JP2008531298A - System and method for processing nanowires with holographic optical tweezers - Google Patents

System and method for processing nanowires with holographic optical tweezers Download PDF

Info

Publication number
JP2008531298A
JP2008531298A JP2007555098A JP2007555098A JP2008531298A JP 2008531298 A JP2008531298 A JP 2008531298A JP 2007555098 A JP2007555098 A JP 2007555098A JP 2007555098 A JP2007555098 A JP 2007555098A JP 2008531298 A JP2008531298 A JP 2008531298A
Authority
JP
Japan
Prior art keywords
nanowire
nanowires
traps
optical
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007555098A
Other languages
Japanese (ja)
Inventor
グリアー,デイヴィッド・ジー
アガルワル,リテシュ
ユー,グイフア
リーバー,チャールズ・エム
ラダヴァック,コスタ
ロイクマン,イェール
Original Assignee
ニュー・ヨーク・ユニヴァーシティ
ハーヴァード・ユニヴァーシティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニュー・ヨーク・ユニヴァーシティ, ハーヴァード・ユニヴァーシティ filed Critical ニュー・ヨーク・ユニヴァーシティ
Publication of JP2008531298A publication Critical patent/JP2008531298A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3423Shape
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0077Adaptation of holography to specific applications for optical manipulation, e.g. holographic optical tweezers [HOT]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene

Abstract

液体中のナノワイヤをホログラフィック光トラップのアレイにより操作かつ処理するためのシステムおよび方法。本発明のシステムおよび方法は、物体を3次元で操作する能力を有する数百個の個別に制御される光トラップを生成することができる。20nmもの小ささの断面および20μmを越える長さを有する個々のナノワイヤは、単一トラップが認識可能な影響を及ぼさないような条件下で、ホログラフィック光トラップのアレイにより分離させ、並進させ、回転させ、基板上に堆積させることができる。合焦トラップによって誘発される空間的に局在化する光熱および光化学プロセスも、個々のナノワイヤの局在化された領域を融解させ、かつナノワイヤ接合部を融着させるために使用することができる。  Systems and methods for manipulating and processing nanowires in a liquid with an array of holographic light traps. The system and method of the present invention can generate hundreds of individually controlled light traps with the ability to manipulate objects in three dimensions. Individual nanowires with cross-sections as small as 20 nm and lengths exceeding 20 μm are separated, translated and rotated by an array of holographic optical traps under conditions such that a single trap has no discernable effect. And can be deposited on the substrate. Spatially localized photothermal and photochemical processes induced by focused traps can also be used to melt localized regions of individual nanowires and fuse nanowire junctions.

Description

本出願は、米国特許法第119条(e)項に基づき、2005年1月12日に出願した米国特許仮出願第60/643,384号の利点を主張する出願であり、その内容全体を参照により本明細書に組み込む。   This application is an application claiming the advantages of US Provisional Patent Application No. 60 / 643,384, filed on January 12, 2005, based on section 119 (e) of the US Patent Act. Incorporated herein by reference.

この研究は、認可番号DMR−0233971およびDBI−0450878により米国国立科学財団の支援を受けた。   This study was supported by the National Science Foundation with grant numbers DMR-0233971 and DBI-0450878.

[発明の分野]
本発明は、一般的に半導体および金属ナノワイヤに関する。さらに詳しくは、本発明は、ホログラフィック光トラップのアレイによって、溶液中にある半導体および金属ナノワイヤを操作する手法および処理する手法に関する。
[Field of the Invention]
The present invention relates generally to semiconductor and metal nanowires. More particularly, the present invention relates to techniques for manipulating and processing semiconductor and metal nanowires in solution with an array of holographic light traps.

半導体および金属のナノワイヤは、ナノスケールのデバイスで構成単位として使用される独特な電気的および光学的特性を有する1次元構造物である。それらが低い次元性をもつことは、それらが量子閉じ込め効果を発現することを意味する。このため、およびその他の理由から、そのようなナノワイヤは、機能性を備える電子的なおよびフォトニックなデバイスを組み上げる際の汎用性のある構成単位となる。それらの潜在的能力を実現するには、それらを複雑でありかつ特別に設定された構造となるように組み立てるための効率的な方法が必要である。   Semiconductor and metal nanowires are one-dimensional structures with unique electrical and optical properties that are used as building blocks in nanoscale devices. Their low dimensionality means that they exhibit quantum confinement effects. For this reason, and for other reasons, such nanowires are versatile building blocks in assembling functional electronic and photonic devices. Realizing their potential requires an efficient way to assemble them into complex and specially configured structures.

