テレフタル酸を形成し、前記酸化によって熱が発生し、前記酸化によって発生した熱の30パーセント未満を熱交換面により前記反応媒体から除去し、前記方法が、酸化剤流を前記反応器に供給することを含み、前記酸化剤流が15から30モルパーセントの分子酸素を含む、請求項1に記載の方法。 The aromatic compound is para-xylene, said 9 0 mole percent and less of the para-xylene by oxidation into a terephthalic acid, wherein the paraxylene least five 0 weight percent in the reaction medium by oxidation Solid terephthalic acid is formed on the substrate, heat is generated by the oxidation, and less than 30 percent of the heat generated by the oxidation is removed from the reaction medium by a heat exchange surface, the method comprising: comprising supplying to said oxidant stream comprises one five et 3 0 mole percent molecular oxygen, the method according to claim 1. スラリーを前記酸化反応器から取出すことをさらに含み、前記スラリーが液体母液および前記粗テレフタル酸の固体粒子を含み、前記スラリーの代表試料が、組合された固体および液体のスラリー成分に基づいて、以下の特徴:
(v)1,500ppmw未満のイソフタル酸(IPA)を含む、
(vi)500ppmw未満のフタル酸(PA)を含む、
(vii)500ppmw未満のトリメリット酸(TMA)を含む、
(viii)2,000ppmw未満の安息香酸(BA)を含む、
のうち1つ以上を有する、請求項1に記載の方法。
Removing a slurry from the oxidation reactor, the slurry comprising a liquid mother liquor and solid particles of the crude terephthalic acid, a representative sample of the slurry based on the combined solid and liquid slurry components: Features:
(V ) comprises less than 1,500 ppmw isophthalic acid (IPA),
(Vi ) containing less than 500 ppmw phthalic acid (PA),
(Vii ) containing less than 500 ppmw trimellitic acid (TMA),
(Viii ) containing less than 2,000 ppmw benzoic acid (BA),
The method of claim 1, comprising one or more of:
前記酸化反応器からの乾燥オフガス中の前記二酸化炭素の量が0.1から1.5モルパーセントの範囲であり、前記酸化反応器からの乾燥オフガス中の前記一酸化炭素の量が0.05から0.6モルパーセントの範囲であり、前記酸化反応器からの乾燥オフガス中の前記分子酸素の量が0.1から6モルパーセントの範囲である、請求項1に記載の方法。 The amount of carbon dioxide in the dry offgas from the oxidation reactor is 0 . 1 or et al. 1. In the range of 5 mole percent, and the amount of carbon monoxide in the dry offgas from the oxidation reactor is 0 . 05 et al. 0. In the range of 6 mole percent and the amount of molecular oxygen in the dry off-gas from the oxidation reactor is 0 . In the range of 1 or et 6 mole percent, The method of claim 1. 前記反応媒体を経由した芳香族化合物のモル残存比率が、98から99.9パーセントの範囲である、請求項1に記載の方法。 The molar survival ratio of the aromatic compound via the reaction medium is in the range of 9 8 through 9 9.9 percent, The method of claim 1. 前記粗テレフタル酸の実質的部分が固体粒子として存在し、前記粗テレフタル酸粒子の代表試料が、以下の特徴:
(ix)12ppmw未満の4,4−ジカルボキシスチルベン(4,4−DCS)を含む、
(x)800ppmw未満のイソフタル酸(IPA)を含む、
(xi)100ppmw未満の2,6−ジカルボキシフルオレノン(2,6−DCF)を含む、
(xii)340ナノメートルでの透過率パーセント(%T340が25を超える、
のうち1つ以上を有する、請求項1に記載の方法。
A substantial portion of the crude terephthalic acid is present as solid particles, and a representative sample of the crude terephthalic acid particles has the following characteristics:
(Ix ) comprising less than 12 ppmw of 4,4-dicarboxystilbene (4,4-DCS),
(X ) containing less than 800 ppmw of isophthalic acid (IPA),
(Xi ) comprises less than 100 ppmw of 2,6-dicarboxyfluorenone (2,6-DCF),
(Xii) 340 percent transmission at the nanometer (% T 340) is more than 2 5,
