JP2008516640A - 位置及び方向プローブに基づく磁気共鳴マーカー - Google Patents

位置及び方向プローブに基づく磁気共鳴マーカー Download PDF

Info

Publication number
JP2008516640A
JP2008516640A JP2007529097A JP2007529097A JP2008516640A JP 2008516640 A JP2008516640 A JP 2008516640A JP 2007529097 A JP2007529097 A JP 2007529097A JP 2007529097 A JP2007529097 A JP 2007529097A JP 2008516640 A JP2008516640 A JP 2008516640A
Authority
JP
Japan
Prior art keywords
magnetic resonance
standard
standard markers
projection
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007529097A
Other languages
English (en)
Inventor
エーンホルム,ゴスタ
リンドストロム,マッティ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2008516640A publication Critical patent/JP2008516640A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/285Invasive instruments, e.g. catheters or biopsy needles, specially adapted for tracking, guiding or visualization by NMR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3954Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Human Computer Interaction (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

磁気共鳴位置及び方向マーキングシステムは、各々が少なくとも1つの磁気共鳴受信コイル(70,74,80,84)と結合された少なくとも3つの標準マーカー(31,32,33)を有する標準アセンブリ(30)を有する。標準マーカーの少なくとも一は、(i)H脂肪及び水共鳴において選択的に励起可能なマーカー原子核及び(ii)その標準マーカーに結合された複数の磁気共鳴受信コイル(70,84)の少なくとも一を有する。少なくとも2つの磁気共鳴受信チャネル(40,42)は、磁気共鳴撮影スキャナ(10)により前記少なくとも3つの標準マーカーにおける磁気共鳴の励起に対応する少なくとも3つの標準マーカー(31,32,33)から磁気共鳴信号を受信する。

