JP2008312396A - Power supply system for vehicle - Google Patents

Power supply system for vehicle Download PDF

Info

Publication number
JP2008312396A
JP2008312396A JP2007159069A JP2007159069A JP2008312396A JP 2008312396 A JP2008312396 A JP 2008312396A JP 2007159069 A JP2007159069 A JP 2007159069A JP 2007159069 A JP2007159069 A JP 2007159069A JP 2008312396 A JP2008312396 A JP 2008312396A
Authority
JP
Japan
Prior art keywords
voltage
current
change rate
normal range
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007159069A
Other languages
Japanese (ja)
Inventor
Katsuyuki Iwasaki
勝幸 岩崎
Satoshi Ishikawa
聡 石川
Kazuhisa Meguro
一久 目黒
Masakazu Habu
雅和 土生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Yazaki Corp
Original Assignee
Toyota Motor Corp
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Yazaki Corp filed Critical Toyota Motor Corp
Priority to JP2007159069A priority Critical patent/JP2008312396A/en
Publication of JP2008312396A publication Critical patent/JP2008312396A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply system for a vehicle capable of performing control on abnormality reliably and safely. <P>SOLUTION: A voltage measurement means VM measures a voltage value of each single battery of a battery pack 100, which includes a plurality of single batteries connected in series and supplies electric power to a load. A current measurement means IM measures a current value flowing in the battery pack 100. A memory means MM stores a voltage-current normal range table showing a normal range of current values for voltage values on normal operation of each single battery. A first discrimination means DM1 discriminates whether or not a current value measured by the current measurement means IM for a voltage value measured by the voltage measurement means VM is within the normal range of the voltage-current normal range table stored in the memory means MM. When it is not discriminated by the first discrimination means DM1 that the current value is within the normal range of the normal range table, a breaking means BM shuts down the supply of electric power from the battery pack 100 to the load. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ハイブリッド車両等の高圧電源を搭載する車両に使用される車両用電源システムに関するものである。   The present invention relates to a vehicle power supply system used in a vehicle equipped with a high voltage power supply such as a hybrid vehicle.

この種の車両用電源システムでは、従来、電圧検出値が異常時等においては、メインリレーをオフし、複数の単電池からなる高圧電源と負荷とを切り離す制御を行っている(たとえば、特許文献1参照。)。   Conventionally, in this type of vehicle power supply system, when the detected voltage value is abnormal, the main relay is turned off, and the high-voltage power supply composed of a plurality of single cells and the load are controlled (for example, patent document). 1).

図6は、従来の車両用電源システムの構成を示す概略ブロック図である。図6において、走行車両電源システムは、リチウム二次電池2、マイコン20aを有するリチウム電池制御部およびマイコン30aを有する車両用制御部を備えている。リチウム二次電池2を構成する各単電池は、各単電池の電圧を測定する電圧測定回路25に接続されている。車両用制御部は、所定時間毎に、各単電池の電圧が単電池の安全使用可能な電圧上限値を超えたか否かを判定し、単電池のうち1つでも電圧上限値を超え異常電圧と判定したときに、スイッチSW2をオフ状態とする。このようにして、異常電圧のときにリチウム二次電池2の充放電が遮断される。
特開2004−32871号公報(図2)
FIG. 6 is a schematic block diagram showing a configuration of a conventional vehicle power supply system. In FIG. 6, the traveling vehicle power supply system includes a lithium secondary battery 2, a lithium battery control unit having a microcomputer 20a, and a vehicle control unit having a microcomputer 30a. Each single battery constituting the lithium secondary battery 2 is connected to a voltage measurement circuit 25 that measures the voltage of each single battery. The vehicle control unit determines whether or not the voltage of each unit cell exceeds a voltage upper limit value that allows safe use of the unit cell every predetermined time, and even if one of the unit cells exceeds the voltage upper limit value, an abnormal voltage is exceeded. Is determined, the switch SW2 is turned off. In this way, charging / discharging of the lithium secondary battery 2 is interrupted at the abnormal voltage.
JP 2004-32871 A (FIG. 2)

しかしながら、上述の車両用電源システムでは、電圧だけでの異常判定であり、これでは、電圧測定回路25の異常によりその測定値が一定値に固着してしまった場合や、マイコン20aを有するリチウム電池制御部の異常によりスイッチSW2をオフできない場合には、リチウム二次電池2を遮断することができず、リチウム二次電池2から電流が流れてしまい、リチウム二次電池2が過放電していく可能性がある。特に、リチウム二次電池2の場合、過放電、過充電時には、電池内部がショートし危険な状態に至る可能性がある。また、大電流が流れることによって電池電圧が大きく変動した瞬間には、誤って異常と判断し、リチウム二次電池2の充放電が遮断されてしまう可能性がある。   However, in the above-described vehicle power supply system, the abnormality determination is based only on the voltage. In this case, when the measurement value is fixed to a certain value due to the abnormality of the voltage measurement circuit 25, or the lithium battery having the microcomputer 20a. When the switch SW2 cannot be turned off due to an abnormality in the control unit, the lithium secondary battery 2 cannot be cut off, current flows from the lithium secondary battery 2, and the lithium secondary battery 2 is overdischarged. there is a possibility. In particular, in the case of the lithium secondary battery 2, during overdischarge and overcharge, the inside of the battery may be shorted, resulting in a dangerous state. Further, at the moment when the battery voltage largely fluctuates due to the flow of a large current, it may be erroneously determined to be abnormal, and charging / discharging of the lithium secondary battery 2 may be interrupted.

そこで、本発明は、上記のような問題点に鑑みて、異常時の制御をより確実かつ安全に行うことができる車両用電源システムを提供することを目的としている。   Therefore, in view of the above-described problems, an object of the present invention is to provide a vehicle power supply system that can perform control at the time of abnormality more reliably and safely.