したがって本発明の目的は、半導体および金属ナノワイヤを操作するための改善されたシステムおよび方法を提供することである。   Accordingly, it is an object of the present invention to provide an improved system and method for manipulating semiconductor and metal nanowires.

本発明の別の目的は、放射による損傷を最小化する一方で半導体および金属ナノワイヤに加えることのできる力の量を増加させるための改善されたシステムおよび方法を提供することである。   Another object of the present invention is to provide an improved system and method for increasing the amount of force that can be applied to semiconductor and metal nanowires while minimizing radiation damage.

本発明の追加の実施形態は、半導体および金属ナノワイヤを並進させるための改善されたシステムおよび方法を提供する。   Additional embodiments of the present invention provide improved systems and methods for translating semiconductor and metal nanowires.

上記目的および本明細書で下述する他の目的に従って、本発明は、ホログラフィック光ピンセットのアレイを使用してナノワイヤを精密に編成された2次元および3次元構造物に組み立てるためのシステムおよび方法を含む。20nmもの小ささの断面および20μmを超える長さを有する個々のナノワイヤは、個々のトラップが認識可能な影響を及ぼさないという条件下で、ホログラフィック光トラップのアレイによって分離させ、並進させ、回転させ、若しくは他の方法で操作し、または基板上に堆積させることができる。合焦トラップによって誘発される空間的に局在化する光熱および光化学プロセスも、個々のナノワイヤの局在化された領域を融解させ、かつナノワイヤ接合部を融着させるために使用することができる。   In accordance with the above objectives and other objectives described herein below, the present invention provides a system and method for assembling nanowires into precisely organized 2D and 3D structures using an array of holographic optical tweezers. including. Individual nanowires with cross sections as small as 20 nm and lengths greater than 20 μm are separated, translated and rotated by an array of holographic optical traps, provided that the individual traps have no discernable effect. Or otherwise manipulated or deposited on a substrate. Spatially localized photothermal and photochemical processes induced by focused traps can also be used to melt localized regions of individual nanowires and fuse nanowire junctions.

本発明のこれらおよび他の目的、利点、および特徴は、その構成および動作方法と共に、添付の図面に関連して取り上げる以下の詳細な説明から明らかになる。図中、同様の要素は下述する幾つかの図面を通して同様の符合を有する。   These and other objects, advantages and features of the present invention, as well as its construction and method of operation, will become apparent from the following detailed description taken in conjunction with the accompanying drawings. In the drawings, similar elements have similar designations throughout the several figures described below.

本発明は、溶液中にあるナノワイヤをホログラフィック光トラップのアレイにより操作かつ処理するためのシステムおよび方法を提供する。本発明のある実施形態では、CdSおよびSiナノワイヤが、本発明を実施するために水中に分散される。この特定の実施形態では、CdSナノワイヤは80nmの公称直径および最大20μmまでの長さを有する一方、Siナノワイヤは20nmもの小ささの直径で、よりいっそう大きなアスペクト比を有する。これらの試料は、きれいなカバーガラスの縁を顕微鏡用スライドの表面にして形成された、厚さ約40μmのスリット細孔内に装填される。どちらの材料も水より実質的に高密度であり(ρCdS=4.8g/cm3、ρSi=23g/cm3)、下側のガラス壁上に急速に沈殿し、CdS試料ではほとんど完全に平面内に位置する。本発明の本実施形態では、密封された試料は、観察および操作のために、100倍、NA1.4のS−Plan Apo油浸対物レンズを装備したZeiss Axiovert S100−TV顕微鏡のステージ上に搭載される。このレンズは、分散されたナノワイヤの明視野画像を生成するため、および532nmで動作する連続波(CW)周波数2倍化Nd:YVO4レーザ(Coherent Verdi)からの光を光トラップに合焦させるためにも使用される。 The present invention provides systems and methods for manipulating and processing nanowires in solution with an array of holographic light traps. In certain embodiments of the invention, CdS and Si nanowires are dispersed in water to practice the invention. In this particular embodiment, CdS nanowires have a nominal diameter of 80 nm and a length up to 20 μm, while Si nanowires have diameters as small as 20 nm and an even larger aspect ratio. These samples are loaded into slit pores approximately 40 μm thick formed with a clean cover glass edge on the surface of the microscope slide. Both materials are substantially denser than water (ρ CdS = 4.8 g / cm 3 , ρ Si = 23 g / cm 3 ) and settle rapidly on the lower glass wall, almost complete for CdS samples Located in the plane. In this embodiment of the invention, the sealed sample is mounted on the stage of a Zeiss Axiovert S100-TV microscope equipped with a 100x, NA1.4 S-Plan Apo oil immersion objective for observation and manipulation. Is done. This lens focuses light from a continuous wave (CW) frequency doubled Nd: YVO 4 laser (Coherent Verdi) operating at 532 nm into an optical trap to generate a bright field image of dispersed nanowires Also used for.

