JP2008537137A - 符号化マスクを有するガンマカメラのデコードアーチファクトの発生を制限するデバイス - Google Patents

符号化マスクを有するガンマカメラのデコードアーチファクトの発生を制限するデバイス Download PDF

Info

Publication number
JP2008537137A
JP2008537137A JP2008507138A JP2008507138A JP2008537137A JP 2008537137 A JP2008537137 A JP 2008537137A JP 2008507138 A JP2008507138 A JP 2008507138A JP 2008507138 A JP2008507138 A JP 2008507138A JP 2008537137 A JP2008537137 A JP 2008537137A
Authority
JP
Japan
Prior art keywords
coding
concave part
detector
mask
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008507138A
Other languages
English (en)
Other versions
JP5062635B2 (ja
Inventor
ファブリス ラマディ,
クリストフ ブレネイ,
フィリップ ジローヌ,
ステファン バラー,
Original Assignee
コミッサリア タ レネルジー アトミーク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コミッサリア タ レネルジー アトミーク filed Critical コミッサリア タ レネルジー アトミーク
Publication of JP2008537137A publication Critical patent/JP2008537137A/ja
Application granted granted Critical
Publication of JP5062635B2 publication Critical patent/JP5062635B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras
    • G01T1/295Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras using coded aperture devices, e.g. Fresnel zone plates

Abstract

本発明は、符号化マスクを有するガンマカメラに関するデコードアーチファクトの発生を制限するデバイスに関するものであって、前記デバイスは、符号化マスク(1)に対向し、かつ符号化マスク(1)によって部分的に符号化される領域(20)を見通す視野を有するガンマ線検出器(3)を備える。前記デバイスは、ガンマ線を透過せず、かつ符号化マスク(1)を基準にして検出器(3)の反対側に配置される凹型部品(30)を備え、前記凹型部品(30)は検出器(3)の視野の部分符号化領域を覆い隠す。