上記課題を解決するためになされた請求項1記載の発明の車両用電源システムは、図1の基本構成図に示すように、複数の単電池が直列接続され、負荷に電力を供給する組電池100と、前記組電池100の各単電池の電圧値を測定する電圧測定手段VMと、前記組電池100を流れる電流値を測定する電流測定手段IMと、前記各単電池の正常動作時の電圧値に対する電流値の正常範囲を表す電圧−電流正常範囲テーブルを記憶した記憶手段MMと、前記電圧測定手段VMで測定された電圧値に対して前記電流測定手段IMで測定された電流値が前記記憶手段MMに記憶されている前記電圧−電流正常範囲テーブルの正常範囲内にあるか否かを判定する第1の判定手段DM1と、前記第1の判定手段DM1で前記電流値が前記電圧−電流正常範囲テーブルの正常範囲内にあると判定されなかった場合に、前記組電池100から前記負荷への電力の供給を遮断する遮断手段BMとを備えていることを特徴とする。   In order to solve the above-mentioned problems, the vehicle power supply system according to claim 1 is an assembled battery in which a plurality of single cells are connected in series and supplies power to a load, as shown in the basic configuration diagram of FIG. 100, voltage measuring means VM for measuring the voltage value of each unit cell of the assembled battery 100, current measuring means IM for measuring the current value flowing through the assembled battery 100, and the voltage during normal operation of each unit cell A storage means MM storing a voltage-current normal range table representing a normal range of current values with respect to values, and a current value measured by the current measurement means IM with respect to a voltage value measured by the voltage measurement means VM. First determination means DM1 for determining whether or not the voltage-current normal range table stored in the storage means MM is within a normal range, and the first determination means DM1 determines that the current value is the voltage − Positive current If it is not determined to be within the normal range in the range table, characterized in that it comprises a blocking means BM for blocking the supply of electric power to the load from the battery pack 100.

請求項1記載の発明においては、車両用電源システムは、複数の単電池が直列接続され、負荷に電力を供給する組電池100の各単電池の電圧値を電圧測定手段VMで測定し、組電池100を流れる電流値を電流測定手段IMで測定する。記憶手段MMは、各単電池の正常動作時の電圧値に対する電流値の正常範囲を表す電圧−電流正常範囲テーブルを記憶している。第1の判定手段DM1は、電圧測定手段VMで測定された電圧値に対して電流測定手段IMで測定された電流値が記憶手段MMに記憶されている電圧−電流正常範囲テーブルの正常範囲内にあるか否かを判定する。第1の判定手段DM1で電流値が電圧−電流正常範囲テーブルの正常範囲内にあると判定されなかった場合に、遮断手段BMが、組電池100から負荷への電力の供給を遮断する。それにより、組電池100の過放電を防止できると共に、大電流が流れることによって電池電圧が大きく変動した場合でも、誤って異常と判断することなく、異常時の制御をより確実かつ安全に行うことができる。   In the first aspect of the present invention, the vehicle power supply system includes a plurality of single cells connected in series, and the voltage measurement unit VM measures the voltage value of each single cell of the assembled battery 100 that supplies power to the load. The current value flowing through the battery 100 is measured by the current measuring means IM. The storage means MM stores a voltage-current normal range table representing a normal range of current values with respect to voltage values during normal operation of each unit cell. The first determination unit DM1 is within the normal range of the voltage-current normal range table in which the current value measured by the current measurement unit IM is stored in the storage unit MM with respect to the voltage value measured by the voltage measurement unit VM. It is determined whether or not. When the first determination unit DM1 does not determine that the current value is within the normal range of the voltage-current normal range table, the blocking unit BM blocks the supply of power from the assembled battery 100 to the load. Thereby, overdischarge of the assembled battery 100 can be prevented, and even when the battery voltage largely fluctuates due to a large current flowing, the control at the time of abnormality can be performed more reliably and safely without erroneously judging the abnormality. Can do.

上記課題を解決するためになされた請求項2記載の発明の車両用電源システムは、図2の基本構成図に示すように、複数の単電池が直列接続され、負荷に電力を供給する組電池100と、前記組電池100の各単電池の電圧値を測定する電圧測定手段VMと、前記組電池100を流れる電流値を測定する電流測定手段IMと、前記電圧測定手段VMで測定された電圧値の変化率を算出する電圧変化率算出手段VRMと、前記電流測定手段IMで測定された電流値の変化率を算出する電流変化率算出手段IRMと、前記各単電池の正常動作時の電圧変化率に対する電流変化率の正常範囲を表す電圧変化率−電流変化率正常範囲テーブルを記憶した記憶手段MMと、前記電圧変化率算出手段VRMで算出された前記電圧変化率に対して前記電流変化率算出手段IRMで算出された電流変化率が前記記憶手段MMに記憶されている前記電圧変化率−電流変化率正常範囲テーブルの正常範囲内にあるか否かを判定する第2の判定手段DM2と、前記第2の判定手段DM2で前記電流変化率が前記電圧変化率−電流変化率正常範囲テーブルの正常範囲内にあると判定されなかった場合に、前記組電池100から前記負荷への電力の供給を遮断する遮断手段BMと、を備えていることを特徴とする。   The vehicle power supply system according to claim 2, which has been made to solve the above-described problem, is a battery pack in which a plurality of single cells are connected in series and supplies power to a load, as shown in the basic configuration diagram of FIG. 2. 100, voltage measuring means VM for measuring the voltage value of each unit cell of the assembled battery 100, current measuring means IM for measuring the current value flowing through the assembled battery 100, and voltage measured by the voltage measuring means VM Voltage change rate calculating means VRM for calculating the rate of change of the value, current change rate calculating means IRM for calculating the rate of change of the current value measured by the current measuring means IM, and the voltage during normal operation of each unit cell Storage means MM storing a voltage change rate-current change rate normal range table representing a normal range of the current change rate with respect to the change rate, and the current change with respect to the voltage change rate calculated by the voltage change rate calculating means VRM. Second determination means DM2 for determining whether or not the current change rate calculated by the rate calculation means IRM is within the normal range of the voltage change rate-current change rate normal range table stored in the storage means MM. When the second determination means DM2 determines that the current change rate is not within the normal range of the voltage change rate-current change rate normal range table, the power from the assembled battery 100 to the load And a shut-off means BM for shutting off the supply.

