JP2008536059A - High-speed movable bearings especially for supporting the spindle of machine tools - Google Patents

High-speed movable bearings especially for supporting the spindle of machine tools Download PDF

Info

Publication number
JP2008536059A
JP2008536059A JP2008502235A JP2008502235A JP2008536059A JP 2008536059 A JP2008536059 A JP 2008536059A JP 2008502235 A JP2008502235 A JP 2008502235A JP 2008502235 A JP2008502235 A JP 2008502235A JP 2008536059 A JP2008536059 A JP 2008536059A
Authority
JP
Japan
Prior art keywords
race
movable bearing
ball
races
speed movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008502235A
Other languages
Japanese (ja)
Inventor
ヴイリ アルベルト,
Original Assignee
シエフレル・コマンデイトゲゼルシヤフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シエフレル・コマンデイトゲゼルシヤフト filed Critical シエフレル・コマンデイトゲゼルシヤフト
Publication of JP2008536059A publication Critical patent/JP2008536059A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/08Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with two or more rows of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General buildup of machine tools, e.g. spindles, slides, actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/309352Cutter spindle or spindle support

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Turning (AREA)
  • Support Of The Bearing (AREA)

Abstract

本発明によれば、高速可動軸受(1)が、並んで設けられる複数の玉列(6,7,8,9,10)を持ちかつ作動に起因するレース(2,3)の半径方向熱膨張を自動的に補償する可動玉軸受として構成され、そのレース(2,3)が、高速可動軸受(1)の冷えた状態で、内レース(2)における転動体(4)用転動面(5)の凸な構造により、1つの玉列(8)のみを介して支持接触し、両方のレース(2,3)の熱膨張及び遠心力拡張の増大と共に、両方のレース(2,3)の半径方向に弾性的に撓む構成により、それ以外の玉列(6,7,9,10)が両方のレース(2,3)と順次接触する状態になって、高速可動軸受(1)の作動温度でレース(2,3)が、すべての玉列(6,7,8,9,10)を介して互いに支持接触するようにしている。According to the present invention, the high-speed movable bearing (1) has a plurality of ball rows (6, 7, 8, 9, 10) provided side by side and the radial heat of the race (2, 3) due to operation. It is configured as a movable ball bearing that automatically compensates for expansion, and the race (2, 3) is in the cold state of the high-speed movable bearing (1), and the rolling surface for the rolling element (4) in the inner race (2) Due to the convex structure of (5), both the races (2, 3) are supported and contacted via only one ball row (8), with both the thermal expansion and centrifugal force expansion of both races (2, 3). ) Is elastically bent in the radial direction, and the other ball rows (6, 7, 9, 10) are sequentially brought into contact with both the races (2, 3), so that the high-speed movable bearing (1 ), The races (2, 3) are in support contact with each other through all the rows (6, 7, 8, 9, 10). Unishi to have.

Description

本発明は、工作機械の主軸を支持するため又は他の高速回転する機械部分を支持するために使用できる、請求項1の上位概念を形成する特徴に記載の高速可動軸受に関する。  The invention relates to a high-speed movable bearing according to the features forming the superordinate concept of claim 1 that can be used to support the spindle of a machine tool or to support other high-speed rotating machine parts.

転がり軸受技術の分野の当業者に、回転する機械部分を案内しかつ支持するため、特定の間隔をおいて設けられる少なくとも2つの軸受が必要なことは、一般に知られている。軸の支持が通常のように2つのラジアル軸受で行われると、軸上及びハウジング内における軸受座の間隔が製造公差の範囲内でしか一致しない、という問題が起こる。更に作動条件下で軸が一般にハウジングにより強く加熱されるので、支持個所における軸の温度に起因する長さの相違も補償せねばならない。従って製造公差及び長さの相違を補償する以前からの有効な可能性は、軸を1つの固定軸受においてのみ軸線方向に案内し、他方の支持個所では可動軸受により、内レースの固定個所、外レースの固定個所又は軸受自体における異なる間隔が、レースの相対移動により補償される。このような軸受装置の固定軸受として、軸の軸線方向案内の要求される精度に応じて、とりわけ深溝玉軸受、球面ころ軸受、円錐ころ軸受又は2列又は2つの1列アンギュラコンタクト玉軸受が特に適していることがわかったが、可動軸受は円筒ころ軸受又は針軸受により最も簡単に実現可能である。なぜならば、これらの形式の軸受では、それぞれ曲げ縁のないレース又は軸の転動路上における転動体環の移動が可能だからである。  It is generally known to those skilled in the art of rolling bearing technology that at least two bearings provided at specific intervals are required to guide and support the rotating machine parts. If the shaft is supported by two radial bearings as usual, the problem arises that the spacing between the bearing seats on the shaft and in the housing only matches within manufacturing tolerances. Furthermore, since the shaft is generally strongly heated by the housing under operating conditions, the length differences due to the temperature of the shaft at the support must also be compensated. Therefore, an effective possibility before compensating for manufacturing tolerances and length differences is that the shaft is guided in the axial direction only in one fixed bearing, and in the other support location by the movable bearing, the inner race fixed location, the outer Different spacings at the race fixing points or at the bearings themselves are compensated by the relative movement of the races. As a fixed bearing of such a bearing device, a deep groove ball bearing, a spherical roller bearing, a tapered roller bearing or a double row or two single row angular contact ball bearings are particularly suitable depending on the required accuracy of the axial guide of the shaft. Although found to be suitable, movable bearings are most easily realized with cylindrical roller bearings or needle bearings. This is because in these types of bearings, it is possible to move the rolling element ring on a raceway or shaft rolling path without a bending edge, respectively.