Description

技術分野
本発明は、符号化マスクを有するガンマカメラの使用に固有のデコードアーチファクトの発生を制限するデバイスに関する。本発明は、ガンマ線源の位置特定に適用される。
背景技術
ガンマカメラは、ガンマ線源を遠く離れた位置から検出し、そして観測することを可能にする装置である。ガンマカメラはガンマ線源の画像を生成し、この画像を観測対象シーンの可視画像に重ね合わせ、これにより放射能濃度領域の空間位置を特定し、そして特徴付けることが可能になる。これらのガンマカメラは、この技術分野において用いられてきたツールであり、そして放射線環境におけるメンテナンス作業、解体作業、または検査作業のような介入検査に対する準備に特に適する。
これらのガンマカメラは研究機関及び企業の両方に適用することができる。
ガンマカメラの動作原理の内の一つは良く知られている。すなわち、シンチレータが集光光学系を通して、ガンマ線源から放出されるガンマ光子を受信する。シンチレータはこの放射線を光信号に変換し、光信号が今度は光電陰極によって電気信号に変換される。このようにして形成される電気信号はイメージ増強管によって増幅され、そして電荷結合素子(CCD)によって検出される。シンチレータ、光電陰極、イメージ増強管、及び電荷結合素子から成るアセンブリが一般に、ガンマカメラの検出器を形成する。以下の記述では、検出器を参照する場合、このアセンブリを参照するのであり、電荷結合素子だけを参照するのではない。電荷結合素子は所定数のピクセルを含む。検出器は検出信号を処理する手段と協調動作する。検出器が生成する信号を処理した後、線源の位置を、線源が放出し、そして集光光学系、検出器アセンブリを通過した放射線によって、更に観測対象シーンの可視光画像によって特定することができる。このようなガンマカメラは比較的感度が高く、かつ高性能である。
ガンマカメラのほとんどは、ガンマ光子を収集する光学系として、コリメータを、頂点またはピンポイントホールの反対側の2つの円錐領域の形態で使用する。
このタイプのコリメータによって観測場と分解能との間で適正な条件が設定される。しかしながら、コリメータの形状に起因して、コリメータはガンマ線を非常に透過し難く、これにより感度を低下させることがある。更に詳細には、検出限界を下げることと獲得時間を短縮することを同時にバランス良く達成することができない。
これらの不具合を補正し、そしてカメラのダイナミックレンジを大きくするための可能な変更の一つは、符号化マスクを、2つの円錐領域が生じる形態のコリメータの位置に使用することにより行なわれる。これらのコリメータとは、複数の透明要素及び複数の不透明要素を含むコリメータであり、これによりガンマ線に直接曝されるシンチレータの表面を非常に大きくすることができる。検出器が受信する信号は符号化マスクによって変調される。これらの透明及び不透明要素は特定の構造に従って配置する必要がある。これらのコリメータは観測対象シーンの直接画像を生成するのではなく、観測対象シーンの「符号化」画像を生成し、次に、この符号化画像に数学的処理を施して実際に近い画像を再構成する必要がある。
符号化マスクを有するガンマカメラは、「コンパクトガンマカメラを用いる符号化開口結像法の開発」と題する記事(M. Gmar, O. Gal, C. Le Goaller, O.P. Ivanov, V.N. Potapov, V.E. Stepanov, F.Laine, F. Lamadie, IEEE Transactions on Nuclear Science, 2004年8月, 51巻, 1682〜1687ページ)に記載されている。
使用するマスクはURA(Uniformly Redundant Array:均一冗長アレイ)マスクにより構成することができ、このマスクは、平方剰余のテーブルを利用し、この場合、2つの寸法は2だけ異なる2つの素数である。HURA(Hexagonal URA:六角形URA)またはMURA(Modified URA:変形URA)のようなURAの派生物も利点をもたらす。URA符号化マスクの理論はE.E. Fenimore及びT.M. Cannonによって1972年に定義されている。これらのマスクは図1Aのように、拡張マスクとして使用することができ、この場合、検出器はマスクよりも小さい。マスクは周期的に繰り返され、かつ部分的に多数回繰り返すことができる基本パターンを含む。図1Bに示す第2の使用可能な構成では、マスクは検出器よりも小さい。この構成は、大型の嵩張る検出器を使用する必要があるので利点が得られず、この検出器は小型のガンマカメラによる撮像には適用することができない。これらの図では、参照番号1は符号化マスクを指し、参照番号2はシンチレータを指し、そして参照番号3は検出器を指す。
この符号化技術は、位置に関する問題が、繰り返しパターンを持つ符号化マスクの所定の構成に発生し得るという不具合を有する。実際、カメラの視野、または検出器の視野に2つの異なる領域、すなわち図2A、2Bの参照番号10で示される全体符号化領域、及び図2A、2Bの参照番号20で示される部分符号化領域が存在する。これらの領域は以後、全体符号化領域及び部分符号化領域と表記する。
