JP2008533864A - ワンショット周波数推定値を計算する効率的な方法 - Google Patents

ワンショット周波数推定値を計算する効率的な方法 Download PDF

Info

Publication number
JP2008533864A
JP2008533864A JP2008501033A JP2008501033A JP2008533864A JP 2008533864 A JP2008533864 A JP 2008533864A JP 2008501033 A JP2008501033 A JP 2008501033A JP 2008501033 A JP2008501033 A JP 2008501033A JP 2008533864 A JP2008533864 A JP 2008533864A
Authority
JP
Japan
Prior art keywords
frequency
lookup
function
module
inverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008501033A
Other languages
English (en)
Inventor
グプタ、アロク・クマー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2008533864A publication Critical patent/JP2008533864A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset
    • H04L2027/003Correction of carrier offset at baseband only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0053Closed loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0063Elements of loops
    • H04L2027/0065Frequency error detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0083Signalling arrangements
    • H04L2027/0089In-band signals
    • H04L2027/0093Intermittant signals
    • H04L2027/0095Intermittant signals in a preamble or similar structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Circuits Of Receivers In General (AREA)
  • Complex Calculations (AREA)
  • Transceivers (AREA)

Abstract

順方向リンクだけの無線受信機において、周波数推定値を効率的に決めるシステムと方法が提供される。一実施例では、ワンショット周波数推定値を計算する方法が提供される。方法は、関数の要素について記述するテーブルに逆正接関数を表わし、無線装置のための位相情報を計算するために逆正接関数を使用することを含んでいる。
【選択図】 図1