精密に集束させた単一光ビームは、メゾスコピックな物体を3次元で捕獲することのできる、光ピンセットとして知られる光トラップを形成する。しかし、およそ1W未満のレーザ出力では、個々の光ピンセットは、いずれの型の半導体ナノワイヤも移動させることができないようである。より高い出力での急速加熱によって、焦点がナノワイヤを通過する場合には、蒸気の泡が発生する。そのような急速加熱はまた、曲げ、小結節の形成、および切断さえも含む、ナノワイヤ自体の可視的変化を導く。このことは、焦点体積を通過する光子束のもたらす大きな光吸収による加熱とも矛盾しない。   A precisely focused single light beam forms an optical trap, known as optical tweezers, that can capture mesoscopic objects in three dimensions. However, at laser powers below about 1 W, it appears that individual optical tweezers cannot move any type of semiconductor nanowire. Due to rapid heating at higher power, vapor bubbles are generated when the focal point passes through the nanowire. Such rapid heating also leads to visible changes in the nanowire itself, including bending, nodule formation, and even cutting. This is consistent with the heating due to the large light absorption caused by the photon flux passing through the focal volume.

放射による損傷を最小化しながら、ナノワイヤに対しより大きい力を加えるために、動的ホログラフィック光ピンセット技術を用いて多数の回折限界光トラップが投射される。この手法は、空間光変調器(SLM)(Hamamatsu X7550 PAL−SLM)を使用して、集光前に、所望のトラップのアレイを符号化しているコンピュータ設計された位相オンリホログラムをレーザビームの波面に刻み付ける。アレイにおける各トラップは、中間トラップ構成のシーケンスを符号化する一連のホログラムを投射することにより、独立に3次元において並進させることができる。   A number of diffraction-limited optical traps are projected using dynamic holographic optical tweezer technology to apply more force to the nanowire while minimizing radiation damage. This approach uses a spatial light modulator (SLM) (Hamamatsu X7550 PAL-SLM) to transform a laser-wavefront of a computer-designed phase-only hologram that encodes the desired array of traps before focusing. Engrave on. Each trap in the array can be independently translated in three dimensions by projecting a series of holograms that encode a sequence of intermediate trap configurations.

図1(a)の画像は、図1(b)でCdSナノワイヤを移動させる、線形60トラップのアレイからの集束光を示す。この場合、アレイをナノワイヤの面から0.5μm以内に集束させ、1トラップ当たり3mWの出力とした。当初、光トラップのアレイと直角に向けられたナノワイヤは、そのような比較的低いレーザ出力でさえも、数秒内に回転して整列する。0.4μmのトラップ間距離を前提として、およそ15個のトラップがこのナノワイヤに同時にその最終構成に照準される。   The image in FIG. 1 (a) shows the focused light from an array of linear 60 traps moving the CdS nanowire in FIG. 1 (b). In this case, the array was focused within 0.5 μm from the surface of the nanowire, resulting in an output of 3 mW per trap. Initially, nanowires oriented perpendicular to the array of optical traps rotate and align within a few seconds, even at such relatively low laser power. Assuming a 0.4 μm inter-trap distance, approximately 15 traps are simultaneously aimed at this nanowire in its final configuration.

上記の条件を前提として、ひとたびナノワイヤがアレイに対して整列すると、アレイを視野内で移動させることによって、または試料台をアレイに対して動かすことによって、およそu=10μm/秒までの速度で並進させることができる。出力を増大させ、レーザ波長を最適化し、あるいはトラップ当たりの有効な力を高めるための様々な他の機構のいずれかによって、ナノワイヤはu=10μm/秒を超える速度で並進することができることに留意されたい。低レイノルズ数で粘度ηの無限流体中を並進する長さLおよび半径aの円筒の抗力は、近似的に次の通りである。