図2A及び2Bは、符号化マスク1を備えるカメラを部分的に示している。検出器3は符号化マスク1に対向して配置される。
全体符号化領域10は、検出器3に対向する符号化マスク1のエッジ、及び符号化マスク1に対向する検出器3のエッジに接触する表面によって画定される容積に対応する。これらの表面は全体符号化領域10の包絡面10.1を形成する。
部分符号化領域20は、検出器3に対向する符号化マスク1のエッジ、及び符号化マスク1に対向する検出器3のエッジに接触する表面によって画定される容積と、全体符号化領域10の包絡面10.1との間に含まれる容積に対応する。
ガンマ線源11が検出器3の視野の全体符号化領域10に位置する場合、検出器3の各ピクセルは、符号化マスク1を通過してきた信号を受信する。この信号は一つの方法によってのみ復号化することができ、これによって、シーンを実際に近い形で再構成することができる。この構成は図2Aに示される。
これとは異なり、図2Bに示すように、ガンマ線源21が検出器3の視野の部分符号化領域20に位置する場合、符号化マスク1による変調は不完全になる。同じ信号に関して、多数の再構成が可能であり、そしてデコードアーチファクト22が復号化の際に現われる。これらのアーチファクト22は基本的に、実際の線源から区別することができない。これらのアーチファクトによって、符号化マスクの使用が難しくなる、というのは、これらのアーチファクトによって偽のガンマ線源が現われるからである。
現時点では、これらのデコードアーチファクトを適正に小さくする適切な解決法は数学的にも存在しない。
課題を解決するための手段
本発明は実際には、符号化マスクを有するガンマカメラに関するデコードアーチファクトの発生を制限するデバイスを提案するために為されたものであり、このデバイスは作製するのが簡単であり、かつデコードアーチファクトを除去するために複雑な数学的処理演算の使用を必要としない。このデバイスによって、ガンマカメラの部分符号化領域に位置し、かつデコードアーチファクトの発生源に位置する放射線源による有害な影響を小さくすることができる。
更に詳細には、本発明は、符号化マスクを有するガンマカメラに関するデコードアーチファクトの発生を制限するデバイスであり、当該デバイスは、符号化マスクに対向し、かつ符号化マスクによって部分的に符号化される領域を見通す視野を有するガンマ線検出器を備える。本発明によれば、デバイスは、ガンマ線を透過せず、かつ符号化マスクを基準にして検出器の反対側に配置される凹型部品を備え、凹型部品は検出器の視野の部分符号化領域を覆い隠す。
凹型部品は符号化マスクと境界を接する。
凹型部品はほぼ円筒形、円錐台状、ピラミッド形を有することができる、または多面体状の内壁も有することができる。
凹型部品は、7g/cmを超える密度の金属により作製することができる。
更に詳細には、凹型部品は、ステンレス鋼、鉛または鉛系合金、銅または銅系合金、タングステン、またはCIME BOCUZE社の商標であるDENALという呼称で知られているようなタングステン系合金により作製することができる。
凹型部品は、その全長に渡ってほぼ一定の厚さを有することができる。
別の構成として、凹型部品は、その長さに渡って変化する厚さを有することができるので、ガンマ光子は、ガンマ光子が視野の部分符号化領域と検出器との間のどの経路を取るかどうかに関係なく、材料の同じ厚さの部分によって阻止される。
凹型部品には、符号化マスクの支持部品にネジ込むことにより取り付けられるネジ切り部を設けることができる。
ガンマカメラは或る領域を見通す視野を有し、この領域は、符号化マスクによって全体が符号化され、包絡面によって制限され、かつ部分符号化領域に隣接する;凹型部品はカメラに取り付けられた時に、検出器の反対側に自由端部を有することができ、これにより全体符号化領域の包絡面が自由端部を通過する。
凹型部品は、全体符号化領域の外郭に接する内壁を有することができる。
凹型部品は符号化マスクの反対側にほぼ円形の端部を有することができる。
円形の端部は、検出器の中心部を中心とする半径に対応することができる。
本発明は、デコードアーチファクトの発生を制限するこのようなデバイスを備えるガンマカメラにも関する。
以下に説明する種々の図における同じ、類似の、または等価な部品には同じ参照記号を付して、これらの部品が複数の図において同じ番号で指示されるようにしている。
これらの図に示す種々の部品は、図を更に分かり易くするために、必ずしも同じ尺度で描かれている訳ではない。
次に、我々は図3A及び3Bについて説明することとし、これらの図は、符号化マスクを有するガンマカメラに関するデコードアーチファクトの発生を制限するデバイスを図式的に、かつ部分的に示している。
ガンマカメラが、符号化マスク1に対向して配置される検出器3を備える様子を図式的に示している。全体符号化領域10(実線で示される)及び部分符号化領域20(点線で示される)も示す。第1線源11が全体符号化領域10の内部に示されている。検出器3及び符号化マスク1によって形成されるアセンブリに対するその位置によって、線源11を高精度に検出することができる。第2線源21は部分符号化領域20の内部に配置される。
