JP2008507840A5 - - Google Patents

Download PDF

Info

Publication number
JP2008507840A5
JP2008507840A5 JP2007522099A JP2007522099A JP2008507840A5 JP 2008507840 A5 JP2008507840 A5 JP 2008507840A5 JP 2007522099 A JP2007522099 A JP 2007522099A JP 2007522099 A JP2007522099 A JP 2007522099A JP 2008507840 A5 JP2008507840 A5 JP 2008507840A5
Authority
JP
Japan
Prior art keywords
getter
reaction
volatile
compounds
exposed surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007522099A
Other languages
English (en)
Other versions
JP5122952B2 (ja
JP2008507840A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/IB2005/052379 external-priority patent/WO2006011105A2/en
Publication of JP2008507840A publication Critical patent/JP2008507840A/ja
Publication of JP2008507840A5 publication Critical patent/JP2008507840A5/ja
Application granted granted Critical
Publication of JP5122952B2 publication Critical patent/JP5122952B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

ゲッタ表面はビーム経路から離れて備えられているため、それらの表面、EUV放射によってもあまりひどく加熱されない。ゲッタ表面への汚染物質の永久的結合は、この手段により容易に促進することができる。
反応、それ故、結合過程が、それぞれの場合に、ゲッタ表面において又はゲッタ物質により起こる。この反応においては、汚染物質と反応ガス29とが化合した揮発性化合物は、汚染物質23とゲッタ物質34と可能性のある反応ガス29とが化合した不揮発性化合物に変化することが可能である。ゲッタ物質は、その不揮発性物質が前に存在した揮発性化合物31より安定であるように選択される。問題のゲッタ反応は、それ故、自発的に可逆的ではなく、その安定な不揮発性物質は、凝縮された形で影となっているその表面14に留まる。
反応機構が、何れの深い熟慮を伴わないで想定されている場合、ゲッタガス34がそこで進むとき、クリーンにされるべき表面13でまた、起こる上記のゲッタ表面の可能性から外れることは先ず、可能でない。このことは残骸物質の移送を抑制し、又は妨げることさえある。また、ゲッタガス34は堆積物質と直接、反応し、安定な不揮発性化合物を形成することが可能であり、それ故、堆積物23と反応ガス29が化合した不揮発性化合物の形成は起こらない。
熱的分離のための手段、例えば、エアギャップが、影となっている表面32と及び暴露表面20との間に備えられることは有利である。暴露表面は、入射放射のみにより容易に加熱される。この場合、表面の光学特性が加熱により変化することに留意する必要がある。従って、良好な熱伝導性を有する材料が少なくとも暴露表面のために用いられることは、故に、暴露表面における温度変動が小さいことは、有利である。暴露表面における所望の温度についてのデザインにおいて考慮がなされる必要がある。
単体の状態か又は混合物のどちらかとして、クリーニングガスとして適切であるガスは、ハロゲン、水素又はハロゲン含有化合物若しくは水素含有化合物である。揮発性化合物は、それ故、例えば、金属ハロゲン化物又は金属水素である。
JP2007522099A 2004-07-22 2005-07-18 クリーニング構成を有する光学システム Active JP5122952B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04103506.4 2004-07-22
EP04103506 2004-07-22
PCT/IB2005/052379 WO2006011105A2 (en) 2004-07-22 2005-07-18 Optical system having a cleaning arrangement

Publications (3)

Publication Number Publication Date
JP2008507840A JP2008507840A (ja) 2008-03-13
JP2008507840A5 true JP2008507840A5 (ja) 2012-11-01
JP5122952B2 JP5122952B2 (ja) 2013-01-16

Family

ID=34993296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007522099A Active JP5122952B2 (ja) 2004-07-22 2005-07-18 クリーニング構成を有する光学システム

Country Status (7)