Figure 2008531298
ここでε=[ln(L/A)]-1であり、それは、この断面積のCdSナノワイヤに対し1トラップ当たり0.2fNの光学的に加えられる力の下限を設定する。このナノワイヤに対する実際の抗力は、ナノワイヤの中心からh≒0.5μmの距離の境界ガラス表面によって実質的に強化され、次式によって最低次数のa/hで与えられる。
Figure 2008531298
これは捕獲力の推定値を少なくとも2倍に増大させる。 Given the above conditions, once the nanowires are aligned with the array, they can be translated at a speed of up to approximately u = 10 μm / sec by moving the array within the field of view or by moving the sample stage relative to the array. Can be made. Note that nanowires can be translated at speeds exceeding u = 10 μm / sec by any of a variety of other mechanisms to increase power, optimize laser wavelength, or increase effective force per trap. I want to be. The drag force of a cylinder having a length L and a radius a that translates in an infinite fluid having a low Reynolds number and a viscosity η is approximately as follows.
Figure 2008531298
Where ε = [ln (L / A)] −1 , which sets the lower limit of the optically applied force of 0.2 fN per trap for this cross-sectional CdS nanowire. The actual drag on this nanowire is substantially enhanced by the boundary glass surface at a distance h≈0.5 μm from the center of the nanowire, and is given by the lowest order a / h.
Figure 2008531298
This increases the capture power estimate by at least a factor of two.

上記の推定値は、単一光ピンセットがナノワイヤを移動させることができるはずであることを示唆する。しかし、たとえそのようであったとしても、ナノワイヤは運動方向の抗力を最小化する方向に回転し、したがってトラップから逃避する。ホログラフィック光ピンセットのアレイによってもたらされる空間的に延びる捕獲ポテンシャルは、ナノワイヤの向きを維持し、したがって制御された並進を可能にする。   The above estimate suggests that a single optical tweezer should be able to move the nanowire. However, even if so, the nanowire rotates in a direction that minimizes drag in the direction of motion and therefore escapes from the trap. The spatially extended capture potential provided by the array of holographic optical tweezers maintains the orientation of the nanowire and thus allows controlled translation.

光ピンセットに対するナノワイヤの応答の従来の性質は、ヘリカル位相プロファイル

Figure 2008531298
をSLMで捕獲用レーザの波面に刻み付けることによって個々のトラップが光渦(optical voltex)に変換されるときに、さらによく実証される。この状況で、
Figure 2008531298
は、ビームの軸線に対しビームに垂直な面内の極座標であり、
Figure 2008531298
は波面のヘリシティを定義する整数の巻数である。この変調の効果は、点状光ピンセットを、半径が巻数と線形的に縮尺されるリング状トラップに変形することであり、その光子は各々それらの固有スピン角運動量に加えて、
Figure 2008531298
の軌道角運動量を運ぶ。この角運動量は、光のリングを照射される物体に伝達することができ、結果的に光の強度に比例する正味トルクが生じる。 The traditional nature of nanowire response to optical tweezers is the helical phase profile
Figure 2008531298
This is even better demonstrated when individual traps are converted into optical vortices by engraving them into the wavefront of a capture laser with an SLM. In this situation,
Figure 2008531298
Is the polar coordinate in the plane perpendicular to the beam relative to the axis of the beam,
Figure 2008531298
Is an integer number of turns defining the helicity of the wavefront. The effect of this modulation is to transform the point-like optical tweezers into a ring-shaped trap whose radius is linearly scaled with the number of turns, each of which photons in addition to their intrinsic spin angular momentum,
Figure 2008531298
Carry orbital angular momentum. This angular momentum can be transmitted to the object illuminated by the ring of light, resulting in a net torque proportional to the light intensity.

SiおよびCdSナノワイヤはどちらもそれら自体、光のリングの接線方向に整列する傾向がある。ひとたび接線方向に向けられると、放射圧を受ける断面が大きくなり、それらは半径方向に押しのけられる。それにもかかわらず、光渦トラップの領域内にある間、ナノワイヤは、従来のマイクロメートル規模の誘電体球と同じ方向に、周縁部を推進される。これらの観察結果は、ナノワイヤが、それらの極めて小さい断面積にもかかわらず、従来の光勾配力のトラップとして光ピンセットの作用を受けるという解釈と矛盾しない。   Both Si and CdS nanowires themselves tend to align in the tangential direction of the ring of light. Once oriented tangentially, the cross-sections subjected to the radiation pressure become larger and they are displaced in the radial direction. Nevertheless, while in the region of the optical vortex trap, the nanowire is driven around the periphery in the same direction as a conventional micrometer-scale dielectric sphere. These observations are consistent with the interpretation that nanowires are subject to the action of optical tweezers as a trap for conventional optical gradient forces, despite their very small cross-sectional area.