しかし特に水冷される工作機械主軸の可動軸受として円筒ころ軸受又は針軸受を使用する場合内レースと外レースとの間又は軸と軸ハウジングとの間に温度差があると、異なる熱膨張により、軸受の増大する半径方向締付けにおいて認められる高い半径方向剛性をこれらの軸受が持つという、欠点のあることがわかった。温度に起因するこの半径方向締付けによりますます増大するレースと転動体との間の半径方向締付けが強くなって、生じる摩擦熱が軸受の許容作動温度を上回り、転動体とレースとの間の必要な潤滑膜が裂けて潤滑材の部分燃焼及び軸受の早期の故障に至ることがある。このような早期の軸受故障を回避する公知の可能性は、軸受の半径方向遊隙を適当に予め設定することであるが、工作機械主軸上の内レースの費用がかかる円錐座を介するこのような半径方向遊隙設定は、非常に時間を要し、更に非常に費用のかかる包絡円測定器を必要とする。  However, when using cylindrical roller bearings or needle bearings as the movable bearings of machine tool spindles that are water-cooled, if there is a temperature difference between the inner race and the outer race or between the shaft and the shaft housing, different thermal expansion causes It has been found that these bearings have the disadvantage that they have the high radial stiffness found in the increasing radial clamping of the bearings. This radial tightening due to the temperature increases the radial tightening between the race and the rolling element, and the resulting frictional heat exceeds the allowable operating temperature of the bearing and the required friction between the rolling element and the race. The lubricating film may tear, leading to partial combustion of the lubricant and premature failure of the bearing. A known possibility of avoiding such premature bearing failure is to appropriately preset the radial clearance of the bearing, but this is via a conical seat which is costly for the inner race on the machine tool spindle. Such radial clearance setting is very time consuming and requires a very expensive envelope measuring instrument.

工作機械主軸を支持する場合可動軸受を実現する別の可能性は、欧州特許出願公開第926368号明細書に開示された玉軸受であり、外レースが溝状玉転動路を持ち、内レースが縦断面において平らな玉転動路を持つように、構成され、レースの間に設けられえる玉がセラミックから成っている。所定の半径方向遊隙を持つ軸受の構成により、軸受が軸上及びハウジング内における充分なはまり合い及び好都合な作動遊隙を持ち、平らな転動面の範囲における内レースの軸線方向移動可能性により可動軸受機能が保証されるようにすることができる。  Another possibility of realizing a movable bearing when supporting the machine tool spindle is the ball bearing disclosed in EP 926368, the outer race having a grooved ball rolling path, and the inner race Is made of ceramic, which is constructed so that it has a flat ball rolling path in the longitudinal section and can be provided between the races. Due to the configuration of the bearing with a given radial clearance, the bearing has sufficient fit on the shaft and in the housing and favorable operating clearance, and the axial movement of the inner race in the range of a flat rolling surface Thus, the movable bearing function can be ensured.

このように構成される玉軸受は、その所定の半径方向遊隙により、作動に起因するレースの半径方向熱膨張を阻止するが、低い負荷能力しか持たず、従って軸受が突然極めて大きい点荷重を受けるいわゆる衝突の場合、材料を損傷しかつ最後には全体故障する傾向がある。更に実際に、軸受の所定の半径方向遊隙も、内レースから外レースへの大きい熱勾配の場合軸受の過負荷を回避するのに充分ではないので、2列構造のこのような軸受自体により、軸受のあらゆる作動状態において均一に精確な半径方向主軸案内を保証することは不可能である。  A ball bearing constructed in this way, due to its predetermined radial clearance, prevents radial thermal expansion of the race due to operation, but has a low load capacity, so the bearing suddenly has a very large point load. In the case of so-called collisions, they tend to damage the material and eventually cause a total failure. Furthermore, in practice, a given radial clearance of the bearing is not sufficient to avoid bearing overload in the case of a large thermal gradient from the inner race to the outer race, so that such a two-row structure bearing itself It is impossible to guarantee a uniform and accurate radial spindle guide in all operating states of the bearing.

従って公知の従来技術の解決策の上述した欠点から出発して、本発明の基礎になっている課題は、特に工作機械の主軸を支持するための高速可動軸受を構想し、それにより主軸の固定軸受に対する主軸の温度に起因する長さの相違を補償する機能のほかに、作動に起因するレースの半径方向熱膨張の結果生じるレースの過負荷を回避し、軸受のあらゆる温度状態及び作動状態において均一に精確な半径方向主軸案内を保証することも可能であるようにすることである。  Thus, starting from the above-mentioned drawbacks of the known prior art solutions, the problem underlying the present invention contemplates a high-speed movable bearing, in particular for supporting the spindle of a machine tool, thereby fixing the spindle. In addition to the ability to compensate for differences in length due to spindle temperature relative to the bearing, it avoids race overload resulting from race radial thermal expansion due to operation, in all temperature and operating conditions of the bearing. It is also possible to ensure a uniform and accurate radial spindle guide.

本発明によればこの課題は、請求項1の上位概念に記載の高速可動軸受において、高速可動軸受が、並んで設けられる複数の玉列を持ちかつ作動に起因するレースの半径方向熱膨張を自動的に補償する可動玉軸受として構成され、そのレースが、高速可動軸受の冷えた状態で、内レースにおける転動体用転動面の凸な構造により、1つの玉列のみを介して支持接触し、両方のレースの熱膨張及び遠心力拡張の増大と共に、1つのレース又は両方のレースの半径方向に弾性的に撓む構成により、それ以外の玉列が両方のレースと順次接触する状態になって、高速可動軸受の作動温度でレースが、すべての玉列を介して互いに支持接触するようにしている。  According to the present invention, the object of the present invention is to provide a high-speed movable bearing according to the superordinate concept of claim 1, wherein the high-speed movable bearing has a plurality of ball rows provided side by side and performs radial thermal expansion of the race due to operation. It is configured as a movable ball bearing that automatically compensates, and the race is supported by a convex structure of the rolling surface for the rolling element in the inner race with only one ball row in the cold state of the high-speed movable bearing. However, as the thermal expansion and centrifugal force expansion of both races increase, the configuration in which one race or both races elastically flexes radially causes the other rows to contact each race in turn. Thus, the races support and come into contact with each other through all the rows of balls at the operating temperature of the high-speed movable bearing.