ガンマカメラには、デコードアーチファクトの発生を制限するデバイス30を設けるが、このデバイスは、第1線源11から放出される放射線に影響を全く及ぼすことなく、第2線源21を検出器3が観測することができないように機能する。更に詳細には、デコードアーチファクトの発生を制限するこのデバイス30は、部分符号化領域20全体を検出器3が観測することができないように機能する。デバイスは符号化マスク1と協調動作し、そして検出器3とは、符号化マスク1を基準にして反対側に配置される。デコードアーチファクトの発生を制限するこのデバイス30は、ガンマ線源から放射される放射線を透過しない。
当該デバイスは、符号化マスク1と境界を接する凹型部品30の形状を有する。図3Aでは、この凹型部品30はチューブ状、詳細には円筒状回転体チューブであるが、技術的効果を最適化するために他の形状を使用することができる。当該デバイスの内壁は特に、図3Bに示すように円錐台とすることができ、またはピラミッド状、或いは多面体状とすることもできる。これらの形状は、図を簡単にするために明確には示されないが、図3Aは多面体形状を明瞭に示し、図3Bはピラミッド形状を明瞭に示している。
この凹型部品30は符号化マスク3と一体化される端部30a、及び自由端部30bを有する。図3Aに示す例では、全体符号化領域10の包絡面は、凹型部品30の自由端部30bを通過する。この制約により、凹型部品30の外部長さ、及び幅を求め易くなる。凹型部品の材料の厚さは、凹型部品の全長に渡ってほぼ一定である。
図3Bの例では、凹型部品30の内壁は全体符号化領域の包絡面10に接する。凹型部品の材料の厚さは、凹型部品の全長に渡って一定ではない。この厚さは、ガンマ光子が視野の部分符号化領域20と検出器3との間のどの経路を取るかどうかに関係なく、ガンマ光子が材料の同じ厚さの部分によって阻止されるように決定される。
図3Bの構成では、凹型部品30は、符号化マスク1の反対側に自由端部30bを有し、自由端部はほぼ円形になっている。円形自由端部は、検出器3の中心部を中心とする半径Rを有する。
この凹型部品30は金属材料により作製され、金属材料は少なくとも7g/cmの比較的高い密度を有する。金属材料は約7.86g/cmの密度のステンレス鋼、または鉛または鉛系合金、或いは銅または銅系合金とすることができる。有利なことに、金属材料はタングステン(約18.3g/cmの密度)、またはDENALの呼称で知られているようなタングステン系合金とすることができる。このタングステン系合金または銅系合金の密度は約18.5g/cmであり、この密度によって、ガンマ光子を非常に効果的に減衰させることができる。DENALは、例えば100keVよりも高いエネルギーを持つ高エネルギーガンマ光子が存在する状態で使用されることが好ましく、そして上に挙げた銅または他の材料は、それよりも低いエネルギーを持つガンマ光子が存在する状態で使用されることが好ましい。DENALの別の有利な特性は、この材料を従来の治具を使用して加工し易いことであり、これにより当該材料を延性の高いリードに好適に加工することができる。
図4A及び4Bは、図3Aの構成の本発明によるガンマカメラの一例を分解図及び部分断面図で示している。
図5A及び5Bは、図3Bの構成の本発明によるガンマカメラの一例を分解図及び部分断面図で示している。
参照番号50はガンマカメラのボディを示す。このほぼ回転円筒形のボディ50には検出器3が収容され、検出器は図4B及び5Bのみに示される。図4A及び図5Aでは、ボディ50の両端部の内の一方の端部は、電源線(図示せず)の通路を含むベース51で蓋をする。符号化マスク1は、ボディ50の他方の端部と、互いに嵌め合うように構成される複数のリング52,53,54によって一体化される。一方が他方に部分的に嵌め込まれる構成の2つの外側リング52,54、及び参照番号53で示される内側リングを図から判別することができる。実際、デコードアーチファクトの発生を制限するデバイス30に接続される符号化マスク1は、必要に応じて変更することができる、取り外し可能な部材を構成する。デコードアーチファクトの発生を制限するデバイス30を評価するために行なわれる検査では、異なるパターン及び厚さを持つ3つの符号化マスク1を使用している。これらの符号化マスクを図6A〜6Cに示す。
外側リング52の内の一方のリングによって符号化マスク1をカメラのボディ50に取り付けることができる。符号化マスク1は内側リング53に嵌め込まれ、内側リングは2つの外側リングに、一方のリングが他方のリングの内側になるように組み立てられるときに収容される。一つ以上のフィンガを設けて符号化マスク1を内側リング54に固く取り付けることができる。次に、デコードアーチファクトの発生を制限するデバイスを内側リング53の内部に取り付ける。他方の外側リング54は、第1外側リング52に対して回転移動し、従って、符号化マスク1及びデコードアーチファクトの発生を制限するデバイス30を有する内側リング53を回転させることができる。このようにして、符号化マスク1は、複数の所定位置、例えば60°だけずれた2つの位置を採ることができ、これによって、同じ符号化マスクを使用して、同じシーンの2つの非対称符号化画像を生成することが可能になり、これにより、処理演算において、信号対雑音比を改善することができる。