Description

本発明は、磁気共鳴技術に関する。本発明は、特に、磁気共鳴撮影が生検又は他の侵襲的医療処置をモニタするために用いられ、特定の参照番号を付けて記載される侵襲的磁気共鳴撮影におけるアプリケーションに関する。しかしながら、本発明はまた、一般的な磁気共鳴撮影におけるアプリケーションに関する。
生検、熱アブレーション、近接照射等のような侵襲的医療処置においては、侵襲的な処置が進行するにつれて、生検針、カテーテル又は他の侵襲的な装置の位置についての適切な認識を有することは重要である。非侵襲的処置においては、位置及び方向追求はまた、例えば、解剖学的ランドマークに基づくスライスの選択のためのツールとして有用である。一部の方法においては、磁気共鳴撮影スキャナは、侵襲的医療処置中に患者を撮影するために用いられ、他の非磁気共鳴に基づく技術は、侵襲的装置の位置及び方向を追求するために用いられる。例えば、Philips Optoguide(登録商標)は、侵襲的装置の位置及び方向を決定するために光学的マーカーをモニタするステレオカメラの対を用いる。この方法においては、光学的マーカーは、追求中、モニタリングカメラ視線内に留まらなければならない。更に、光学的モニタリングシステムは、磁気共鳴撮影に関連して空間的に較正されなければならない。
磁気共鳴撮影はまた、侵襲的装置を追求するための情報及び患者の画像の両方を同時に与えるように用いられてきた。一部の方法においては、磁気共鳴に基づく追求は、侵襲的装置の先端により磁気共鳴画像に重ね合わされる感応性アーティファクトを利用する。この方法は、侵襲的装置の先端の周りの領域の画像を乱す不利点を有し、また、典型的には、空間及び角度情報の両方を抽出するための十分な情報を与えるものではない。
他の方法においては、専用の標準アセンブリが、侵襲的装置に対して固定的な既知の空間的関係で備えられる。それらの方法においては、標準アセンブリは少なくとも3つの空間的に別個の磁気標準マーカーを有し、それらの磁気標準マーカーの各々は別個の磁気共鳴信号を与える。3つの磁気共鳴受信チャネルは、並列に3つの磁気マーカーからの磁気共鳴を取得して処理し、そのことは、ハードウェアの三倍の重複を必要とする。更に、患者から発せられるHプロトン磁気共鳴信号は、磁気共鳴マーキング及び追求と干渉する。
本発明は、上記及び他の制約を克服する改善された装置及び方法を検討したものである。
一特徴にしたがって、磁気共鳴位置及び方向マーキングシステムについて開示している。標準アセンブリは、各々が少なくとも1つの磁気共鳴受信コイルと結合された少なくとも3つの標準マーカーを有する。標準マーカーの少なくとも1つは、(i)H脂肪及び水共鳴において選択的に励起可能なマーカー原子核、及び(ii)複数の磁気共鳴受信コイル、の少なくとも一を有する。少なくとも2つの磁気共鳴受信チャネルは、関連磁気共鳴撮影スキャナにより前記少なくとも3つの標準マーカーにおける磁気共鳴の励起に対応する少なくとも3つの標準マーカーから磁気共鳴信号を受信する。
他の実施形態においては、少なくとも3つの標準マーカーを有する標準アセンブリの位置及び方向を決定するための方法を提供している。磁気共鳴は、少なくとも3つの標準マーカーにおいて励起される。各々の標準マーカーは、少なくとも1つの磁気共鳴受信コイルと結合されている。標準マーカーの少なくとも1つは、(i)H脂肪及び水共鳴において選択的に励起可能なマーカー原子核、及び(ii)複数の磁気共鳴受信コイル、の少なくとも一を有する。磁気共鳴信号は、少なくとも2つの磁気共鳴受信チャンルを介して励起された少なくとも3つの標準マーカーから受信される。
1つの有利点は、コスト及び複雑性が低減されたロバストな磁気共鳴に基づくマーキング及び追求システムを提供することにある。
他の有利点は、2つの磁気共鳴受信チャネルのみを用いる磁気共鳴に基づくマーキング及び追求を提供することにある。
他の有利点は、撮影している被検体からの発せられるH共鳴からの干渉が実質的に低減された磁気共鳴に基づくマーキング及び追求システムを提供することにある。
他の有利点は、標準マーカーの重なり合い、対称的マーカー構成等からもたらされるマーキング及び追求の曖昧性についてのロバストな且つ高信頼性の解決方法を提供することにある。
多くの付加的有利点及び恩恵は、当業者には、以下の詳細な好適な実施形態の記載を読むことにより明らかになるであろう。
本発明は、種々の構成要素及び構成要素の構成、種々の処理操作及び処理操作の構成において具体化することができる。図は、例示としての好適な実施形態を示すことのみを目的とし、本発明を限定するように解釈されるべきものではない。
図1を参照するに、磁気共鳴撮影スキャナ10は、対象12の領域において磁気共鳴撮影を実行する。図示している実施形態においては、磁気共鳴撮影スキャナ10は、Philips Medical Systems Nederland B.V.製のPhilips Panorama 0.23Tスキャナである。このスキャナは、侵襲的医療処置を容易にする開放孔を有する。スキャナ10は単なる例示であり、ここで説明する装置によるマーキング及び追求方法及び装置は、開放孔スキャナ、閉鎖孔スキャナ、垂直孔スキャナ等を含む磁気共鳴撮影スキャナの何れの種類と実質的に共に、一般に適用可能であるが、それらに限定されるものではないことが理解できるであろう。患者のような撮影被検体(図示せず)は、被検体支持部14に位置され、スキャナ10の対象領域内に位置付けられる。
侵襲的医療用処置において、生検針、カテーテル、ポインタ等のような侵襲的装置20は、生検、熱アブレーション処理、近接照射、スライス選択等を実行するように用いられる。磁気共鳴撮影スキャナ10は、外科医又は他の医療療法士に視覚的案内を与えるように、侵襲的医療処置中に侵襲的装置20及び処置領域を撮影する。一部の侵襲的処置においては、侵襲的装置は、外科医又は他の医療療法士により直接、操作される。しかしながら、侵襲的装置20の高精度の操作を必要とする繊細な又は高感度の処置ために、機械的アセンブリ22は、侵襲的装置20を支持し且つ操作する、又は、外科医又は他の医療療法士の指示の下で、侵襲的装置20の位置決めを支援する。図示している実施形態においては、機械的アセンブリ22が被検体指示部14に備えられている。しかしながら、他の検討された実施形態においては、スキャナ10又は他の関連構造にアームが支持される又は備えられることが可能である。
侵襲的装置20がどのように操作されるかに拘わらず、侵襲的処置中に、侵襲的装置20の自動マーキング及び追求を与えることは有利である。このような目的で、標準アセンブリ30が、磁気共鳴撮影スキャナ10の視野内に侵襲的装置20に備えられる。標準アセンブリ30は、図示している実施形態においては、磁気共鳴撮影スキャナ10により生成された高周波励起に対応する磁気共鳴信号を生成する3つの標準マーカー31、32、33を有する。しかしながら、付加マーカーが冗長性を与えるように含まれ、追求のロバスト性が改善されることが可能である。図示している実施形態においては、3つの標準マーカー31、32、33は、ここで、“Ch0”及び“Ch1”のように表されている2つの直交磁気共鳴受信信号のそれぞれを生成する2つの高周波チャネル受信器40、42によりモニタリングされる。それらの2つの磁気共鳴受信信号は、その標準アセンブリ30の位置及び方向、それ故、その標準アセンブリ30と強く結合された侵襲的装置20の位置及び方向を決定するように、位置/方向処理器44により処理される。代替として、標準マーカー31、32、33は、別個の磁場受信器チャネル(即ち、全部で3つの受信器チャネル)によりモニタリングされ、それら3つのチャネルは、各々の位置及び方向を決定するように受信され且つ適切に処理される。
図示している実施形態においては、それら2つの高周波チャネル受信器40、42及び位置/方向処理器44は電子ラック50に備えられ、ディスプレイ54及びグラフィカルユーザインターフェース56は、外科医又は他の医療療法士が侵襲的装置20に関する位置及び方向情報を受信するためのユーザインターフェースとしての役割を果たす。図示している実施形態においては、コンピュータ52はまた、磁気共鳴撮影スキャナ10の制御のため及びその磁気共鳴撮影スキャナから画像を受信するためのユーザインターフェースを備えている。例えば、位置/方向処理器44は、別個の電子構成要素としてではなく、コンピュータ52により実行される演算ソフトウェアにより実施される。2つの高周波チャネル受信器40、42は、同様に、例えば、コンピュータのマザーボードと結合する端部コネクタを有する任意の電子カードとして、コンピュータ52に統合されることが可能である。他の実施例の修正においては、スキャナ10を制御するため及びそのスキャナからの画像を表示するためのコンピュータは、侵襲的装置20をマーキングし、追求するために用いられるハードウェアから分離され、離れていることが可能である。