The method of claim 1, comprising one or more of:
前記粗テレフタル酸の実質的部分が固体粒子として存在し、前記粗テレフタル酸粒子の代表試料が、本明細書で定義する時限溶解試験を受けた際に、1分間でTHF中に少なくとも500ppmの濃度に溶解する、請求項1に記載の方法。 Wherein a substantial portion of the crude terephthalic acid is present as solid particles, a representative sample of the crude terephthalic acid particles, when subjected to the timed dissolution test defined herein, 5 also less in THF at 1 minute The method of claim 1, wherein the method is dissolved at a concentration of 00 ppm. 前記粗テレフタル酸の実質的部分が固体粒子として存在し、前記粗テレフタル酸の代表試料の、本明細書で定義する時限溶解モデルにより決定される時間定数“C”が0.5逆数分を超える、請求項1に記載の方法。 A substantial portion of the crude terephthalic acid is present as solid particles, and a time constant “C” of a representative sample of the crude terephthalic acid determined by a timed dissolution model as defined herein is 0 . The method of claim 1, wherein the method exceeds 5 reciprocals. (a)芳香族化合物を酸化反応器に供給すること、
(b)前記芳香族化合物の少なくとも一部を、前記酸化反応器に含まれる多相反応媒体の液相において酸化させることによって粗テレフタル酸を生成させること、ならびに
(c)前記酸化の間、前記芳香族化合物のモル残存比率を98パーセント超に維持すること、
を含む方法。
(A) supplying an aromatic compound to the oxidation reactor;
(B) generating crude terephthalic acid by oxidizing at least a portion of the aromatic compound in the liquid phase of the multiphase reaction medium contained in the oxidation reactor; and (c) during the oxidation, Maintaining the molar residual ratio of aromatics above 98 percent;
Including methods.
前記モル残存比率を99から99.7パーセントの範囲に維持する、請求項14に記載の方法。 Maintaining the molar survival ratio in the range of 9 9 through 9 9.7% The method of claim 14. 前記モル残存比率を少なくとも12時間維持する、請求項14に記載の方法。 15. The method of claim 14 , wherein the molar residual ratio is maintained for at least 12 hours. 前記酸化反応器が気泡塔反応器である、請求項14に記載の方法。 The method of claim 14 , wherein the oxidation reactor is a bubble column reactor. 前記芳香族化合物がパラキシレンであり、前記酸化によって前記パラキシレンの少なくとも90モルパーセントをテレフタル酸に変換させ、前記酸化によって前記パラキシレンの少なくとも50質量パーセントが前記反応媒体中に固体テレフタル酸を形成し、前記酸化によって熱が発生し、前記酸化によって発生した熱の30パーセント未満を熱交換面により前記反応媒体から除去し、前記方法が、酸化剤流を前記反応器に供給することを含み、前記酸化剤流が15から30モルパーセントの分子酸素を含み、前記モル残存比率を少なくとも36時間維持する、請求項14に記載の方法。 The aromatic compound is para-xylene, the is converted to terephthalic acid 90 mole percent and less of the paraxylene by oxidation, the least of five 0 weight percent said reaction medium of the para-xylene by the oxidation Forming solid terephthalic acid, heat is generated by the oxidation, and less than 30 percent of the heat generated by the oxidation is removed from the reaction medium by a heat exchange surface, and the method includes transferring an oxidant stream to the reactor. comprising supplying said oxidant stream comprises molecular oxygen 1 5 or et 3 0 mole percent, maintaining the molar survival ratio of at least 36 hours a method according to claim 14. 前記粗テレフタル酸の少なくとも一部を二次酸化反応器において酸化させることをさらに含む、請求項14に記載の方法。 The method of claim 14 , further comprising oxidizing at least a portion of the crude terephthalic acid in a secondary oxidation reactor.
