JPS582996B2 - Heavy oil gasification method - Google Patents

Heavy oil gasification method

Info

Publication number
JPS582996B2
JPS582996B2 JP8951076A JP8951076A JPS582996B2 JP S582996 B2 JPS582996 B2 JP S582996B2 JP 8951076 A JP8951076 A JP 8951076A JP 8951076 A JP8951076 A JP 8951076A JP S582996 B2 JPS582996 B2 JP S582996B2
Authority
JP
Japan
Prior art keywords
zone
catalyst particles
heavy oil
gasification
regeneration zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8951076A
Other languages
Japanese (ja)
Other versions
JPS5314703A (en
Inventor
勝山禎
小沢篤二
船木美嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Mining Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd, Mitsui Zosen KK filed Critical Mitsui Mining Co Ltd
Priority to JP8951076A priority Critical patent/JPS582996B2/en
Publication of JPS5314703A publication Critical patent/JPS5314703A/en
Publication of JPS582996B2 publication Critical patent/JPS582996B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は原油、重油、減圧残渣油などの重質油を連続的
に接触分解することによりガス化を行ない、良質な燃料
ガスを得る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for gasifying heavy oil such as crude oil, heavy oil, vacuum residue oil, etc. by continuous catalytic cracking to obtain high-quality fuel gas.

商業的に価値の低い重質油をガス化することにより、良
質な燃料ガスを製造することは資源の有効利用の面から
、また燃料ガスは脱硫が容易であるため公害対策の面か
らも工業的に極めて意義の深いことである。
Producing high-quality fuel gas by gasifying heavy oil, which has low commercial value, is an industrial option from the standpoint of effective resource utilization and from the standpoint of pollution control since fuel gas is easy to desulfurize. This is extremely significant.

従来、この種のガス化方法の一つに、ガス化帯と再生帯
とをもつ2塔式触媒粒子循環流動式ガス化方法が知られ
ている。
BACKGROUND ART Conventionally, as one of this type of gasification methods, a two-column type catalyst particle circulation flow type gasification method having a gasification zone and a regeneration zone is known.

その方法では、ガス化帯において生成ガスと共に副生ず
る煤、タールなどの炭素質は触媒粒子表面に付着して触
媒活性を低下させるため、触媒粒子と共に再生帯に送ら
れ、そこで空気もしくは酸素により完全燃焼させられる
In this method, carbon substances such as soot and tar that are produced as by-products together with the produced gas in the gasification zone adhere to the surface of the catalyst particles and reduce the catalytic activity. be burned.

そして、再生された触媒粒子は再びガス化帯に送られ、
接触分解ガス化反応に関与する。
The regenerated catalyst particles are then sent to the gasification zone again.
Involved in catalytic cracking gasification reactions.

また、ガス化反応に必要とされる熱量は再生帯における
煤、タールなどの炭素質の完全燃焼により加熱された触
媒粒子の循環により供給される。
Further, the amount of heat required for the gasification reaction is supplied by the circulation of catalyst particles heated by complete combustion of carbonaceous substances such as soot and tar in the regeneration zone.

ところで、このような従来のガス化方法においては、ガ
ス化効率および生成ガスの発熱量の低下の問題があるこ
とが判明した。
By the way, it has been found that such a conventional gasification method has a problem in that the gasification efficiency and the calorific value of the generated gas decrease.

すなわち、この方法において、再生帯における炭素質の
燃焼が過剰な酸素の存在下で行なわれるため触媒粒子に
含まれる金属単体もしくは金属酸化物が酸化あるいは過
酸化された状態となり、その状態でガス化帯に送られ、
ガス化帯においては接触分解ガス化反応により生成した
水素、一酸化炭素などの還元性ガスが存在するため、再
生帯より送られた触媒粒子中の金属酸化物もしくは金属
酸化物が還元性ガスと反応するので、この反応により水
素および一酸化炭素はそれぞれ不燃性の水(水蒸気)お
よび二酸化炭素となり、ガス化効率や生成ガスの発熱量
が低下し、さらに生成ガス中にCO2成分が多いため次
工程の精製が面倒であるという問題を生ずるのである。
That is, in this method, the combustion of carbonaceous material in the regeneration zone is carried out in the presence of excess oxygen, so that the metal element or metal oxide contained in the catalyst particles becomes oxidized or overoxidized, and gasification occurs in this state. sent to the obi,
In the gasification zone, there are reducing gases such as hydrogen and carbon monoxide generated by the catalytic cracking gasification reaction, so the metal oxides or metal oxides in the catalyst particles sent from the regeneration zone are not converted into reducing gases. As a result of this reaction, hydrogen and carbon monoxide become nonflammable water (steam) and carbon dioxide, respectively, which reduces the gasification efficiency and calorific value of the produced gas, and furthermore, because the produced gas contains a large amount of CO2 components, the following This creates a problem in that the purification process is troublesome.