デコードアーチファクトの発生を制限するデバイス30は、凹型回転シリンダ部品または、凹型円錐台部品によって作製され、この部品は、内側リング53にネジ込まれるネジ切り端部30.1と、そして観測対象シーンの側に位置する自由端と、を有する。
このような凹型部品の複数のプロトタイプを検査した。これらのプロトタイプは、70mmまたは125mmの長さ、48.1mm未満の内径、及び内径よりも大きい108.1mmの外径を有する回転円筒体である。これらのプロトタイプはステンレス鋼により作製される。図4A及び4Bに示すのは、デコードアーチファクトの発生を制限する短い(70mm)デバイス30である。
検出器3は50mmの直径を有する。符号化マスクの裏面及び検出器3の裏面を分離する距離dは45.4mmである。符号化マスク1の裏面及び検出器3の裏面は、カメラボディのベースの側に位置し、この場合、符号化マスク及び検出器の前面は観測対象シーンの側に位置する。
複数の符号化マスク1を検査した。HURAタイプの符号化マスクが図6A〜6Cに示す。図6Aのマスクはランク9、及び4mmの厚さを有し、これもランク9を有する図6Bのマスクは6mmの厚さを有する。図6Cのマスクはランク6のマスクである。ここで、符号化マスクのランクはマスクの基本パターン、及び六角形とすることができる要素(中空部及び充填部)の寸法を固有に定義する番号である。例えば、ランクRのマスクはその基本中心パターンに、K=3R(R+1)+1とする場合のK個の要素を有する。これらのマスクの全体パターンは平坦な45mm六角形である。これらの符号化マスクの特徴を次の表に示す。
Figure 2008537137
検出器3の裏面をデコードアーチファクト減衰手段の自由端から分離する距離Lは、4mmの厚さを有する符号化マスクの場合に174.4mmであり、6mmの厚さを有する符号化マスクの場合に176.4mmであり、そして12mmの厚さを有する符号化マスクの場合に182.4mmである。
デコードアーチファクトの発生を制限するデバイスのこれらのプロトタイプにおいては、全体符号化領域に配置される線源を、第1線源よりも高い線量を出す余分の線源を部分符号化領域に配置した状態で、観測することができる。図7A及び7Bを参照することができ、これらの図は、セシウム137線源が余分に配置された状態のコバルト60線源を示すシーンの図を示している。この構成では、セシウム137線源によってガンマカメラのレベルで生成される線量率は、コバルト60線源によって生成される線量率の3倍の大きさである。図7Aは、本発明によるデコードアーチファクトの発生を制限するデバイスを備えるガンマカメラを使用して撮影した図であり、そして図7Bは、本発明によるデバイスを搭載しない符号化マスクを備えるガンマカメラを使用して撮影した図である。図7Aでは、余分に配置された線源は観測されず、図7Bでは、当該線源が観測され、そして当該線源によって観測対象シーンの間違った図が表示される。
本発明の複数の実施形態を示し、そして詳細に説明してきたが、種々の変更及び変形を、本発明の技術範囲を逸脱しない範囲において加え得ることを理解されたい。本発明は、説明した符号化マスクに制限されない。そうではなく、本発明は、デコードアーチファクトを生成し得る全てのタイプの符号化マスクを包含する。同様に、デコードアーチファクト減衰手段は、説明したデコードアーチファクト減衰手段に制限されない。詳細には、他の材料だけでなく他の形状を使用することができる。
本発明は、純粋に例示のためにのみ提示され、かつ決して本発明を制限するものではない例示としての実施形態についての記述を、添付の図を参照しながら一読することにより一層深く理解することができる。
図A及びBは、符号化マスクを有するガンマカメラの2つの例を図式的に示す。 図A及びBは、ガンマカメラを模式的に示し、そして符号化マスクによって全体が符号化される領域、及び部分的に符号化される領域、及び観測対象のガンマ線源の位置によるデコードアーチファクトの発生を図式的に示す。 図A及びBは、本発明による符号化マスクを有するガンマカメラに関するデコードアーチファクトの発生を制限するデバイスの2つの実施形態を示す。 図A及びBは、本発明によるデバイスを備えるガンマカメラを分解図及び断面図で示す。 図A及びBはそれぞれ、本発明によるデバイスの別の例を備えるガンマカメラを分解図及び断面図で示す。 図A〜Cは、図4A、4B、5A、及び5Bのガンマカメラに使用される符号化マスクの3つの例の正面図を示す。 図A及びBはそれぞれ、線量率が3倍の大きさの線源による影響を受ける放射線源を、本発明によるガンマカメラで撮影した画像、及び先行技術によるガンマカメラで撮影した画像を示す。