図1を継続して参照し且つ図2を更に参照するに、標準アセンブリ30は、図示している実施形態において、正三角形の角に位置している3つの標準マーカー31、32、33を有するが、他の非線形構成が検討されている。標準アセンブリ30は、侵襲的装置20の位置及び方向並びにその侵襲的装置の先端の場所に対する標準アセンブリ30の位置及び方向の演繹的認識を与える侵襲的装置20が固く取り付けられている。
図3を参照するに、3つの標準マーカー31、32、33は、磁気マーカー物質62を有する密封バイアル60を有する。一部の実施形態においては、磁気マーカー物質62はフッ素含有物質である。1つの適切なフッ素含有磁気マーカー物質は、89重量%のトリフルオロ酢酸(CAS No.76−05−1)及び11重量%の水から成るトリフルオロ酢酸水溶液である。任意に、適切なT緩和時間短縮剤が、120msec以上から約25msecにT緩和時間を短縮するように添加される。例えば、T緩和時間短縮剤は、7mmol/lの最終濃度に対してそのトリフルオロ酢酸水溶液に添加される二酸化マンガン(MnCl)である。バイアル60は、侵襲的装置20の操作の干渉を制限するように小さい必要があるが、また、適切な磁気共鳴信号を供給するように十分な磁気マーカー物質62を含むために十分に大きい必要がある。図示している実施形態においては、バイアル60は、約9.5mmの内径及び約10mmの外径を有する、実質的に円筒形である。図示している実施形態においては、バイアル60は首領域64の溶解によりシールされ、その融解により、融解したガラスの固まり68と気泡66が残る。図示されている標準マーカーは例示であって、当業者は、磁気共鳴マーキング信号の生成のために適切なフッ素、水素又は他の原子核を有する他の液体又は固体の磁気マーカー物質を用いることが可能であり、その磁気マーカー物質のために他の適切なコンテナ又は固定物を用いることが可能である。
図3を継続して参照するに、バイアル60は、プラスチックコイルホルダの内側に位置付けられ、エポキシ注型により固定される。コイルホルダは、適切な磁気共鳴受信コイルを取り付けられるように成形される。このような構成は、強い電磁結合を与えるように近接してコイルを有利に位置付けている。しかしながら、磁気マーカー物質との適切な電磁結合を与える他のコイル構成を用いることが可能である。
図1乃至3を継続して参照し且つ図4、即ち、図4A及び4Bを更に参照するに、第1標準マーカー31は、第1方向に方向付けられたコイル法線72を有するコイル70を有する。第2標準マーカー32は、第1方向と異なる第2方向に方向付けられたコイル法線76を有するコイル74を有する。図示している実施形態においては、コイル標準72、76は互いに垂直である。図4Aに示すように、2つのコイル70、74は、図1に示す“Ch0”受信器40が受信する“Ch0”信号を規定するように直列に接続されている。(明確に図示するように、コイル及び電気的接続は図4、4A及び4Bに図示していて、図2においては省略されている。)
第3標準マーカー33は、第1標準マーカー31のコイル70と同じ面内に方向付けられたコイル80を有する。しかしながら、コイル80は、コイル70のコイル法線72と反対方向のコイル法線82を有する。即ち、第3標準マーカー33のコイル80は、第1標準マーカー31のコイル70と同じ空間的方向を有するが、逆極性で回転され且つ関連付けられている。同様に、第1標準マーカー31は、第2標準マーカー32のコイル74と同じ面内に方向付けられた第2コイル84を有する。しかしながら、コイル84は、コイル74のコイル法線76と逆に方向付けられたコイル法線86を有する。即ち、第1標準マーカー31の第2コイル84は第2標準マーカー32のコイル74と同じ空間的方向を有するが、逆極性で回転されている。図4Bに示すように、2つのコイル80、84は、図1に示す“Ch1”受信器42が受信する“Ch1”信号を規定するように直列に接続されている。
図5を参照するに、適切な一実施形態においては、磁気共鳴チャネル受信器40、42各々は、ツイストペアケーブル92により直列に接続されたコイル(即ち、第1受信器40のためのコイル70、74及び第2受信器42のためのコイル80、84)と接続された前置増幅回路90を有する。前置増幅回路90は共振容量94、96及び出力増幅器98を有する。典型的には、撮影するための磁気共鳴の励起中に、その回路の過負荷を回避するように前置増幅回路90を離調することは有利である。したがって、PINダイオード動作デカップリング回路(一般化インピーダンス100で表される)は、略、受信モードの開回路であり、送信モードの低容量96と並列共振回路を構成している。前置振幅回路90は例示として示されていて、当業者は、回路90を容易に改善することができる、又は他の適切な受信回路をデザインする及び構築することができることが理解できるであろう。
図6を参照するに、標準アセンブリの位置及び方向(それ故、侵襲的装置20の位置及び方向と同じである)は、一連の一次元投影励起を適用し、選択された撮影シーケンス間で任意にインターリーブされ、そしてそれらの投影励起に応じて
“Ch0”及び“Ch1”受信チャネル40、42において検出される共振から標準マーカー31、32、33の位置を決定することにより、周期的に、例えば、1秒当たり10回モニタされる。図6は、そのような投影測定のための適切なパルスシーケンスを示している。90°パルス又は他のフリップ角パルスであることが可能である空間的非選択励起パルス110は、磁気マーカー物質62に含まれる対象領域12の物質における磁気共鳴を発生させる。図示した実施例においては、ディフェージング勾配パルス112はx方向に勾配を生成するためのG勾配パルスである。信号G勾配パルス112は簡略化のために示されている一方、G、G及びGを選択的に結合させることにより、勾配投影は何れの任意の方向に生成されることができることが理解できるであろう。非選択180°パルス114は、読み出し勾配(例示としてのx方向投影のG勾配116)の適用に後続して、適用される。読み出しサンプリング期間118は読み出し勾配116中に実行される。一実施例においては、512個のサンプルが600mmの視野により50kHzで取得されるが、他のサンプリングパラメータを用いることが可能である。スポイラ勾配は読み出し後に任意に適用されるが、図示している実施形態においては、スポイラ勾配は、複数の異なる方向の投影の取得で用いられる変化する読み出し方向のために、省略されている。図6に示すパルスシーケンスは単に例示であり、当業者は、選択された投影方向における一次元投影を測定するために他の適切なパルスシーケンスを容易に構築することができる。
磁気マーカー物質62がフッ素原子核を含む一部の好適な実施形態においては、磁気共鳴チャネル受信器40、42は、19Fフッ素磁気共鳴をモニタする。19F磁気共鳴ピークは、H水素磁気共鳴ピークより、周波数が約6%低い。患者又は他の撮影被検体は、一般に、H共鳴を用いて撮影されるために、スキャナ10は、典型的には、H磁気共鳴周波数に対して調節される。しかしながら、H周波数に対して調節されるときでさえ、磁気共鳴スキャナ10の高周波送信成分は、フッ素に基づく磁気共鳴マーキングを有効にするように19F共鳴周波数において十分な強度を生成することが可能である。例えば、1つの市販の磁気共鳴撮影スキャナにおいて、H磁気共鳴周波数での励起は、19Fフッ素共鳴周波数において最大(即ち、H周波数)B磁場の約11%を生成する。この19F周波数における励起強度は、一般に、コイル70、74、80、84を有効にするために適切であり、それらのコイルは、標準マーカー31、32、33において励起される19F磁気共鳴を検出するように、バイアル60に含まれている磁気マーカー物質62に対して近接して位置付けられる。図示している実施形態においては、例示としてのパノラマ0.23Tスキャナ10の受信チェーンは、前置増幅器90を超える広帯域であり、混合器のIFは、検出及びサンプリング目的のために調節可能である。それ故、前置増幅器回路90の出力は、プロトン撮影について用いられるのと同じスキャナ受信チェーンを用いて、有利に処理される。