請求項2記載の発明においては、車両用電源システムは、複数の単電池が直列接続され、負荷に電力を供給する組電池100の各単電池の電圧値を電圧測定手段VMで測定し、組電池100を流れる電流値を電流測定手段IMで測定する。そして、電圧測定手段VMで測定された電圧値の変化率を、電圧変化率算出手段VRMで算出し、電流測定手段IMで測定された電流値の変化率を、電流変化率算出手段IRMで算出する。記憶手段MMは、各単電池の正常動作時の電圧変化率に対する電流変化率の正常範囲を表す電圧変化率−電流変化率正常範囲テーブルを記憶している。電圧変化率算出手段VRMで算出された電圧変化率に対して電流変化率算出手段IRMで算出された電流変化率が、記憶手段MMに記憶されている電圧変化率−電流変化率正常範囲テーブルの正常範囲内にあるか否かを第2の判定手段DM2で判定する。第2の判定手段DM2で電流変化率が電圧変化率−電流変化率正常範囲テーブルの正常範囲内にあると判定されなかった場合に、遮断手段BMが、組電池100から負荷への電力の供給を遮断する。それにより、組電池100の過放電を防止できると共に、大電流が流れることによって電池電圧が大きく変動した場合でも、誤って異常と判断することなく、異常時の制御をより確実かつ安全に行うことができる。   According to the second aspect of the invention, the vehicle power supply system includes a plurality of single cells connected in series, and the voltage measurement means VM measures the voltage value of each single cell of the assembled battery 100 that supplies power to the load. The current value flowing through the battery 100 is measured by the current measuring means IM. Then, the change rate of the voltage value measured by the voltage measurement unit VM is calculated by the voltage change rate calculation unit VRM, and the change rate of the current value measured by the current measurement unit IM is calculated by the current change rate calculation unit IRM. To do. The storage means MM stores a voltage change rate-current change rate normal range table representing a normal range of the current change rate with respect to the voltage change rate during normal operation of each unit cell. The current change rate calculated by the current change rate calculating means IRM with respect to the voltage change rate calculated by the voltage change rate calculating means VRM is the voltage change rate-current change rate normal range table stored in the storage means MM. Whether or not it is within the normal range is determined by the second determination means DM2. When the second determination unit DM2 does not determine that the current change rate is within the normal range of the voltage change rate-current change rate normal range table, the blocking unit BM supplies power from the assembled battery 100 to the load. Shut off. Thereby, overdischarge of the assembled battery 100 can be prevented, and even when the battery voltage largely fluctuates due to a large current flowing, the control at the time of abnormality can be performed more reliably and safely without erroneously judging the abnormality. Can do.

請求項1記載の発明によれば、組電池100の電圧値および電流値を監視し、異常時には組電池100から負荷への電力の供給を遮断手段BMで遮断するように制御するので、組電池100の過放電を防止できると共に、大電流が流れることによって電池電圧が大きく変動した場合でも、誤って異常と判断することなく、異常時の制御をより確実かつ安全に行うことができる。   According to the first aspect of the present invention, the voltage value and the current value of the assembled battery 100 are monitored, and control is performed so that the power supply from the assembled battery 100 to the load is interrupted by the interrupting means BM when an abnormality occurs. 100 can be prevented from being overdischarged, and even when the battery voltage fluctuates greatly due to the flow of a large current, the control at the time of abnormality can be performed more reliably and safely without erroneously judging it as an abnormality.

請求項2記載の発明によれば、組電池100の電圧変化率および電流変化率を監視し、異常時には組電池100から負荷への電力の供給を遮断手段BMで遮断するように制御するので、組電池100の過放電を防止できると共に、大電流が流れることによって電池電圧が大きく変動した場合でも、誤って異常と判断することなく、異常時の制御をより確実かつ安全に行うことができる。   According to the second aspect of the present invention, the voltage change rate and the current change rate of the assembled battery 100 are monitored, and control is performed so that the supply of power from the assembled battery 100 to the load is interrupted by the interrupting means BM when abnormal. The overdischarge of the assembled battery 100 can be prevented, and even when the battery voltage greatly fluctuates due to a large current flowing, the control at the time of abnormality can be performed more reliably and safely without erroneously determining the abnormality.

以下、本発明の実施の形態について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)図3は、本発明の第1の実施形態に係る車両用電源システムの構成を示すブロック図である。ハイブリッド車両の電気回路は、12Vバッテリで動作する低圧系回路と、高電圧で動作するモータ駆動用の高圧系回路とがあるが、この車両用電源システムは、ハイブリッド車両の高圧系回路に使用される。   (First Embodiment) FIG. 3 is a block diagram showing the configuration of a vehicular power supply system according to the first embodiment of the present invention. The electric circuit of a hybrid vehicle includes a low voltage system circuit that operates with a 12V battery and a high voltage system circuit for driving a motor that operates with a high voltage. This vehicle power supply system is used for a high voltage system circuit of a hybrid vehicle. The

車両用電源システムは、複数の単電池が直列接続された組電池100と、組電池100の正極および負極と負荷としてのモータジェネレータ(図示しない)の間にそれぞれ接続されたメインリレーMR1およびMR2と、組電池100を流れる電流を検出する電流センサISと、電池監視ユニット200とから構成されている。   The vehicle power supply system includes an assembled battery 100 in which a plurality of single cells are connected in series, and main relays MR1 and MR2 respectively connected between a positive electrode and a negative electrode of the assembled battery 100 and a motor generator (not shown) as a load. The current sensor IS detects the current flowing through the assembled battery 100, and the battery monitoring unit 200.

組電池100の中間位置には、サービスプラグユニット300が接続されている。サービスプラグユニット300は、組電池100と直列接続されるサービスプラグSPおよび高圧ヒューズHFと、インターロックスイッチSWとを備えている。   A service plug unit 300 is connected to an intermediate position of the assembled battery 100. The service plug unit 300 includes a service plug SP and a high-voltage fuse HF that are connected in series with the assembled battery 100, and an interlock switch SW.

サービスプラグSPは、取り外し可能な部材であり、メンテナンス作業者が誤って高圧系回路に触れても感電しないように、メンテナンス時に取り外して組電池100を高圧系回路から遮断して作業をすることができるものである。また、インターロックスイッチSWは、リードスイッチからなり、サービスプラグSPを取り外した際にオフとなって、オフ信号を上位システム(図示しない)に送るものである。上位システムは、インターロックスイッチSWからオフ信号が送信されたときは、メインリレーMR1およびMR2をオフとして、組電池100の高圧電源を遮断するように制御し、メンテナンス作業者の安全を確保する。   The service plug SP is a detachable member that can be removed during maintenance and cut off the assembled battery 100 from the high-voltage circuit so that no electric shock is received even if the maintenance operator accidentally touches the high-voltage circuit. It can be done. The interlock switch SW is a reed switch, which is turned off when the service plug SP is removed, and sends an off signal to a host system (not shown). When an off signal is transmitted from the interlock switch SW, the host system controls the main relays MR1 and MR2 to be turned off and shuts off the high-voltage power supply of the assembled battery 100, thereby ensuring the safety of the maintenance worker.