JP2008516890A 2005-06-16 2006-05-24 Optimized liquid phase oxidation Pending JP2008546690A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/154,163 US7608732B2 (en) 2005-03-08 2005-06-16 Optimized liquid-phase oxidation
PCT/US2006/020120 WO2006138029A1 (en) 2005-06-16 2006-05-24 Optimized liquid-phase oxidation

Publications (2)

Publication Number Publication Date
JP2008546690A JP2008546690A (en) 2008-12-25
JP2008546690A5 true JP2008546690A5 (en) 2009-07-09

Family

ID=37056829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008516890A Pending JP2008546690A (en) 2005-06-16 2006-05-24 Optimized liquid phase oxidation

Country Status (12)

Country Link
US (1) US7608732B2 (en)
EP (1) EP1890991B1 (en)
JP (1) JP2008546690A (en)
KR (1) KR101364801B1 (en)
CN (1) CN101198578B (en)
BR (1) BRPI0612252B1 (en)
CA (1) CA2611662A1 (en)
ES (1) ES2560243T3 (en)
MX (1) MX2007015665A (en)
PL (1) PL1890991T3 (en)
RU (1) RU2435753C2 (en)
WO (1) WO2006138029A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692036B2 (en) 2004-11-29 2010-04-06 Eastman Chemical Company Optimized liquid-phase oxidation
US20070155987A1 (en) * 2006-01-04 2007-07-05 O'meadhra Ruairi S Oxidative digestion with optimized agitation
US7501537B2 (en) * 2006-03-01 2009-03-10 Eastman Chemical Company Polycarboxylic acid production system employing oxidative digestion with reduced or eliminated upstream liquor exchange
US7816556B2 (en) * 2006-03-01 2010-10-19 Eastman Chemical Company Polycarboxylic acid production system employing enhanced multistage oxidative digestion
US20070208194A1 (en) 2006-03-01 2007-09-06 Woodruff Thomas E Oxidation system with sidedraw secondary reactor
US7772424B2 (en) * 2006-03-01 2010-08-10 Eastman Chemical Company Polycarboxylic acid production system employing enhanced evaporative concentration downstream of oxidative digestion
KR100988684B1 (en) * 2008-04-16 2010-10-18 삼남석유화학 주식회사 Oxidation reactor for manufacturing of crude terephtalic acid
US20160264511A1 (en) * 2015-03-13 2016-09-15 Grupo Petrotemex, S.A. De C.V. Bubble column reactor based digester and method for its use
CN111389314B (en) * 2020-03-31 2020-12-11 南京延长反应技术研究院有限公司 Built-in micro-interface unit enhanced reaction system and process for producing PTA (purified terephthalic acid) by PX (para-xylene)

Family Cites Families (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US490080A (en) * 1893-01-17 Folding seat for carriages
US1936427A (en) 1930-01-31 1933-11-21 Nat Synthetic Corp Process of oxidizing naphthalene and related condensed aromatic ring compounds
US1902550A (en) * 1930-01-31 1933-03-21 Nat Synthetic Corp Process of oxidizing cyclic organic compounds
US2572575A (en) 1949-09-23 1951-10-23 Monsanto Chemicals Preparation of terephthalic acid
US2572710A (en) 1949-09-23 1951-10-23 Monsanto Chemicals Preparation of terephthalic acid
US3064044A (en) 1957-08-15 1962-11-13 Standard Oil Co Multistage oxidation system for preparing dicarboxylic acid
US3082250A (en) * 1958-05-05 1963-03-19 Standard Oil Co Recovery of phthalic acid products
US3071447A (en) * 1958-09-09 1963-01-01 Whiting Corp Hydraulic classifier
US3029278A (en) * 1958-12-11 1962-04-10 Standard Oil Co Process for separation of phthalic acids
GB1007570A (en) * 1961-07-24 1965-10-13 Socaty Process for the catalytic oxidation of xylenes or industrial mixtures of xylenes
NL282031A (en) * 1961-08-14
US3216481A (en) 1962-04-17 1965-11-09 Badger Co Recovery of phthalic and maleic acid from solutions
NL294776A (en) * 1962-10-06
US3244744A (en) * 1963-02-27 1966-04-05 Standard Oil Co Separation process for isophthalic acid and terephthalic acid
DE1276628C2 (en) * 1963-05-20 1975-01-16 Rudzki, Henryk Stanislaw, Dr., Los Angeles, Calif. (V.St.A.) PROCESS FOR THE PRODUCTION OF ISOPHTALIC ACID AND / OR TEREPHTHALIC ACID
US3410897A (en) 1963-10-10 1968-11-12 Maruzen Oil Company Ltd Purification of terephthalic acid
US3293288A (en) 1963-12-02 1966-12-20 Exxon Research Engineering Co Process for the separation of monobasic and dibasic aromatic acids
US3388157A (en) * 1965-02-10 1968-06-11 Ethyl Corp Process for the production of dicarboxylic acids