Description

関連する出願への相互参照
この出願は、全体が参照によりここに組込まれる、2005年3月10日に申請された、米国仮特許出願シリアルNo.60/660,888、題名「Method to Computer One Shot Frequency Estimate」の利益を要求する。
主題技術は一般に通信システムと方法に係り、特に、順方向リンクだけの無線システムのための効率的なやり方で周波数推定値を決定するシステムおよび方法に関する。
無線システムを支配した一技術は符号分割多元接続(CDMA)ディジタル無線技術である。CDMAに加えて、エアー・インターフェース仕様は無線プロバイダの産業先導グループによって開発されているFLO(Forward Link Only順方向リンクだけ)技術を定義する。一般に、FLOは利用可能な無線技術の中で最も有利な特徴にてこ入れしており、一貫して最も高い品質性能を達成するために符号化とシステム設計に最新の進歩を使用した。FLOのための1つの目的は世界的に採用された標準にあることである。
FLO技術は、移動マルチ媒体環境のための1つのケースに設計され、セルラハンドセットでの使用に理想的に適した性能特性を示す。それは符号化とインターリービングにおいて最新の前進を使用し、実時間コンテンツ・ストリーミングおよび他のデータサービスの両方で、いつでも最高の品質受信を達成する。FLO技術は電力消費を危険にさらすことなく、強健な移動体性能および高容量を提供することができる。技術はさらに、配備するために必要とされる送信機の数を劇的に減少させることにより、マルチ媒体コンテンツを分配するネットワークコストを減少する。さらに、FLOの技術に基づいたマルチ媒体マルチキャスティングは、3Gネットワークで使用される同じセルラハンドセットにコンテンツを分配している無線オペレータのセルラネットワーク・データおよび音声サービスを補足する。
FLO無線システムは、移動ユーザに対する非実時間サービスとは別に、実時間オーディオおよびビデオ信号を放送するために設計された。それぞれのFLO伝送は、与えられた地理的な区域の広い報道を保証するために法外な高電力送信機を使用して搬送される。さらに、FLO信号が与えられた市場の人口の重要な部分に達することを保証するために、ほとんどの市場で3−4の送信機を配備することは一般的である。FLOデータパケットの取得プロセス中に、いくつかの決定および計算はそれぞれの無線受信機のための周波数オフセットのような態様を決定するためになされる。マルチ媒体データ取得を支援するFLO放送の性質を与えられて、そのようなデータおよび関連するオーバヘッド情報の効率的な処理は最も重要である。例えば、周波数オフセットあるいは他のパラメータの決定、複雑な処理および決定が必要な場合、位相および関連する角度の決定がデータのFLO伝送および受信を促進するために使用される。そのようなパラメータを決定するために単に従来のプログラム・アルゴリズムを実行することは、恐らくあまりに多くのプロセッサ帯域幅を消費し、さらに無線受信機にコストを加えるだろう。
実施例のいくつかの態様の基本的理解を提供するために、以下に様々な実施例の単純化された要約を表現する。この要約は広範囲な概観ではない。それは、鍵/重大な要素を識別すること、あるいはここに示された実施例の範囲を定めることを意図されない。その唯一の目的は、後に示されるより多くの詳細な説明に前兆として単純化された形式でいくつかの概念を提示することである。
システムおよび方法は、無線受信機の処理帯域幅を保存する効率的なやり方で位相と周波数情報を決定するために提供される。一実施例では、第1のルックアップテーブルが順方向リンクだけの無線受信機の周波数および位相情報を決めるために使用される逆正接関数を計算するために使用される。ルックアップを計算する前に、逆のルックアップテーブルが計算(例えば、分母の部分を計算する)の部分を能率化し、かつ演算の全面的な複雑さを減少するために適用することができる。更に、分析に基づいて、それぞれのテーブルが度またはラジアンの範囲で制限されることができ、関数の効率的な決定を促進する。そのような分析は、符号を付けられた算術情報が計算の後に加えられることを可能にし、したがって、テーブルが円弧のより小さな領域で作動することを可能にする。別の実施例では、方法はワンショット周波数推定値を計算するために提供される。方法は、関数の要素を記述するテーブルの逆正接関数を表わし、無線装置のための位相情報を計算するために逆正接関数を使用することを含んでいる。
先の成果および関連する目的のために、実例となる実施例が次の記述および付加された図面に関してここに記述される。これらの態様は、実施例が実行され、その全部がカバーされるように意図される様々な方法を示す。
システムおよび方法は、順方向リンクだけの無線受信機において周波数推定値を効率的に決めるために提供される。一実施例において、方法はワンショット周波数推定値を計算するために提供される。方法は、関数の要素について記述するテーブルで逆正接関数を表わし、無線装置のための位相情報を計算するために逆正接関数を使用することを含んでいる。他の態様は、無線装置のための周波数推定値を決定するために逆正接関数を使用し、ここに第2のテーブルが逆のルックアップを行なうために加えられ、かつ計算効率を促進することができることを含んでいる。
この出願の中で使用された、用語「構成要素」、「ネットワーク」、「システム」、および同種のものは、ハードウェア、ハードウェアとソフトウェアの組み合わせ、ソフトウェア、あるいは実行中のソフトウェアのいずれかのコンピュータ関連エンティティを参照するように意図される。例えば、構成要素は、プロセッサ上で実行するプロセス、プロセッサ、オブジェクト、実行可能な実行のスレッド、プログラムおよび/またはコンピュータであるかもしれないが、それであることに限定されない。例証の方法により、通信装置上で作動するアプリケーションおよび装置の両方が構成要素になり得る。1つ以上の構成要素が実行のプロセス、および/またはスレッド内に存在してもよく、構成要素は1台のコンピュータに集中され、および/または2台以上のコンピュータ間で分配されてもよい。さらに、これらの構成要素は、記憶された各種データ構造を持つ様々なコンピュータ可読媒体から実行することができる。構成要素は1つ以上のデータパケット(例えば、ローカルシステム、分散型システム、および/またはインターネットのような有線あるいは無線ネットワークを横切って別の構成要素と対話する1つの構成要素からのデータ)を持っている信号に従うようにローカルおよび/または遠隔プロセス上で通信してもよい。
図1は周波数と位相の推定値の決定のための無線ネットワーク・システム100を示す。システム100は、1つ以上の受信機120に無線ネットワークを横切って通信する1つ以上の送信機110を含む。受信機120は、携帯電話、コンピュータ、パーソナル・アシスタント、ハンドヘルドあるいはラップトップ装置などのような任意のタイプの通信装置を本質的に含むことができる。受信機120の部分は記号部分集合130およびマルチ媒体・データのような他のデータを復号するために使用される。記号部分集合130は、マルチ媒体データ転送のための順方向リンクだけの(FLO)プロトコルを使用する直交周波数分割多重(OFDM)ネットワークで一般に送信される。チャンネル推定は、一般に、周波数領域およびそれぞれのOFDM記号に挿入された、一様に間隔を置かれたパイロットトーンに基づく。パイロットは別々に間隔をおいて配置された8つの搬送波であり、パイロット搬送波の数は512に設定される。他の受信機機能は、AFCのブロック内の周波数オフセットを決定するために、逆正接ルックアップテーブル150および/または逆のルックアップテーブル160を使用する自動周波数制御ブロック140(AFC)を含んでいる。テーブル150および160は、位相決定および他の三角法の計算のような複数の機能を行なうために使用することができることが認識されるべきである。さらに、もし望まれれば、より詳細に下に記述されるものおよび他の関連する構成要素は、AFCのブロックより無線受信機120の他の部分の角度決定のために使用することができる。テーブル150および160は別々に示されるが、そのようなテーブルがメモリ中で同様のエリアを占めることができ、したがってたとえそれぞれのテーブルの機能性が異なっても、同じテーブルの一部と考えることができることが認識されるべきである。
1つの態様では、逆正接テーブル150は、無線受信機120において周波数および/または位相情報を決定するために使用される逆正接関数を計算するために使用される。それぞれの角度を決定するためにルックアップを計算する前に、逆のルックアップテーブル160は、逆正接を計算する前に分子または分母の部分を計算するような計算の部分を能率化するために適用することができる。実際の角度決定と中間の演算処理の間のルックアップを二叉に分けることによって、無線受信機演算の全面的な複雑さは減少することができる。別の態様では、逆正接関数の効率的な決定を促進するために、それぞれのテーブル150あるいは160は度かラジアンに制限されることができる。そのような分析は、符号を付けられた算術情報が、a)三角法の計算の外部で決定され、したがってプロセッサ依頼とするものを保存すること、b)計算の後に加えられることを可能にし、したがってテーブルに150と160が円弧のより小さな領域上で作動することを許容する。図2−4は、テーブル150および160を使用するワンショット周波数推定のための特定の例を今より詳細に示しかつ記述するだろう。上に注意したように、無線受信機120の他の部分は、さらに逆正接関連機能性を決定するこれらおよび他の関連する構成要素を使用してもよい。別の態様では、システム200は無線ネットワークにおける角度を決定するために提供される。システムは記号ストリームを受信する手段(例えば120参照)、1/x関数を決定するために逆のルックアップを行なう手段(例えば160参照)、無線構成要素の角度を決定するために逆のルックアップの後に適用される逆正接ルックアップを行なう手段(例えば150参照)を含んでいる。
図2は逆正接関数を決定するためのブロック200の例を示す。もっと詳細な議論を続ける前に、信号のストリームの記述が提供される。さらに、図2−4の例で描かれた構成要素はソフトウェア構成要素、ハードウェア構成要素および/またはその組合せとして提供することができることが認識されるべきである。210で、2つの16ビットの入力WIおよびWQが220で絶対値構成要素に供給され、224で符号のない値PIおよびPQを生成する。ステートメント:if(WII<0&&WQ>0‖WI>0&&WQ<0)sign=1;else sign=0にしたがって、210の値WIおよびWQも互いに比較され、230で符号ビットを生成する。224で、ステートメント:if(PI>=PQ),N=PQ,D=PI,flag=0,else,N=PI,D=PQ,flag=1にしたがって、PIとPQは分子または分母のフラグを設定するために構成要素240に供給される。次にシフトレジスタ250は分子および分母の値を処理し、ここで分母の値はそれが00000000001XX・・・になるまで、右にシフトされ、分子は同じ回数シフトされる。一例として、小数点が5つの最下位ビットの後にあることが注目される。シフトレジスタ250から、シフトされた分母の6ビットが逆のルックアップ関数260に供給され、最初の2進法の1が現われた後開始するシフトレジスタ250に存在するそれぞれの7ビットのシフトされた分子と264で乗算される。270で、13ビット値からの6ビットが標準の丸めによって切り詰められ、次に6ビットに満たされ、その後これらのビットは、フラグと符号情報がそれぞれ280と290で逆正接値に加えられる前に、274で逆正接ルックアップテーブルに供給される。ブロック200から、項WIおよびWQはSIとSQを表わし、ここにSIとSQは以下に述べられる複素数Sの実数および虚数成分であることが注目される。PIとPQはWIとWQの絶対値であり、280の図面からの項Kは、逆正接ルックアップ表274の出力を表わし、290のLは、280で多重化装置によって選択されるようにKあるいは255Kと等しい。
1つの態様では、信号の取得プロセス中に、ワンショット推定が周波数オフセットを計算するために使用される。これは、TDMパイロット1検出および遅延された相関に基づくことができる;ここに正規化周波数誤差(搬送周波数間に関して)が、一般に図3で以下に示されるような遅延された相関器出力の合計からTDMパイロット1検出の終わりに計算され、ここにSは累積された合計である。
Figure 2008533864
逆正接は、260と274でそれぞれ2つのルックアップテーブルによって計算される。効率的なやり方で2つのルックアップテーブルを利用するために、いくつかの構成要素の考察が適用される。第1のルックアップテーブル260は逆の(1/x)を提供し、第2のルックアップテーブル274は2パイに正規化された実際の逆正接値を提供する。解析からの一態様では、周波数オフセットが−1/2パイから1/2パイの範囲内にあると仮定することができる。したがって、あいまい性なしで、290で後に符号を加えられることができるので、0ないし1/2パイに相当する1つの逆正接テーブルだけが使用される必要がある。望まれれば1つを越える逆正接テーブルが使用され得ることが認識されるべきである。さらに、arctan(x)+arctan(1/x)=1/2piとして、xが1より大きいその場合を考慮することは十分である。260の1/xのルックアップテーブルでは、このルックアップテーブルは、xが1と2の間にあることを可能にすることにより効率的に使用することができる。したがって、260における逆は250の分子および分母の両方を基準化した後に行なわれる。認識され得るように、ブロック200は、以下により詳細に記述される他の構成要素の一部として実施することができる。
図3はワンショット周波数推定器ブロック300の例を示す。ブロック300は、図2に関して上述されたブロック200と同様に行なう計算逆正接ブロック310を含んでいる。他のサンプリング量を使用することができたが、レジスタ320からの出力(S)は128のサンプルにつき一度変更される。その出力は、レジスタ320に入力を供給するスライディングウィンドウ相関器340と330で合計される。310と逆正接を計算した後に、分割器構成要素350は2パイNにより310から逆正接計算を分割し、360で周波数値を生成し、それは図4に記述された自動周波数制御ブロックに供給される。
図4は図3の360で決定された周波数値を使用する自動周波数制御(AFC)ブロック400の例を示す。AFCブロックは、図3からの出力360として生成されたワンショット周波数推定値を410で受信する。複数の構成要素がAFCブロック400内に使用されてもよい。412で、入力サンプルは受け取られ、420で正弦および余弦ルックアップテーブルから情報を得る位相回転装置414に供給される。位相回転装置414からの出力は、FFTバッファ424に供給され、その出力は周波数誤差検出器430に供給される。周波数誤差検出器430からの出力は434でαパラメータを掛けられ、その出力は周波数レジスタ444からの出力と440で合計され、周波数レジスタ444はワンショット周波数推定値410を累積する。周波数レジスタ444からの出力は平均フィルタおよび加算器454へ送られ、加算器454からの出力は位相累算器456、そして次に正弦および余弦ルックアップテーブル420に供給される。平均フィルタ454からの出力は460でβパラメータにより掛けられ、その出力は464で制限構成要素または検出器に供給される。464からの出力は、レジスタ470、PDM構成要素474およびRCフィルタ480によって続いて処理される。
図5は無線システムのためのネットワーク層500の例を示し、そこから受け取られたデータが上に記述された周波数ブロックで使用される。順方向リンクだけの(FLO)エアー・インターフェース・プロトコル参照モデルが図5で示される。一般に、FLOエアー・インターフェース仕様は、層1(物理層)および層2(データリンク層)を有するOSI6に対応するプロトコルおよびサービスをカバーする。データリンク層はさらに2つの副層、即ち、媒体アクセス(MAC)副層およびストリーム副層へ細分される。上部層は制御情報の内容およびフォーマットに加えて、マルチ媒体コンテンツ、マルチ媒体へのアクセス制御の圧縮を含むことができる。
FLOエアー・インターフェース仕様は、典型的には、様々なアプリケーションおよびサービスを支持する設計の融通性のために許可すべき上部層を指定しない。これらの層はコンテキストを提供することを示される。ストリーム層は3つまでの上部層のストリームを1つの論理チャネルに多重化し、各論理チャネルのストリームに対して上部層パケットの束縛を含み、パケット化および残余誤差操作関数を提供する。媒体アクセス制御(MAC)層の特徴は、物理層への制御アクセスを含み、論理チャネルと物理チャネルの間の写像を行ない、物理チャネル上で伝送のための論理チャネルを多重化し、移動装置における論理チャネルを逆多重化し、および/またはサービスの質(QOS)必要条件を強化する。物理層の特徴は順方向リンクのためのチャンネル構造を提供し、周波数、変調および符号化する必要条件の定義を含んでいる。
一般に、FLO技術は直交周波数分割多重(OFDM)を利用し、それはまた、デジタル・オーディオ放送(DAB)7、地上のディジタル・ビデオ放送(DVB−T)8、および地上の総合ディジタル放送(ISDB−T)9によって利用される。一般に、OFDM技術は、大きなセルSFNの中で有効に移動度必要条件を満たす一方で、高いスペクトルの効率を達成することができる。また、OFDMは、周期的な接頭辞;直交性を促進し、かつ搬送波間干渉を緩和するために記号前面へ加えられた保護間隔(それはデータ記号の最後の部分のコピーである)の適切な長さを有する多数の送信機からの長い遅れを扱うことができる。この間隔の長さが最大のチャネル遅れより大きな限り、前の記号の影響は削除され、かつ直交性が保存される。
図6に進むと、FLO物理層600が示される。FLO物理層は、8Kモードと比較して優れた移動性能を提供し、一方かなり大きなSFNセルに役立つ十分に長い保護間隔を保存している、4Kモード(4096副搬送波の変換サイズに影響されやすい)を使用する。迅速なチャネル獲得は、最適化されたパイロットおよびインタリーバ構造設計によって達成することができる。インターリービング方式はFLOエアー・インターフェース促進時間ダイバーシティに組み入れられる。パイロット構造およびインタリーバ設計は、長い取得時間でユーザを悩ますことなく、チャネル利用を最適化する。一般に、FLO送信信号は、600で示されるようにスーパーフレームへ組織化される。各スーパーフレームは、TDMパイロット(多重化された時分割)、オーバヘッド情報記号(OIS)、および広域とローカルエリア・データを含んでいるフレームを含む、データの4つのフレームで構成される。TDMパイロットはOISの迅速な取得を考慮に入れるために提供される。OISは、各媒体サービスのデータの位置をスーパーフレームに記述する。
典型的には、スーパーフレームはそれぞれ割り付けられた帯域幅(6MHzの1200記号)のMHz当たり200OFDM記号から成り、各記号は活動的な副搬送波の7つのインターレースを含んでいる。各インターレースは周波数中で一様に分配され、その結果、それは利用可能な帯域幅内の十分な周波数ダイバーシティを達成する。これらのインターレースは、使用される実際のインターレースの持続および数に関して変わる論理チャネルに割り当てられる。これは、所定のデータ源によって達成された時間ダイバーシティに柔軟性を提供する。より低いデータレートのチャネルは、時間ダイバーシティを改善するためにより少数のインターレースを割り当てるが、より高いデータレートのチャネルは無線の時間通り最小化し、かつ電力消費を減少するためにより多くのインターレースを利用している。
低いおよび高いデータレートのチャネルの両方の取得時間は一般に同じである。したがって、周波数と時間ダイバーシティは取得時間を危険にさらすことなく維持することができる。しばしば、FLO論理チャネルは、可変レートコーデック(一つの中に圧縮と逆圧縮)で可能な統計的多重化利得を得るために、可変レートで実時間の(生ストリーミング)コンテンツを搬送するように使用される。各論理チャネルは異なる符号化レートおよび変調を持つことができ、異なるアプリケーションのための様々な信頼性およびサービス品質必要条件をサポートする。FLO多重化方式は、装置受信機が電力消費を最小化するためにそれが興味を持っている単一の論理チャネルのコンテンツを復調することを可能にする。移動装置は、ビデオおよび関連させられたオーディオが異なるチャネル上で送られることを可能にするために、多数の論理チャネルを同時に復調することができる。
誤り訂正および符号化技術も使用することができる。一般に、FLOはターボ内部符号13およびリード・ソロモン(RS)14外部符号を組込む。典型的には、ターボ符号パケットは巡回冗長検査(CRC)を含んでいる。RS符号は正確に受け取られたデータについて計算する必要はなく、それは好ましい信号状況の下で、付加的な電源節約をもたらす。別の態様は、FLOエアー・インターフェースが5、6、7および8MHzの周波数帯幅をサポートするように設計されることである。非常に望ましいサービス提供は単一の無線周波数チャネルで達成することができる。
図7は無線システムのための角度決定処理700の例を示す。説明の単純性の目的のために、方法論が示され、シリーズあるいは行為の数として記述されるが、いくつかの行為が、ここに示されかつ記述されたものから異なる順序および/または他の行為と同時に生じてもよいので、ここに記述された処理が行為の順番により限定されないことが理解されかつ認識されるべきである。例えば、技術に熟練している人々は、方法論が状態図のように一連の相互関係状態またはイベントとして二者択一で表わすことができることを理解し認識するだろう。さらに、すべての示された行為は、ここに示された主題方法論に従って方法論を実施するために要求されるとは限らない。