適切な展開では、本発明により構成される高速可動軸受は、並んで設けられかつ転動体として同じ直径の鋼玉又はセラミック玉を持つなるべく5つの玉列を持ち、中央の玉列の転動体のみが、高速可動軸受の冷えた状態で、両方のレースに支持接触している。並んで3つの玉列を設けると、外側の半径方向負荷がほぼ均一に個々の玉列に分布され、軸受が全体そして公知の1列又は2列の可動玉軸受より著しく頑丈である、という利点がある。しかし使用事例に応じて、5つより少ないか又は多い玉列を持つ高速可動軸受を構成することも可能である。転動体のための材料及び形状を選ぶ際、とりわけセラミック玉の使用が有利なことがわかった、なぜならば、玉はその理想的な形状のため例えば円筒ころより精確に製造可能であり、これらの玉により可動軸受のすぐれた作動の静かさが生じる。更にセラミック玉は、セラミックから成る円筒ころに比較して、その代わりに使用可能な公知の転がり軸受鋼から成る玉と同じように安価に製造可能である。  In a suitable development, the high-speed movable bearing constructed in accordance with the invention has as many as possible five rows of steel balls or ceramic balls of the same diameter as rolling elements, with only the rolling elements of the central ball row. The high-speed movable bearing is in cold contact with both races in support contact. Providing three ball rows side by side has the advantage that the outer radial load is distributed almost evenly on the individual ball rows and that the bearings are significantly more robust than the entire and known single or double row ball bearings. There is. However, depending on the use case, it is also possible to construct a high-speed movable bearing with less or more than five ball arrays. When choosing materials and shapes for rolling elements, it has been found that the use of ceramic balls is particularly advantageous because the balls can be manufactured more accurately than cylindrical rollers, for example because of their ideal shape. The balls provide a quiet operation of the movable bearing. Furthermore, ceramic balls can be manufactured at a lower cost as compared to balls made of known rolling bearing steel that can be used instead of ceramic cylindrical rollers.

このような数の玉列により構成される可動軸受が従来の可動軸受より著しく大きい軸線方向構造空間を必要としないようにするため、本発明により構成される高速可動軸受の有利な構成として更に、個々の玉列の転動体が、周方向に均一に互いに間隔をおいて共通な保持器内に互いに入り組んで設けられ、従って高速可動軸受の軸線方向幅が、1つの横列の5つの転動体の直径の和より小さいことが提案される。その際実際に、互いに入り組んだ5つの玉列により構成される可動軸受の軸線方向幅は、従来技術において記載された1列可動玉軸受の幅の2倍にほぼ等しく、これが大抵の使用において存在する軸線方向構造空間により不利な影響を受けないことがわかった。  In order to prevent the movable bearing constituted by such a number of ball rows from requiring a significantly larger axial structure space than the conventional movable bearing, as an advantageous configuration of the high-speed movable bearing constituted by the present invention, The rolling elements of the individual ball trains are provided in a common cage, spaced uniformly from one another in the circumferential direction, so that the axial width of the high-speed movable bearing is equal to that of the five rolling elements in one row. It is suggested to be smaller than the sum of the diameters. In practice, the axial width of the movable bearing constituted by five interlaced ball arrays is almost equal to twice the width of the single-row movable ball bearing described in the prior art, which is present in most uses. It is found that the axial structure space is not adversely affected.

玉列の入り組んだ配置は、本発明により構成される高速可動軸受の別の構成では、中央及び軸線方向外側の玉列の転動体と、中央の玉列に隣接する両方の玉列の転動体とが、周方向に交互に続く共通な横軸線上にそれぞれ設けられるように、実現可能である。その際中央及び軸線方向外側の玉列の横軸上に設けられる転動体の間には、保持器内でその玉ポケットを区画する1つの橋絡片のみが設けられ、中央の玉列に隣接する玉列にあって同様に保持器内に玉ポケットを区画する橋絡片のみにより互いに分離される転動体は、それぞれ中央及び軸線方向外側の玉列の横軸線の間で、これらの玉列の玉ポケットを区画する橋絡片の高さの所に設けられている。  The intricate arrangement of the ball train is another configuration of the high-speed movable bearing constructed according to the present invention, in which the rolling elements of the central and axially outer ball trains and the rolling elements of both ball trains adjacent to the central ball train are shown. Are provided on the common horizontal axis line that continues alternately in the circumferential direction. At that time, only one bridging piece that divides the ball pocket in the cage is provided between the rolling elements provided on the center and the horizontal axis of the ball row outside in the axial direction, and adjacent to the ball row in the center. The rolling elements that are separated from each other only by the bridging pieces that divide the ball pockets in the cage in the same manner, are arranged between the center and the horizontal axis of the ball line on the outer side in the axial direction, respectively. It is provided at the height of the bridge piece that partitions the ball pocket.

更に本発明により構成される高速可動軸受の別の特徴によれば、外レースのなるべく平らに形成される内面に、玉列の数に応じて、並んで設けられる5つの転動溝が転動体の案内部として加工されている。転動体潤滑のため転動体の半径より少し大きい半径を持つこれらの転動溝は、その断面がそれぞれ同じ幅及び同じ深さを持つように構成され、かつ直接互いに移行しているので、転動体はその周囲のほぼ4分の1を転動溝内に案内される。  Furthermore, according to another feature of the high-speed movable bearing constructed according to the present invention, five rolling grooves provided side by side in accordance with the number of ball rows are formed on the inner surface of the outer race formed as flat as possible. It is processed as a guide part. These rolling grooves, which have a radius slightly larger than the rolling element radius for rolling element lubrication, are configured such that their cross-sections have the same width and depth, respectively, and are directly transitioning to each other. Is guided in the rolling groove almost a quarter of its circumference.