Country Link
US (1) US7732789B2 (ja)
EP (1) EP1774406B1 (ja)
JP (1) JP5122952B2 (ja)
CN (1) CN100573334C (ja)
AT (1) ATE555422T1 (ja)
TW (1) TWI410751B (ja)
WO (1) WO2006011105A2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355672B2 (en) * 2004-10-04 2008-04-08 Asml Netherlands B.V. Method for the removal of deposition on an optical element, method for the protection of an optical element, device manufacturing method, apparatus including an optical element, and lithographic apparatus
US7750326B2 (en) * 2005-06-13 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and cleaning method therefor
US8076655B2 (en) 2005-06-21 2011-12-13 Koninklijke Philips Electronics N.V. Method of cleaning optical surfaces of an irradiation unit in a two-step process
US8097092B2 (en) 2005-06-21 2012-01-17 Kninklijke Philips Electronics N.V. Method of cleaning and after treatment of optical surfaces in an irradiation unit
US7462850B2 (en) * 2005-12-08 2008-12-09 Asml Netherlands B.V. Radical cleaning arrangement for a lithographic apparatus
US7473908B2 (en) 2006-07-14 2009-01-06 Asml Netherlands B.V. Getter and cleaning arrangement for a lithographic apparatus and method for cleaning a surface
EP2064005B1 (en) * 2006-09-04 2016-01-06 Philips Intellectual Property & Standards GmbH Method and unit for cleaning a surface region covered with contaminant or undesirable material
US7671348B2 (en) 2007-06-26 2010-03-02 Advanced Micro Devices, Inc. Hydrocarbon getter for lithographic exposure tools
JP4973425B2 (ja) * 2007-10-03 2012-07-11 ウシオ電機株式会社 極端紫外光光源装置における集光光学手段のクリーニング方法及び極端紫外光光源装置
ITMI20080282A1 (it) * 2008-02-22 2009-08-23 Getters Spa Apparato per litografia con radiazione nell'uv estremo con un elemento assorbitore di idrocarburi comprendente un materiale getter
NL2003152A1 (nl) 2008-08-14 2010-02-16 Asml Netherlands Bv Radiation source, lithographic apparatus and device manufacturing method.
JP5559562B2 (ja) 2009-02-12 2014-07-23 ギガフォトン株式会社 極端紫外光光源装置
JP5709546B2 (ja) * 2011-01-19 2015-04-30 キヤノン株式会社 エネルギービーム描画装置及びデバイス製造方法
US8790603B2 (en) 2012-06-27 2014-07-29 Kla-Tencor Corporation Apparatus for purifying a controlled-pressure environment
CN103230901B (zh) * 2013-04-28 2015-02-04 哈尔滨工业大学 一种保持激光传输光学系统中洁净度的冲扫装置和方法
CN103230900B (zh) * 2013-04-28 2015-03-04 哈尔滨工业大学 一种用于保持大口径光学元件表面洁净的冲扫装置
US8901523B1 (en) * 2013-09-04 2014-12-02 Asml Netherlands B.V. Apparatus for protecting EUV optical elements
US9560730B2 (en) * 2013-09-09 2017-01-31 Asml Netherlands B.V. Transport system for an extreme ultraviolet light source
US9776218B2 (en) * 2015-08-06 2017-10-03 Asml Netherlands B.V. Controlled fluid flow for cleaning an optical element
KR102655267B1 (ko) * 2017-06-26 2024-04-08 에이에스엠엘 네델란즈 비.브이. 냉각 장치 및 냉각 장치용 플라즈마-세정 스테이션
DE102021213613A1 (de) 2021-12-01 2022-09-15 Carl Zeiss Smt Gmbh Verfahren zum Aufbringen eines Getter-Materials auf eine Oberfläche eines Bauteils für ein Lithographiesystem

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452199B1 (en) * 1997-05-12 2002-09-17 Cymer, Inc. Plasma focus high energy photon source with blast shield
JP2000088999A (ja) * 1998-09-14 2000-03-31 Nikon Corp X線装置
EP1182510B1 (en) 2000-08-25 2006-04-12 ASML Netherlands B.V. Lithographic projection apparatus
US6781673B2 (en) * 2000-08-25 2004-08-24 Asml Netherlands B.V. Mask handling apparatus, lithographic projection apparatus, device manufacturing method and device manufactured thereby
DE10061248B4 (de) 2000-12-09 2004-02-26 Carl Zeiss Verfahren und Vorrichtung zur In-situ-Dekontamination eines EUV-Lithographiegerätes
US6772776B2 (en) * 2001-09-18 2004-08-10 Euv Llc Apparatus for in situ cleaning of carbon contaminated surfaces
US6923625B2 (en) * 2002-01-07 2005-08-02 Integrated Sensing Systems, Inc. Method of forming a reactive material and article formed thereby
US6968850B2 (en) 2002-07-15 2005-11-29 Intel Corporation In-situ cleaning of light source collector optics
JP4105616B2 (ja) * 2002-08-15 2008-06-25 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフ投影装置およびこの装置用の反射鏡アセンブリ
SG129259A1 (en) * 2002-10-03 2007-02-26 Asml Netherlands Bv Radiation source lithographic apparatus, and device manufacturing method
EP1406124A1 (en) 2002-10-03 2004-04-07 ASML Netherlands B.V. Radiation source, lithographic apparatus, and device manufacturing method
DE60323927D1 (de) * 2002-12-13 2008-11-20 Asml Netherlands Bv Lithographischer Apparat und Verfahren zur Herstellung einer Vorrichtung
EP1429189B1 (en) 2002-12-13 2008-10-08 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101095394B1 (ko) 2003-05-22 2011-12-16 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 하나 이상의 광학 컴포넌트를 클리닝하기 위한 방법 및장치
EP1531365A1 (en) * 2003-11-11 2005-05-18 ASML Netherlands B.V. Lithographic apparatus with contamination suppression
US7567379B2 (en) * 2004-04-29 2009-07-28 Intel Corporation Technique to prevent tin contamination of mirrors and electrodes in an EUV lithography system
US7355672B2 (en) * 2004-10-04 2008-04-08 Asml Netherlands B.V. Method for the removal of deposition on an optical element, method for the protection of an optical element, device manufacturing method, apparatus including an optical element, and lithographic apparatus

Similar Documents

Publication Publication Date Title
JP2008507840A5 (ja)
Yin et al. Diffusion versus desorption: complex behavior of H Atoms on an oxide surface
Ho et al. Grain transformation and degradation mechanism of formamidinium and cesium lead iodide perovskite under humidity and light
JP5122952B2 (ja) クリーニング構成を有する光学システム
Hossain et al. Radiative cooling: principles, progress, and potentials
Liu et al. Vacuum dual-source thermal-deposited lead-free Cs3Cu2I5 films with high photoluminescence quantum yield for deep-blue light-emitting diodes
Jeon et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
Kokubun et al. Sol–gel prepared (Ga1− xInx) 2O3 thin films for solar‐blind ultraviolet photodetectors
Deng et al. A novel ink‐stained paper for solar heavy metal treatment and desalination
Dong et al. Janus fibrous mats based suspended type evaporator for salt resistant solar desalination and salt recovery
Barrit et al. Room‐temperature partial conversion of α‐FAPbI3 perovskite phase via PbI2 solvation enables high‐performance solar cells
Sajeesh et al. Defect levels in SnS thin films prepared using chemical spray pyrolysis
Perkins et al. Photodesorption and trapping of molecular oxygen at the TiO2 (110)− water ice interface
Guillen et al. Characteristics of SnSe and SnSe2 thin films grown onto polycrystalline SnO2‐coated glass substrates
JP2008508722A5 (ja)
Thompson et al. Control of a surface photochemical process by fractal electron transport across the surface: O2 photodesorption from TiO2 (110)
Wang et al. 2D Higher‐Metal Nitride Nanosheets for Solar Steam Generation
JP2009006548A (ja) 有機無機層状ペロブスカイト化合物薄膜及びその作製方法
Ju et al. Periodic Micropillar‐Patterned FTO/BiVO4 with Superior Light Absorption and Separation Efficiency for Efficient PEC Performance
Bekermann et al. MOCVD of ZnO films from bis (ketoiminato) Zn (II) precursors: structure, morphology and optical properties
Furlan et al. Low‐temperature mullite formation in ternary oxide coatings deposited by ALD for high‐temperature applications
Lee et al. Opportunities and challenges for perovskite solar cells based on vacuum thermal evaporation
Chhillar et al. Stabilization of Photoactive γ-CsPbI3 Perovskite Phase by Incorporation of Mg
Sprincean et al. Influence of the air humidity on the electrical conductivity of the β-Ga2O3-GaS structure: Air humidity sensor
Arana‐Chavez et al. Modeling the transport and reaction mechanisms of copper oxide CVD