19F磁気共鳴を用いているとき、19F周波数における減少した高周波送信強度(撮影H周波数と比べて)は、励起パルス110についての2.75msec及び180°パルス114についての5.50msecのような比較的長い送信パルスを用いることを要求する。これは、比較的長いエコー時間(図示している実施形態においては、17msec)及び対応する狭い帯域の励起をもたらし、そのことは、スキャナ10の磁石の同種ボリュームに標準マーカー信号を強く閉じ込める。
例示としてのフッ素ベースのマーカー物質の19F共鳴は、B=0.23テスラで対応することが認識されている。0.23テスラで実行される一部の追求シーケンスにおいては、19Fフッ素共鳴は、患者のH水及び脂肪共鳴の実質的励起を伴わずに選択的に励起され、そのことは、被検体共鳴を撮影することからのマーカー共鳴の区別を容易にする。更に、3つの標準マーカー31、32、33における19F共鳴は同様に励起され、同位相で歳差運動し、そのことは、異なるコイル巻き付け方向により生成される位相差に基づいてマーカーの区別を容易にする。
19F共鳴は例示であり、他の実施形態では、標準マーカーにおいて他の原子核磁気共鳴を用いられる。一部の実施形態においては、共鳴周波数の強い化学シフトを伴うH共鳴を有するマーカー物質は、人体のH脂肪及び水共鳴の実質的励起を伴わずにマーカー物質における共鳴の選択的励起を可能にするために十分である。例えば、B=0.23テスラにおいて、19F共鳴を生成するために適切に用いられる同じフッ素含有磁気マーカー物質62(トリフルオロ酢酸/水の水溶液)はまた、H脂肪/水共鳴の実質的な励起を伴わずに、化学シフトしたマーカー共鳴の選択的励起を可能にする周波数において十分に化学シフトする化学シフトH磁気共鳴を供給することが認識された。
それ故、一部の実施形態においては、例示としてのトリフルオロ酢酸水溶液62は、低磁場(例えば、B=0.23テスラ)及び高磁場(例えば、B=0.6テスラ)の両方におけるマーカー物質として用いられる。低磁場については、19Fマーカー共鳴が励起され、高磁場においては、化学シフトH共鳴が励起される。当業者は、それらの磁場または他の磁場において適切に用いられる他のマーカー物質を選択することができる。更に、一部の検討された実施形態においては、H水又はH脂肪マーカー共鳴は、H患者共鳴と共に励起され、標準マーカー31、32、33におけるマーカー物質へのマーカーコイルの近接は、H患者共鳴信号からマーカー信号を区別するように十分選択的に備えられている。
図7A及び7Bは、 選択された一次元投影についての“Ch0”及び“Ch1”のそれぞれのために測定された、例示としてのフーリエ変換周波数領域のスペクトルを示している。図7A及び7Bにおいては、第1標準マーカー31から、2つのピークであって、コイル70による“Ch0”スペクトルにおけるピークと、コイル84による“Ch1”スペクトルにおけるピークとが得られる。第1標準マーカー31によるそれらのピークは、図7A及び7Bにおいて“#1”とラベル付けされている。第2標準マーカー32は、図7Aの“Ch0”スペクトルに対するピークに寄与する。第2標準マーカー32によるこの第2ピークは“#2”とラベル付けされている。同様に、第3標準マーカー33は、図7Bの“Ch1”スペクトルに対するピークに寄与し、その第3標準マーカー33は“#3”とラベル付けされている。
図7A及び7Bにおいては、ピークは“#1”、“#2”又は“#3”とラベリングされ、それ故、例示目的で、特定の標準マーカーによるピークを示しているが、それらのピークは、取得後未処理のスペクトルにおいては、特定の標準マーカーにより特定されないことが理解できるであろう。標準アセンブリ30の一部の位置及び方向においては、“#1”ピークの1つ又は両方は、“#2”ピーク及び/又は“#3”ピークと重なり合うことが可能であり、それらのピークは、高い空間対称性の状態にあることが可能であり、若しくは、特定の標準マーカーによる特定のピークの特定において、他の実施形態が存在することが可能である。
したがって、図1の位置/方向処理器44は、“Ch0”及び“Ch1”スペクトルにおけるピークを標準マーカー31、32、33の特定の位置により明確に特定することができる方法を実行する。適切な方法については、下で説明する。一旦、ピークが、各々の一次元投影スペクトルにおいて明確に特定されると、その投影方向における各々の標準マーカー31、32、33の空間的位置は、投影の周波数符号化の空間的関係に基づいて決定されることができる。これは、選択された一次元投影に基づいて、マーカー位置情報を生成する。それらの標準の間の演繹的に認識された関係と共に、この位置情報は、スキャナ10の座標系において、解剖学的座標系において又は他の適切な座標系において、位置及び方向情報を導き出すように、適切な直交座標系に変換される。
適切な処理方法においては、各々の投影のための“Ch0”及び“Ch1”スペクトルは複素浮動小数点表示で記憶され、4つの投影方向が用いられ、各々の投影方向は、四面体の4つの面の異なる一に対して垂直である。この4つの投影方向の選択は、自己整合性チェック、測定誤差、処理誤差等による障害の検出、及び信号投影方向における誤差のための障害復旧を可能にする過剰決定システムをもたらす。
任意に、取得された“Ch0”及び“Ch1”スペクトルは、例えば、ゼロに設定された512個のサンプル投影データの最初及び最後の128個のサンプルを設定することにより、時間領域においてアポダイズされる。そのようなアポダイゼーションは、投影スペクトルにおける標準マーカー31、32、33からのピークが少なくとも幾つかの画素の広がりにある限り、実質的でない損失をもたらす。この任意のアポダイゼーションは、180°の高周波パルス114(図6においてラベル付けされている)の自由誘導減衰テールを低減し、信号対ノイズ比を実質的に高める。
図7A及び7Bを継続して参照し、図8A及び8Bを更に参照するに、第1標準マーカー31(即ち、図7A及び7Bにおいて“#1”とラベル付けされているピーク)のコイル70、84によるピークは、第1マーカー31のコイル70、84は直交し、第2及び第3マーカー32、33のコイル74、80のハンデッドネスと逆のハンデッドネスを有する、標準マーカー31、32、33の配置を利用することにより特定される。図7A及び7Bの周波数領域のスペクトル(任意のアポダイゼーション後)は、積和のような演算を用いてポイント的に乗算される。投影“n”についての“Ch0”データのフーリエ変換をfch0,nで表し、投影“n”についての“Ch1”データのフーリエ変換をfch1,nで表すと、ポイント的な乗算演算は次式のように規定され、
=Re{fch0,n}・Im{fch1,n}−Re{fch1,n}・Im{fch0,n} (1)
ここで、bはポイント的乗法演算の結果であり、図8Aに示されている。データのハンデッドネス特性のために、標準マーカー32、33のコイル74、80によるピーク“#2”及び“#3”は小さい又は負であり、適切にはゼロに設定される、又は切り捨てられる。それ故、図8Aに示す結果のスペクトルbは、第1標準マーカー31のコイル70、84の乗算により結合された信号に対応する、“#1”とラベリングされた信号ピークのみを含む。
乗算スペクトルbは、例えば、任意の平滑化補間及び/又はフーリエ補間により、データを改善するように任意に処理される。1つのそのような任意の方法において、ゼロパッディングが5120個のポイントデータ集合を生成するようにbの正及び負周波数に対称的に適用され、フーリエ畳み込み平滑化が、適切なゼロパッディングを有する周波数領域における標準マーカーの一の一次元投影形状を用いて適用される。そのような任意の平滑化及び補間の結果は、図8Bに示され、“n”で表される投影における第1標準マーカー31の位置を特定するように適切なピーク追求アルゴリズムにより分析される。投影“n”における第1標準マーカー31のこの位置は“ln、1”で表され、投影“n”の取得において用いられる空間周波数符号化に基づいて、投影“n”に沿った空間的位置として適切に表現される。