本発明により構成される高速可動軸受の別の構成では、工作機械の主軸と軸ハウジングとの間の特に大きい熱勾配のため、なるべく両方のレースが、半径方向に弾性的に撓む構成のために、その外面に凹な断面の環状凹所をそれぞれ持つように形成され、これらの環状凹所がレースのほぼ全軸線方向幅にわたって延び、その最大深さがレースの厚さのほぼ半分に等しい。従ってレースの外面にあるこれらの環状凹所は、レースの材料断面を減少し、この減少によりレースの剛性が軸線中央の方へ減少し、同時にレースの半径方向弾性が軸線中央の方へ増大する。その際凹な環状凹所の表面を更に精密研削によって加工して、場合によっては表面粗さの切欠き効果の結果生じるレースの過負荷破壊を回避すると、有利なことがわかった。これに反し凹な環状凹所に続く両方のレースの軸線方向縁範囲は再び平らになるべく精密研削なしに形成されているので、レースは、環状軸受座として構成されるこれらの縁範囲を介して、問題なく軸ハウジング内又は主軸上に取付けられることができる。しかしレースの間に著しく大きい熱勾配を持つ使用事例では、外レースのみ又は内レースのみを前記のように半径方向に弾性的に構成することも可能なので、従来のように構成される他のレースでは、表面粗さの切欠き効果の結果生じる破壊の危険はなくなる。  In another configuration of the high-speed movable bearing constructed in accordance with the present invention, a particularly large thermal gradient between the machine tool spindle and the shaft housing, so that both races are preferably elastically deflected radially. Each of which has an annular recess with a concave cross section on its outer surface, these annular recesses extending over almost the entire axial width of the race, the maximum depth of which is approximately equal to half the thickness of the race . These annular recesses on the outer surface of the race thus reduce the material cross-section of the race, which reduces the stiffness of the race towards the center of the axis and at the same time increases the radial elasticity of the race towards the center of the axis. . In doing so, it has been found advantageous to further process the surface of the concave annular recess by precision grinding to avoid race overload failure which in some cases results from a notch effect of surface roughness. On the other hand, the axial edge area of both races following the concave annular recess is formed without precision grinding to flatten again, so that the race can be passed through these edge areas configured as an annular bearing seat. Can be mounted in the shaft housing or on the main shaft without problems. However, in use cases with a significantly large thermal gradient between races, only the outer race or only the inner race can be configured to be elastically elastic in the radial direction as described above. Then the risk of destruction resulting from the notch effect of the surface roughness is eliminated.

従って特に工作機械の主軸を支持するため本発明により構成される高速可動軸受は、従来技術から公知の転がり軸受に対して、そのレースの特殊な構成及び複数列玉軸受の構成によって、温度に起因する主軸の固定軸受座に対する長さの相違を補償できる能力のほかに、作動に起因するレースの半径方向熱膨張及び遠心力拡張を自動的に補償し、従って軸受のいかなる作動状態及び温度状態においても一様に精確な主軸案内を保証することもできる、という利点を持っている。内レースにおける転動体用転動面の凹な構成及び軸受半径方向遊隙の適当な設計によって、軸受の冷えた状態で精確な主軸案内が、まず両方のレースに支持接触している中央の玉列を介して保証される。それから遠心力の増大及び作動に起因するレースの熱膨張により、中央の玉列に隣接する両方の玉列も両方のレースに支持接触する。本発明により構成される高速可動軸受が最後にその作動温度に達すると、半径方向に弾性的に撓むレースの構成により、軸線方向外側の両方の玉列も両方のレースに支持接触し、その際中央の玉列は過負荷されず、軸受のいかなる温度状態でも充分な軸受剛性が存在する。本発明により5列の玉軸受として構成される高速可動軸受の構成は、公知の1列玉軸受と比較して、少し大きい軸受摩擦の原因となるが、この軸受の高速適性は維持されている。同時にそれにより、例えば2列円筒ころ軸受と比較して、本発明による高速可動軸受の内レースが外レースに対して著しく傾斜し難いようにすることができる。更に本発明により構成される高速可動軸受は、保守不要により潤滑材を貯蔵するため無接触密封板を使用することが可能であり、低い製造費により高価なセラミックころの代わりに安価に製造可能なセラミック玉が使用される、という点ですぐれている。  Therefore, the high-speed movable bearing constructed according to the invention, in particular to support the spindle of the machine tool, is due to the temperature due to the special configuration of the race and the configuration of the multi-row ball bearings compared to the rolling bearings known from the prior art. In addition to the ability to compensate for the difference in length of the main spindle relative to the fixed bearing seat, it automatically compensates for race radial thermal expansion and centrifugal expansion due to operation, and thus in any operating and temperature conditions of the bearing. Also has the advantage of being able to guarantee a uniform and accurate spindle guide. Due to the concave design of the rolling surfaces for the rolling elements in the inner race and the appropriate design of the bearing radial clearance, a precise spindle guide in the cold state of the bearing is first supported by the central ball in contact with both races. Guaranteed through the column. Then, due to the thermal expansion of the race due to increased centrifugal force and operation, both ball rows adjacent to the central ball row also support and contact both races. When the high-speed movable bearing constructed in accordance with the present invention finally reaches its operating temperature, the configuration of the race elastically deflected in the radial direction causes both the ball trains on the outside in the axial direction to support and contact both races. In this case, the central ball train is not overloaded and there is sufficient bearing stiffness at any temperature of the bearing. Although the configuration of the high-speed movable bearing configured as a five-row ball bearing according to the present invention causes a slightly larger bearing friction than the known single-row ball bearing, the high-speed suitability of this bearing is maintained. . At the same time, this makes it possible for the inner race of the high-speed movable bearing according to the invention to be significantly less inclined with respect to the outer race, for example compared to a two-row cylindrical roller bearing. Furthermore, the high-speed movable bearing constructed according to the present invention can use a contactless sealing plate to store the lubricant without maintenance, and can be manufactured at low cost instead of expensive ceramic rollers at a low manufacturing cost. Excellent in that ceramic balls are used.