光ピンセットはまた、単一ナノワイヤを光軸に沿って垂直方向に移動させることもでき、それらを基板に対して押し付けることができる。ナノワイヤを堆積させないように安定化させるために特別の注意を払わない場合には、これによって、ナノワイヤがファンデルワールス相互作用によって基板に不可逆的に固着されるという結果を招来する。ナノワイヤが例えば1層の吸着ポリマ界面活性剤によって安定化される場合、それらは依然として、選択的光化学または光熱プロセスによって所定の位置に固定させることができる。これらの最も単純な方法は、安定化層が脱着または破壊されるまでレーザ出力を高めることを含む。そのような選択的接触堆積は、予め作製された機能基板へナノワイヤを制御して組立てるための基礎を提供することができる。そのような光学処理のより積極的な形態を使用して、ナノワイヤ間の接触部を選択的に融解させ、よってそれを融着させて永久的構造物にすることができる。より高精度の変形例は線形または非線形光化学プロセスを使用して、特定の機能性が生成されるように、光化学変化をナノワイヤ接合部に選択的に誘発させることができる。   Optical tweezers can also move single nanowires vertically along the optical axis and press them against the substrate. This results in the nanowires being irreversibly anchored to the substrate by van der Waals interactions if no special care is taken to stabilize the nanowires from depositing. If nanowires are stabilized by, for example, a single layer of adsorbed polymer surfactant, they can still be fixed in place by selective photochemistry or photothermal processes. These simplest methods involve increasing the laser power until the stabilization layer is desorbed or destroyed. Such selective contact deposition can provide a basis for controlling and assembling nanowires on prefabricated functional substrates. More aggressive forms of such optical processing can be used to selectively melt the contacts between nanowires, thus fusing them into a permanent structure. More accurate variations can use linear or non-linear photochemical processes to selectively induce photochemical changes at the nanowire junction so that specific functionality is generated.

本明細書に記載した型のナノワイヤは、特定の強度または特定の波長の光をナノワイヤに照射することによって変更することもできる。それぞれの強度および波長は、ナノワイヤの長さに沿って特定の変化に影響するように選択される。達成することのできる変化は、ナノワイヤの融解、ナノワイヤの切断、および化学的変換を含む。これらの変化は全て、同様または異なる材料から構成されるナノワイヤ間の接合部で発生することができる。そのような変換は結果的に、ナノワイヤ間のみならず、ナノワイヤと他の基板との間にも、機械的、電気的、または光学的接触部を形成することもできる。   Nanowires of the type described herein can also be modified by irradiating the nanowire with a specific intensity or wavelength of light. Each intensity and wavelength is selected to affect certain changes along the length of the nanowire. Changes that can be achieved include nanowire melting, nanowire cutting, and chemical transformations. All of these changes can occur at the junction between nanowires composed of similar or different materials. Such a conversion can result in mechanical, electrical or optical contact not only between nanowires, but also between nanowires and other substrates.

ここに提示する結果は、ホログラフィック光ピンセットのアレイを使用して、半導体ナノワイヤを精密編成2次元および3次元構造物に組み立てることができることを実証する。このプロセスは、光捕獲力を増強するようにレーザ波長を調整することによって最適化することができ、ホログラフィック捕獲技術の進歩と並行してかなり高速化し、かつ大きく前進する。   The results presented here demonstrate that an array of holographic optical tweezers can be used to assemble semiconductor nanowires into precision organized 2D and 3D structures. This process can be optimized by adjusting the laser wavelength to enhance the light capture power, significantly speeding up and making significant progress in parallel with advances in holographic capture technology.

本発明の実施形態の上述の説明は、例証および解説のために提示したものである。それは全てを余すところなく記載し尽くしたものではなく、本発明を開示した厳密な形に限定する意図は無く、上記教示に照らして変形および変化が可能であり、あるいは本発明の実施から得られるかもしれない。本実施形態は、当業者が本発明を様々な実施形態で、かつ考えられる特定の用途に適するように様々な変形を施して利用することができるように、本発明の原理および実際の適用を説明するために選択され記載された。   The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description. It is not exhaustive and is not intended to limit the invention to the precise form disclosed, and may be modified and varied in light of the above teachings or may be derived from practice of the invention. It may be. This embodiment illustrates the principles and practical application of the present invention so that one skilled in the art can utilize the present invention in various embodiments and with various modifications to suit the particular application envisaged. Selected and described for explanation.

線形60トラップのアレイからの合焦光ビームを示す像である。FIG. 6 is an image showing a focused light beam from an array of linear 60 traps. 光トラップのアレイによって回転かつ並進させた単一CdSナノワイヤの多重露光を示す像である。FIG. 6 is an image showing multiple exposure of a single CdS nanowire rotated and translated by an array of light traps.