電池監視ユニット200は、たとえば、制御プログラムやデータが格納されたROMと一時的にデータを記憶するRAMと制御プログラムを実行するCPUからなるマイクロコンピュータで構成される。電池監視ユニット200は、組電池100を構成する各単電池の正極および負極に接続された入力ポートと、電流センサISに接続された入力ポートと、メインリレーMR1およびMR2に接続された出力ポートを有し、組電池100の各単電池の電圧と、組電池100を流れる電流とを監視し、異常時にはメインリレーMR1およびMR2をオフになるように制御する。   The battery monitoring unit 200 includes, for example, a microcomputer including a ROM that stores a control program and data, a RAM that temporarily stores data, and a CPU that executes the control program. The battery monitoring unit 200 includes an input port connected to the positive and negative electrodes of each unit cell constituting the assembled battery 100, an input port connected to the current sensor IS, and an output port connected to the main relays MR1 and MR2. And monitoring the voltage of each unit cell of the assembled battery 100 and the current flowing through the assembled battery 100, and controlling the main relays MR1 and MR2 to be turned off when an abnormality occurs.

次に、上述の構成を有する車両用電源システムの電池監視ユニット200において、ROMに格納された制御プログラムにしたがってCPUが行う異常検出処理について、図4のフローチャートを参照しながら説明する。   Next, the abnormality detection process performed by the CPU in accordance with the control program stored in the ROM in the battery monitoring unit 200 of the vehicle power supply system having the above-described configuration will be described with reference to the flowchart of FIG.

電池監視ユニット200のCPUは、図示しない電源の投入によってその動作を開始し、常時(イグニッションスイッチオフ時、アクセサリスイッチオフ時を含む)、モータジェネレータ側へ放電したりモータジェネレータ側から充電されたりする組電池100を監視し、組電池100を構成する各単電池の正極および負極に接続された入力ポートから入力される各単電池の電圧値を所定の計測タイミング毎に測定して検出する(ステップS1)。次に、電流センサISに接続された入力ポートから入力される、組電池100を流れる電流値を測定して検出する(ステップS3)。   The CPU of the battery monitoring unit 200 starts its operation when a power supply (not shown) is turned on, and is always discharged (including when the ignition switch is turned off and when the accessory switch is turned off) and discharged to the motor generator side or charged from the motor generator side. The assembled battery 100 is monitored, and the voltage value of each unit cell input from the input port connected to the positive electrode and the negative electrode of each unit cell constituting the assembled battery 100 is measured and detected at each predetermined measurement timing (step) S1). Next, the current value flowing through the assembled battery 100 input from the input port connected to the current sensor IS is measured and detected (step S3).

次に、ステップS1で検出された電圧値に対してステップS3で検出された電流値が正常範囲にあるか否かを判定する(ステップS5)。この判定は、予め設定されて電池監視ユニット200の電気的に書き換え可能なROM(記憶手段)に格納されている、単電池の電圧に対する電流の正常範囲を表す電圧−電流正常範囲テーブルを参照して行われる。   Next, it is determined whether or not the current value detected in step S3 is within the normal range with respect to the voltage value detected in step S1 (step S5). This determination is made by referring to a voltage-current normal range table that is set in advance and stored in an electrically rewritable ROM (storage means) of the battery monitoring unit 200 and indicating a normal range of current with respect to the voltage of the unit cell. Done.

この電圧−電流正常範囲テーブルは、組電池100を構成する単電池に関して予め測定されたそのSOC(充電状態)毎または劣化度毎の電流値−電圧値特性(I−V特性)に基づき、各単電池毎の特性バラツキを考慮して推定された各電圧値に対する電流値の正常範囲を示すテーブルである。各単電池の特性は、単電池を構成する材料バラツキ、寸法バラツキ、周囲温度等に起因するバラツキが発生し、この特性バラツキは、事前に材料、寸法等の各要素のバラツキを考慮し推定することができ、その推定結果に基づいて電流値の正常範囲を決めることができる。   This voltage-current normal range table is based on the current value-voltage value characteristic (IV characteristic) for each SOC (charging state) or degree of deterioration measured in advance with respect to the single cells constituting the assembled battery 100. It is a table | surface which shows the normal range of the electric current value with respect to each voltage value estimated in consideration of the characteristic variation for every cell. The characteristics of each unit cell may vary due to variations in the materials, dimensions, ambient temperature, etc. that make up the unit cell. This characteristic variation is estimated in advance by taking into account variations in each element such as material, dimensions, etc. The normal range of the current value can be determined based on the estimation result.

検出された電圧値に対して、検出された電流値が正常範囲にあれば、次いでステップS1に戻る。検出された電圧値に対して、検出された電流値が正常範囲になければ、あるいは検出された電圧値に該当する電圧が電圧−電流正常範囲テーブルになければ、異常であると認識して次いで、メインリレーMR1およびMR2に接続された出力ポートから制御信号を出力し、メインリレーMR1およびMR2をオフとなるように制御する(ステップS7)。   If the detected current value is within the normal range with respect to the detected voltage value, then the process returns to step S1. If the detected current value is not in the normal range with respect to the detected voltage value, or if the voltage corresponding to the detected voltage value is not in the voltage-current normal range table, it is recognized as abnormal and then Then, control signals are output from the output ports connected to the main relays MR1 and MR2, and the main relays MR1 and MR2 are controlled to be turned off (step S7).

電流値や電圧値が異常となる原因としては、単電池の構成部品である電極、電解液、電解質等の劣化や、電圧値の測定系の異常や、電流値の測定系の異常などがあり、いずれの異常が発生した場合でも、電源システムとしては異常であるので、電源システムを停止させる必要がある。   Causes of abnormal current and voltage values include degradation of electrodes, electrolytes, electrolytes, etc., which are components of the cell, voltage measurement system abnormalities, and current value measurement system abnormalities. Even if any abnormality occurs, the power supply system is abnormal, and it is necessary to stop the power supply system.

以上の説明から明らかなように、図4のステップS1は、請求項における電圧測定手段VMに対応し、ステップS3は、請求項における電流測定手段IMに対応し、ステップS5は、請求項における第1の判定手段DM1に対応し、ステップS7は、請求項における遮断手段BMに対応している。また、電池監視ユニット200のROMは、請求項における記憶手段に対応している。   As is clear from the above description, step S1 in FIG. 4 corresponds to the voltage measurement means VM in the claims, step S3 corresponds to the current measurement means IM in the claims, and step S5 corresponds to the current measurement means IM in the claims. Corresponding to one determination means DM1, step S7 corresponds to the blocking means BM in the claims. The ROM of the battery monitoring unit 200 corresponds to storage means in the claims.