NL6606774A (en) * 1965-05-17 1966-11-18
GB1142864A (en) 1965-11-15 1969-02-12 Ici Ltd Crystallisation process
US3497552A (en) * 1966-07-18 1970-02-24 Standard Oil Co Continuous crystallization in a plurality of cooling stages using dilutions by cooled solvent of feed to each stage
US3549695A (en) 1966-09-01 1970-12-22 Mobil Oil Corp Method for downflow leaching
US3534090A (en) 1966-11-04 1970-10-13 Mobil Oil Corp Hydrocarbon oxidation
US3584039A (en) * 1967-08-30 1971-06-08 Standard Oil Co Fiber-grade terephthalic acid by catalytic hydrogen treatment of dissolved impure terephthalic acid
US3556733A (en) * 1968-04-05 1971-01-19 Struthers Scientific Int Corp Fines dissolver for crystallizers
FR2006269A1 (en) * 1968-04-16 1969-12-26 Celanese Corp
US3850981A (en) 1968-04-16 1974-11-26 Celanese Corp Liquid phase oxidation of p-xylene to terephthalic acid
US3626001A (en) 1968-05-09 1971-12-07 Atlantic Richfield Co Method for the production of high-purity isophthalic or terephthalic acid
AT282466B (en) * 1968-07-25 1970-06-25 Oemv Ag Bitumen blowing process and device for carrying out the same
DE1792402A1 (en) * 1968-08-29 1971-11-11 Dynamit Nobel Ag Process for performing exothermic chemical reactions in heterogeneous gas-liquid mixtures
CA849014A (en) 1968-10-25 1970-08-11 Ichikawa Yataro Apparatus for continuous gas-liquid contact and process for refining crude terephthalic acid
US3660476A (en) * 1968-10-30 1972-05-02 Teijin Ltd Method for the preparation of terephthalic acid
US3708532A (en) * 1968-11-04 1973-01-02 Teijin Ltd Process for the continuous purification of crude terephthalic acid
US3700731A (en) 1969-02-28 1972-10-24 Du Pont Process for oxidizing xylenes to phthalic acids
US3683018A (en) 1969-05-26 1972-08-08 Standard Oil Co Integrated oxidation of isomeric xylene mixture to isomeric phthalic acid mixture and separation of mixture of isomeric phthalic acids into individual isomer products
US3839436A (en) 1969-05-26 1974-10-01 Standard Oil Co Integration of para-or meta-xylene oxidation to terephthalic acid or isophthalic acid and its purification by hydrogen treatment of aqueous solution
US3629321A (en) 1969-05-26 1971-12-21 Standard Oil Co Integration of para-xylene oxidation to terephthalic acid and its esterification to dimethyl terephthalate
US3663018A (en) * 1969-07-23 1972-05-16 Olos Corp Batting practice tethered ball
BE759284A (en) 1969-11-24 1971-05-24 Shell Int Research METHOD AND APPARATUS FOR CONTACT OF A LIQUID WITH SOLID PARTICLES
US4370596A (en) * 1970-05-01 1983-01-25 Raytheon Company Slow-wave filter for electron discharge device
US3686293A (en) 1970-07-13 1972-08-22 Giorgio Gualdi Process for the preparation of aromatic carboxylic acids
JPS5328419B1 (en) * 1971-04-26 1978-08-15
US3785779A (en) * 1971-08-02 1974-01-15 Exxon Research Engineering Co Gas liquid inlet distributor
JPS5544644B2 (en) * 1971-09-23 1980-11-13
JPS5234590B2 (en) 1971-12-28 1977-09-03
NL169993C (en) * 1972-01-13 1982-09-16 Maruzen Oil Co Ltd METHOD FOR PREPARING TERPHALIC ACID.
DE2217003C2 (en) * 1972-04-08 1983-12-15 Chemische Werke Hüls AG, 4370 Marl Process and device for the continuous production of saturated aliphatic dicarboxylic acids
US3845117A (en) 1972-12-14 1974-10-29 Halcon International Inc Process for preparation of phthalic acids
JPS5328421B2 (en) 1973-05-15 1978-08-15
US3931305A (en) * 1973-08-20 1976-01-06 Standard Oil Company Terephthalic acid recovery by continuous flash crystallization
JPS5328902B2 (en) 1973-09-14 1978-08-17
US3850983A (en) 1973-10-15 1974-11-26 Standard Oil Co Separation of terephthalic from paratoluic acid from solutions thereof in water and/or acetic acid
US4053506A (en) 1975-05-02 1977-10-11 Standard Oil Company (Indiana) Production of fiber-grade terephthalic acid
US3997620A (en) 1975-10-28 1976-12-14 Uop Inc. Process for separating para-xylene
JPS5278846A (en) 1975-12-25 1977-07-02 Matsuyama Sekyu Kagaku Kk Continuous production of high purity telephthalic acid
NL170133C (en) * 1976-02-24 1982-10-01 Matsuyama Petrochemicals Inc PROCESS FOR THE PREPARATION OF AN AROMATIC DICARBONIC ACID.