本発明により構成される高速可動軸受の好ましい実施例が、添付図面を参照して以下に詳細に説明される。  A preferred embodiment of a high speed movable bearing constructed in accordance with the present invention will be described in detail below with reference to the accompanying drawings.

図1には、電動機26及びこれにより駆動される主軸27を含む工作機械の駆動装置が概略的に示されている。この主軸27は、明らかにわかるように一端を、固定軸受座31として軸ハウジング28内に構成されている2つのアンギュラコンタクト玉軸受29,30に支持されている。これに反し主軸10の他端は、本発明により構成される高速可動軸受1により形成される可動軸受座32に支持されている。このため図2からわかるように、この高速可動軸受1は、主軸27上に取付けられる内レース2と、軸ハウジング28内に取付けられる外レース3と、これらのレース2,3の間に設けられる特定数の転動体4とを含み、可動軸受機能として、転動体4用の内レース2が軸線方向に移動可能である。  FIG. 1 schematically shows a machine tool drive device including an electric motor 26 and a main shaft 27 driven thereby. As can be clearly seen, one end of the main shaft 27 is supported by two angular contact ball bearings 29 and 30 which are configured in a shaft housing 28 as a fixed bearing seat 31. On the other hand, the other end of the main shaft 10 is supported by a movable bearing seat 32 formed by the high-speed movable bearing 1 configured according to the present invention. Therefore, as can be seen from FIG. 2, the high-speed movable bearing 1 is provided between the inner race 2 mounted on the main shaft 27, the outer race 3 mounted in the shaft housing 28, and the races 2 and 3. The inner race 2 for the rolling elements 4 is movable in the axial direction as a movable bearing function including a specific number of rolling elements 4.

更に図2から明らかにわかるように、高速可動軸受1は、本発明によれば、作動に起因するレース2,3の半径方向熱膨張を自動的に補償する可動玉軸受として構成され、転動体4として同じ直径のセラミック玉を持つ5つの並んで設けられる玉列6,7,8,9,10を持っている。図2から漠然的にのみわかるように、高速可動軸受1のレース2,3は、軸受の冷えた状態では、内レース2における転動体4用の転動面5の凸な構成により、中央の玉列8を介してのみ、互いに支持接触しているが、両方のレース2,3の熱膨張及び遠心力拡張の増大と共に、両方のレース2,3の半径方向に弾性的に撓む構成により、別の玉列6,7,9,10が順次に両方のレース2,3と接触する状態になって、高速可動軸受1の作動温度においてレース2,3が、すべての玉列6,7,8,9,10を介して互いに支持接触するようになる。  Further, as clearly shown in FIG. 2, the high-speed movable bearing 1 is configured as a movable ball bearing that automatically compensates for the radial thermal expansion of the races 2 and 3 caused by the operation according to the present invention. 4 has five rows of ball balls 6, 7, 8, 9, and 10 provided side by side with ceramic balls of the same diameter. As can be seen only vaguely from FIG. 2, the races 2 and 3 of the high-speed movable bearing 1 have a central configuration due to the convex configuration of the rolling surface 5 for the rolling elements 4 in the inner race 2 when the bearing is cold. Due to the configuration in which the two races 2 and 3 are elastically deflected with increasing thermal expansion and centrifugal force expansion of both races 2 and 3, but only in contact with each other via the ball array 8. The other ball trains 6, 7, 9, 10 are sequentially brought into contact with both races 2, 3, so that at the operating temperature of the high-speed movable bearing 1, the races 2, 3 are connected to all the ball trains 6, 7. , 8, 9, 10 are brought into support contact with each other.

この目的のため個々の玉列6,7,8,9,10の転動体4は、同様に図2から同様に漠然的にのみわかるように、周方向に互いに均一な間隔をおいて、共通な保持器11に互いに入り組んで設けられているので、高速可動軸受1の軸線方向幅は、1つの横列の5つの転動体4の直径の和より小さい。その際玉列6,7,8,9,10の互いに入り組んだ配置のために、中央の玉列8及び軸線方向外側の玉列6,10の転動体4は、共通な横軸線上に設けられ、中央の玉列8に隣接する両方の玉列7,9の転動体4も同様に、周方向において中央及び軸線方向玉列8,6,10の転動体4の横軸線の間にそれぞれ設けられている共通な横軸線上に設けられている。レース2,3の間において保持器11内に位置ぎめされる玉列6,7,8,9,10の軸線方向案内は、並んで設けられて図2においてよくわかる5つの転動溝13,14,15,16,17を介して行われる。これらの転動溝は、外レース3の平らに形成される内面12に加工されており、断面において同じ幅及び同じ深さを持ち、転動体4の半径より少し大きい半径を持つように構成されている。  For this purpose, the rolling elements 4 of the individual ball rows 6, 7, 8, 9 and 10 are also common with a uniform spacing in the circumferential direction, as can be seen only vaguely in the same way from FIG. Since the cage 11 is provided in a complicated manner, the axial width of the high-speed movable bearing 1 is smaller than the sum of the diameters of the five rolling elements 4 in one row. In this case, because of the intricate arrangement of the ball rows 6, 7, 8, 9, and 10, the rolling elements 4 of the ball row 8 at the center and the ball rows 6 and 10 on the outer side in the axial direction are provided on a common horizontal axis. Similarly, the rolling elements 4 of both the ball rows 7 and 9 adjacent to the central ball row 8 are respectively between the horizontal axis of the rolling elements 4 of the center and the axial ball rows 8, 6, 10 in the circumferential direction. They are provided on a common horizontal axis. The axial guides of the ball rows 6, 7, 8, 9, and 10 positioned in the cage 11 between the races 2 and 3 are provided side by side, and the five rolling grooves 13, which are well understood in FIG. 14, 15, 16, 17. These rolling grooves are machined into the flatly formed inner surface 12 of the outer race 3 and have the same width and depth in cross section and are configured to have a radius slightly larger than the radius of the rolling element 4. ing.