このように、本実施形態によれば、組電池100の電圧値および電流値を監視し、異常時にはメインリレーMR1およびMR2をオフとなるように制御するので、組電池100の過放電や過充電を防止できると共に、大電流が流れることによって電池電圧が大きく変動した場合でも、電圧値に対してその電流値が正常範囲内にあるのであれば誤って異常と判断することなく、異常時の制御をより確実にでき、上位システムとの二重系で安全に遮断することができる。また、電池監視ユニット200のCPUは、図示しない電源の投入によってその動作を開始し、常時(イグニッションスイッチオフ時、アクセサリスイッチオフ時を含む)、組電池100を監視し、組電池100の電圧、電流の異常時にはメインリレーMR1およびMR2を遮断するため、サービスプラグユニット300内の高圧ヒューズHFを削除することが可能となる。   As described above, according to the present embodiment, the voltage value and current value of the assembled battery 100 are monitored, and the main relays MR1 and MR2 are controlled to be turned off when an abnormality occurs. Even if the battery voltage fluctuates greatly due to the flow of a large current, if the current value is within the normal range with respect to the voltage value, the control at the time of abnormality is not erroneously determined as abnormal. It is possible to more reliably shut off in a duplex system with the host system. Further, the CPU of the battery monitoring unit 200 starts its operation when a power supply (not shown) is turned on, constantly monitors the assembled battery 100 (including when the ignition switch is turned off and when the accessory switch is turned off), and monitors the voltage of the assembled battery 100, Since the main relays MR1 and MR2 are cut off when the current is abnormal, the high-voltage fuse HF in the service plug unit 300 can be deleted.

(第2の実施形態)上述の第1の実施形態では、組電池100の電圧値および電流値を監視して異常時の処理を行っているが、本実施形態では、時間に対して電圧の変化率に対する電流の変化率を監視して異常の有無を判定し、メインリレーMR1およびMR2を遮断する制御を行う。明らかな異常例としては、電圧値が一定であるのに、電流値が大幅に変動している場合等がある。   (Second Embodiment) In the first embodiment described above, the voltage value and current value of the assembled battery 100 are monitored and processing is performed at the time of abnormality. The current change rate with respect to the change rate is monitored to determine the presence or absence of abnormality, and control is performed to shut off the main relays MR1 and MR2. As an obvious abnormality example, there is a case where the current value fluctuates greatly even though the voltage value is constant.

以下、本実施形態の電池監視ユニット200において、ROMに格納された制御プログラムにしたがってCPUが行う異常検出処理について、図5のフローチャートを参照しながら説明する。   Hereinafter, the abnormality detection process performed by the CPU according to the control program stored in the ROM in the battery monitoring unit 200 of the present embodiment will be described with reference to the flowchart of FIG.

電池監視ユニット200のCPUは、図示しない電源の投入によってその動作を開始し、常時(イグニッションスイッチオフ時、アクセサリスイッチオフ時を含む)、モータジェネレータ側へ放電したりモータジェネレータ側から充電されたりする組電池100を監視し、組電池100を構成する各単電池の正極および負極に接続された入力ポートから入力される各単電池の電圧値を所定の計測タイミング毎に測定して検出する(ステップS11)。次に、電流センサISに接続された入力ポートから入力される、組電池100を流れる電流値を所定の計測タイミング毎に測定して検出する(ステップS13)。   The CPU of the battery monitoring unit 200 starts its operation when a power supply (not shown) is turned on, and is always discharged (including when the ignition switch is turned off and when the accessory switch is turned off) and discharged to the motor generator side or charged from the motor generator side. The assembled battery 100 is monitored, and the voltage value of each unit cell input from the input port connected to the positive electrode and the negative electrode of each unit cell constituting the assembled battery 100 is measured and detected at each predetermined measurement timing (step) S11). Next, the current value flowing through the assembled battery 100 input from the input port connected to the current sensor IS is measured and detected at each predetermined measurement timing (step S13).

次に、前回の計測タイミング時に検出された電圧値と今回の計測タイミング時に検出された電圧値とに基づいて、電圧変化率α(=dV/dt)を計算して求める(ステップS15)。次に、前回の計測タイミング時に検出された電流値と今回の計測タイミング時に検出された電流値とに基づいて、電流変化率β(=dI/dt)を計算して求める(ステップS17)。   Next, the voltage change rate α (= dV / dt) is calculated and obtained based on the voltage value detected at the previous measurement timing and the voltage value detected at the current measurement timing (step S15). Next, a current change rate β (= dI / dt) is calculated and obtained based on the current value detected at the previous measurement timing and the current value detected at the current measurement timing (step S17).

次に、ステップS15で求められた電圧変化率に対するステップS17で求められた電流変化率が正常範囲にあるか否かを判定する(ステップS19)。この判定は、予め設定されて電池監視ユニット200の電気的に書き換え可能なROM(記憶手段)に格納されている、単電池の電圧変化率に対する電流変化率の正常範囲を表す電圧変化率−電流変化率正常範囲テーブルを参照して行われる。   Next, it is determined whether or not the current change rate obtained in step S17 with respect to the voltage change rate obtained in step S15 is within a normal range (step S19). This determination is performed in advance, and is stored in an electrically rewritable ROM (storage means) of the battery monitoring unit 200. The voltage change rate-current indicating the normal range of the current change rate with respect to the voltage change rate of the unit cell. This is done with reference to the normal rate of change table.

求められた電圧変化率に対して、求められた電流変化率が正常範囲にあれば、次いでステップS11に戻る。求められた電圧変化率に対して、求められた電流変化率が正常範囲になければ、あるいは、求められた電圧変化率に該当する電圧変化率が電圧変化率−電流変化率正常範囲テーブルになければ、次いで、メインリレーMR1およびMR2に接続された出力ポートから制御信号を出力し、メインリレーMR1およびMR2をオフとなるように制御する(ステップS21)。   If the obtained current change rate is within the normal range with respect to the obtained voltage change rate, the process returns to step S11. If the calculated current change rate is not within the normal range with respect to the calculated voltage change rate, or the voltage change rate corresponding to the calculated voltage change rate is not in the voltage change rate-current change rate normal range table. Next, a control signal is output from the output ports connected to the main relays MR1 and MR2, and the main relays MR1 and MR2 are controlled to be turned off (step S21).

以上の説明から明らかなように、図5のステップS11は、請求項における電圧測定手段VMに対応し、ステップS13は、請求項における電流測定手段IMに対応し、ステップS15は、請求項における電圧変化率算出手段VRMに対応し、ステップS17は、請求項における電流変化率算出手段IRMに対応し、ステップS19は、請求項における第2の判定手段DM2に対応し、ステップS21は、請求項における遮断手段BMに対応している。   As is clear from the above description, step S11 in FIG. 5 corresponds to the voltage measuring means VM in the claims, step S13 corresponds to the current measuring means IM in the claims, and step S15 corresponds to the voltage in the claims. Corresponding to the change rate calculating means VRM, step S17 corresponds to the current change rate calculating means IRM in the claims, step S19 corresponds to the second determining means DM2 in the claims, and step S21 in the claims. This corresponds to the blocking means BM.