DE2623977C3 (en) 1976-05-28 1979-04-12 Nukem Gmbh, 6450 Hanau Process and device for the production of free-flowing, directly compressible uranium dioxide powder
SU1126202A3 (en) * 1976-05-28 1984-11-23 Институт Фор Атомэнерги (Фирма) Process for continuous repeated solution crystallization
US4185073A (en) * 1976-07-26 1980-01-22 Standard Oil Company (Indiana) Apparatus for iso- or terephthalic acid production in and recovery from benzoic acid-water solvent system
US4081464A (en) * 1976-07-26 1978-03-28 Standard Oil Company Iso- or terephthalic acid production in and recovery from benzoic acid-water solvent system
JPS582996B2 (en) * 1976-07-27 1983-01-19 三井造船株式会社 Heavy oil gasification method
GB1542320A (en) * 1976-10-26 1979-03-14 Labofina Sa Process for the preparation of aromatic dicarboxylic acids
US4158738A (en) * 1977-05-26 1979-06-19 E. I. Du Pont De Nemours And Company Process for the production of fiber-grade terephthalic acid
US4482524A (en) 1978-01-31 1984-11-13 Ari Technologies, Inc. Autocirculation apparatus
DE2805915C3 (en) * 1978-02-13 1981-11-05 Dynamit Nobel Ag, 5210 Troisdorf Reactor for the oxidation of mixtures of p-xylene and p-toluic acid methyl ester with oxygen-containing gases in the liquid phase
US4233269A (en) 1978-11-09 1980-11-11 Exxon Research & Engineering Co. Gas liquid distributor
US4263448A (en) * 1979-03-30 1981-04-21 Halcon Research And Development Corp. Process for oxidation of hydrocarbons
US4255590A (en) * 1979-11-08 1981-03-10 Standard Oil Company (Indiana) Combination of pyrolysis and incineration of solid mixture of oxygen-containing aromatic compounds obtained as residue of manufacture of benzene di- and tricarboxylic acids
IT1129759B (en) 1980-01-23 1986-06-11 Montedison Spa METHOD TO RECOVER IN ACTIVE FORM THE COMPONENTS OF THE CATALYTIC SYSTEM OF THE SYNTHESIS OF TEREPHTHALIC ACID
GB2072162B (en) 1980-03-21 1984-03-21 Labofina Sa Process for the production and the recovery of terephthalic acid
DE3047101A1 (en) 1980-12-13 1982-07-22 Hoechst Ag, 6000 Frankfurt METHOD FOR IMPROVING GAS DISTRIBUTION IN MAMMOTH LOOP REACTORS
US4342876A (en) 1980-12-22 1982-08-03 Bechtel International Corporation Method for oxidation of p-xylene and method for preparing dimethylterephthalate
US4334086A (en) * 1981-03-16 1982-06-08 Labofina S.A. Production of terephthalic acid
US4459365A (en) * 1981-05-29 1984-07-10 Mitsubishi Gas Chemical Company, Inc. Method of recovering a catalytic metal
US4456767A (en) * 1981-07-27 1984-06-26 Rhone-Poulenc, Inc. Solvent and catalyst recovery and recycle in the manufacture of phenoxybenzoic acid
US4391985A (en) * 1981-11-16 1983-07-05 Eastman Kodak Company Process for the separation of isophthalic acid from terephthalic acid
EP0086019B2 (en) * 1982-02-09 1989-11-29 BBC Brown Boveri AG Method and apparatus for treating a liquid with a gas
JPS59104345A (en) * 1982-12-03 1984-06-16 Kuraray Yuka Kk Production of terephthalic acid suitable for direct polymerization
JPS59106435A (en) 1982-12-10 1984-06-20 Mitsubishi Chem Ind Ltd Production of high-purity terephthalic acid
JPS6036439A (en) * 1983-08-09 1985-02-25 Mitsubishi Chem Ind Ltd Production of terephthalic acid
US4500732A (en) * 1983-09-15 1985-02-19 Standard Oil Company (Indiana) Process for removal and recycle of p-toluic acid from terephthalic acid crystallizer solvent
US4769487A (en) 1984-08-20 1988-09-06 Amoco Corporation Multistage oxidation in a single reactor