710へ進むと、上に注目したWIおよびWQのような入力値が720で絶対値のための処理をされ、中間の符号のない値PIおよびPQを生成する。値WIとWQはまたステートメント:if(WII<0&&WQ>0‖WI>0&&WQ<0)sign=1;else sign=0にしたがって、符号ビットを生成するように比較することができる。730で、値PIおよびPQはステートメント:if(PI>=PQ),N=PQ,D=PI,flag=0,else,N=PI,D=PQ,flag=1にしたがって、分子または分母のフラグを設定するために分析される。740で、中間値PIおよびPQは、分母の値はそれが00000000001XX・・・になるまで右にシフトされ、分子は同様な回数シフトされる。740で中間値をシフトした後に、シフトされた分母から6ビットは、逆のルックアップ関数に供給され、750でシフトされた分子の7ビットとそれぞれ乗算される。750で逆のルックアップおよび乗算からの13ビット値からの6ビットは、760で標準の丸めによって切り詰められ、6ビットに満たされ、その後、これらのビットは逆正接ルックアップテーブルに供給され、そこでまたフラグと符号情報が逆正接値に加えられることができる。
以前に注意されたように、信号取得プロセス中に、ワンショット推定が周波数オフセットを計算するために使用されることができる。これは、TDMパイロット1検出および遅延された相関に基づくことができる;ここに正規化周波数誤差(搬送周波数間に関して)が、一般に、遅延された相関器出力の合計からTDMパイロット1検出の終わりに計算され、ここに値Sは累積された合計である。
Figure 2008533864
逆正接は、750と770でそれぞれ2つのルックアップテーブルによって計算される。第1のルックアップテーブルは逆の(1/x)を提供し、第2のルックアップテーブルは2パイに正規化された実際の逆正接値を提供する。解析からの1つの態様では、周波数オフセットが−1/2パイから1/2パイの範囲内にあると仮定することができる。したがって、あいまい性なしで、後に符号を加えられることができるので、0ないし1/2パイに相当する1つの逆正接テーブルだけが使用される必要がある。arctan(x)+arctan(1/x)=1/2piとして、xが1より大きいその場合を考慮することは十分である。1/xのルックアップテーブルでは、このルックアップテーブルは、xが1と2の間にあることを可能にすることにより効率的に使用することができる。
図8はここに述べられた1つ以上の態様に従って、無線通信環境で使用されるユーザ装置800の実例である。ユーザ装置800は、例えば受信アンテナ(示されない)から信号を受け取り、受信信号に典型的な処置(例えば、フィルタにかけ、増幅し、下方変換するなど)を行ない、サンプルを得るために調整された信号をディジタル化する。受信機802は非線形の受信機であり得る。復調器804は復調し、チャネル推定のためプロセッサ806へ受信パイロット記号を提供することができる。FLOチャンネル構成要素810は以前に記述されるようなFLO信号を処理するために提供される。これは他の処理中にディジタルストリーム処理および/または測位位置計算を含むことができる。プロセッサ806は、受信機802に受信された情報の分析および/または送信機816による伝送のための情報の生成に専用のプロセッサ、ユーザ装置800の1つ以上の構成要素を制御するプロセッサ、および/または受信機802により受信された情報を分析し、送信機816による伝送のための情報を生成し、ユーザ装置800の1つ以上の構成要素を制御するプロセッサであり得る。
ユーザ装置800は、プロセッサ806に作動的に接続され、ユーザ装置800のための計算されたランクと関係する情報、ランク計算プロトコル、それに関係する情報を含むルックアップテーブル、およびここに記述されるような無線通信システムで非線形の受信機においてランクを計算するためにリスト球体復号を支援するのに適する他の任意の情報を記憶するメモリ808をさらに含む。メモリ808はさらに、ランク計算、マトリックス生成などと関連したプロトコルを記憶することができ、それによりユーザ装置800は、ここに記述されるような非線形の受信機の中でランク決定を達成するために記憶されたプロトコルおよび/またはアルゴリズムを使用することができる。
ここに記述されたデータ記憶装置(例えば、メモリ)構成要素は、揮発性メモリまたは不揮発性メモリのいずれかであり得、あるいは揮発性および不揮発性メモリの両方を含むことができる。限定するわけではないが、例証により、不揮発性メモリは読み取り専用メモリ(ROM)、プログラマブルROM(PROM)、電気的プログラマブルROM(EPROM)、電気的消去可能なPROM(EEPROM)、あるいはフラッシュ・メモリを含むことができる。揮発性メモリは外部キャッシュメモリの役割をするランダムアクセスメモリ(RAM)を含むことができる。限定するわけではないが、例証により、RAMは、シンクロナスRAM(SRAM)、ダイナミックRAM(DRAM)、シンクロナスDRAM(SDRAM)、ダブル・データ・レートSDRAM(DDR SDRAM)、エンハンスドSDRAM(ESDRAM)、Synchlink DRAM(SLDRAM)および直接Rambus RAM(DRRAM)のような多くの形式で利用可能である。主題システムおよび方法の記憶808は、限定ではないが、これらおよび他の適切なタイプのメモリを含むように意図される。ユーザ装置800は、FLOデータを処理するための背景監視器814、記号変調器814、および変調された信号を送信する送信機816をさらに含む。
図9は、複数の受信アンテナ906をとおして1つ以上のユーザ装置904から信号を受信する受信機910、また送信アンテナ908をとおして1つ以上のユーザ装置904に送信する送信機924を備えた基地局902を含む、システム900の例を示す。受信機910は受信アンテナ906から情報を得ることができ、受信された情報を復調する復調器912と作動的に関連付けられる。復調された記号は、図8に関して上述されたプロセッサに似ているプロセッサ914によって分析され、プロセッサはメモリ916に接続され、メモリはユーザ・ランクと関係する情報、それに関係するルックアップテーブル、および/またはここに述べられた様々な処置および機能を行なうことと関係する他の適切な情報を記憶する。プロセッサ914はさらに、1つ以上のそれぞれのユーザ装置904に関連したFLO情報を処理促進するFLOチャネル918構成要素に連結される。
変調器920は送信機922により伝送の信号を多重化することができ、送信アンテナ908をとおしてユーザ装置904へ送信される。FLOチャンネル構成要素918は、ユーザ装置904との通信のため与えられた伝送ストリーム用の最新のデータ・ストリームと関係する信号に情報を追加することができ、それは、新しい最適のチャネルが識別され認められたという指示を提供するため、ユーザ装置904に送信され得る。このように、基地局902は、FLO情報を提供し、ML−MIMO受信機のような非線形の受信機などと協働する復号プロトコルを使用するユーザ装置904と対話することができる。
図10は典型的な無線通信システム1000を示す。無線通信システム1000は、簡潔さの目的のための1つの基地局および1つの端末を描く。しかしながら、システムが1つより多い基地局および/または1つより多い端末を含むことができ、そこでは追加の基地局および/または端末は、以下に述べられた典型的な基地局および端末に関して、本質的に類似しているか、または異なっているかもしれないことが認識されるべきである。