本発明は上記従来の方法における問題を解消せんとする
ものであり、ガス化効率および生成ガスの発熱量を向上
しうるガス化方法を提供することを目的とする。
The present invention aims to solve the problems in the conventional methods described above, and aims to provide a gasification method that can improve the gasification efficiency and the calorific value of the generated gas.

このような目的を達成する本発明は、ガス化帯において
重質油を接触分解ガス化した際、副次的に生成する煤、
タールなどが付着した触媒粒子を流動再生帯に送り、こ
の再生帯において煤、夕一ルなどの炭素質を、その炭素
質の完全燃焼に必要な酸素量より少ない酸素を含む空気
もしくは酸素ガスにより一酸化炭素を含有する可燃ガス
に転換し、更に上記再生帯において生成する可燃ガスを
、再生帯外の燃焼帯において燃焼し、その顕熱によりガ
ス化帯内、再生帯内もしくはそれらの両方で触媒粒子を
間接的に加熱するようにした点に特徴がある。
The present invention achieves these objects by reducing the soot produced as a by-product when heavy oil is catalytically cracked and gasified in the gasification zone.
Catalyst particles with tar etc. attached are sent to a fluidized regeneration zone, and in this regeneration zone, carbonaceous matter such as soot and dirt is removed by air or oxygen gas containing less oxygen than the amount of oxygen required for complete combustion of the carbonaceous matter. The combustible gas generated in the regeneration zone is converted into combustible gas containing carbon monoxide, and the combustible gas generated in the regeneration zone is combusted in a combustion zone outside the regeneration zone, and the sensible heat is used to generate combustible gas within the gasification zone, within the regeneration zone, or both. The feature is that the catalyst particles are heated indirectly.

本発明の好ましい実施例によれば、金属単体もしくは金
属酸化物を含有する触媒粒子の流動層であるガス化帯が
圧力1〜50atm、温度600〜1000℃の範囲に
保持され、このガス化帯に原料油である重質油及び重質
油との重量比が0.5以上であるスチームが導入され、
重質油は接触分解ガス化され、生成ガスとともに発生す
る煤、夕一ルなどの炭素質は触媒粒子表面に付着し、触
媒粒子とともに再生帯に送られ、この再生帯にて炭素質
が完全燃焼に必要な酸素量より少ない酸素量を含む空気
もしくは酸素にて一酸化炭素を含む可燃ガスに転換され
る。
According to a preferred embodiment of the present invention, a gasification zone, which is a fluidized bed of catalyst particles containing simple metals or metal oxides, is maintained at a pressure of 1 to 50 atm and a temperature of 600 to 1000°C; Introducing heavy oil, which is a raw material oil, and steam having a weight ratio of 0.5 or more to the heavy oil,
Heavy oil is gasified by catalytic cracking, and carbonaceous substances such as soot and sludge generated along with the generated gas adhere to the surface of catalyst particles and are sent together with the catalyst particles to a regeneration zone, where the carbonaceous substances are completely removed. Air or oxygen containing less oxygen than is required for combustion is converted into a combustible gas containing carbon monoxide.

再生された触媒粒子はガス化帯に送られ再びガス化反応
に関与し、一方、再生帯にて生成する可燃ガスは燃焼帯
に導かれ、必要ならば燃料ガスを加えた上で燃焼帯で過
剰空気にて完全燃焼させられ、その燃焼ガスはその顕熱
を触媒粒子の加熱に熱交換するためガス化帯あるいは再
生帯もしくはガス化帯、再生帯双方に導びかれる。
The regenerated catalyst particles are sent to the gasification zone and participate in the gasification reaction again, while the combustible gas generated in the regeneration zone is led to the combustion zone, where it is added with fuel gas if necessary. The combustion gas is completely combusted in excess air, and the combustion gas is led to the gasification zone or the regeneration zone or both the gasification zone and the regeneration zone in order to exchange its sensible heat for heating the catalyst particles.