図2から同様にわかるように、高速可動軸受1の両方のレース2,3は、半径方向に弾性的に撓む構成のために、それぞれ凹な断面の環状凹所20,21を持つように構成され、これらの環状凹所はレース2,3のほぼ全軸線方向幅にわたって延び、その最大深さはレース2,3の厚さのほぼ半分に等しい。レース2,3の外面18,19にあるこれらの凹な環状凹所20,21は、レース2,3の材料断面を少なくし、この断面減少により、レース2,3の剛性がレースの軸線方向中央の方へ減少し、同時にレース2,3の半径方向弾性がレースの軸線方向中央の方へ増大する。これに反し両方のレース2,3のこれらの環状凹所20,21に続く軸線方向縁範囲22,23,24,25は平らに形成され、それぞれ環状の軸受座を介してレース2,3が軸ハウジング28ない又は主軸27上に取付けられている。  As can also be seen from FIG. 2, both races 2 and 3 of the high-speed movable bearing 1 have annular recesses 20 and 21 with concave cross sections, respectively, due to the configuration of elastically bending in the radial direction. Constructed, these annular recesses extend over almost the entire axial width of the races 2, 3 and their maximum depth is equal to approximately half the thickness of the races 2, 3. These concave annular recesses 20 and 21 on the outer surfaces 18 and 19 of the races 2 and 3 reduce the material cross-section of the races 2 and 3, and this reduction in cross-section makes the races 2 and 3 rigid in the race axial direction. It decreases towards the center and at the same time the radial elasticity of the races 2 and 3 increases towards the center of the race in the axial direction. On the other hand, the axial edge regions 22, 23, 24, 25 following these annular recesses 20, 21 of both races 2, 3 are formed flat, and the races 2, 3 are respectively connected via an annular bearing seat. There is no shaft housing 28 or it is mounted on the main shaft 27.

固定軸受及び本発明による高速可動軸受に支持される主軸を持つ工作機械の駆動装置の断面図を示す。  1 shows a cross-sectional view of a machine tool drive device having a main shaft supported by a fixed bearing and a high-speed movable bearing according to the present invention. 本発明により構成される高速可動軸受の断面の半分の拡大図を示す。  2 shows an enlarged view of half of the cross section of a high-speed movable bearing constructed in accordance with the present invention.

符号の説明Explanation of symbols

1 高速可動軸受
2 内レース
3 外レース
4 転動体
5 2の転動面
6,7,8,9,10 玉列
11 保持器
12 3の内面
13,14,15,16,17 転動溝
18 2の外面
19 3の外面
20,21 環状凹所
22,23 18の縁範囲
24,25 19の縁範囲
26 電動機
27 主軸
28 軸ハウジング
29,30 アンギュラコンタクト玉軸受
31 固定軸受座
32 可動軸受座
DESCRIPTION OF SYMBOLS 1 High-speed movable bearing 2 Inner race 3 Outer race 4 Rolling surface 6,7,8,9,10 of rolling element 5 2 Ball array 11 Inner surface 13,14,15,16,17 Rolling groove 18 of cage 12 3 2 outer surface 193 outer surface 20, 21 annular recesses 22, 23 edge range 24, 25 18 edge range 26 motor 27 main shaft 28 shaft housing 29, 30 angular contact ball bearing 31 fixed bearing seat 32 movable bearing seat

Claims (7)