今図10を参照すると、アクセス・ポイント1005におけるダウンリンク上で、送信(TX)データ処理装置1010はトラフィックデータを受け取り、フォーマット化し、コード化し、インテーリーブし、変調する(あるいは記号写像し)、変調記号(「データ記号」)を提供する。記号変調器1015はデータ記号およびパイロット記号を受け取って処理し、記号のストリームを提供する。記号変調器1015はデータとパイロット記号を多重化し、送信機ユニット(TMTR)1020にそれらを供給する。各送信記号はデータ記号、パイロット記号あるいはゼロの信号値であるかもしれない。パイロット記号は各記号期間に連続的に送られてもよい。パイロット記号は周波数分割多重化(FDM)、直交周波数分割多重化(OFDM)、時分割多重化(TDM)、周波数分割多重化(FDM)あるいは符号分割多重化(CDM)であり得る。
TMTR1020は、記号のストリームを受け取り1つ以上のアナログ信号へ変換し、アナログ信号をさらに調整し(例えば、増幅し、フィルタにかけ、および周波数上方変換し)、無線チャネル上の伝送に適するダウンリンク信号を生成する。その後、ダウンリンク信号はアンテナ1025を通して端末へ送信される。端末1030では、アンテナ1035はダウンリンク信号を受信し、受信信号を受信機ユニット(RCVR)1040に供給する。受信機ユニット1040は受信信号を調整し(例えば、フィルタにかけ、増幅し、周波数下方変換し)、調整された信号をディジタル化してサンプルを得る。記号復調器1045は、チャネル推定用のプロセッサ1050へ受信されたパイロット記号を復調し提供する。記号復調器1045はさらに、プロセッサ1050からダウンリンクのための周波数応答推定値を受信し、受信されたデータ記号にデータ復調を行ないデータ記号推定値(それらは送信データ記号の推定値である)を得、RXデータ処理装置1055にデータ記号推定値を供給し、そこでデータ記号推定値を復調し(つまり、記号逆写像し)、デインターリーブし、復号し、送信されたトラフィックデータを回復する。記号復調器1045およびRXデータ処理装置1055による処理は、アクセス・ポイント1005で、記号変調器1015およびTXデータ処理装置1010による処理とそれぞれ相補的である。
アップリンクにおいては、TXデータ処理装置1060がトラフィックデータを処理し、データ記号を提供する。記号変調器1065は、パイロット記号を有するデータ記号を受け取り多重化し、変調を行ない、記号のストリームを提供する。その後、送信機ユニット1070は、記号のストリームを受け取り処理してアップリンク信号を生成し、それはアンテナ1035によってアクセス・ポイント1005へ送信される。
アクセス・ポイント1005では、端末1030からのアップリンク信号はアンテナ1025によって受信され、サンプルを得るために受信機ユニット1075によって処理される。その後、記号復調器1080がサンプルを処理し、アップリンクのための受信パイロット記号およびデータ記号推定値を供給する。RXデータ処理装置1085は、端末1030によって送信されたトラフィックデータを回復するためにデータ記号推定値を処理する。プロセッサ1090は、アップリンク上で送信する各活動的な端末のチャネル推定を行なう。多数の端末は、パイロット副帯域組がインターレースされる場合、パイロット副帯域のそれぞれの割り当てられた組のアップリンク上で同時にパイロットを送信してもよい。
プロセッサ1090および1050は、それぞれアクセス・ポイント1005および端末1030における動作を指示する(例えば、制御し、調整し、管理する、など)。それぞれのプロセッサ1090および1050は、プログラムコードとデータを記憶するメモリ装置(示されない)に関係しているかもしれない。プロセッサ1090および1050は、さらにアップリンクとダウンリンクのそれぞれについて、周波数とインパルス応答の推定値を引き出すために計算を行なうことができる。
多重アクセスシステム(例えば、FDMA、OFDMA、CDMA、TDMA、など)については、多数の端末はアプリンク上で同時に送信することができる。そのようなシステムについては、パイロット副帯域は様々な端末の間で共有されてもよい。チャネル推定技術は、各端末のパイロット副帯域が動作の帯域全体(恐らく帯域の端を除いて)にまたがる場合に使用されるかもしれない。そのようなパイロット副帯域構造は各端末用に周波数ダイバーシティを得るのに望ましいだろう。ここに記述された技術は、様々な手段によって実施されてもよい。例えば、これらの技術は、ハードウェア、ソフトウェアあるいはそれらの組合せで実施されてもよい。ハードウェアの実施については、チャネル推定に使用された処理装置は、1つ以上の特定用途向け集積回路(ASIC)、ディジタル信号プロセッサ(DSP)、ディジタル信号処理装置(DSPD)、プログラマブル論理デバイス(PLD)、フィールドプログラマブルゲートアレー(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、ここに記述した機能を行なうために設計された電子ユニット、またはその組合せで実施されてもよい。ソフトウェアで、実施はここに記述された機能を行なうモジュール(例えば、手順、関数など)によってできる。ソフトウェア・コードはメモリ装置に記憶され、プロセッサ1090および1050によって実行されてもよい。
ソフトウェアの実施については、ここに記述された技術は、ここに記述された機能を行なうモジュール(例えば、手順、関数など)で実施されてもよい。ソフトウェア・コードはメモリ装置に記憶され、プロセッサによって実行されてもよい。メモリ装置はプロセッサ内またはプロセッサに対して外部で実施され、外部の場合には、それは技術において知られているように様々な手段によって通信的にプロセッサに接続され得る。
上に記述されたものは典型的な実施例を含んでいる。それは、もちろん、実施例を記述する目的のための構成要素または方法論のすべての考えられる組合せについて記述するものではないが、当業者は多くのさらなる組合せおよび置換が可能であることを認識するであろう。従って、これらの実施例は、添付された請求項の精神および範囲以内にあるような変更、修正および変化をすべて包含するように意図される。更に、用語「含む」が詳細な記述または請求項のいずれかの中で使用される範囲について、請求項で過渡的な単語として使用された時、「含んでいる」が解釈されるので、そのような用語は、用語「含んでいる」に似ているやり方で包括的になるように意図される。
無線受信機のための周波数推定器を例証する概要のブロック図である。 逆正接関数を決定するための一例のブロック図である。 逆正接関数ブロックを使用するワンショット周波数推定器ブロックの例を示す。 ワンショット周波数推定器ブロックから決定された周波数値を使用する一例の自動周波数制御ブロックを示す。 無線システムのためのネットワーク層の例を示す図である。 無線システムのためのデータ構造および信号の例を示す図である。 無線システムのための角度決定処理の例を例証する。 無線システムのためのユーザ装置の例を示す図である。 無線システムのための基地局の例を示す図である。 無線システムのためのトランシーバの例を示す図である。