このような本発明において、再生帯での酸素は煤、ター
ルなどの炭素質を一酸化炭素を含む可燃ガスに転換する
のに優先的に消費されるため、触媒粒子中の金属及び金
属酸化物が酸化あるいは過酸化されることは少なく、し
たがってガス化帯にて生成ガスと触媒粒子中の酸素との
反応はほとんど起らない。
In the present invention, oxygen in the regeneration zone is preferentially consumed to convert carbonaceous substances such as soot and tar into combustible gas containing carbon monoxide, so that metals and metal oxides in catalyst particles are consumed preferentially. is rarely oxidized or overoxidized, and therefore almost no reaction occurs between the produced gas and the oxygen in the catalyst particles in the gasification zone.

このため二酸化炭素の少ない高カロリーガスが生成され
る。
As a result, high-calorie gas containing little carbon dioxide is produced.

次に、本発明の実施態様を図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.

もちろん、添付図面は本発明の特徴を理解しやすくする
ためのものであり、それによって本発明が限定されるも
のではない。
Of course, the accompanying drawings are for the purpose of making it easier to understand the features of the present invention, and the present invention is not limited thereby.

図面において、原料油である重質油はノズル4から単独
もしくは管5によって導入される水蒸気と混合して、ガ
ス化塔A内のガス化帯1の触媒粒子流動床に供給される
In the drawing, heavy oil, which is a feedstock oil, is supplied from a nozzle 4 alone or mixed with steam introduced through a pipe 5 to a fluidized bed of catalyst particles in a gasification zone 1 in a gasification tower A.

流動化ガス、例えば水蒸気は管14を通してガス化帯に
供給される。
A fluidizing gas, e.g. steam, is supplied to the gasification zone through pipe 14.

ガス化帯1に供給された原料油は圧力1〜50atm、
温度600〜1000℃の条件下でガス化され、生成ガ
スは未反応水蒸気及び副生ずる煤、タールなどの炭素質
の一部を同伴して上昇気流となり管6を通り精製工程へ
送られる。
The raw material oil supplied to gasification zone 1 has a pressure of 1 to 50 atm,
The gas is gasified at a temperature of 600 to 1000° C., and the generated gas becomes an updraft along with unreacted water vapor and a portion of by-product carbonaceous matter such as soot and tar, and is sent through the pipe 6 to the purification process.

ガス化反応により副生ずる煤、タールなどの炭素質の大
部分は触媒粒子表面に付着し、触媒粒子とともに管9を
通り、管11からの流動化ガス、例えば水蒸気とともに
管10を経て再生塔B内の再生帯2の底部に送入される
Most of the carbonaceous substances such as soot and tar produced by the gasification reaction adhere to the surface of the catalyst particles, pass through the pipe 9 together with the catalyst particles, and pass through the pipe 10 together with the fluidizing gas from the pipe 11, such as water vapor, to the regeneration tower B. It is fed into the bottom of the regeneration zone 2 inside.

再生帯において触媒粒子とともにガス化帯により送入さ
れた炭素質は管7からの空気もしくは酸素により一酸化
炭素を含む可燃ガスに転換される。
In the regeneration zone, the carbonaceous material fed by the gasification zone together with the catalyst particles is converted into combustible gas containing carbon monoxide by air or oxygen from the pipe 7.

表面より炭素質の除かれた触媒粒子は管12を通り管1
4からの流動ガスと一緒に管13を経てガス化帯底部に
戻される。
The catalyst particles from which carbonaceous matter has been removed from the surface pass through the pipe 12 to the pipe 1.
4 is returned to the bottom of the gasification zone via pipe 13.

一方、再生帯にて生成した可燃ガスは管8を通り燃焼器
C内の燃焼帯3に送られる。
On the other hand, the combustible gas generated in the regeneration zone is sent to the combustion zone 3 in the combustor C through the pipe 8.

ここで管15からの空気によって可燃ガスは、必要なら
ば管16からの燃料ガスとともに完全燃焼させられ、そ
れによる高温燃焼ガスは管17を経てガス化帯1内の熱
交換器18に導かれ、ここで触媒粒子と熱交換を行いガ
ス化反応に必要な熱を供給した後、管19より排出され
る。
The combustible gas is now completely combusted by air from pipe 15, if necessary together with the fuel gas from pipe 16, and the resulting hot combustion gases are led via pipe 17 to a heat exchanger 18 in gasification zone 1. After exchanging heat with the catalyst particles and supplying the heat necessary for the gasification reaction, the gas is discharged from the pipe 19.