特に工作機械の主軸を支持するための高速可動軸受が、主軸(27)上に取付けられる内レース(2)、軸ハウジング(28)に取付けられる外レース(3)、及びこれらレース(2,3)の間に設けられる特定数の転動体(4)を含み、可動軸受機能として、転動体(4)用転動面(5)の範囲における内レース(2)の軸線方向移動を可能にするものにおいて、高速可動軸受(1)が、並んで設けられる複数の玉列(6,7,8,9,10)を持ちかつ作動に起因するレース(2,3)の半径方向熱膨張を自動的に補償する可動玉軸受として構成され、そのレース(2,3)が、高速可動軸受(1)の冷えた状態で、内レース(2)における転動体(4)用転動面(5)の凸な構造により、1つの玉列(8)のみを介して支持接触し、両方のレース(2,3)の熱膨張及び遠心力拡張の増大と共に、1つのレース(2又は3)又は両方のレース(2及び3)の半径方向に弾性的に撓む構成により、それ以外の玉列(6,7,9,10)が両方のレース(2,3)と順次接触する状態になって、高速可動軸受(1)の作動温度でレース(2,3)が、すべての玉列(6,7,8,9,10)を介して互いに支持接触するようにしていることを特徴とする、高速可動軸受。  In particular, an inner race (2) mounted on the main shaft (27), an outer race (3) mounted on the shaft housing (28), and these races (2, 3) for supporting the main shaft of the machine tool. ) To enable the inner race (2) to move in the axial direction within the range of the rolling surface (5) for the rolling element (4) as a movable bearing function. High-speed movable bearing (1) has a plurality of ball rows (6, 7, 8, 9, 10) arranged side by side and automatically performs radial thermal expansion of the race (2, 3) due to operation In the inner race (2) with the race (2, 3) in the cold state of the high-speed movable bearing (1). Due to the convex structure, the support contact is made through only one ball row (8), and both The configuration of one race (2 or 3) or both races (2 and 3) to be elastically flexed in the radial direction along with increased thermal expansion and centrifugal force expansion of the other race (2, 3) The ball train (6, 7, 9, 10) comes into contact with both races (2, 3) in sequence, so that the race (2, 3) is all balls at the operating temperature of the high-speed movable bearing (1). A high-speed movable bearing, characterized in that it is in support and contact with each other via rows (6, 7, 8, 9, 10). 高速可動軸受が並んで設けられかつ転動体(4)として同じ直径の鋼玉又はセラミック玉を持つなるべく5つの玉列(6,7,8,9,10)を持ち、中央の玉列(6)の転動体(4)のみが、高速可動軸受(1)の冷えた状態で、両方のレース(2,3)に支持接触していることを特徴とする、請求項1に記載の高速可動軸受。  It has 5 ball rows (6, 7, 8, 9, 10) as many as possible with steel balls or ceramic balls of the same diameter as rolling elements (4), and a central ball row (6). 2. The high-speed movable bearing according to claim 1, characterized in that only the rolling elements (4) are in support contact with both races (2, 3) in the cold state of the high-speed movable bearing (1). . 個々の玉列(6,7,8,9,10)の転動体(4)が、周方向に均一に互いに間隔をおいて共通な保持器(11)内に互いに入り組んで設けられ、従って高速可動軸受(1)の軸線方向幅が、1つの横列の5つの転動体(4)の直径の和より小さいことを特徴とする、請求項2に記載の高速可動軸受。  The rolling elements (4) of the individual ball rows (6, 7, 8, 9, 10) are provided in a common cage (11) spaced evenly from one another in the circumferential direction and are therefore arranged at high speed. The high-speed movable bearing according to claim 2, characterized in that the axial width of the movable bearing (1) is smaller than the sum of the diameters of the five rolling elements (4) in one row. 玉列(6,7,8,9,10)の入り組んだ配置のため、中央及び軸線方向外側の玉列(8,6,10)の転動体(4)と、中央の玉列(8)に隣接する両方の玉列(7,9)の転動体(4)とが、周方向に交互に続く共通な横軸線上にそれぞれ設けられていることを特徴とする、請求項3に記載の高速可動軸受。  Due to the complicated arrangement of the ball rows (6, 7, 8, 9, 10), the rolling elements (4) of the ball rows (8, 6, 10) at the center and the axially outer side, and the ball rows (8) at the center The rolling elements (4) of both ball rows (7, 9) adjacent to each other are provided on a common horizontal axis line alternately continuing in the circumferential direction, respectively. High-speed movable bearing. 外レース(3)のなるべく平らに形成される内面(12)に、玉列(6,7,8,9,10)の数に応じて、並んで設けられる5つの転動溝(13,14,15,16,17)が加工されており、これらの転動溝の断面がそれぞれ同じ幅及び同じ深さを持ち、かつ転動体(4)の半径より少し大きい半径を持つように形成されていることを特徴とする、請求項1に記載の高速可動軸受。  Five rolling grooves (13, 14) arranged side by side on the inner surface (12) formed as flat as possible of the outer race (3) according to the number of ball rows (6, 7, 8, 9, 10). , 15, 16, 17), and the cross-sections of these rolling grooves have the same width and the same depth, and have a radius slightly larger than the radius of the rolling element (4). The high-speed movable bearing according to claim 1, wherein the high-speed movable bearing is provided. なるべく両方のレース(2,3)が、半径方向に弾性的に撓む構成のために、その外面(18,19)に凹な断面の環状凹所(20,21)をそれぞれ持つように形成され、これらの環状凹所がレース(2,3)のほぼ全軸線方向幅にわたって延び、その最大深さがレース(2,3)の厚さのほぼ半分に等しいことを特徴とする、請求項5に記載の高速可動軸受。  As much as possible, both races (2, 3) are formed so as to have an annular recess (20, 21) with a concave cross section on the outer surface (18, 19), respectively, in order to be elastically bent in the radial direction. These annular recesses extend over substantially the entire axial width of the race (2, 3), the maximum depth of which is equal to approximately half the thickness of the race (2, 3). 5. A high-speed movable bearing according to 5. レース(2,3)の外面(18,19)において凹な環状凹所(20,21)に続く両方のレース(2,3)の軸線方向縁範囲(22,23,24,25)が平らに形成され、レース(2,3)が、環状軸受座として形成されるこれらの縁範囲(22,23,24,25)を介してのみ、軸ハウジング(28)内又は主軸(27)上に取付けられていることを特徴とする、請求項6に記載の高速可動軸受。  The axial edge range (22, 23, 24, 25) of both races (2, 3) following the concave annular recess (20, 21) on the outer surface (18, 19) of the race (2, 3) is flat. The race (2, 3) is formed in the shaft housing (28) or on the main shaft (27) only through these edge areas (22, 23, 24, 25) formed as annular bearing seats. The high-speed movable bearing according to claim 6, wherein the high-speed movable bearing is attached.
JP2008502235A 2005-03-04 2006-02-24 High-speed movable bearings especially for supporting the spindle of machine tools Pending JP2008536059A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005009921A DE102005009921A1 (en) 2005-03-04 2005-03-04 High-speed loose bearing, in particular for supporting the main spindle of a machine tool
PCT/DE2006/000341 WO2006092120A1 (en) 2005-03-04 2006-02-24 High-speed movable bearing in particular for the mounting of a main spindle of a machine tool

Publications (1)

Publication Number Publication Date
JP2008536059A true JP2008536059A (en) 2008-09-04

Family

ID=36405931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008502235A Pending JP2008536059A (en) 2005-03-04 2006-02-24 High-speed movable bearings especially for supporting the spindle of machine tools