コイル70による“Ch0”スペクトルにおける“#1”ピーク及びコイル84による“Ch1”スペクトルにおける“#1”ピークは、それらが第1標準マーカー31において空間的に一致しているために、同じ周波数で生じる必要がある。それらのピークが、受信器チャネル40、42の一の周波数較正の間違いのために、又は追従システムにおける他の問題点のために重なり合わない場合、このことは、この場合に、
“Ch0”及び“Ch1”の重なり合わない“#1”ピークはbスペクトルにおいて“#1”ピークを与えるように共に重なり合わないために、一般に明らかになる。それ故、データ整合性チェックがなされる。更に、例示としての図7A、7B、8A及び8Bにおいて、第2及び第3標準マーカー32、33のピークは重なり合わない。したがって、それらのピークは実質的に削除される、即ち、式(1)の乗法演算により、略0に減少される。
図9A、9B及び9Cを参照するに、第2及び第3標準マーカー32、33が強く重なり合うときの状態を示している。図9A及び9Bは、第2及び第3標準マーカー32、33のそれぞれによるピーク“#2”及び“#3”がよく重なり合う、選択された一次元投影について、“Ch0”及び“Ch1”のそれぞれについて測定された例示としてのフーリエ変換周波数領域スペクトルを示している。図9Cは、図9A及び9Bのスペクトルに適用された式(1)により得られた乗法の積bを示している。ピーク“#2”及び“#3”により、式(1)の乗法演算は、“#2”及び“#3”ピークを削除しないが、それらの乗法の組み合わせのために負の(即ち、異なる位相の)ピークを生成する。この乗法的に組み合わされた負のピークは、図9Cにおいては、“#2”及び“#3”とレベル付けされている。bの負の値を切り捨てることにより(例えば、bの負の値を0に等しく設定することにより)、図9Cのスペクトルはまた、第1標準マーカー31に対応する単独の正のピークに削減されることができる。この正のピークは、図9Cにおいては、“#1”とラベル付けされている。平滑化及び補間操作は、図8に示すピーク規定と類似する改善されたピーク規定を生成するように無関係の負のピークを除去した後に、図9Cのスペクトルにおいて任意に実行される。
スペクトルにおいて正のピークを生成するように第1標準マーカー31を有するのではなく、コイル70、74、80、84は、それに代えて、第1標準マーカー31の2つのコイル70、84が負のピークを生成する一方、第2及び第3標準マーカー32、33の2つのコイル74、80は、空間的に重なり合うときに、正のピークを生成することが理解できるであろう。このような構成は、bの負のピークとしての第1標準マーカー31の特定を可能にする。
“Ch0”スペクトルにおいて特定された第1標準マーカー31に関連するピークにより、“Ch0”スペクトルにおける残りのピークが、第2標準マーカー32のコイル74によるとして特定される。同様に、“Ch1”スペクトルにおいて特定された第1標準マーカー31に関連するピークにより、“Ch1”スペクトルにおける残りのピークが、第3標準マーカー33のコイル80によるとして特定される。明確にそれらの“#2”及び“#3”ピークを特定するための及び高精度を有する1つの適切な方法は、(“#1”ピークが“#2”又は“#3”ピークと部分的に又は全体的に重なり合うときでさえ)下記のような時間領域における最小二乗フィッティングを用いる。
図10A、10B及び10Cを参照するに、第1標準マーカー31により生成される信号“#1”の時間領域近似が得られる。図10Aは、撮影領域の中央に位置決めされる(即ち、位置=0)ときに、第1標準マーカー31を適合させるようにサイズ合わせされた理想的なボールのアポダイズされた形状を示している。一方法においては、図10Aのアポダイズされた形状は、図8Bを参照して説明した畳み込み平滑化で用いられる一次元の推定された周波数領域の標準マーカー投影形状への逆フーリエ変換を適用することにより生成される。投影“n”における第1標準マーカー31の一般非ゼロ空間位置“ln、1”を説明するために、フーリエシフト理論が適用される。時間領域におけるフーリエシフト関数は次式で与えられ、
shift=exp[i・(m−N/2)・π・ln,1] (2)
ここで、iは虚数単位であり、Nはサンプルデータポイント数であり、そしてmは時間領域におけるサンプルデータポイントの指数である。図10Bは、僅かに中央からずれた位置についての時間領域におけるシフト関数fshiftを示している。標準マーカー(図10A)及びシフト関数(図10B)の時間領域の積は、図10Cに示されていて、投影“n”の位置ln、1における第1標準マーカー31の時間領域信号を近似している。
図10Cの時間シフト形状は、全ての投影(例えば、4つの四面体投影方向全ての)が取得された後に、“Ch0”及び“Ch1”データに別個に適合される。全ての投影方向“n”について、図10Cの時間シフト形状の複素最小二乗フィットが時間領域“Ch0”及び“Ch1”データのそれぞれに対して実行され、4つの係数の2つの集合ach0,n及びach1,nを生成する。それらは、スケーリング係数ach0及びach1を与えるように、受信器チャネルの2つの標準マーカーの投影が重なり合う場合を排除して、適切な値について平均される。各々の投影“n”についてのピーク“#1”の時間シフト形状(例えば、1つの特定の位置ln,1について図10Cにおいて近似された)は、“#2”ピーク(“Ch0”についての)及び“#3”
(“Ch1”についての)のみを含む時間領域データを生成するように、共通の係数ach0及びach1により積算され、投影“n”について対応する時間領域“Ch0”及び“Ch1”データから減算される。
このような処理については、“Ch0”データ及び特定の投影“n”のために、図11A、11B及び11Cに示されている。図11Aは、平均化された複素最小二乗スケーリングフィッティング係数ach0(平滑な線)及び測定された時間領域“Ch0”データ(ノイジーな線)により乗算された図10Cの時間シフト形状を示している。図11Bは、図11Aのノイジーな線(“Ch0”時間領域データ)から図11Aの平滑な線を減算することにより生成された残差(係数ach0をフィッティングすることによりスケーリングされた図10Cの時間シフト形状)を示している。図11Cは、図11Bのデータのフーリエ変換の振幅スペクトルを示している。図11Cにおいては、破線のピークは、図11A及び11Bの処理により実質的に取り除かれた“#1”ピークを表している。図11Cのフーリエスペクトル(
“#1”ピークは除去されている)は、“n”で表される投影における第2標準マーカー32の位置を特定するように、ピーク追求アルゴリズムにより適切に処理され、その第2標準マーカーは適切には“ln,2”で表される。同様の処理は、“n”で表される投影における第3標準マーカー33の位置を特定するように、“Ch1”データに適用され、その第3標準マーカーは適切には“ln,3”で表される。
減算により“#1”ピークを取り除くのではなく、そのピークは、他の方法で明らかにされることが可能である。例えば、“#1”及び“#2”ピーク(“Ch0”についての)の両方の最小二乗フィットを同時に実行することが可能であり、“#2”ピークの位置がフィッティングパラメータであることが可能である。この方法においては、“#1”ピークは取り除かれないが、そのフィッティング処理において明らかにされる。
“n”が投影(例示としての四面体投影方向構成における4つの方向について、値n=1,2,3,4を有する)を表し、“k”が標準マーカー(第1、第2及び第3標準マーカー31、32、33のそれぞれについて値k=1,2,3を有する)を表す位置“ln,k”は、下記のように、選択された直交座標(スキャナ10の座標系又は人間である撮影被検体に関連する解剖学的座標系のような)に変換される。各々の標準マーカー“k”について、位置ベクトルl=(lが規定される(lはベクトルであり、以下においても同様)。4つの投影方向(n=1,2,3,4)について、各々の位置ベクトルlは4x1ベクトルであり、k=1,2,3で指数付けされた3つの標準マーカー31、32、33に対応する3つのそのようなベクトルが存在する。選択された直交座標に基づいて変換するように、過剰決定システムAc=lがcについて解かれ(A及びcはベクトルであり、以下においても同様)、ここで、Aは所望の直交座標に基づいて表された投影方向を有する4x3行列であり、cは所望の直交座標における標準マーカー“k”の位置を特定する3x1ベクトルである。この過剰決定システムは、最小二乗フィッティング又は他の方法により適切に解かれることが可能である。任意に、先行する処理の正確度及び精度についての情報が、対角重み行列により式Ac=lの両側を乗算することにより最小二乗フィッティングに組み込まれる。