なお、図面には表示していないが、熱交換器18を再生
帯2に設置して触媒粒子との熱交換を行なうことも、ま
たガス化帯1、再生帯2の双方に熱交換器を設置して触
媒粒子と熱交換することもできる。
Although not shown in the drawing, the heat exchanger 18 can be installed in the regeneration zone 2 to exchange heat with the catalyst particles, or the heat exchanger 18 can be installed in both the gasification zone 1 and the regeneration zone 2. It can also be installed to exchange heat with catalyst particles.

次に、以上のような本発明による効果を実証する意味で
本発明の実施例と従来法による比較例とを説明する。
Next, examples of the present invention and comparative examples based on conventional methods will be described in order to demonstrate the effects of the present invention as described above.

実施例 表−1に示した性状のガツチサラン減圧残渣油を原料と
し、電気炉による外部加熱方式の内径41mm,長さ6
00mmのガス化塔及び再生塔からなり、触媒粒子が両
塔を循環する実験装置によって表−2のような操作条件
でガス化を行なった。
Using Gatsuchisaran vacuum residual oil with the properties shown in Example Table 1 as a raw material, it was heated externally using an electric furnace and had an inner diameter of 41 mm and a length of 6.
Gasification was carried out under the operating conditions shown in Table 2 using an experimental apparatus consisting of a 00 mm gasification tower and a regeneration tower, in which catalyst particles circulated through both towers.

この結果、次の組成をもつガスが得られた。As a result, a gas with the following composition was obtained.

比較例 上記実施例において使用した実験装置を用いて、表−1
に示したガツチサラン減圧残渣油を原料とし、表−2に
示した操作条件のうち再生塔空気供給速度を1.0〜1
.5Nm3/hrとし、その他の条件は同じとしてガス
化実験を行なった。
Comparative Example Using the experimental equipment used in the above example, Table 1
The Gatsuchisaran vacuum residue oil shown in Table 2 is used as the raw material, and the regeneration tower air supply rate is set to 1.0 to 1 among the operating conditions shown in Table 2.
.. A gasification experiment was conducted at a rate of 5 Nm3/hr and other conditions being the same.

その結果、次の組成をもつガスが得られた。As a result, a gas with the following composition was obtained.

この比較例と上記実施例とを比較した場合、本発明のガ
ス化法によれば、二酸化炭素が少なく、水素および一酸
化炭素の多い組成をもつ、高発熱量のガスが得られるこ
とが埋解されるであろう。
When this comparative example is compared with the above-mentioned examples, it is clear that the gasification method of the present invention can produce a high calorific value gas with a composition that is low in carbon dioxide and high in hydrogen and carbon monoxide. It will be understood.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の方法を実施するための装置例の概要部で
ある。 A・・・・・・ガス化塔、B・・・・・・再生塔、C・
・・・・・燃焼器、1・・・・・・ガス化帯、2・・・
・・・再生帯、3・・・・・・燃焼帯、4・・・・・・
原料供給ノズル、5,6,7,8,9,10,11,1
2,13,14,15,16,17・・・・・・管、1
8・・・・・・熱交換器、19・・・・・・管。
The drawing is a schematic part of an example of a device for carrying out the method of the invention. A... Gasification tower, B... Regeneration tower, C.
... Combustor, 1 ... Gasification zone, 2 ...
...Regeneration zone, 3... Combustion zone, 4...
Raw material supply nozzle, 5, 6, 7, 8, 9, 10, 11, 1
2, 13, 14, 15, 16, 17... tube, 1
8... Heat exchanger, 19... Tube.

Claims (1)