US4605763A (en) 1984-08-31 1986-08-12 Eastman Kodak Company Process for the purification of terephthalic acid
US4777287A (en) 1984-10-29 1988-10-11 Amoco Corporation Recycle of vaporized solvent in liquid phase oxidation of an alkyl aromatic
US4835307A (en) * 1984-12-13 1989-05-30 Amoco Corporation Method and apparatus for controlling the manufacture of terephthalic acid to control the level and variability of the contaminant content and the optical density
US4648999A (en) * 1985-07-22 1987-03-10 M. W. Kellogg Company Apparatus for contacting fluid with solid
GB8527335D0 (en) 1985-11-06 1985-12-11 Ici Plc Fermentation process
US5099064A (en) * 1985-12-30 1992-03-24 Amoco Corporation Method for increasing conversion efficiency for oxidation of an alkyl aromatic compound to an aromatic carboxylic acid
US4892970A (en) * 1985-12-30 1990-01-09 Amoco Corporation Staged aromatics oxidation in aqueous systems
DE3625261A1 (en) 1986-07-25 1988-02-04 Basf Ag METHOD FOR CONTINUOUS HYDROFORMYLATION OF OLEFINICALLY UNSATURATED COMPOUNDS
US4769489A (en) 1986-07-28 1988-09-06 Amoco Corporation Catalyst recovery method
US4914230A (en) * 1986-07-28 1990-04-03 Amoco Corporation Catalyst recovery method
JPH078821B2 (en) * 1986-09-26 1995-02-01 三井石油化学工業株式会社 Method for producing aromatic carboxylic acid
US4900480A (en) 1986-10-21 1990-02-13 Union Carbide Corporation Gas-liquid mixing
DE3704720A1 (en) * 1987-02-14 1988-08-25 Huels Troisdorf METHOD AND DEVICE FOR PRODUCING BENZOLIC CARBONIC ACIDS OR. BENZOLDICARBONIC ACID ESTERS
JP2504461B2 (en) 1987-04-24 1996-06-05 三菱化学株式会社 Manufacturing method of high quality terephthalic acid
DE3839229A1 (en) 1988-11-19 1990-05-23 Krupp Koppers Gmbh METHOD FOR OBTAINING P-XYLOL WITH A PURITY OF MORE THAN 99.8% BY WEIGHT
US5211924A (en) * 1988-02-29 1993-05-18 Amoco Corporation Method and apparatus for increasing conversion efficiency and reducing power costs for oxidation of an aromatic alkyl to an aromatic carboxylic acid
US4855491A (en) 1988-04-25 1989-08-08 Amoco Corporation Method for selectively removing process stream impurities utilizing reverse osmosis
US4863888A (en) 1988-04-29 1989-09-05 Amoco Corporation Catalyst containing cobalt boron and oxygen and optionally aluminum of preparation and process
US4855492A (en) 1988-05-27 1989-08-08 Amoco Corporation Process for production of aromatic polycarboxylic acids
US4833269A (en) * 1988-08-05 1989-05-23 Amoco Corporation Method for purifying terephthalic acid recycle streams
US4939297A (en) * 1989-06-05 1990-07-03 Eastman Kodak Company Extraction process for removal of impurities from terephthalic acid filtrate
US5068406A (en) 1989-09-06 1991-11-26 Amoco Corporation Compartmented oxidation method
US5004830A (en) * 1989-11-29 1991-04-02 Amoco Corporation Process for oxidation of alkyl aromatic compounds
US5126037A (en) * 1990-05-04 1992-06-30 Union Oil Company Of California Geopreater heating method and apparatus
EP0465100B1 (en) * 1990-06-25 1994-09-28 Mitsubishi Gas Chemical Company, Inc. Process for producing high purity isophthalic acid
US5095145A (en) 1990-11-05 1992-03-10 Amoco Corporation Preparation of purified terephthalic acid from waste polyethylene terephthalate
US5095142A (en) * 1990-11-29 1992-03-10 Amoco Corporation Solvent recovery during production of aromatic polycarboxylic acids
GB9102393D0 (en) * 1991-02-05 1991-03-20 Ici Plc Production of terephthalic acid