標準マーカー31、32、33のそれぞれについてk=1,2,3であるcにより与えられる標準マーカーの位置から、回転行列が、例えば、a=c−c、b=c−c、d=a−b、e=axb及びf=−exdを規定することにより構築される(a、b、c、d、e及びfはベクトルであり、以下においても同様)。十分に適切にされた正規直交回転行列はR={|e|,|f|,|d|}であり(Rベクトルであり、以下においても同様)、ここで、縦のバー“|・|”は正規化を表している。標準アセンブリ30の変換を表す一般的に最小ノイズ座標を選択することにより、拡大回転行列は次式のように表され、
Figure 2008516640
ここで、例示目的のために、座標c1が、標準アセンブリ30の変換を表すための最小ノイズ座標として選択されている。
上記の方法は、追従整合性チェックを有利に可能にする。一方法においては、各々の標準についての式Ac=lのフィッティング残差が整合性について調べられる。他の方法においては、原点における非回転プローブの標準位置ベクトル(演算から認識される)が、演算された行列Tと乗算される(Tはベクトルであり、以下においても同様)。このようにして演算される標準中心と座標変換からの中心との間の距離を加算することにより、プローブの認識された形状及び寸法をまた、考慮するTについての整合性チェックが与えられる。
図12A、12B及び12Cを参照するに、標準アセンブリ30の位置及び方向は、オイラーZYZ角(オイラーY変換としても知られている)の正確な制御を与える測角治具に備えられた標準アセンブリにより、上記技術を用いて測定されたものであり、その制御において、第1回転φはz軸についてのものであり、第2回転θはy′軸についてのものであり、そして第3回転Ψはz′′軸についてのものである。角度ノイズ及び回転依存性系統誤差の決定のために、固定されたθ及びΨ並びに変化するφの測定の集合が実行される。第1標準マーカー31は、磁気共鳴撮影スキャナ10の対象領域12の略アイソセンターにおける位置である。位置/方向測定は、(10秒に亘って取得される100回の測定において)実行され、その測定の時間の間に、角度φは90°の間隔に亘って変化する。2つの固定された角度θ及びΨの角度θは、オイラー角(回転行列と対照的に)の非一意性が角度θの小さい値においてΨ及びφの値と共に実質的に一緒になるために、測定されるものとして選択される。角度θの測定変動は、(i)アルゴリズムの系統誤差を表すようにとられた低周波数(周波数の最低の2%)成分と、(ii)統計的変動として解釈される高周波数成分とに分類される。それらの結果について、図12A及び12Cに示されている。図12Aは、θの測定標準偏差を示し、ここで、データはregriddedされ、測定ポイントはθ=10°、20°、...、70°及びΨ=15°、30°、45°、52°、60°、67°及び82°にある。図12Cは、θの測定回転依存性誤差を示す。比較のために、各々のピーク“#1”、“#2”、“#3”を表す導き出されたチャネルの逆信号対ノイズ比と統計的角度変動との間の線形依存性を前提とする標準偏差の理論的予測について、図12Bにプロットされている。図12Aに示す標準偏差及び誤差は、図12Bの理論的予測と遜色がない。
位置ノイズは角度の組み合わせを選択することにより調べられ、そのことは、第1標準マーカー31のピーク“#1”を表す導き出されたチャネルbnについての異なる信号対ノイズ比を生成し、測定は静止したまま保たれる標準アセンブリ30により実行される。それらの結果は、0,17mm(静B磁場に対して垂直なコイル全てによる)乃至0.35mm(アルゴリズムの安定性の限界)の標準偏差を有する位置ノイズを示す。それらの結果は、並進運動が精度に影響しないことを示す、角度ノイズの図と調和している。
標準アセンブリ30の追従速度には限界がある。標準マーカー31、32、33の一が、エコー時間中に適用される勾配の方向に移動するとき、位相誤差が結果的にもたらされる。そのような位相誤差は、約40mm/sec以下の速度について、少なくとも許容されることが実験により分かった。標準アセンブリ30は、スキャナ10の同種ボリュームにおいて位置付けられる必要がある。最大の精度について、コイル標準72、76、82、86は、静B磁場の方向に対して約20°より大きい角度を有する必要がある。図2を再び参照するに、このような後者の条件は、侵襲的装置20における標準アセンブリ30の設置方向の賢明な選択により一般に対応することができることが理解できる。
以上、本発明について、好適な実施形態を参照して説明した。明らかに、上記の詳細説明を読み、理解することにより、当業者は修正及び変形することができるであろう。本発明は、同時提出の特許請求の範囲又はそれらと同等の範囲内にあるようなそのような修正及び変形の全てを包含すると解釈されるように意図されている。
例示としての侵襲的装置及び侵襲的装置を追求するための追求システムを有する侵襲的磁気共鳴システムを示す図である。 侵襲的装置に固定された標準アセンブリを有する図1の侵襲的装置を示す図である。 図2の標準アセンブリの標準マーカーの一として用いる適切な磁気マーカー物質のバイアルを示す図である。 図2の標準アセンブリの受信コイルのコイル方向を示す図である。 図2の標準アセンブリの“Ch0”受信チャネルの電気レイアウトを示す図である。 図2の標準アセンブリの“Ch1”受信チャネルの電気レイアウトを示す図である。 図1のシステムの磁気共鳴チャネル受信器で用いる適切な前置増幅器の模式的な例示としての電気回路図である。 x方向に沿って一次元投影を測定するための適切な磁気共鳴パルスシーケンスを示す図である。 選択された一次元投影について、“Ch0”のために測定されたフーリエ変換周波数領域スペクトルを示す図である。 選択された一次元投影について、“Ch1”のために測定されたフーリエ変換周波数領域スペクトルを示す図である。 図7A及び7Bの“Ch0”及び“Ch1”スペクトルの重なり合った組み合わせを示す図である。 平滑化及びフーリエ補間後の図8Aの重なり合った組み合わせを示す図である。 2つの標準マーカーのピークが強く重なり合っている選択された一次元投影について測定された“Ch0”のためのフーリエ変換周波数領域スペクトルを示す図である。 2つの標準マーカーのピークが強く重なり合っている選択された一次元投影について測定された“Ch1”のためのフーリエ変換周波数領域スペクトルを示す図である。 図9A及び9Bの“Ch0”及び“Ch1”の重なり合った組み合わせを示す図であって、その重なり合ったピークは、図9Cの重なり合った組み合わせにおける負のピークに対応している、図である。 “Ch0”及び“Ch1”チャネルデータにおける第1標準マーカーの形状を禁じしたシフトされた時間領域形状の構成を示す図である。 “Ch0”及び“Ch1”チャネルデータにおける第1標準マーカーの形状を禁じしたシフトされた時間領域形状の構成を示す図である。 “Ch0”及び“Ch1”チャネルデータにおける第1標準マーカーの形状を禁じしたシフトされた時間領域形状の構成を示す図である。 図10Cのシフトされた時間領域形状を用いて、“Ch0”データにおける第2標準マーカーによる“#2”ピークの特定化を示す図である。 図10Cのシフトされた時間領域形状を用いて、“Ch0”データにおける第2標準マーカーによる“#2”ピークの特定化を示す図である。 図10Cのシフトされた時間領域形状を用いて、“Ch0”データにおける第2標準マーカーによる“#2”ピークの特定化を示す図である。 θの測定標準偏差を示す図であり、ここで、データはregriddedされ、測定ポイントはθ=10°、20°、...、70°及びΨ=15°、30°、45°、52°、60°、67°及び82°にある。 各々のピーク“#1”、“#2”、“#3”を表す導き出されたチャネルの逆信号対ノイズ比と統計的角度変動との間の線形依存性を前提とする標準偏差の理論的予測を示す図である。 θの測定回転依存性誤差を示す図である。