Claims (11)

複数の光ビームを入力するステップと、
複数の光トラップを形成するステップと、
前記複数の光トラップを第1のナノワイヤに投射するステップと、
前記少なくとも第1のナノワイヤを処理するステップと
を含むナノワイヤを処理する方法。
Inputting a plurality of light beams;
Forming a plurality of optical traps;
Projecting the plurality of optical traps onto a first nanowire;
Treating the at least first nanowire; and treating the nanowire.
前記少なくとも第1のナノワイヤを処理する前記ステップが、前記少なくとも第1のナノワイヤを操作し、分離し、加熱し、および化学的に変換するステップうちの少なくともいずれかを含む、請求項1に記載の方法。   The process of claim 1, wherein the step of processing the at least first nanowire comprises at least one of manipulating, separating, heating, and chemically converting the at least first nanowire. Method. 前記少なくとも第1のナノワイヤが金属ナノワイヤおよび半導体ナノワイヤの少なくともいずれかを含む、請求項1に記載の方法。   The method of claim 1, wherein the at least first nanowire comprises at least one of a metal nanowire and a semiconductor nanowire. 前記少なくとも第1のナノワイヤがCdSおよびSiの少なくともいずれかを含む、請求項1に記載の方法。   The method of claim 1, wherein the at least first nanowire comprises at least one of CdS and Si. 前記少なくとも第1のナノワイヤに対する前記光トラップのアレイの位置を変更することによって、前記少なくとも第1のナノワイヤを並進させるステップをさらに含む請求項1に記載の方法。   The method of claim 1, further comprising translating the at least first nanowire by changing a position of the array of optical traps with respect to the at least first nanowire. 第2のナノワイヤを提供するステップと、
前記光トラップのアレイの少なくともいずれかによって投射される出力を増加させることによって、前記少なくとも第1のナノワイヤを前記第2のナノワイヤに融着させるステップと
をさらに含む、請求項1に記載の方法。
Providing a second nanowire;
The method of claim 1, further comprising fusing the at least first nanowire to the second nanowire by increasing the power projected by at least one of the array of light traps.
前記複数の光トラップの少なくともいずれかを少なくともいずれかの光渦に変換するステップと、
前記少なくともいずれかの光渦を使用して、前記少なくとも第1のナノワイヤを半径方向に並進させるステップと
をさらに含む請求項1に記載の方法。
Converting at least one of the plurality of optical traps into at least one optical vortex;
The method of claim 1, further comprising: radially translating the at least first nanowire using the at least one optical vortex.
前記少なくとも第1のナノワイヤに少なくとも部分的な変化をもたらすために、前記複数の光ビームが所定の波長を有する、請求項1に記載の方法。   The method of claim 1, wherein the plurality of light beams have a predetermined wavelength to effect at least a partial change in the at least first nanowire. 前記少なくとも第1のナノワイヤに少なくとも部分的な変化をもたらすために、前記複数の光ビームが所定の強度を有する、請求項1に記載の方法。   The method of claim 1, wherein the plurality of light beams have a predetermined intensity to cause at least a partial change in the at least first nanowire. 前記少なくとも第1のナノワイヤおよび前記第2のナノワイヤが、同一材料および異なる材料の群から選択される、請求項1に記載の方法。   The method of claim 1, wherein the at least first nanowire and the second nanowire are selected from the group of the same material and different materials. 前記変化は、前記少なくとも第1のナノワイヤおよび前記第2のナノワイヤ、前記第2のナノワイヤおよび非ナノワイヤ基板、ならびに前記少なくとも第1のナノワイヤおよび前記非ナノワイヤ基板の少なくとも2つの間に接触部を形成するものであり、
前記接触部が、機械的接触部、電気的接触部、および光学的接触部からなる群から選択される、請求項1に記載の方法。
The change forms a contact between the at least first nanowire and the second nanowire, the second nanowire and non-nanowire substrate, and at least two of the at least first nanowire and non-nanowire substrate. Is,
The method of claim 1, wherein the contact is selected from the group consisting of a mechanical contact, an electrical contact, and an optical contact.
JP2007555098A 2005-01-12 2006-01-11 System and method for processing nanowires with holographic optical tweezers Pending JP2008531298A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64338405P 2005-01-12 2005-01-12
PCT/US2006/000946 WO2007084114A2 (en) 2005-01-12 2006-01-11 System and method for processing nanowires with holographic optical tweezers

Publications (1)

Publication Number Publication Date
JP2008531298A true JP2008531298A (en) 2008-08-14

Family

ID=38288042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007555098A Pending JP2008531298A (en) 2005-01-12 2006-01-11 System and method for processing nanowires with holographic optical tweezers

Country Status (5)

Country Link
US (2) US7772543B2 (en)
EP (1) EP1851166A2 (en)
JP (1) JP2008531298A (en)
CN (1) CN101378985A (en)
WO (1) WO2007084114A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539911A (en) * 2010-09-21 2013-10-28 中国科学院理化技術研究所 Laser micro / nano processing system and method

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050104034A (en) * 2004-04-27 2005-11-02 삼성에스디아이 주식회사 Manufacturing method of nano wire
WO2007079411A2 (en) * 2005-12-30 2007-07-12 The Regents Of The University Of California Alignment, transportation and integration of nanowires using optical trapping
US10231344B2 (en) 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
US8404160B2 (en) 2007-05-18 2013-03-26 Applied Nanotech Holdings, Inc. Metallic ink
US20090194414A1 (en) * 2008-01-31 2009-08-06 Nolander Ira G Modified sputtering target and deposition components, methods of production and uses thereof
US8506849B2 (en) 2008-03-05 2013-08-13 Applied Nanotech Holdings, Inc. Additives and modifiers for solvent- and water-based metallic conductive inks
US9730333B2 (en) 2008-05-15 2017-08-08 Applied Nanotech Holdings, Inc. Photo-curing process for metallic inks
TWI492303B (en) 2009-03-27 2015-07-11 Applied Nanotech Holdings Inc Buffer layer to enhance photo and/or laser sintering
US8422197B2 (en) 2009-07-15 2013-04-16 Applied Nanotech Holdings, Inc. Applying optical energy to nanoparticles to produce a specified nanostructure
WO2014011578A1 (en) 2012-07-09 2014-01-16 Applied Nanotech Holdings, Inc. Photosintering of micron-sized copper particles
AT15050U1 (en) * 2015-12-18 2016-11-15 Plansee Composite Mat Gmbh Coating source with structuring
US10108069B2 (en) * 2017-01-24 2018-10-23 The Boeing Company Electromagnetic effect resistant spatial light modulator
CN109545815B (en) * 2018-10-18 2020-11-10 泉州市盛维电子科技有限公司 Mass transfer method of micro light-emitting diode
CN113169757A (en) * 2018-12-20 2021-07-23 三菱电机株式会社 Cable length calculation system, controller and cable length calculation method
CN112993120A (en) * 2020-08-14 2021-06-18 重庆康佳光电技术研究院有限公司 Transfer method and transfer system for micro device
CN112897458A (en) * 2021-01-20 2021-06-04 暨南大学 Assembling and fixing method of medium nano particles based on optical tweezers system
CN113740214B (en) * 2021-11-08 2022-01-25 深圳大学 Intelligent analysis method and device based on holographic evanescent wave optical tweezers

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2651382A1 (en) 1976-11-11 1978-05-18 Philips Patentverwaltung Cathode sputtering target - with surface structure of grooves and groove wall slopes ensuring max. sputtering rate
US4299678A (en) 1979-07-23 1981-11-10 Spin Physics, Inc. Magnetic target plate for use in magnetron sputtering of magnetic films
JPS61291964A (en) 1985-06-17 1986-12-22 Anelva Corp Resin target for sputtering
US4834860A (en) 1987-07-01 1989-05-30 The Boc Group, Inc. Magnetron sputtering targets
AU8629491A (en) 1990-08-30 1992-03-30 Materials Research Corporation Pretextured cathode sputtering target and method of preparation thereof and sputtering therewith
JP3129471B2 (en) * 1991-06-01 2001-01-29 科学技術振興事業団 Multi-beam particle operation method
US20030052000A1 (en) 1997-07-11 2003-03-20 Vladimir Segal Fine grain size material, sputtering target, methods of forming, and micro-arc reduction method
US5827414A (en) 1997-07-25 1998-10-27 International Business Machines Corporation Single piece slotted ferromagnetic sputtering target and sputtering apparatus
JPH11189867A (en) 1997-12-24 1999-07-13 Olympus Optical Co Ltd Sputtering target
US6117281A (en) 1998-01-08 2000-09-12 Seagate Technology, Inc. Magnetron sputtering target for reduced contamination
US6071389A (en) 1998-08-21 2000-06-06 Tosoh Smd, Inc. Diffusion bonded sputter target assembly and method of making
JP3628554B2 (en) 1999-07-15 2005-03-16 株式会社日鉱マテリアルズ Sputtering target
US6780794B2 (en) 2000-01-20 2004-08-24 Honeywell International Inc. Methods of bonding physical vapor deposition target materials to backing plate materials
EP2360298A3 (en) 2000-08-22 2011-10-05 President and Fellows of Harvard College Method for depositing a semiconductor nanowire
JP2002105634A (en) 2000-09-29 2002-04-10 Shibaura Mechatronics Corp Sputtering system
US6887356B2 (en) 2000-11-27 2005-05-03 Cabot Corporation Hollow cathode target and methods of making same
US7114643B2 (en) 2000-12-15 2006-10-03 Tosoh Smd, Inc. Friction fit target assembly for high power sputtering operation
TW554388B (en) * 2001-03-30 2003-09-21 Univ California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
WO2003008943A1 (en) * 2001-07-19 2003-01-30 Tufts University Optical array device and methods of use thereof for screening, analysis and manipulation of particles
US6737634B2 (en) * 2002-01-16 2004-05-18 The University Of Chicago Use of multiple optical vortices for pumping, mixing and sorting
US20030183518A1 (en) 2002-03-27 2003-10-02 Glocker David A. Concave sputtering apparatus
EP2889879B1 (en) * 2002-07-31 2017-09-06 Premium Genetics (UK) Limited System and method of sorting materials using holographic laser steering
US6848608B2 (en) 2002-10-01 2005-02-01 Cabot Corporation Method of bonding sputtering target materials
DE60326621D1 (en) 2002-10-21 2009-04-23 Cabot Corp METHOD FOR PRODUCING A SPUTTER TARGET AND SPUTTER TARGET
EP1613787A4 (en) * 2003-04-02 2007-09-26 Univ Northwestern Methods of controlling nanoparticle growth
US6929720B2 (en) 2003-06-09 2005-08-16 Tokyo Electron Limited Sputtering source for ionized physical vapor deposition of metals
EP1642328A1 (en) 2003-06-11 2006-04-05 Honeywell International, Inc. Traps for particle entrapment in deposition chambers
US6992261B2 (en) 2003-07-15 2006-01-31 Cabot Corporation Sputtering target assemblies using resistance welding
CN1234612C (en) * 2003-09-02 2006-01-04 浙江大学 Method for preparing nano bars of cadmiun sulfide
US7411181B2 (en) * 2003-10-28 2008-08-12 Arryx, Inc. System and method for manipulating and processing materials using holographic optical trapping
US7442339B2 (en) * 2004-03-31 2008-10-28 Intel Corporation Microfluidic apparatus, Raman spectroscopy systems, and methods for performing molecular reactions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539911A (en) * 2010-09-21 2013-10-28 中国科学院理化技術研究所 Laser micro / nano processing system and method

Also Published As

Publication number Publication date
CN101378985A (en) 2009-03-04
US7850829B2 (en) 2010-12-14
US20090120784A1 (en) 2009-05-14
EP1851166A2 (en) 2007-11-07
US7772543B2 (en) 2010-08-10
WO2007084114A2 (en) 2007-07-26
US20060240591A1 (en) 2006-10-26
WO2007084114A3 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP2008531298A (en) System and method for processing nanowires with holographic optical tweezers
JP4897382B2 (en) Apparatus for applying optical gradient forces
Daria et al. Dynamic array of dark optical traps
Sugioka et al. Femtosecond laser three-dimensional micro-and nanofabrication
Juodkazis et al. Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications
US7176445B2 (en) Use of multiple optical vortices for pumping, mixing and sorting
Maruo et al. Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography
Yang et al. Rapid two‐photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering
WO2008063809A2 (en) Three-dimensional holographic ring traps
JP4714877B2 (en) Minute substance fixing device and minute substance fixing method
Lim et al. Sub-micron surface patterning by laser irradiation through microlens arrays
Asavei et al. Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins
Seet et al. Templating and replication of spiral photonic crystals for silicon photonics
JP5026967B2 (en) Manufacturing method of three-dimensional photonic crystal
Liu et al. Optical transportation and accumulation of microparticles by self-accelerating cusp beams
Maruo et al. Movable microstructures made by two-photon three-dimensional microfabrication
He et al. Tailored femtosecond Bessel beams for high-throughput, taper-free through-Silicon vias (TSVs) fabrication
Ostendorf et al. Optical tweezers in microassembly
Ishraq Laser Nano-Structuring Deep Inside Silicon Using Bessel Beams
JPH04334544A (en) Laser trapping method
Jandura et al. Preparation of Fresnel zone plate for LED application using laser lithography
Chung Controlling motion at the nanoscale with light
Lasagni Exploring the Possibilities of Laser Interference Patterning for the Rapid Fabrication of Periodic Arrays on Macroscopic Areas
Zhao Light and Particle Manipulation Based on Optothermal Surface Bubbles
Maruo et al. Optically-driven microstructures fabricated by two-photon microstereolithography