GB9104776D0 (en) * 1991-03-07 1991-04-17 Ici Plc Process for the production of terephthalic acid
US5227570A (en) * 1991-12-02 1993-07-13 Taiwan Styrene Monomer Corporation Process for separation of ethylbenzene or ethylbenzene/p-xylene from a xylene isomers mixture
US5292934A (en) * 1992-06-18 1994-03-08 Amoco Corporation Method for preparing aromatic carboxylic acids
US5523474A (en) * 1994-05-11 1996-06-04 Praxair Technology, Inc. Terephthalic acid production using evaporative cooling
US5612007A (en) * 1994-10-14 1997-03-18 Amoco Corporation Apparatus for preparing aromatic carboxylic acids with efficient energy recovery
US5712412A (en) * 1994-12-26 1998-01-27 Mitsubishi Gas Chemical Co., Inc. Process for producing highly pure terephthalic acid
SI9500109A (en) * 1995-04-05 1996-10-31 Levec Janez Dipl Ing Prof Dr Apparatus and Process for Thermal Oxidative Treatment of Waste Waters
GB2299767B (en) * 1995-04-07 1998-05-13 Norske Stats Oljeselskap Regneration of fischer-tropsch catalysts
US6013835A (en) * 1995-06-07 2000-01-11 Hfm International, Inc. Method and apparatus for preparing purified terephthalic acid
US5767311A (en) * 1995-06-07 1998-06-16 Glitsch International, Inc. Method and apparatus for preparing purified terephtalic acid
US5883292A (en) * 1996-01-17 1999-03-16 Twenty-First Century Research Corporation Reaction control by regulating internal condensation inside a reactor
ES2104512B1 (en) * 1995-09-21 1998-07-01 Interquisa INDUSTRIAL PROCEDURE FOR THE MANUFACTURE OF AROMATIC CARBOXYL ACIDS.
US6376733B1 (en) * 1996-01-25 2002-04-23 Exxonmobil Chemical Patents Inc. Process for production of paraxylene
US5756833A (en) * 1996-02-01 1998-05-26 Amoco Corporation Catalytic purification and recovery of dicarboxylic aromatic acids
ID15851A (en) * 1996-02-13 1997-08-14 Mitsubishi Chem Corp PROCESS FOR PRODUCING A CARBOXICIC AROMATIC ACID
JP3757995B2 (en) * 1996-07-12 2006-03-22 三菱瓦斯化学株式会社 Method for producing high purity isophthalic acid
JPH1045667A (en) * 1996-07-29 1998-02-17 Mitsubishi Gas Chem Co Inc Production of high-purity terephthalic acid using dispersion medium exchanger
DE69736860T2 (en) * 1996-09-24 2007-05-16 Merck & Co., Inc. COMPOUNDS FOR INHIBITING ANGIOGENESIS THROUGH GENE THERAPY
ID19133A (en) * 1996-12-12 1998-06-18 Praxair Technology Inc FILLING OXYGEN DIRECTLY INTO THE BULLET ROOM REACTORS
GB9701251D0 (en) * 1997-01-22 1997-03-12 Bp Chem Int Ltd Process
US6037491A (en) * 1997-07-25 2000-03-14 Rpc Inc. Methods and devices for controlling hydrocarbon oxidations to respective acids by adjusting the solvent to hydrocarbon ratio
TW335527B (en) * 1997-11-08 1998-07-01 United Microelectronics Corp The rework testing method of semiconductor device
KR20010040818A (en) * 1998-02-09 2001-05-15 알피시 인코포레이티드 Process for treating cobalt catalyst in oxidation mixtures of hydrocarbons to dibasic acids
US6362367B2 (en) * 1998-04-21 2002-03-26 Union Carbide Chemicals & Plastics Technology Corp. Preparation of organic acids
US6080372A (en) * 1998-09-11 2000-06-27 Air Products And Chemicals, Inc. Two stage reactor for continuous three phase slurry hydrogenation and method of operation
DE19843573A1 (en) * 1998-09-23 2000-03-30 Degussa Bubble column and its use
US6392091B2 (en) * 1998-11-24 2002-05-21 Tsong-Dar Vincent Lin Process of purifying and producing high purity aromatic polycarboxylic acids
IT1311976B1 (en) * 1999-03-25 2002-03-22 Franco Codignola PROCEDURE FOR THE PRODUCTION OF AROMATIC ACIDS.