Claims (23)

  1. 磁気共鳴位置及び方向マーキングシステムであって:
    各々が少なくとも1つの磁気共鳴受信コイルと結合された少なくとも3つの標準マーカーを有する標準アセンブリであって、前記標準マーカーの少なくとも一は、(i)H脂肪及び水共鳴において選択的に励起可能なマーカー原子核、及び(ii)複数の磁気共鳴受信コイル、の少なくとも一を有する、標準アセンブリ;並びに
    関連磁気共鳴撮影スキャナにより前記少なくとも3つの標準マーカーにおける磁気共鳴の励起に対応して、前記少なくとも3つの標準マーカーから磁気共鳴信号を受信する少なくとも2つの磁気共鳴受信チャネル;
    を有するシステム。
  2. 請求項1に記載のシステムであって、少なくとも2つの磁気共鳴受信チャネルは:
    (i)第1空間方向を有し、少なくとも3つの標準マーカーの第1の一と結合した第1コイルと、(ii)前記第1空間方向と異なる第2空間方向を有し、前記少なくとも3つの標準マーカーの第2の一と結合した第2コイルと、接続している第1磁気共鳴受信チャネル;及び
    (i)前記第1コイルに対して逆極性を有する前記第1空間方向を有し、少なくとも3つの標準マーカーの第3の一と結合した第3コイルと、(ii)前記第2コイルに対して逆極性を有する前記第2空間方向を有し、前記少なくとも3つの標準マーカーの第1の一と結合した第4コイルと、接続している第2磁気共鳴受信チャネル;
    を有する、システム。
  3. 請求項1に記載のシステムであって、前記少なくとも3つの標準マーカーの各々と結合した前記少なくとも1つの磁気共鳴受信コイルは:
    互いに異なる空間的方向を有し、前記少なくとも3つの標準マーカーの少なくとも第1の一と結合している少なくとも2つの受信コイル;
    を有する、システム。
  4. 請求項1に記載のシステムであって、少なくとも2つの磁気共鳴受信チャネルは:
    (i)第1空間方向を有し、少なくとも3つの標準マーカーの第1の一と結合した第1コイル、及び(ii)前記第1空間方向と異なる第2空間方向を有し、前記少なくとも3つの標準マーカーの第2の一と結合した第2コイル、の一連の組み合わせと接続している第1磁気共鳴受信チャネル;及び
    (i)前記第1コイルに対して逆極性を有する前記第1空間方向を有し、少なくとも3つの標準マーカーの第3の一と結合した第3コイル、及び(ii)前記第2コイルに対して逆極性を有する前記第2空間方向を有し、前記少なくとも3つの標準マーカーの第1の一と結合した第4コイル、の一連の組み合わせと接続している第2磁気共鳴受信チャネル;
    を有する、システム。
  5. 請求項4に記載のシステムであって、前記第1及び第2空間的方向は互いに直角をなしている、システム。
  6. 請求項4に記載のシステムであって、複数の一次元投影励起は複数の一次元投影を励起する、システムは:
    前記標準アセンブリの位置及び方向を決定する磁気共鳴方法を実行するようになっている処理器であって、前記方法は、
    前記関連磁気共鳴撮影スキャナにより生成された前記複数の一次元投影について前記第1及び第2磁気共鳴受信チャネルにより受信された磁気共鳴信号を収集する段階と、
    各々の投影について、前記磁気共鳴信号の位相に基づいて、前記第2及び第3コイルの磁気共鳴信号から前記第1及び第4コイルの磁気共鳴信号を区別する段階と、
    各々の投影について、前記第1及び第4コイルの少なくとも一の前記磁気共鳴信号に基づいて前記投影に沿って前記少なくとも3つの標準マーカーの第1の一の位置を決定する段階と、
    各々の投影について、前記第2及び第3コイルのそれぞれの前記磁気共鳴信号に基づいて前記投影に沿って前記少なくとも3つの標準マーカーの第2の一及び第3の一の位置を決定する段階と、
    前記複数の投影の各々に沿って前記少なくとも3つの標準マーカーの第1の一、第2の一及び第3の一の決定された前記位置に基づいて、前記標準アセンブリの前記位置及び方向を決定する段階と、
    を有する、処理器;
    を更に有する、システム。
  7. 請求項6に記載のシステムであって、前記複数の一次元投影は、四面体の4つの面の異なる一に対して各々垂直である4つの異なる方向に沿って位置している、システム。
  8. 請求項7に記載のシステムであって、前記複数の投影の各々に沿って前記少なくとも3つの標準マーカーの第1の一、第2の一及び第3の一の前記決定された位置に基づく、前記標準アセンブリの前記位置及び方向を決定する前記段階は:
    前記少なくとも3つの標準マーカーの前記第1の一、第2の一及び第3の一の前記決定された位置から選択された座標系において拡大回転行列を構成する段階;
    を有する、システム。
  9. 請求項6に記載のシステムであって、前記第2及び第3コイルの磁気共鳴信号から前記第1及び第4コイルの磁気共鳴信号を区別する段階は:
    各々の投影について、前記第1及び第2磁気共鳴受信チャネルにより受信された前記磁気共鳴信号をフーリエ変換する段階;
    各々の投影について、前記第1及び第2磁気共鳴受信チャネルにより受信された前記フーリエ変換された磁気共鳴信号と共に重ね合わせる段階であって、(i)前記第1及び第4コイルの磁気共鳴信号及び(ii)前記第2及び第3コイルの磁気共鳴信号の一の符号反転を生成するように選択される、段階;
    を有する、システム。
  10. 請求項6に記載のシステムであって、前記第2及び第3コイルの磁気共鳴信号から前記第1及び第4コイルの磁気共鳴信号を区別する段階は:
    各々の投影について、前記第1及び第2磁気共鳴受信チャネルにより受信された前記磁気共鳴信号をフーリエ変換する段階;
    各々の投影について、前記第1及び第2磁気共鳴受信チャネルにより受信された前記フーリエ変換された磁気共鳴信号と共に重ね合わせる段階であって、前記第2及び第3コイルの重なり合っていない磁気共鳴信号を削除する、段階;
    を有する、システム。
  11. 請求項6に記載のシステムであって、前記第2及び第3コイルの磁気共鳴信号から前記第1及び第4コイルの磁気共鳴信号を区別する段階は:
    前記第1及び第4コイルの前記磁気共鳴信号の時間領域形状を近似する段階;
    各々の投影について、前記投影に沿って前記少なくとも3つの標準マーカーの前記第1の一の前記決定された位置に基づいて、前記近似された時間領域形状を時間的にシフトさせる段階;並びに
    各々の投影について、前記第1及び第4コイルの前記磁気共鳴信号の前記近似され、前記の時間的にシフトされた時間領域形状を数学的に明らかにする又はその時間領域形状を除去することにより前記第2及び第3コイルの前記磁気共鳴信号を決定する段階;
    を有する、システム。
  12. 請求項1に記載のシステムであって、前記少なくとも3つの標準マーカーの各々は標準マーカー原子核を有し、前記少なくとも2つの磁気共鳴受信チャネルはフッ素原子核の磁気共鳴周波数に対して調節されている、システム。
  13. 請求項12に記載のシステムであって、前記少なくとも2つの磁気共鳴受信チャネルは19F磁気共鳴周波数に対して調節されている、システム。
  14. 請求項1に記載のシステムであって、前記少なくとも3つの標準マーカーの各々は、H脂肪及び水共鳴において化学シフトされたHマーカー原子核の選択的励起を可能にする化学周波数シフトを有する化学シフトHマーカーを有し、前記少なくとも2つの磁気共鳴チャネルは前記化学シフトされたHマーカー原子核の共鳴周波数に対して調節されている、システム。
  15. 請求項1に記載のシステムであって、前記少なくとも3つの標準マーカーの各々は、少なくともトリフルオロ酢酸及び水を含むトリフルオロ酢酸水溶液を有し、前記少なくとも2つの磁気共鳴受信チャネルは、(i)フッ素原子核の磁気共鳴周波数、及び(ii)前記トリフルオロ酢酸水溶液の化学シフトされたHマーカー原子核の磁気共鳴周波数の一に対して調節されている、システム。
  16. 請求項15に記載のシステムであって、前記トリフルオロ酢酸水溶液はT2緩和時間短縮剤を更に有する、システム。
  17. 少なくとも3つの標準マーカーを有する標準アセンブリの位置及び方向を決定するための方法であって:
    前記少なくとも3つの標準マーカーにおける磁気共鳴を励起する段階であって、各々の標準マーカーは少なくとも1つの磁気共鳴受信コイルと結合し、前記標準マーカーの少なくとも一は、(i)H脂肪及び水共鳴において選択的に励起可能なマーカー原子核、及び(ii)複数の磁気共鳴受信コイル、の少なくとも一を有する、段階;並びに
    少なくとも2つの磁気共鳴チャネルを介して前記励起された少なくとも3つの標準マーカーから磁気共鳴信号を受信する段階;
    を有する方法。
  18. 請求項17に記載の方法であって、前記励起及び受信は複数の投影方向に沿って実行される、方法であり:
    前記受信された磁気共鳴信号に基づいて、各々の投影に沿って前記少なくとも3つの標準マーカーの各々の位置を決定する段階;及び
    前記少なくとも3つの標準マーカーの前記決定された位置に基づいて、前記標準アセンブリの前記位置及び方向を決定する段階;
    を有する、方法。
  19. 請求項18に記載の方法であって、前記磁気共鳴信号を前記受信する段階は:
    (i)前記少なくとも3つの標準マーカーの前記第1の一に結合され、第1極性方向を有する第1コイルからの第1共鳴信号成分と、(ii)前記少なくとも3つの標準マーカーの第2の一に結合され、第1極性方向と異なる第2極性方向を有する第2コイルからの第2共鳴信号成分と、の加法的組み合わせを前記第1磁気共鳴信号チャネルを介して受信する段階;及び
    (i)前記少なくとも3つの標準マーカーの前記第3の一に結合され、前記第1コイルに対して逆極性で前記第1極性方向を有する第3コイルからの第3共鳴信号成分と、(ii)前記少なくとも3つの標準マーカーの第1の一に結合され、第2コイルに対して逆極性で前記第2極性方向を有する第4コイルからの第4共鳴信号成分と、の加法的組み合わせを前記第2磁気共鳴信号チャネルを介して受信する段階;
    を有する、方法。
  20. 請求項19に記載の方法であって、前記受信された磁気共鳴信号に基づいて各々の投影に沿って前記少なくとも3つの標準マーカーの各々の位置を決定する前記段階は:
    各々の投影について、前記第2及び第3共鳴信号成分から位相に基づいて、第1及び第4共鳴信号成分を分離する段階;
    各々の投影について、前記第1及び第4共鳴信号成分に基づいて、前記少なくとも3つの標準マーカーの前記第1の一の位置を決定する段階;並びに
    各々の投影について、前記第2及び第3共鳴信号成分に基づいて、前記少なくとも3つの標準マーカーの前記第2の一及び第3の一の位置を決定する段階;
    を有する、方法。
  21. 請求項17に記載の方法であって、前記励起する段階及び前記受信する段階は:
    前記少なくとも3つの標準マーカーの各々から19F磁気共鳴信号を励起する段階及び受信する段階;
    を有する、方法。
  22. 請求項17に記載の方法であって、前記励起する段階及び前記受信する段階は:
    前記少なくとも3つの標準マーカーの各々からHマーカー磁気共鳴信号を励起する段階及び受信する段階であって、Hマーカー磁気共鳴信号は、H脂肪及び水磁気共鳴において前記Hマーカー磁気共鳴信号の選択的励起を可能にするH脂肪及び水磁気共鳴から化学シフトされている、励起する段階及び受信する段階;
    を有する、方法。
  23. 請求項17に記載の方法を実行するようにプログラムされた演算装置。
JP2007529097A 2004-09-01 2005-08-25 位置及び方向プローブに基づく磁気共鳴マーカー Withdrawn JP2008516640A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60625804P 2004-09-01 2004-09-01
PCT/IB2005/052792 WO2006025001A1 (en) 2004-09-01 2005-08-25 Magnetic resonance marker based position and orientation probe