【特許請求の範囲】 1 減圧残渣油などの重質油を金属単体もしくは金属酸
化物を含有する触媒粒子に接触させてガス化する方法に
おいて、流動化した上記触媒粒子が存在するガス化帯で
重質油をガス化し、その時副生ずる煤、タールなどが付
着した触媒粒子を流動再生帯に送り、この再生帯におい
て煤、タールなどの炭素質を、その炭素質の完全燃焼に
必要な酸素量より少ない酸素を含む空気もしくは酸素ガ
スにより一酸化炭素を含有する可燃ガスに転換し、これ
により再生された触媒粒子をガス化帯に戻すと共に、上
記可燃ガスを再生帯外の燃焼帯において燃焼し、その顕
熱によりガス化帯内、再生帯内もしくはそれらの両方で
触媒粒子を間接的に加熱するようにしたことを特徴とす
る重質油のガス化方法。 2 ガス化帯が1〜50atm.600〜1000℃の
条件下にある特許請求の範囲第1項記載の重質油のガス
化方法。 3 ガス化帯において水蒸気が重質油との重量比で0.
5以上存在する特許請求の範囲第1項記載の重質油のガ
ス化方法。
[Scope of Claims] 1. In a method of gasifying heavy oil such as vacuum residual oil by bringing it into contact with catalyst particles containing an elemental metal or a metal oxide, in a gasification zone where the fluidized catalyst particles are present. When heavy oil is gasified, the catalyst particles with soot, tar, etc. that are produced as by-products are sent to a fluidized regeneration zone, and in this regeneration zone, carbonaceous substances such as soot and tar are removed by the amount of oxygen required for complete combustion of the carbonaceous substances. Converting the catalyst particles to a combustible gas containing carbon monoxide with air or oxygen gas containing less oxygen, returning the regenerated catalyst particles to the gasification zone, and burning the combustible gas in a combustion zone outside the regeneration zone. A method for gasifying heavy oil, characterized in that the sensible heat indirectly heats catalyst particles in a gasification zone, a regeneration zone, or both. 2 The gasification zone is 1 to 50 atm. The method for gasifying heavy oil according to claim 1, which is performed at a temperature of 600 to 1000°C. 3 In the gasification zone, the weight ratio of water vapor to heavy oil is 0.
The method for gasifying heavy oil according to claim 1, wherein there are five or more.
JP8951076A 1976-07-27 1976-07-27 Heavy oil gasification method Expired JPS582996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8951076A JPS582996B2 (en) 1976-07-27 1976-07-27 Heavy oil gasification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8951076A JPS582996B2 (en) 1976-07-27 1976-07-27 Heavy oil gasification method

Publications (2)

Publication Number Publication Date
JPS5314703A JPS5314703A (en) 1978-02-09
JPS582996B2 true JPS582996B2 (en) 1983-01-19

Family

ID=13972771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8951076A Expired JPS582996B2 (en) 1976-07-27 1976-07-27 Heavy oil gasification method

Country Status (1)

Country Link
JP (1) JPS582996B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126629U (en) * 1981-01-31 1982-08-06
US7608732B2 (en) * 2005-03-08 2009-10-27 Eastman Chemical Company Optimized liquid-phase oxidation

Also Published As

Publication number Publication date
JPS5314703A (en) 1978-02-09

Similar Documents

Publication Publication Date Title
CN101932677A (en) A biomass gasification method and apparatus for production of syngas with a rich hydrogen content
JP2004534903A5 (en)
JP6304856B2 (en) Biomass gasification method using improved three-column circulating fluidized bed
CN101244805A (en) Method for producing methanol synthesis gas by oven gas non-catalytic pure oxygen-steam conversion
KR101628409B1 (en) Method and equipment for producing synthesis gas
JPH0454601B2 (en)
JP2014074144A (en) Co-gasification method of coal and biomass by three bed type circulation layer and its device
JPS585225B2 (en) Method of heating coke particles
EP2627734B1 (en) Method and equipment for producing coke during indirectly heated gasification
JP4549918B2 (en) Biomass gasification method
JPS582996B2 (en) Heavy oil gasification method
JP3009541B2 (en) Waste gasification method
CN215828695U (en) Coal gasification furnace and coal gasification system
CN113150832A (en) Self-heating three-section type biomass low-tar carbon gas co-production regulation and control device
US3989481A (en) Continuous catalytic gasification of heavy hydrocarbon oils with recirculated fluidized catalyst
CN219530876U (en) Purifying coupling system for waste engine oil treatment and organic pyrolysis gas
JP7118341B2 (en) Hydrogen production equipment
JPS5851989B2 (en) Coal gasification method
CN113667514A (en) Coal gasification method, coal gasification furnace, coal gasification system, and coal gasification synthetic ammonia system
CN116105152A (en) Purifying and coupling system and process method for waste engine oil treatment and organic pyrolysis gas
JPS5919965B2 (en) Fluid reduction method for iron ore that simultaneously produces reduced iron and fuel gas
CN110684558A (en) Garbage gasification system using air and water vapor as gasification agent
JPS63251495A (en) Method of regulating components of reducing gas
JP2018053053A (en) Gasification method of carbonaceous fuel, operation method of iron mill and manufacturing method of gasification gas
PL98608B1 (en) METHOD FOR FLUIDAL GASIFYING OF SOLID BODIES CONTAINING COAL