Claims (34)

  1. ワンショット周波数推定値を計算する方法であって、
    関数の要素を記述するテーブルに逆正接関数を表わすこと、
    逆正接関数を使用して無線装置のための位相情報を計算することを含む方法。
  2. 逆正接関数を使用して無線装置のための周波数推定値を決定することをさらに含む請求項1の方法。
  3. 逆のルックアップを行なう別のテーブルを使用し、計算効率を促進することをさらに含む請求項1の方法
  4. 逆のルックアップは1/xの関数であり、ここにxが約1ないし約2の範囲にある請求項3の方法。
  5. テーブルの範囲を2パイ・ラジアン未満であるように制限することをさらに含む請求項1の方法。
  6. テーブルの範囲が約0ラジアンないし約1/2パイ・ラジアンである請求項4の方法。
  7. 逆正接関数を計算した後にプラスまたはマイナスの演算符号を加えることをさらに含む請求項4の方法。
  8. 次の式によって周波数の変化を決定することをさらに含む請求項1の方法:
    Figure 2008533864
    ここに128は標本の数であり、Sは実数および虚数成分WQおよびWIで構成される。
  9. 成分WQおよびWIに絶対値を適用して、無符号のPQおよびPI値を作成することをさらに含む請求項8の方法。
  10. PQおよびPIの値をシフトして分子と分母を形成し、分母が逆のルックアップテーブルに適用されることをさらに含む請求項9の方法。
  11. 丸め演算によって逆のルックアップテーブルから生成された値を切り詰めて、逆正接ルックアップテーブルのための入力値を作成することをさらに含む請求項10の方法。
  12. ワンショット周波数推定器に適用される逆正接値を生成することをさらに含む請求項11の方法。
  13. ワンショット周波数推定器から出力値を生成し、自動周波数制御ブロックで値を使用する請求項12の方法。
  14. 無線ネットワーク・システムのための角度発生器モジュールであって、
    角度発生器のための1/x関数を決定する逆のルックアップ・ブロックと、
    無線受信機の角度を決定するために逆のルックアップ・ブロックの後に適用される逆正接ルックアップ・ブロックとを含む角度発生器モジュール。
  15. 実数および虚数を処理する少なくとも1つの絶対値ブロックをさらに含む請求項14のモジュール。
  16. 実数および虚数の符号フラグを決定する一組の符号ビットブロックをさらに含む請求項15のモジュール。
  17. 角度を決定する前に分子および分母を調節するシフトレジスタをさらに含む請求項14のモジュール。
  18. 計算の複雑さを減少するために打切り構成要素をさらに含む請求項14のモジュール。
  19. 角度のための符号またはフラグを適用する1つ以上の多重化装置をさらに含む請求項14のモジュール。
  20. 角度発生器モジュールから角度決定を受け取り、かつ周波数決定を生成するワンショット周波数推定器ブロックをさらに含む請求項14のモジュール。
  21. ワンショット周波数推定器が、周波数決定を促進するために遅延された相関器をさらに含む請求項20のモジュール。
  22. ワンショット周波数推定器が、周波数決定を促進するために合計器構成要素およびサンプルレジスタをさらに含む請求項20のモジュール。
  23. ワンショット周波数推定器が、周波数決定を促進するために分割構成要素をさらに含む請求項20のモジュール。
  24. 周波数決定に使用する自動周波数制御(AFC)構成要素をさらに含む請求項20のモジュール。
  25. AFC構成要素が、周波数を調整するために、位相回転装置、FFTバッファあるいは周波数誤差検出器をさらに含む請求項24のモジュール。
  26. AFC構成要素が、周波数を調整するために、位相累算器、周波数レジスタ、平均化フィルタ、制限構成要素、フィルタあるいはルックアップテーブルをさらに含む請求項24のモジュール。
  27. 逆のルックアップ・ブロックまたは逆正接ルックアップ・ブロックを実行するため、記憶されたマシン実行可能命令を有するマシン可読媒体を持っている請求項14のモジュール。
  28. 無線ネットワークにおいて角度を決定するためのシステムであって、
    記号ストリームを受信する手段、
    1/x関数を決定するために逆のルックアップを行なう手段、
    無線構成要素のための角度を決定するために、逆のルックアップの後に適用される逆正接ルックアップを行なう手段を含むシステム。
  29. 逆正接ルックアップテーブルからワンショット周波数推定値を決定すること、
    逆正接ルックアップテーブルに逆のルックアップ関数を適用すること、
    ワンショット周波数推定値から生成された出力を自動周波数制御関数に適用することを含み、記憶されたマシン実行可能命令を有するマシン可読媒体。
  30. 逆正接関数のために逆のルックアップ関数を記憶する複数のデータフィールド、
    逆正接ルックアップ関数を記憶する複数のデータフィールドを含み、
    逆のルックアップ関数および逆正接ルックアップ関数が無線受信機のための角度を決定するように協働する、記憶されたデータ構造を持っているマシン可読媒体。
  31. 角度がワンショット周波数推定値のために使用される請求項30のマシン可読媒体。
  32. ワンショット周波数推定値が自動周波数制御ブロックで使用される請求項31のマシン可読媒体。
  33. 逆のルックアップ・パラメータおよび逆正接関数を決定する構成要素を含んでいるメモリと、
    逆のルックアップ・パラメータを考慮して逆正接関数から少なくとも1つの角度を決定するプロセッサとを含む無線通信装置。
  34. 無線ネットワークのための命令を実行するプロセッサであって、命令が、
    逆正接ルックアップテーブルから周波数推定値を計算すること、
    逆正接ルックアップテーブルに従って逆のルックアップ関数を決定すること、
    周波数推定値を自動周波数制御関数に使用することを含むプロセッサ。
JP2008501033A 2005-03-10 2006-03-10 ワンショット周波数推定値を計算する効率的な方法 Pending JP2008533864A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US66088805P 2005-03-10 2005-03-10
PCT/US2006/008948 WO2006099323A1 (en) 2005-03-10 2006-03-10 An efficient method to compute one shot frequency estimate

Publications (1)

Publication Number Publication Date
JP2008533864A true JP2008533864A (ja) 2008-08-21

Family

ID=36579487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008501033A Pending JP2008533864A (ja) 2005-03-10 2006-03-10 ワンショット周波数推定値を計算する効率的な方法

Country Status (10)

Country Link
US (1) US7920658B2 (ja)
EP (1) EP1856874A1 (ja)
JP (1) JP2008533864A (ja)
KR (1) KR100947795B1 (ja)
CN (1) CN101160894B (ja)
BR (1) BRPI0609271A2 (ja)
CA (1) CA2600463A1 (ja)
RU (1) RU2391788C2 (ja)
SG (1) SG160379A1 (ja)
WO (1) WO2006099323A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8599764B2 (en) 2003-09-02 2013-12-03 Qualcomm Incorporated Transmission of overhead information for reception of multiple data streams
US8477809B2 (en) 2003-09-02 2013-07-02 Qualcomm Incorporated Systems and methods for generalized slot-to-interlace mapping
US7221680B2 (en) 2003-09-02 2007-05-22 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
US8509051B2 (en) 2003-09-02 2013-08-13 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
US8526412B2 (en) 2003-10-24 2013-09-03 Qualcomm Incorporated Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
US7920658B2 (en) 2005-03-10 2011-04-05 Qualcomm Incorporated Efficient method to compute one shot frequency estimate
US8223623B2 (en) * 2005-03-28 2012-07-17 Qualcomm Incorporated Timing and frequency acquisition for OFDM systems
US9354297B2 (en) 2005-09-27 2016-05-31 Qualcomm Incorporated Position location using phase-adjusted transmitters
US8981996B2 (en) * 2005-09-27 2015-03-17 Qualcomm Incorporated Position location using transmitters with timing offset and phase adjustment
CN107171777A (zh) * 2007-08-06 2017-09-15 高通股份有限公司 用于通用时隙到交错映射的系统和方法
KR100912509B1 (ko) * 2007-11-26 2009-08-17 한국전자통신연구원 역탄젠트 계산 방법 및 장치
CN103234623B (zh) * 2012-08-20 2014-12-10 苏州大学 一种高精度的频率估计方法
US11537859B2 (en) * 2019-12-06 2022-12-27 International Business Machines Corporation Flexible precision neural inference processing unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287782A (ja) * 1988-05-16 1989-11-20 Hitachi Medical Corp 画像処理方法及びその装置
US20040096019A1 (en) * 2002-11-15 2004-05-20 Jun-Woo Kim Frequency offset calculation method using log transforms and linear approximation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675882A (en) 1985-09-10 1987-06-23 Motorola, Inc. FM demodulator
US5067139A (en) 1990-12-17 1991-11-19 Motorola, Inc. Coherent detector for QPSK modulation in a TDMA system
US5282228A (en) 1991-12-09 1994-01-25 Novatel Communications Ltd. Timing and automatic frequency control of digital receiver using the cyclic properties of a non-linear operation
GB9319728D0 (en) 1993-09-24 1993-11-10 Snell & Wilcox Ltd Video signal processing
ZA9510509B (en) 1994-12-23 1996-05-30 Qualcomm Inc Dual-mode digital FM communication system
JP2818148B2 (ja) 1996-08-23 1998-10-30 株式会社次世代デジタルテレビジョン放送システム研究所 Ofdm復調装置
ATE492106T1 (de) 2002-07-16 2011-01-15 Ihp Gmbh Verfahren und gerät zur rahmendetektion und synchronisierung
US7242729B1 (en) * 2004-04-26 2007-07-10 Dgi Creations, Llc Signal decoding method and apparatus
KR100587310B1 (ko) * 2004-08-18 2006-06-08 엘지전자 주식회사 주파수 동기 장치 및 이를 적용한 dvb-h 수신 시스템
KR100568069B1 (ko) * 2004-09-02 2006-04-05 한국전자통신연구원 Tdma 통신 시스템에서의 반송파 및 도플러 주파수오차 추정 장치 및 그 방법
US7920658B2 (en) 2005-03-10 2011-04-05 Qualcomm Incorporated Efficient method to compute one shot frequency estimate
TWI350679B (en) * 2006-04-03 2011-10-11 Realtek Semiconductor Corp Frequency offset correction for an ultrawideband communication system
US8594250B2 (en) * 2008-07-25 2013-11-26 Qualcomm Incorporated Apparatus and methods for computing constant amplitude zero auto-correlation sequences
US8233568B2 (en) * 2008-09-05 2012-07-31 Rajendra Kumar Adaptive receiver for high-order modulated signals over fading channels

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287782A (ja) * 1988-05-16 1989-11-20 Hitachi Medical Corp 画像処理方法及びその装置
US20040096019A1 (en) * 2002-11-15 2004-05-20 Jun-Woo Kim Frequency offset calculation method using log transforms and linear approximation

Also Published As

Publication number Publication date
US7920658B2 (en) 2011-04-05
KR20070110926A (ko) 2007-11-20
RU2007137516A (ru) 2009-04-20
CN101160894B (zh) 2016-06-22
RU2391788C2 (ru) 2010-06-10
EP1856874A1 (en) 2007-11-21
WO2006099323A1 (en) 2006-09-21
BRPI0609271A2 (pt) 2010-03-09
CA2600463A1 (en) 2006-09-21
CN101160894A (zh) 2008-04-09
SG160379A1 (en) 2010-04-29
US20060217084A1 (en) 2006-09-28
KR100947795B1 (ko) 2010-03-15

Similar Documents

Publication Publication Date Title
JP2008533864A (ja) ワンショット周波数推定値を計算する効率的な方法
US6992973B2 (en) Transmitting apparatus, receiving apparatus, communication system, transmission method, reception method, and communication method
JP4927850B2 (ja) タイミングオフセットを有する送信機を用いた位置特定
US6888789B1 (en) Transmitting apparatus, receiving apparatus, communication system, transmission method, reception method, and communication method
US7839823B2 (en) Apparatus and method for transmitting a control channel message in a mobile communication system
US20070115801A1 (en) Switching diversity in broadcast OFDM systems based on multiple receive antennas
US9354297B2 (en) Position location using phase-adjusted transmitters
US20070159521A1 (en) MOBILE STATION-CENTRIC METHOD FOR MANAGING BANDWIDTH AND QoS IN ERROR-PRONE SYSTEM
CA2623724A1 (en) Position location using transmitters with timing offset
KR101059406B1 (ko) 송신 타이밍 전진을 통하여 ofdm 브로드캐스트 송신기의 커버리지를 확장하는 방법 및 툴
EP1913739A2 (en) System and method for a forward link only physical layer
JP2011250451A (ja) マルチキャリア通信における符号化信号を送信する情報送信方法
KR20040032683A (ko) 무선 랜 시스템의 고속 푸리에 변환 장치
JP2013176070A (ja) 一般化されたスロットからインターレースへのマッピングのためのシステムおよび方法
WO2008111810A1 (en) Method for transmitting/receiving a signal and apparatus for transmitting/receiving a signal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101020

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108