Publications (1)

Publication Number Publication Date
JP2008516640A true JP2008516640A (ja) 2008-05-22

Family

ID=35414864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007529097A Withdrawn JP2008516640A (ja) 2004-09-01 2005-08-25 位置及び方向プローブに基づく磁気共鳴マーカー

Country Status (5)

Country Link
US (1) US20070219443A1 (ja)
EP (1) EP1788941A1 (ja)
JP (1) JP2008516640A (ja)
CN (1) CN101035462A (ja)
WO (1) WO2006025001A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151706A (ja) * 2008-12-26 2010-07-08 Hitachi Ltd 核磁気共鳴信号検出用プローブ及びそれを用いた核磁気共鳴装置
WO2013027964A1 (en) * 2011-08-19 2013-02-28 Samsung Electronics Co., Ltd. Method and apparatus for simultaneously generating multi-type magnetic resonance images

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6618620B1 (en) 2000-11-28 2003-09-09 Txsonics Ltd. Apparatus for controlling thermal dosing in an thermal treatment system
US8088067B2 (en) 2002-12-23 2012-01-03 Insightec Ltd. Tissue aberration corrections in ultrasound therapy
US7611462B2 (en) 2003-05-22 2009-11-03 Insightec-Image Guided Treatment Ltd. Acoustic beam forming in phased arrays including large numbers of transducer elements
US8409099B2 (en) 2004-08-26 2013-04-02 Insightec Ltd. Focused ultrasound system for surrounding a body tissue mass and treatment method
US20070016039A1 (en) 2005-06-21 2007-01-18 Insightec-Image Guided Treatment Ltd. Controlled, non-linear focused ultrasound treatment
EP1960993B1 (en) 2005-11-23 2016-11-02 Insightec-Image Guided Treatment, Ltd. Hierarchical switching in ultra-high density ultrasound array
US8235901B2 (en) 2006-04-26 2012-08-07 Insightec, Ltd. Focused ultrasound system with far field tail suppression
US7622920B2 (en) * 2006-07-06 2009-11-24 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus capable of automatically determining RF coil positions
CN100502776C (zh) * 2006-07-10 2009-06-24 西门子(中国)有限公司 磁共振系统与其引导的设备间的坐标系切换装置和方法
US20080033278A1 (en) * 2006-08-01 2008-02-07 Insightec Ltd. System and method for tracking medical device using magnetic resonance detection
US8251908B2 (en) 2007-10-01 2012-08-28 Insightec Ltd. Motion compensated image-guided focused ultrasound therapy system
US8425424B2 (en) 2008-11-19 2013-04-23 Inightee Ltd. Closed-loop clot lysis
US8617073B2 (en) 2009-04-17 2013-12-31 Insightec Ltd. Focusing ultrasound into the brain through the skull by utilizing both longitudinal and shear waves
US9623266B2 (en) 2009-08-04 2017-04-18 Insightec Ltd. Estimation of alignment parameters in magnetic-resonance-guided ultrasound focusing
US9289154B2 (en) 2009-08-19 2016-03-22 Insightec Ltd. Techniques for temperature measurement and corrections in long-term magnetic resonance thermometry
US9177543B2 (en) 2009-08-26 2015-11-03 Insightec Ltd. Asymmetric ultrasound phased-array transducer for dynamic beam steering to ablate tissues in MRI
WO2011045669A2 (en) 2009-10-14 2011-04-21 Insightec Ltd. Mapping ultrasound transducers
US8368401B2 (en) 2009-11-10 2013-02-05 Insightec Ltd. Techniques for correcting measurement artifacts in magnetic resonance thermometry
GB2482651B (en) * 2010-04-15 2013-05-01 And Technology Res Ltd An electromagnetic method for sensing the relative position of two items using coupled tuned circuits
US8932237B2 (en) 2010-04-28 2015-01-13 Insightec, Ltd. Efficient ultrasound focusing
US9852727B2 (en) 2010-04-28 2017-12-26 Insightec, Ltd. Multi-segment ultrasound transducers
US9981148B2 (en) 2010-10-22 2018-05-29 Insightec, Ltd. Adaptive active cooling during focused ultrasound treatment
EP2508907A1 (en) * 2011-04-07 2012-10-10 Koninklijke Philips Electronics N.V. Magnetic resonance guidance of a shaft to a target zone
EP2549284A1 (en) 2011-07-21 2013-01-23 Koninklijke Philips Electronics N.V. Position marker for use in an MRI apparatus
US9735036B2 (en) * 2011-08-19 2017-08-15 Cognex Corporation System and method for aligning a wafer for fabrication
MX2014003551A (es) 2011-09-28 2014-06-05 Koninkl Philips Nv Metodo y sistema para cuantificar grasa hepatica en humanos.
EP2584369A1 (en) * 2011-10-17 2013-04-24 Koninklijke Philips Electronics N.V. Magnetic field probe for MRI with a fluoroelastomer or a solution of a fluorine-containing compound
WO2014097056A1 (en) * 2012-12-18 2014-06-26 Koninklijke Philips N.V. Phantom based mr field mapping of the polarizing magnetic field
US9739860B2 (en) * 2012-12-28 2017-08-22 General Electric Company Systems and methods for landmarking for subject imaging
US10512511B2 (en) 2013-07-24 2019-12-24 Centre For Surgical Invention And Innovation Multi-function mounting interface for an image-guided robotic system and quick release interventional toolset
RU2683995C2 (ru) * 2014-05-09 2019-04-03 Конинклейке Филипс Н.В. Терапевтическая система, содержащая модуль мрт и средство для определения положения рч-катушки
EP3811891A3 (en) 2014-05-14 2021-05-05 Stryker European Holdings I, LLC Navigation system and processor arrangement for tracking the position of a work target
CN106999094B (zh) * 2014-12-01 2021-04-13 皇家飞利浦有限公司 用于基于导管的导航的虚拟定向的电磁跟踪线圈
US20160262654A1 (en) * 2015-03-09 2016-09-15 Steven R. Wedan Tracking signals for catheter
CN107708568B (zh) * 2015-06-30 2020-11-20 佳能美国公司 配准的基准标记、系统和方法
KR102200161B1 (ko) * 2018-11-05 2021-01-07 상명대학교산학협력단 피듀셜 마커 영상 생성 장치 및 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2085885T3 (es) * 1989-11-08 1996-06-16 George S Allen Brazo mecanico para sistema interactivo de cirugia dirigido por imagenes.
US5271400A (en) * 1992-04-01 1993-12-21 General Electric Company Tracking system to monitor the position and orientation of a device using magnetic resonance detection of a sample contained within the device
US5318025A (en) * 1992-04-01 1994-06-07 General Electric Company Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection
GB9624399D0 (en) * 1996-11-23 1997-01-08 Marconi Gec Ltd Device for use with nuclear magnetic resonance imaging apparatus
US6064904A (en) * 1997-11-28 2000-05-16 Picker International, Inc. Frameless stereotactic CT scanner with virtual needle display for planning image guided interventional procedures
US5947900A (en) * 1998-04-13 1999-09-07 General Electric Company Dynamic scan plane tracking using MR position monitoring
US6961608B2 (en) * 2000-06-05 2005-11-01 Kabushiki Kaisha Toshiba Interventional MR imaging with detection and display of device position
CA2334495A1 (en) * 2001-02-06 2002-08-06 Surgical Navigation Specialists, Inc. Computer-aided positioning method and system
DE10119543A1 (de) * 2001-04-21 2002-10-24 Philips Corp Intellectual Pty Optische MR-Signalübertragung
US6975896B2 (en) * 2002-05-23 2005-12-13 Koninklijke Philips Electronics N.V. Fiducial markers for MRI
US7166114B2 (en) * 2002-09-18 2007-01-23 Stryker Leibinger Gmbh & Co Kg Method and system for calibrating a surgical tool and adapter thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151706A (ja) * 2008-12-26 2010-07-08 Hitachi Ltd 核磁気共鳴信号検出用プローブ及びそれを用いた核磁気共鳴装置
WO2013027964A1 (en) * 2011-08-19 2013-02-28 Samsung Electronics Co., Ltd. Method and apparatus for simultaneously generating multi-type magnetic resonance images
US9274194B2 (en) 2011-08-19 2016-03-01 Samsung Electronics Co., Ltd. Method and apparatus for simultaneously generating multi-type magnetic resonance images

Also Published As

Publication number Publication date
EP1788941A1 (en) 2007-05-30
WO2006025001A1 (en) 2006-03-09
US20070219443A1 (en) 2007-09-20
CN101035462A (zh) 2007-09-12

Similar Documents

Publication Publication Date Title
JP2008516640A (ja) 位置及び方向プローブに基づく磁気共鳴マーカー
US6275722B1 (en) Methods and apparatus for magnetic resonance imaging with RF coil sweeping
US6975896B2 (en) Fiducial markers for MRI
US20110046475A1 (en) Techniques for correcting temperature measurement in magnetic resonance thermometry
US20080033278A1 (en) System and method for tracking medical device using magnetic resonance detection
Flask et al. A method for fast 3D tracking using tuned fiducial markers and a limited projection reconstruction FISP (LPR‐FISP) sequence
US6518759B2 (en) Motion correction of magnetic resonance images
US8290566B2 (en) Magnetic resonance imaging apparatus and image generating method
NL2009885C2 (en) System and method for automated landmarking.
EP1437601B1 (en) Apparatus for detecting the position and the orientation of an invasive device
US8995738B2 (en) System and method for magnetic resonance imaging parametric mapping using confidence maps
US20100244831A1 (en) Dynamic magnetic resonance imaging (mri) with adaptive image quality
US4649347A (en) Method for off-center field-of-view imaging using MR
JP2006509571A (ja) 磁気共鳴装置内の対象の位置を決定する装置及び方法
CN117222906A (zh) 用于通过减少的操作员交互进行磁共振成像的系统和方法
EP0422396B1 (en) Apparatus and method for calculating coordinate data of desired point in subject to be examined
Thörmer et al. Simultaneous 3D localization of multiple MR-visible markers in fully reconstructed MR images: proof-of-concept for subsecond position tracking
US20040217760A1 (en) Bayesian methods for flow parameter estimates in magnetic resonance imaging
US20080214924A1 (en) Magnetic Resonance Spectroscopy
US20060232272A1 (en) Imaging apparatus and method
CN112790863B (zh) 手术器械定位方法、磁共振成像系统以及电子装置
JP4961116B2 (ja) 磁気共鳴撮影装置
JP2006180978A (ja) 磁気共鳴撮影装置
Galassi Instrument Tracking and Navigation for MRI-guided Interventions
JPH0570459B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091008