このように、本実施形態によれば、組電池100の電圧変化率および電流変化率を監視し、異常時にはメインリレーMR1およびMR2をオフとなるように制御するので、組電池100の過放電や過充電を防止できると共に、大電流が流れることによって電池電圧が大きく変動した場合でも、誤って異常と判断することなく、異常時の制御をより確実にでき、上位システムとの二重系で安全に遮断することができる。また、電池監視ユニット200のCPUは、図示しない電源の投入によってその動作を開始し、常時(イグニッションスイッチオフ時、アクセサリスイッチオフ時を含む)、組電池100を監視し、組電池100の電圧変化率、電流変化率の異常時にはメインリレーMR1およびMR2を遮断するため、サービスプラグユニット300内の高圧ヒューズHFを削除することが可能となる。   As described above, according to the present embodiment, the voltage change rate and the current change rate of the assembled battery 100 are monitored, and the main relays MR1 and MR2 are controlled to be turned off when an abnormality occurs. In addition to preventing overcharge, even if the battery voltage fluctuates greatly due to a large current flow, it is possible to more reliably control when there is an abnormality without erroneously judging it as abnormal, and it is safe with a dual system with the host system. Can be blocked. Further, the CPU of the battery monitoring unit 200 starts its operation when a power supply (not shown) is turned on, constantly monitors the assembled battery 100 (including when the ignition switch is turned off and when the accessory switch is turned off), and changes in voltage of the assembled battery 100. Since the main relays MR1 and MR2 are cut off when the rate and current change rate are abnormal, the high-voltage fuse HF in the service plug unit 300 can be deleted.

個別の単電池は充放電特性がほぼ決まっており、たとえば定格容量、満充電電圧、放電終止電圧により電圧と電流の変化率は決まっている。つまり、第1の実施形態における電圧および電流の絶対値比較の場合でも、第2の実施形態における変化率比較の場合でも、電流が流れれば電池の特性により電圧の変化を計算により推定できる。システムの安全性を確保するため、通常は流すことができる電流の最大値を決めているので、電流の最大値が決まっていれば電圧の変化の最大値も必然的に決まり、絶対値でも変化率でも、正常/異常を判定するしきい値として設定することができる。   The charge / discharge characteristics of individual cells are almost determined. For example, the rate of change of voltage and current is determined by the rated capacity, full charge voltage, and end-of-discharge voltage. That is, in both the absolute value comparison of the voltage and current in the first embodiment and the change rate comparison in the second embodiment, if the current flows, the change in voltage can be estimated by calculation according to the characteristics of the battery. In order to ensure the safety of the system, the maximum value of the current that can be flowed is usually determined, so if the maximum value of the current is determined, the maximum value of the voltage change is inevitably determined, and the absolute value also changes. The rate can also be set as a threshold for determining normality / abnormality.

以上の通り、本発明の実施の形態について説明したが、本発明はこれに限らず、種々の変形、応用が可能である。   As described above, the embodiment of the present invention has been described. However, the present invention is not limited to this, and various modifications and applications are possible.

たとえば、上述の実施の形態では、各単電池の正常動作時の電圧値に対する電流値の正常範囲を表す電圧−電流正常範囲テーブルに基づいて、異常を検出しているが、組電池100の正常動作時の端子電圧値に対する電流値の正常範囲を表す端子電圧−電流正常範囲テーブルに基づいて、異常を検出するようにしても良い。   For example, in the above-described embodiment, the abnormality is detected based on the voltage-current normal range table representing the normal range of the current value with respect to the voltage value during normal operation of each unit cell. You may make it detect abnormality based on the terminal voltage-current normal range table showing the normal range of the current value with respect to the terminal voltage value during operation.

また、上述の実施の形態では、電圧−電流正常範囲テーブルは、SOC(充電状態)毎または劣化度毎に測定されたものとしているが、これに代えて組電池100の周囲温度を検出する温度センサ(温度検出手段)をさらに備え、周囲温度毎に測定されたものとしても良い。   In the above-described embodiment, the voltage-current normal range table is measured for each SOC (charged state) or for each degree of deterioration. However, instead of this, the temperature for detecting the ambient temperature of the battery pack 100 is detected. A sensor (temperature detection means) may be further provided and measured at each ambient temperature.

また、上述の実施の形態では、異常を検出するための各構成要素がすべて高圧系回路に含まれている場合について説明したが、他の実施例として、各構成要素を高圧系回路と低圧系回路に分散させて、両者の間で制御信号のやり取りをするように構成しても良い。たとえば、電圧測定手段VM、電流測定手段IM、遮断手段BM、温度検出手段等が高圧系回路に備えられ、記憶手段MM、第1の判定手段DM1が低圧系回路に備えられるようにしても良い。   In the above-described embodiment, the case where all the components for detecting an abnormality are included in the high-voltage circuit has been described. However, as another embodiment, the components are divided into a high-voltage circuit and a low-voltage system. A configuration may be adopted in which control signals are exchanged between the two by being distributed in a circuit. For example, the voltage measuring means VM, the current measuring means IM, the cutoff means BM, the temperature detecting means, etc. may be provided in the high voltage system circuit, and the storage means MM and the first determination means DM1 may be provided in the low voltage system circuit. .

本発明の車両用電源システムの基本構成を示す基本構成図である。It is a basic composition figure showing the basic composition of the power supply system for vehicles of the present invention. 本発明の車両用電源システムの基本構成を示す基本構成図である。It is a basic composition figure showing the basic composition of the power supply system for vehicles of the present invention. 本発明の第1の実施形態に係る車両用電源システムの構成を示すブロック図である。(第1の実施形態)1 is a block diagram showing a configuration of a vehicle power supply system according to a first embodiment of the present invention. (First embodiment) 図3の車両用電源システムにおける異常検出処理を示すフローチャートである。(第1の実施形態)It is a flowchart which shows the abnormality detection process in the power supply system for vehicles of FIG. (First embodiment) 図3の車両用電源システムにおける異常検出処理を示すフローチャートである。(第2の実施形態)It is a flowchart which shows the abnormality detection process in the power supply system for vehicles of FIG. (Second Embodiment) 従来の車両用電源システムの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the conventional vehicle power supply system.