Country Status (6)

Country Link
US (1) US20080247698A1 (en)
EP (1) EP1853829A1 (en)
JP (1) JP2008536059A (en)
CN (1) CN101133255A (en)
DE (1) DE102005009921A1 (en)
WO (1) WO2006092120A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006059183A1 (en) * 2006-12-15 2008-06-19 Schaeffler Kg Multi-row radial rolling bearing
US8036863B2 (en) * 2008-02-07 2011-10-11 American Axle & Manufacturing, Inc. Method for customizing a bearing bore
DE102008052507A1 (en) * 2008-10-21 2010-04-22 Schaeffler Kg roller bearing
DE102010019677A1 (en) 2009-09-24 2011-09-29 Jens Mehnert Method and apparatus for conditioning bearing systems for shafts
CN103003014B (en) * 2011-07-20 2014-12-10 日本精工株式会社 Main shaft apparatus
CN102829072B (en) * 2011-12-09 2015-06-24 洛阳轴研科技股份有限公司 Bearing full of complement balls
CN103317154B (en) * 2013-05-29 2016-05-18 贵阳新天光电科技有限公司 High-precision main shaft system
TWI519382B (en) * 2013-11-20 2016-02-01 財團法人工業技術研究院 Rotation mechanism
RU2551701C1 (en) * 2014-03-03 2015-05-27 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ''Московский государственный индустриальный университет'' Wave gear with changed shape of contact between cam wave generator and flexible gear
EP3023653B1 (en) * 2014-11-20 2018-03-28 Siemens Aktiengesellschaft Method for manufacturing a roller bearing
DE102018112367A1 (en) * 2018-05-23 2019-11-28 Technische Universität Darmstadt linear guide
GB2589706B (en) * 2019-09-23 2023-08-23 Skf Ab High-speed bearing with grooved and cylindrical races
CN110961662B (en) * 2019-12-02 2020-11-24 珠海格力电器股份有限公司 Electric spindle and numerical control equipment
CN111765168A (en) * 2020-05-19 2020-10-13 上海涟屹轴承科技有限公司 Novel thrust bearing structure for wind power gearbox
CN112247196B (en) * 2020-10-10 2021-10-08 河北工业大学 Axial vibration processing device based on elastic support
CN115523233B (en) * 2022-11-11 2023-08-18 宽城鑫泽矿业有限公司 Rolling bearing for small jaw crusher

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE372146C (en) * 1923-03-22 Robert Wedel Roller bearing
US1570056A (en) * 1922-07-08 1926-01-19 Fritz Lewis Bearing
DE955010C (en) * 1953-09-30 1956-12-27 Hugo Berger Axial ball bearing with longitudinal movement with the mandrel
GB780056A (en) * 1954-11-05 1957-07-31 Pitner Alfred Improvements in or relating to bearings having cylindrical bearing elements
US3619017A (en) * 1970-04-09 1971-11-09 North American Rockwell Low-stress ball bearings
DE3002635A1 (en) * 1980-01-25 1981-07-30 Robert Bosch Gmbh, 7000 Stuttgart ROLLER BEARING
DE3143344A1 (en) * 1981-10-31 1983-05-19 GMN Georg Müller Nürnberg GmbH, 8500 Nürnberg Adjustable bearing preload
DE3244258A1 (en) * 1982-11-30 1984-05-30 Fa. Carl Zeiss, 7920 Heidenheim ROLLER BEARING FOR RADIAL MOVEMENTS
DE19757027B4 (en) * 1997-12-20 2004-11-04 Fag Kugelfischer Ag Ball bearings for high speeds
DE10046719A1 (en) * 2000-09-21 2002-04-11 Ina Schaeffler Kg Gear shift transmission
GB2371603B (en) * 2000-12-18 2005-06-22 Nsk Rhp Europe Technology Co Ltd Shaft bearing arrangements

Also Published As

Publication number Publication date
CN101133255A (en) 2008-02-27
DE102005009921A1 (en) 2006-09-07
US20080247698A1 (en) 2008-10-09
EP1853829A1 (en) 2007-11-14
WO2006092120A1 (en) 2006-09-08

Similar Documents

Publication Publication Date Title
JP2008536059A (en) High-speed movable bearings especially for supporting the spindle of machine tools
JP4513028B2 (en) Self-aligning rolling bearing and cage for self-aligning rolling bearing
CN104100640B (en) The resin prong-shaped cage and double-row roller bearing of double-row roller bearing
JP2009524788A (en) Angular contact rolling bearings, especially multi-row spherical roller bearings
US8641291B2 (en) Comb-shaped resin retainer and roller bearing
TW201819790A (en) Rolling bearing cage and rolling bearing
KR20180041127A (en) Angular contact ball bearings
JP2007177837A (en) Cage for roller bearing and roller bearing
JP2006326695A (en) Bearing device for main spindle of machine tool
JP4454336B2 (en) Linear motion bearing mechanism
JP2007315588A (en) Ball bearing for spindle pivot part of machine tool and spindle pivot device of machine tool using the same
JP2003336640A (en) Multi-point contact ball bearing
JPH11280769A (en) Roller bearing
JP2004190765A (en) Rolling bearing
JP2008002495A (en) Automatic aligning roller bearing
US20220373022A1 (en) Rolling Bearing
JP4715961B2 (en) Rotary table device for machine tools
JP2022144638A (en) needle roller bearing
JP2003139146A (en) Ball screw supporting multipoint contact ball bearing
JP2015132320A (en) Self-aligning roller bearing
JP2006153094A (en) Ball bearing and rotary table device for machine tool using ball bearing
JP2005061434A (en) Multi-point contacting ball bearing
JP2019116976A (en) Cage type holder for rolling bearing
JP2011112201A (en) Ball bearing
CN112714833B (en) Spindle device