Claims (11)

  1. 符号化マスク(1)を有するガンマカメラに関するデコードアーチファクトの発生を制限するデバイスであって、前記デバイスは、符号化マスクに対向し、かつ符号化マスクによって部分的に符号化される領域(20)を見通す視野を有するガンマ線検出器(3)を備え、前記デバイスは、ガンマ線を透過せず、かつ符号化マスク(1)を基準にして検出器(3)の反対側に配置される凹型部品(30)を備え、前記凹型部品(30)は検出器(3)の視野の部分符号化領域(20)を覆い隠し、かつ凹型部品の長さに渡って変化する厚さを有するので、ガンマ光子は、ガンマ光子が視野の部分符号化領域(20)と検出器(3)との間のどの経路を取るかどうかに関係なく、材料の同じ厚さの部分によって阻止されることを特徴とする、デバイス。
  2. 凹型部品(30)が、ほぼ円筒形、円錐台状、ピラミッド形、または多面体状の内壁を有することを特徴とする、請求項1に記載のデバイス。
  3. 凹型部品(30)が、符号化マスク(1)と境界を接することを特徴とする、請求項2に記載のデバイス。
  4. 凹型部品(30)が、7g/cmを超える密度の金属により作製されることを特徴とする、請求項1〜3のいずれかに記載のデバイス。
  5. 凹型部品(30)が、ステンレス鋼、鉛または鉛系合金、タングステン、DENALのようなタングステン系合金、あるいは銅または銅系合金により作製することができることを特徴とする、請求項4に記載のデバイス。
  6. 凹型部品(30)は、符号化マスク(1)の支持部品(53)にネジ込むことにより取り付けられるネジ切り端部(30a)を有することを特徴とする、請求項1〜5のいずれかに記載のデバイス。
  7. 符号化マスクを有するガンマカメラが或る領域(10)を見通す視野を有し、領域(10)の全体が符号化マスク(1)によって符号化され、外郭(10.1)によって制限され、かつ部分符号化領域(20)に隣接する場合に、凹型部品(30)は、凹型部品を全体符号化領域(10)の外郭(10.1)が自由端部(30b)を通過するようにカメラに取り付けると、検出器(3)の反対側に自由端部(30b)を有するようになることを特徴とする、請求項1〜6のいずれかに記載のデバイス。
  8. 符号化マスクを有するガンマカメラが或る領域(10)を見通す視野を有し、領域(10)の全体が符号化マスク(1)によって符号化され、外郭(10.1)によって制限され、かつ部分符号化領域(20)に隣接する場合に、凹型部品(30)は、全体符号化領域(10)の外郭(10.1)に接する壁を有することを特徴とする、請求項1〜7のいずれかに記載のデバイス。
  9. 凹型部品(30)は、凹型部品をカメラに取り付けるときに、検出器(3)の反対側にほぼ円形の自由端部(30b)を有することを特徴とする、請求項1〜8のいずれかに記載のデバイス。
  10. 円形端部は、検出器(3)の中心部を中心とする半径(R)に対応することを特徴とする、請求項9に記載のデバイス。
  11. ガンマカメラであって、前記ガンマカメラは、請求項1〜10のいずれかに記載のデコードアーチファクトの発生を制限するデバイス(30)を備えることを特徴とする、ガンマカメラ。
JP2008507138A 2005-04-19 2006-04-14 符号化マスクを有するガンマカメラのデコードアーチファクトの発生を制限するデバイス Expired - Fee Related JP5062635B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0550986A FR2884618B1 (fr) 2005-04-19 2005-04-19 Dispositif limitant l'apparition d'artefacts de decodage pour gamma camera a masque code.
FR0550986 2005-04-19
PCT/FR2006/050350 WO2006111678A1 (fr) 2005-04-19 2006-04-14 Dispositif limitant l'apparition d'artefacts de decodage pour gamma camera a masque code