符号の説明Explanation of symbols

VM 電圧測定手段(電池監視ユニット200のCPU)
VRM 電圧変化率算出手段(電池監視ユニット200のCPU)
IM 電流測定手段(電流センサIS、電池監視ユニット200のCPU)
IRM 電流変化率算出手段(電池監視ユニット200のCPU)
DM1 第1の判定手段(電池監視ユニット200のCPU)
DM2 第2の判定手段(電池監視ユニット200のCPU)
MM 記憶手段(電池監視ユニット200のROM)
BM 遮断手段(電池監視ユニット200のCPU、メインリレーMR1,MR2)
100 組電池
VM voltage measurement means (CPU of battery monitoring unit 200)
VRM voltage change rate calculation means (CPU of battery monitoring unit 200)
IM current measuring means (current sensor IS, battery monitoring unit 200 CPU)
IRM Current change rate calculation means (CPU of battery monitoring unit 200)
DM1 first determination means (CPU of battery monitoring unit 200)
DM2 Second determination means (CPU of battery monitoring unit 200)
MM storage means (ROM of battery monitoring unit 200)
BM cutoff means (CPU of battery monitoring unit 200, main relays MR1, MR2)
100 batteries

Claims (2)

複数の単電池が直列接続され、負荷に電力を供給する組電池と、
前記組電池の各単電池の電圧値を測定する電圧測定手段と、
前記組電池を流れる電流値を測定する電流測定手段と、
前記各単電池の正常動作時の電圧値に対する電流値の正常範囲を表す電圧−電流正常範囲テーブルを記憶した記憶手段と、
前記電圧測定手段で測定された電圧値に対して前記電流測定手段で測定された電流値が前記記憶手段に記憶されている前記電圧−電流正常範囲テーブルの正常範囲内にあるか否かを判定する第1の判定手段と、
前記第1の判定手段で前記電流値が前記電圧−電流正常範囲テーブルの正常範囲内にあると判定されなかった場合に、前記組電池から前記負荷への電力の供給を遮断する遮断手段と、
を備えていることを特徴とする車両用電源システム。
A battery pack in which a plurality of cells are connected in series to supply power to a load;
Voltage measuring means for measuring a voltage value of each unit cell of the assembled battery;
Current measuring means for measuring a current value flowing through the assembled battery;
Storage means for storing a voltage-current normal range table representing a normal range of current values relative to voltage values during normal operation of each of the cells;
It is determined whether the current value measured by the current measuring unit is within the normal range of the voltage-current normal range table stored in the storage unit with respect to the voltage value measured by the voltage measuring unit. First determining means for
A blocking means for blocking power supply from the assembled battery to the load when the first determination means does not determine that the current value is within the normal range of the voltage-current normal range table;
A vehicle power supply system comprising:
複数の単電池が直列接続され、負荷に電力を供給する組電池と、
前記組電池の各単電池の電圧値を測定する電圧測定手段と、
前記組電池を流れる電流値を測定する電流測定手段と、
前記電圧測定手段で測定された電圧値の変化率を算出する電圧変化率算出手段と、
前記電流測定手段で測定された電流値の変化率を算出する電流変化率算出手段と、
前記各単電池の正常動作時の電圧変化率に対する電流変化率の正常範囲を表す電圧変化率−電流変化率正常範囲テーブルを記憶した記憶手段と、
前記電圧変化率算出手段で算出された前記電圧変化率に対して前記電流変化率算出手段で算出された電流変化率が前記記憶手段に記憶されている前記電圧変化率−電流変化率正常範囲テーブルの正常範囲内にあるか否かを判定する第2の判定手段と、
前記第2の判定手段で前記電流変化率が前記電圧変化率−電流変化率正常範囲テーブルの正常範囲内にあると判定されなかった場合に、前記組電池から前記負荷への電力の供給を遮断する遮断手段と、
を備えていることを特徴とする車両用電源システム。
A battery pack in which a plurality of cells are connected in series to supply power to a load;
Voltage measuring means for measuring a voltage value of each unit cell of the assembled battery;
Current measuring means for measuring a current value flowing through the assembled battery;
Voltage change rate calculating means for calculating a change rate of the voltage value measured by the voltage measuring means;
Current change rate calculating means for calculating a change rate of the current value measured by the current measuring means;
Storage means for storing a voltage change rate-current change rate normal range table representing a normal range of the current change rate with respect to the voltage change rate during normal operation of each unit cell;
The voltage change rate-current change rate normal range table in which the current change rate calculated by the current change rate calculating unit with respect to the voltage change rate calculated by the voltage change rate calculating unit is stored in the storage unit. Second determination means for determining whether or not the current value is within the normal range of
When the second determination means does not determine that the current change rate is within the normal range of the voltage change rate-current change rate normal range table, the power supply from the assembled battery to the load is cut off. Blocking means to
A vehicle power supply system comprising:
JP2007159069A 2007-06-15 2007-06-15 Power supply system for vehicle Withdrawn JP2008312396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007159069A JP2008312396A (en) 2007-06-15 2007-06-15 Power supply system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007159069A JP2008312396A (en) 2007-06-15 2007-06-15 Power supply system for vehicle

Publications (1)

Publication Number Publication Date
JP2008312396A true JP2008312396A (en) 2008-12-25

Family

ID=40239465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007159069A Withdrawn JP2008312396A (en) 2007-06-15 2007-06-15 Power supply system for vehicle

Country Status (1)

Country Link
JP (1) JP2008312396A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160026A (en) * 2009-01-07 2010-07-22 Nissan Motor Co Ltd Electric power control apparatus for vehicle and method for estimating internal resistance of assembly battery
JP2010286445A (en) * 2009-06-15 2010-12-24 Honda Motor Co Ltd Battery status estimation device
WO2011052609A1 (en) * 2009-10-26 2011-05-05 矢崎総業株式会社 Power supply circuit
JP2012005172A (en) * 2010-06-14 2012-01-05 Toyota Industries Corp Charge control system for charging car
JP2012205382A (en) * 2011-03-25 2012-10-22 Fuji Heavy Ind Ltd Power supply device for vehicle
JP2014110683A (en) * 2012-12-03 2014-06-12 Toyota Motor Corp Power storage system
JP2014110685A (en) * 2012-12-03 2014-06-12 Toyota Motor Corp Power storage system
JP2014110684A (en) * 2012-12-03 2014-06-12 Toyota Motor Corp Power storage system
JP2014176175A (en) * 2013-03-08 2014-09-22 Hitachi Ltd Storage battery system
JP2014525221A (en) * 2011-06-17 2014-09-25 ユラ コーポレーション カンパニー リミテッド Power relay assembly driving apparatus and driving method thereof
CN104781900A (en) * 2013-02-14 2015-07-15 本田技研工业株式会社 Circuit breaker device
WO2018190400A1 (en) * 2017-04-14 2018-10-18 日立建機株式会社 Electricity storage device controller, electric system, and construction machine
US10158241B2 (en) 2012-12-03 2018-12-18 Toyota Jidosha Kabushiki Kaisha Electricity storage system
CN113270655A (en) * 2020-02-17 2021-08-17 丰田自动车株式会社 Battery system and method for determining abnormality of battery
WO2022059145A1 (en) * 2020-09-17 2022-03-24 本田技研工業株式会社 Abnormality detection system
WO2023026874A1 (en) * 2021-08-24 2023-03-02 株式会社デンソー Power supply system for vehicle
CN115995870A (en) * 2023-03-23 2023-04-21 深圳多为智联科技有限公司 Intelligent management system for mobile phone battery