US6949673B2 (en) * 2000-01-12 2005-09-27 E.I. Du Pont De Nemours And Company Process for producing carboxylic acids
WO2001053246A1 (en) * 2000-01-21 2001-07-26 Bp Corporation North America Inc. Production of high purity aromatic carboxylic acid by oxidation in benzoic acid and water solvent
KR100374785B1 (en) * 2000-06-29 2003-03-04 학교법인 포항공과대학교 Liquid phase oxidation reactor
US6765113B2 (en) * 2000-07-19 2004-07-20 E.I. Du Pont De Nemours And Company Production of aromatic carboxylic acids
CN1900139B (en) * 2000-12-07 2012-11-14 奇派特石化有限公司 Method of manufacturing polycondensate
US6541525B2 (en) * 2001-03-27 2003-04-01 Exxonmobil Research And Engineering Company Slurry catalyst rejuvenation in-situ in slurry reactor
US6984753B2 (en) * 2001-05-15 2006-01-10 Dow Italia S.R.L. Agitation system for alkylbenzene oxidation reactors
US7135596B2 (en) * 2002-04-23 2006-11-14 Bp Corporation North America Inc. Method of removing iron contaminants from liquid streams during the manufacture and/or purification of aromatic acids
US7161027B2 (en) * 2002-12-09 2007-01-09 Eastman Chemical Company Process for the oxidative purification of terephthalic acid
US7074954B2 (en) * 2002-12-09 2006-07-11 Eastman Chemical Company Process for the oxidative purification of terephthalic acid
US7132566B2 (en) * 2003-09-22 2006-11-07 Eastman Chemical Company Process for the purification of a crude carboxylic acid slurry
US7494641B2 (en) * 2003-06-05 2009-02-24 Eastman Chemical Company Extraction process for removal of impurities from an oxidizer purge stream in the synthesis of carboxylic acid
US7485746B2 (en) * 2003-11-14 2009-02-03 Bp Corporation North America Inc. Staged countercurrent oxidation
US6838487B1 (en) * 2003-12-04 2005-01-04 Rentech, Inc. Method and apparatus for regenerating an iron-based Fischer-Tropsch catalyst
US7615663B2 (en) * 2004-09-02 2009-11-10 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7741515B2 (en) * 2004-09-02 2010-06-22 Eastman Chemical Company Optimized liquid-phase oxidation
US7504535B2 (en) * 2004-09-02 2009-03-17 Eastman Chemical Company Optimized liquid-phase oxidation
US20060205977A1 (en) * 2005-03-08 2006-09-14 Sumner Charles E Jr Processes for producing terephthalic acid

Similar Documents

Publication Publication Date Title
JP2008546690A5 (en)
JP2008511640A5 (en)
TWI331991B (en) Apparatus for and method of producing aromatic carboxylic acids
JP2008511649A5 (en)
US7501537B2 (en) Polycarboxylic acid production system employing oxidative digestion with reduced or eliminated upstream liquor exchange
US7326808B2 (en) Polycarboxylic acid production system employing cooled mother liquor from oxidative digestion as feed to impurity purge system
PT1786754E (en) Optimized liquid-phase oxidation
PT1973642E (en) Oxidation system with internal secondary reactor
JP2008511639A (en) Optimized liquid phase oxidation
JP2008511639A5 (en)
MX2007002506A (en) Optimized liquid-phase oxidation.
RU2008101655A (en) OPTIMIZED LIQUID PHASE OXIDATION
US7393973B2 (en) Polycarboxylic acid production system with enhanced residence time distribution for oxidative digestion
US7816556B2 (en) Polycarboxylic acid production system employing enhanced multistage oxidative digestion
TW201134552A (en) Gas phase reaction method
CN101023046B (en) The liquid phase oxidation of optimization
US7420082B2 (en) Polycarboxylic acid production system employing hot liquor removal downstream of oxidative digestion
JP2008511638A5 (en)
US7772424B2 (en) Polycarboxylic acid production system employing enhanced evaporative concentration downstream of oxidative digestion
MX2007002418A (en) Optimized liquid-phase oxidation.
JP2008511648A5 (en)
RU2007111961A (en) OPTIMIZED LIQUID PHASE OXIDATION
US7326807B2 (en) Polycarboxylic acid production system with enhanced heating for oxidative digestion
JP2008511655A5 (en)
JP2008511641A5 (en)