Publications (2)

Publication Number Publication Date
JP2008537137A true JP2008537137A (ja) 2008-09-11
JP5062635B2 JP5062635B2 (ja) 2012-10-31

Family

ID=35717661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008507138A Expired - Fee Related JP5062635B2 (ja) 2005-04-19 2006-04-14 符号化マスクを有するガンマカメラのデコードアーチファクトの発生を制限するデバイス

Country Status (7)

Country Link
US (1) US7476863B2 (ja)
EP (1) EP1869500B1 (ja)
JP (1) JP5062635B2 (ja)
CN (1) CN101160537B (ja)
FR (1) FR2884618B1 (ja)
RU (1) RU2383903C2 (ja)
WO (1) WO2006111678A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515184A (ja) * 2005-11-09 2009-04-09 ユニバーシティ・オブ・ジ・ウィトウォーターズランド・ヨハネスブルク 放射線画像化のための方法および装置
JP2014202553A (ja) * 2013-04-03 2014-10-27 国立大学法人金沢大学 空間放射線検出装置
JP2015087386A (ja) * 2013-09-24 2015-05-07 株式会社豊田放射線研究所 放射線源可視化装置及び放射線源可視化方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0510470D0 (en) * 2005-05-23 2005-06-29 Qinetiq Ltd Coded aperture imaging system
GB2434935A (en) * 2006-02-06 2007-08-08 Qinetiq Ltd Coded aperture imager using reference object to form decoding pattern
GB2434877A (en) * 2006-02-06 2007-08-08 Qinetiq Ltd MOEMS optical modulator
GB2434934A (en) * 2006-02-06 2007-08-08 Qinetiq Ltd Processing coded aperture image data by applying weightings to aperture functions and data frames
GB0602380D0 (en) * 2006-02-06 2006-03-15 Qinetiq Ltd Imaging system
GB2434936A (en) * 2006-02-06 2007-08-08 Qinetiq Ltd Imaging system having plural distinct coded aperture arrays at different mask locations
GB2434937A (en) * 2006-02-06 2007-08-08 Qinetiq Ltd Coded aperture imaging apparatus performing image enhancement
GB0615040D0 (en) * 2006-07-28 2006-09-06 Qinetiq Ltd Processing method for coded apperture sensor
US8243353B1 (en) 2008-04-07 2012-08-14 Applied Science Innovations, Inc. Holography-based device, system and method for coded aperture imaging
GB0822281D0 (en) * 2008-12-06 2009-01-14 Qinetiq Ltd Optically diverse coded aperture imaging
GB2472242A (en) * 2009-07-30 2011-02-02 Qinetiq Ltd Coded aperture imaging
CN102540238B (zh) * 2010-12-31 2014-08-13 同方威视技术股份有限公司 伽马相机和利用伽马相机检测辐射射线的方法
US10045752B2 (en) * 2012-05-14 2018-08-14 The General Hospital Corporation Method for coded-source phase contrast X-ray imaging
FR3021487B3 (fr) * 2014-05-26 2016-07-08 Canberra France Systeme et procede de camera pour radiations
US10333549B1 (en) * 2017-03-08 2019-06-25 iDensify LLC System and components for encoding integers
WO2019006310A1 (en) * 2017-06-29 2019-01-03 Cuadros Angela PIXELIZED K-ENCODED OPENING SYSTEM FOR X-RAY IMAGING WITH COMPRESSION SPECTRUM
SG11202001566TA (en) * 2017-10-20 2020-03-30 Australian Nuclear Science & Tech Org Compressive imaging method and system
US11399788B2 (en) * 2019-01-15 2022-08-02 Duke University Systems and methods for tissue discrimination via multi-modality coded aperture x-ray imaging
CN114724288A (zh) * 2022-02-24 2022-07-08 中国科学院西安光学精密机械研究所 一种基于编码掩模成像技术的门禁系统及控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503393A (ja) * 1996-01-16 2000-03-21 エーアイエル・システムズ・インコーポレーティド 正方形反対称均一冗長アレイ符号化アパーチャ撮像システム
JP2001506763A (ja) * 1997-10-15 2001-05-22 コミツサリア タ レネルジー アトミーク 放射線源を定位するための装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI902600A (fi) * 1990-05-24 1991-11-25 Valtion Teknillinen Foerfarande foer att goera en bild och saett att anvaenda detta.
IL109143A (en) * 1993-04-05 1999-03-12 Cardiac Mariners Inc X-rays as a low-dose scanning detector by a digital X-ray imaging system
US5751000A (en) * 1997-01-08 1998-05-12 Smv America, Inc. Prefilter collimator for PET gamma camera
US6195412B1 (en) * 1999-03-10 2001-02-27 Ut-Battelle, Llc Confocal coded aperture imaging
US6737652B2 (en) * 2000-09-29 2004-05-18 Massachusetts Institute Of Technology Coded aperture imaging