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160026A (en) * 2009-01-07 2010-07-22 Nissan Motor Co Ltd Electric power control apparatus for vehicle and method for estimating internal resistance of assembly battery
JP2010286445A (en) * 2009-06-15 2010-12-24 Honda Motor Co Ltd Battery status estimation device
US8842408B2 (en) 2009-10-26 2014-09-23 Yazaki Corporation Power supply circuit
WO2011052609A1 (en) * 2009-10-26 2011-05-05 矢崎総業株式会社 Power supply circuit
JP2011088598A (en) * 2009-10-26 2011-05-06 Yazaki Corp Power circuit
CN102271968A (en) * 2009-10-26 2011-12-07 矢崎总业株式会社 Power supply circuit
JP2012005172A (en) * 2010-06-14 2012-01-05 Toyota Industries Corp Charge control system for charging car
JP2012205382A (en) * 2011-03-25 2012-10-22 Fuji Heavy Ind Ltd Power supply device for vehicle
US9293936B2 (en) 2011-06-17 2016-03-22 Yura Corporation Co., Ltd. Power relay assembly driving apparatus and driving method thereof
JP2015173110A (en) * 2011-06-17 2015-10-01 ユラ コーポレーション カンパニー リミテッド Power relay assembly driving apparatus and driving method thereof
JP2014525221A (en) * 2011-06-17 2014-09-25 ユラ コーポレーション カンパニー リミテッド Power relay assembly driving apparatus and driving method thereof
US9577458B2 (en) 2012-12-03 2017-02-21 Toyota Jidosha Kabushiki Kaisha Electrical storage system
US9941712B2 (en) 2012-12-03 2018-04-10 Toyota Jidosha Kabushiki Kaisha Electrical storage system
US10158241B2 (en) 2012-12-03 2018-12-18 Toyota Jidosha Kabushiki Kaisha Electricity storage system
JP2014110684A (en) * 2012-12-03 2014-06-12 Toyota Motor Corp Power storage system
JP2014110685A (en) * 2012-12-03 2014-06-12 Toyota Motor Corp Power storage system
JP2014110683A (en) * 2012-12-03 2014-06-12 Toyota Motor Corp Power storage system
US10096992B2 (en) 2012-12-03 2018-10-09 Toyota Jidosha Kabushiki Kaisha Electrical storage system
US9646791B2 (en) 2013-02-14 2017-05-09 Honda Motor Co., Ltd. Circuit breaker device
CN104781900A (en) * 2013-02-14 2015-07-15 本田技研工业株式会社 Circuit breaker device
JP2014176175A (en) * 2013-03-08 2014-09-22 Hitachi Ltd Storage battery system
KR102205871B1 (en) 2017-04-14 2021-01-21 히다찌 겐끼 가부시키가이샤 Power storage device controllers and transmission systems, and construction machinery
JP2018182920A (en) * 2017-04-14 2018-11-15 日立建機株式会社 Electricity storage device controller, electric system, and construction machine
KR20190115065A (en) * 2017-04-14 2019-10-10 히다찌 겐끼 가부시키가이샤 Power storage controllers and electric systems, and construction machinery
EP3611045A4 (en) * 2017-04-14 2021-01-20 Hitachi Construction Machinery Co., Ltd. Electricity storage device controller, electric system, and construction machine
WO2018190400A1 (en) * 2017-04-14 2018-10-18 日立建機株式会社 Electricity storage device controller, electric system, and construction machine
US11198352B2 (en) 2017-04-14 2021-12-14 Hitachi Construction Machinery Co., Ltd. Electricity storage device controller, electric system and construction machine
CN113270655A (en) * 2020-02-17 2021-08-17 丰田自动车株式会社 Battery system and method for determining abnormality of battery
CN113270655B (en) * 2020-02-17 2024-05-14 丰田自动车株式会社 Battery system and battery abnormality determination method
WO2022059145A1 (en) * 2020-09-17 2022-03-24 本田技研工業株式会社 Abnormality detection system
JPWO2022059145A1 (en) * 2020-09-17 2022-03-24
WO2023026874A1 (en) * 2021-08-24 2023-03-02 株式会社デンソー Power supply system for vehicle
JP7416027B2 (en) 2021-08-24 2024-01-17 株式会社デンソー Vehicle power system
CN115995870A (en) * 2023-03-23 2023-04-21 深圳多为智联科技有限公司 Intelligent management system for mobile phone battery

Similar Documents

Publication Publication Date Title
JP2008312396A (en) Power supply system for vehicle
US9257729B2 (en) Response to over-current in a battery pack
US6873135B2 (en) Battery pack and battery pack checking method
JP4840154B2 (en) Power supply equipment
JP5025160B2 (en) Secondary battery device
EP3107181B1 (en) Monitoring device for secondary battery, battery pack, and protection system for secondary battery
US20130113290A1 (en) Control device for power supply circuit
WO2007097181A1 (en) Battery pack, and battery protecting method
JP2010081721A (en) Battery pack system
JP2000133318A (en) Battery pack
KR20090014897A (en) Battery pack and portable device selecting battery cells and method of controlling charging/discharging using the same
US20160043583A1 (en) Battery pack, mobile body, and control method thereof
JP2009095162A (en) Battery pack and power tool using the same
US11381095B2 (en) Management device, energy storage apparatus, and management method for energy storage device
JP5626190B2 (en) Power storage system
JP2013078233A (en) Monitor for assembled battery, and battery pack with the same
JP2008148419A (en) Battery pack
KR101744374B1 (en) Apparatus and method for preventing battery using protective circuit
JP2002289264A (en) Method and circuit device for monitoring operational reliability of rechargeable lithium battery
US20230163606A1 (en) Battery management system and method of managing battery using the same
WO2016136499A1 (en) Electric tool
JP4206348B2 (en) Battery pack and power tool
JP2015061505A (en) Power storage system
JP2011101517A (en) Battery pack
JP2015173568A (en) battery protection circuit and battery pack

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907