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000503393A (ja) * 1996-01-16 2000-03-21 エーアイエル・システムズ・インコーポレーティド 正方形反対称均一冗長アレイ符号化アパーチャ撮像システム
JP2001506763A (ja) * 1997-10-15 2001-05-22 コミツサリア タ レネルジー アトミーク 放射線源を定位するための装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515184A (ja) * 2005-11-09 2009-04-09 ユニバーシティ・オブ・ジ・ウィトウォーターズランド・ヨハネスブルク 放射線画像化のための方法および装置
JP2014202553A (ja) * 2013-04-03 2014-10-27 国立大学法人金沢大学 空間放射線検出装置
JP2015087386A (ja) * 2013-09-24 2015-05-07 株式会社豊田放射線研究所 放射線源可視化装置及び放射線源可視化方法

Also Published As

Publication number Publication date
FR2884618B1 (fr) 2008-06-06
US20080128625A1 (en) 2008-06-05
EP1869500B1 (fr) 2016-12-28
RU2383903C2 (ru) 2010-03-10
WO2006111678A1 (fr) 2006-10-26
EP1869500A1 (fr) 2007-12-26
CN101160537A (zh) 2008-04-09
FR2884618A1 (fr) 2006-10-20
US7476863B2 (en) 2009-01-13
JP5062635B2 (ja) 2012-10-31
CN101160537B (zh) 2011-03-30
RU2007142441A (ru) 2009-05-27

Similar Documents

Publication Publication Date Title
JP5062635B2 (ja) 符号化マスクを有するガンマカメラのデコードアーチファクトの発生を制限するデバイス
US4521688A (en) Three-dimensional and tomographic imaging device for x-ray and gamma-ray emitting objects
JP5400988B1 (ja) 放射性物質検出装置、放射線源位置可視化システム、および放射性物質検出方法
US20100012845A1 (en) Energy-resolving detection system and imaging system
JP2003265457A (ja) X線画像化方法とx線画像化システム
JP2006227024A (ja) 正方形反対称均一冗長アレイ符号化アパーチャ撮像システム
JP2014510270A (ja) 有効大きさが実サイズより大きい検出器アレイ{detectorarrayhavingeffectivesizelargerthanactualsize}
CN110520760A (zh) 用于辐射检测器的像素设计
Gmar et al. Development of coded-aperture imaging with a compact gamma camera
JP6994460B2 (ja) ミューオン撮像による固体物体の非侵襲的検査のための装置及び方法
TW202010520A (zh) 甲狀腺成像系統和方法
Gal et al. Operation of the CARTOGAM portable gamma camera in a photon-counting mode
EP0613023B1 (en) Radiation camera systems
JP2016223997A (ja) 放射線カメラ
Korevaar et al. A pinhole gamma camera with optical depth-of-interaction elimination
Ziock et al. Radiation imaging of dry-storage casks for nuclear fuel
CN208171893U (zh) 一种应用于微型ct的成像系统
KR101089812B1 (ko) 방사선 카메라
US20140183607A1 (en) Complementary Metal-Oxide-Semiconductor (CMOS) X-Ray Detector With A Repaired CMOS Pixel Array
JP2019163970A (ja) シンチレータアレイ、放射線検出器および放射線コンピュータ断層撮影装置
Dey et al. Point-source measurements using a dome shaped csi detector for cardiac spect
FR2883383A1 (fr) Dispositif optique et electronique pour localiser des sources electromagnetiques d'extreme ultraviolet, x, gamma ou des sources beta
Kurita et al. Autoradiography system with phosphor powder (ZnS: Ag) for imaging radioisotope dynamics in a living plant
Ziock et al. The Feasibility of Cask" Fingerprinting" as a Spent-Fuel, Dry-Storage Cask Safeguards Technique
Chen Modular gamma cameras: Improvements in scatter rejection, and characterization and initial clinical application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110922

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees