JP2008148419A - Battery pack - Google Patents

Battery pack Download PDF

Info

Publication number
JP2008148419A
JP2008148419A JP2006331156A JP2006331156A JP2008148419A JP 2008148419 A JP2008148419 A JP 2008148419A JP 2006331156 A JP2006331156 A JP 2006331156A JP 2006331156 A JP2006331156 A JP 2006331156A JP 2008148419 A JP2008148419 A JP 2008148419A
Authority
JP
Japan
Prior art keywords
battery
voltage
switching element
protection fet
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006331156A
Other languages
Japanese (ja)
Other versions
JP5064776B2 (en
Inventor
Daiki Teraoka
大樹 寺岡
Shingo Mizoshita
真吾 溝下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006331156A priority Critical patent/JP5064776B2/en
Publication of JP2008148419A publication Critical patent/JP2008148419A/en
Application granted granted Critical
Publication of JP5064776B2 publication Critical patent/JP5064776B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To improve the safety by breaking a charge current surely in condition that the temperature of a battery goes higher while allowing quick charge with a large current. <P>SOLUTION: A battery pack includes a switching element 2 for charge for breaking the charge current of a battery 1, a switching element 3 for discharge for breaking a discharge current, a control circuit 4 which controls the switching element 2 for charge and the switching element 3 for discharge, a temperature sensor 5 which detects the temperature of the battery, and a protective FET 6. Though the protective FET 6 breaks a charge current in off state, it is connected in series with a battery 1 so as to let the charge current of the battery 1 flow via a parasitic diode 6a. Furthermore, the protective FET 6 connects an input circuit 7, which switches on or switches off the protective FET6 with a signal from the temperature sensor 5 and the voltage of the battery, to its input side. This input circuit 7 switches off the protective FET 6 in condition that the temperature of the battery 1 is higher than charge stop temperature and that the voltage of the battery 1 is higher than the off voltage to switch off the protective FET 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電池と直列に電池の充放電を制御するスイッチング素子と、さらに電池温度で電流を遮断するFETとを接続しているパック電池に関する。   The present invention relates to a battery pack in which a switching element for controlling charging / discharging of a battery in series with the battery and an FET for cutting off current at battery temperature are connected.

電池と直列に、電池の保護回路としてFETからなるスイッチング素子を接続しているパック電池は開発されている。このパック電池は、電池と直列に充電制御用スイッチング素子と放電制御用スイッチング素子を接続している。充電制御用スイッチング素子は、充電される電池の電圧が設定電圧よりも高くなるとオフに切り換えられて、電池の過充電を防止する。放電制御用スイッチング素子は、放電される電池の電圧が設定電圧よりも低くなるとオフに切り換えられて電池の過放電を防止する。また、電池に過電流が流れることを検出して、充電制御用スイッチング素子と放電制御用スイッチング素子をオフに切り換えて、電池を保護することもできる。このパック電池は、保護回路として備える、充電制御用スイッチング素子と放電制御用スイッチング素子で電池を保護しながら放電させるが、保護回路が故障すると電池が異常な状態となって温度が異常に高くなることがある。   A battery pack in which a switching element made of an FET is connected as a battery protection circuit in series with the battery has been developed. In this battery pack, a charge control switching element and a discharge control switching element are connected in series with the battery. The switching element for charge control is switched off when the voltage of the battery to be charged becomes higher than the set voltage, thereby preventing overcharging of the battery. The discharge control switching element is switched off when the voltage of the discharged battery is lower than the set voltage, thereby preventing overdischarge of the battery. It is also possible to protect the battery by detecting that an overcurrent flows through the battery and switching off the charge control switching element and the discharge control switching element. This battery pack is discharged while protecting the battery with a switching element for charge control and a switching element for discharge control provided as a protection circuit. However, if the protection circuit fails, the battery becomes abnormal and the temperature becomes abnormally high. Sometimes.

この弊害を防止するために、保護回路であるスイッチング素子に加えて、PTCやヒューズを直列に接続するパック電池も開発されている。PTCは、電池に過電流が流れ、あるいは電池温度が異常に高くなると電気抵抗が急激に大きくなって、電池の電流を実施的に遮断する。ヒューズも過電流や電池温度で溶断されて、電池を保護する。しかしながら、最近のパック電池は、大電流で急速充電することから、PTCやヒューズを、異常時に確実に電流を遮断しながら、急速充電では遮断されない特性を実現するのが難しくなっている。それは、大電流の急速充電を許容するPTCやヒューズは、遮断する電流値も大きくなるからである。   In order to prevent this problem, in addition to a switching element serving as a protection circuit, a battery pack in which a PTC and a fuse are connected in series has been developed. In the PTC, when an overcurrent flows through the battery or when the battery temperature becomes abnormally high, the electric resistance rapidly increases and the battery current is effectively cut off. The fuse is also blown by overcurrent or battery temperature to protect the battery. However, since recent battery packs are rapidly charged with a large current, it is difficult to realize a characteristic that PTC and fuses are not interrupted by rapid charging while the current is reliably interrupted in the event of an abnormality. This is because a PTC or fuse that allows rapid charging with a large current also increases the current value to be cut off.

この弊害は、たとえば特許文献1に記載されるように、電池の温度を検出して電池の電流を遮断する回路で解消できる。特許文献1のパック電池は、図1に示すように、電池91の温度を温度センサ95で検出し、この温度センサ95の信号で、電池91と直列に接続している保護FET96をオフに切り換える。
2000−152516号公報
This problem can be solved by a circuit that detects the temperature of the battery and interrupts the current of the battery, as described in Patent Document 1, for example. As shown in FIG. 1, the battery pack of Patent Document 1 detects the temperature of the battery 91 with a temperature sensor 95, and switches off the protection FET 96 connected in series with the battery 91 using a signal from the temperature sensor 95. .
No. 2000-152516

特許文献1のパック電池は、放電電流を制御するように保護FETを接続している。この保護FETは、オフに切り換えられて放電電流を遮断する。このパック電池は、オフ状態の保護FETの寄生ダイオードで充電電流を遮断しない。したがって、保護FETがオフの状態で、パック電池は充電される状態となる。電池が異常な温度に加熱された状態で充電できるパック電池は安全性を確保できない。また、オフ状態にあるFETに逆向きに流れる充電電流は、寄生ダイオードによって大きな電圧降下を発生させる。このため、オフ状態にあるFETは、充電電流での発熱が大きく、充電電流で加熱される弊害もある。   In the battery pack of Patent Document 1, a protection FET is connected so as to control the discharge current. This protection FET is switched off to interrupt the discharge current. This battery pack does not cut off the charging current with the parasitic diode of the off-state protection FET. Therefore, the battery pack is charged while the protection FET is off. A battery pack that can be charged while the battery is heated to an abnormal temperature cannot ensure safety. Further, the charging current flowing in the reverse direction to the FET in the off state causes a large voltage drop by the parasitic diode. For this reason, the FET in the off state generates a large amount of heat due to the charging current, and there is a problem that it is heated by the charging current.

本発明は、さらにこの欠点を解決することを目的に開発されたものである。本発明の重要な目的は、大電流での急速充電を許容しながら、電池温度が高くなる状態では確実に充電電流を遮断して安全性を向上できるパック電池を提供することにある。   The present invention has been developed for the purpose of solving this drawback. An important object of the present invention is to provide a battery pack capable of improving safety by reliably interrupting the charging current in a state where the battery temperature is high while allowing rapid charging with a large current.

本発明のパック電池は、前述の目的を達成するために以下の構成を備える。
パック電池は、充電できる電池1と直列に接続されて電池1の充電電流を遮断する充電用のスイッチング素子2と、電池1と直列に接続されて電池1の放電電流を遮断する放電用のスイッチング素子3と、電池電圧を検出して充電用のスイッチング素子2と放電用のスイッチング素子3をオンオフに制御する制御回路4と、電池1の温度を検出する温度センサ5と、この温度センサ5で検出される電池温度でオンオフにスイッチングされ、かつ電池1と直列に接続している保護FET6とを備える。保護FET6は、寄生ダイオード6aを有するFETである。この保護FET6は、オフ状態では、充電電流を遮断するが寄生ダイオード6aを介して電池1の放電電流を流すように電池1と直列に接続している。さらに、この保護FET6は、入力側に、温度センサ5からの信号と電池電圧で保護FET6をオンオフに切り換える入力回路7を接続している。この入力回路7は、電池1の温度が充電停止温度よりも高く、かつ電池1の電圧が保護FET6をオフにするオフ電圧よりも高い状態で保護FET6をオフ状態に切り換える。
The battery pack of the present invention has the following configuration in order to achieve the aforementioned object.
The battery pack is connected in series with a rechargeable battery 1 to cut off the charging current of the battery 1 and charging switching element 2 connected in series with the battery 1 to cut off the discharging current of the battery 1. An element 3, a control circuit 4 that detects battery voltage and controls on / off of the switching element 2 for charging and the switching element 3 for discharging, a temperature sensor 5 that detects the temperature of the battery 1, and the temperature sensor 5 A protection FET 6 that is switched on and off at the detected battery temperature and that is connected in series with the battery 1 is provided. The protection FET 6 is an FET having a parasitic diode 6a. The protection FET 6 is connected in series with the battery 1 so as to cut off the charging current in the off state but allow the discharging current of the battery 1 to flow through the parasitic diode 6a. Further, the protection FET 6 is connected to an input side of an input circuit 7 for switching the protection FET 6 on and off by a signal from the temperature sensor 5 and a battery voltage. The input circuit 7 switches the protection FET 6 to the off state in a state where the temperature of the battery 1 is higher than the charging stop temperature and the voltage of the battery 1 is higher than the off voltage that turns off the protection FET 6.

本発明のパック電池は、制御回路4が、電池1の電圧が過充電電圧よりも高くなると充電用のスイッチング素子2をオフに切り換え、電池1の電圧が過放電電圧よりも低くなると放電用のスイッチング素子3をオフに切り換えると共に、入力回路7が保護FET6をオフに切り換えるオフ電圧を、過充電電圧よりも高くすることができる。   In the battery pack of the present invention, the control circuit 4 switches off the charging switching element 2 when the voltage of the battery 1 becomes higher than the overcharge voltage, and discharges when the voltage of the battery 1 becomes lower than the overdischarge voltage. The switching element 3 is switched off, and the off voltage at which the input circuit 7 switches off the protection FET 6 can be made higher than the overcharge voltage.

本発明のパック電池は、充電できる電池1をリチウムイオン二次電池として、過充電電圧を4.1V〜4.3V/セルとし、過放電電圧を2.6V〜3.2V/セルとし、オフ電圧を4.4V/セル以上とすることができる。   The battery pack of the present invention uses a rechargeable battery 1 as a lithium ion secondary battery, an overcharge voltage of 4.1 V to 4.3 V / cell, an overdischarge voltage of 2.6 V to 3.2 V / cell, and an off-state. The voltage can be 4.4 V / cell or higher.

本発明のパック電池は、保護FET6をオフに切り換える充電停止温度を50℃〜70℃とすることができる。   In the battery pack of the present invention, the charge stop temperature at which the protection FET 6 is turned off can be set to 50 ° C to 70 ° C.

本発明のパック電池は、入力回路7が、放電電流を検出する放電電流検出回路10を備え、放電電流検出回路10で放電電流を検出してオフ状態の保護FET6をオンに切り換えることができる。   In the battery pack of the present invention, the input circuit 7 includes a discharge current detection circuit 10 that detects the discharge current, and the discharge current detection circuit 10 can detect the discharge current and switch the protection FET 6 in the off state on.

本発明のパック電池は、制御回路4が、電池1の電圧が過充電電圧よりも高くなると充電用のスイッチング素子2をオフに切り換え、電池1の電圧が過放電電圧よりも低くなると放電用のスイッチング素子3をオフに切り換えると共に、入力回路7が保護FET6をオフに切り換えるオフ電圧を、過充電電圧よりも低く、過放電電圧よりも高くすることができる。さらに、本発明のパック電池は、入力回路7が保護FET6をオフに切り換える充電停止温度を40℃〜50℃に設定することができる。   In the battery pack of the present invention, the control circuit 4 switches off the charging switching element 2 when the voltage of the battery 1 becomes higher than the overcharge voltage, and discharges when the voltage of the battery 1 becomes lower than the overdischarge voltage. The switching element 3 is switched off, and the off voltage at which the input circuit 7 switches off the protection FET 6 can be made lower than the overcharge voltage and higher than the overdischarge voltage. Furthermore, in the battery pack of the present invention, the charge stop temperature at which the input circuit 7 switches off the protection FET 6 can be set to 40 ° C. to 50 ° C.

本発明のパック電池は、大電流での急速充電を許容しながら、電池温度が高くなる状態では確実に充電電流を遮断して安全性を向上できる特徴がある。それは、本発明のパック電池が、寄生ダイオードを有するFETを、オフ状態にあっては、充電電流を遮断して寄生ダイオードを介して放電電流を流すように電池と直列に接続すると共に、この保護FETの入力側に、温度センサからの信号と電池電圧の両方で保護FETをオンオフに切り換える入力回路を接続し、この入力回路でもって、電池の温度が充電停止温度よりも高く、かつ電池の電圧が保護FETをオフにするオフ電圧よりも高い状態で、保護FETをオフ状態に切り換えるからである。   The battery pack of the present invention is characterized in that safety can be improved by reliably interrupting the charging current in a state where the battery temperature is high while allowing rapid charging with a large current. This is because the battery pack of the present invention connects the FET having the parasitic diode in series with the battery so that the charging current is cut off and the discharging current flows through the parasitic diode in the off state. Connected to the input side of the FET is an input circuit that switches the protection FET on and off with both the signal from the temperature sensor and the battery voltage. With this input circuit, the temperature of the battery is higher than the charge stop temperature and the voltage of the battery This is because the protection FET is switched to the off state in a state higher than the off voltage for turning off the protection FET.

とくに、本発明の請求項2のパック電池は、請求項1の構成に加えて、制御回路が、電池の電圧が過充電電圧よりも高くなると充電用のスイッチング素子をオフに切り換え、電池の電圧が過放電電圧よりも低くなると放電用のスイッチング素子をオフに切り換え、入力回路は保護FETをオフに切り換えるオフ電圧を、過充電電圧よりも高くしている。このパック電池は、充電用のスイッチング素子と放電用のスイッチング素子が正常に動作される通常の使用状態では、保護FETはオフに切り換えられない。ただ、充電用のスイッチング素子が故障して、電池温度が異常に高くなり、また電池電圧が異常に高くなると、保護FETがオフに切り換えられて、電池の温度上昇を確実に阻止する。したがって、保護回路の充電用のスイッチング素子が故障しても、安全に使用できる。   In particular, in the battery pack according to claim 2 of the present invention, in addition to the configuration of claim 1, the control circuit switches off the charging switching element when the battery voltage becomes higher than the overcharge voltage. When the voltage becomes lower than the overdischarge voltage, the switching element for discharging is switched off, and the input circuit makes the off voltage for switching off the protection FET higher than the overcharge voltage. In this battery pack, the protection FET is not switched off in a normal use state in which the charging switching element and the discharging switching element are normally operated. However, when the charging switching element breaks down, the battery temperature becomes abnormally high, and the battery voltage becomes abnormally high, the protection FET is switched off to reliably prevent the battery temperature from rising. Therefore, even if the switching element for charging the protection circuit breaks down, it can be used safely.

また、本発明の請求項5のパック電池は、請求項1の構成に加えて、入力回路に、放電電流を検出する放電電流検出回路を設け、この放電電流検出回路でもって、放電電流を検出し、オフ状態の保護FETをオンに切り換えるので、保護FETをオフに切り換える状態でパック電池が放電されても、保護FETの加熱を防止でき、また、電池温度が高い状態で保護FETがオンオフに切り換えられる以下に説明するチャタリングを防止できる特徴がある。
例えば、このような放電電流検出回路にて、放電電流を検出する場合においても、請求項1の構成として、温度センサからの信号と電池電圧の両方で保護FETをオンオフに切り換える入力回路を備えることより、このようなチャタリングを防止できる。つまり、仮に、電池電圧を利用せず、温度センサからの信号のみで保護FETをオンオフするなら、放電状態で温度が上昇した場合においても保護FETをオフする。その後、パック電池を利用する電子機器より放電が要求されているなら、温度が低下すれば放電を再開し(放電を検出して保護FETをオンする)、温度が上昇し、保護FETをオフする。これが継続し、その後、チャタリングが発生するという問題がある。請求項5の構成により、このような問題を解消している。
The battery pack according to claim 5 of the present invention is provided with a discharge current detection circuit for detecting a discharge current in the input circuit in addition to the configuration of claim 1, and the discharge current detection circuit detects the discharge current. Since the protection FET in the off state is switched on, even if the battery pack is discharged with the protection FET switched off, the protection FET can be prevented from being heated, and the protection FET can be turned on / off when the battery temperature is high. There is a feature capable of preventing chattering described below that can be switched.
For example, even when a discharge current is detected by such a discharge current detection circuit, the configuration of claim 1 includes an input circuit that switches the protection FET on and off by both the signal from the temperature sensor and the battery voltage. Thus, such chattering can be prevented. In other words, if the protection FET is turned on / off only by a signal from the temperature sensor without using the battery voltage, the protection FET is turned off even when the temperature rises in the discharge state. After that, if discharge is requested from an electronic device using a battery pack, the discharge resumes when the temperature drops (detects the discharge and turns on the protection FET), the temperature rises, and the protection FET is turned off. . There is a problem that this continues and chattering occurs thereafter. Such a problem is solved by the structure of claim 5.

さらに、本発明の請求項6のパック電池は、請求項1の構成に加えて、制御回路が、電池の電圧が過充電電圧よりも高くなると充電用のスイッチング素子をオフに切り換え、電池の電圧が過放電電圧よりも低くなると放電制御用スイッチング素子をオフに切り換え、入力回路が保護FETをオフに切り換えるオフ電圧を、過充電電圧よりも低く、過放電電圧よりも高くしているので、電池温度の高温充電による劣化を防止しながら充電できる特徴がある。   Furthermore, in the battery pack of claim 6 of the present invention, in addition to the configuration of claim 1, the control circuit switches off the charging switching element when the battery voltage becomes higher than the overcharge voltage, When the voltage becomes lower than the overdischarge voltage, the switching element for discharging control is switched off, and the off voltage at which the input circuit switches off the protection FET is set lower than the overcharge voltage and higher than the overdischarge voltage. It has the feature that it can be charged while preventing deterioration due to high temperature charging.

以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するためのパック電池を例示するものであって、本発明はパック電池の回路構成を以下のものに特定しない。   Embodiments of the present invention will be described below with reference to the drawings. However, the example shown below illustrates the battery pack for embodying the technical idea of the present invention, and the present invention does not specify the circuit configuration of the battery pack as follows.

さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。   Further, in this specification, in order to facilitate understanding of the scope of claims, numbers corresponding to the members shown in the examples are indicated in the “claims” and “means for solving problems” sections. It is added to the members. However, the members shown in the claims are not limited to the members in the embodiments.

図2の回路図に示すパック電池は、充電できる電池1と直列に接続されて電池1の充電電流を遮断する充電用のスイッチング素子2と、電池1と直列に接続されて電池1の放電電流を遮断する放電用のスイッチング素子3と、電池電圧を検出して充電用のスイッチング素子2と放電用のスイッチング素子3をオンオフに制御する制御回路4と、電池1の温度を検出する温度センサ5と、この温度センサ5で検出される電池温度でオンオフにスイッチングされ、かつ電池1と直列に接続している保護FET6と、この保護FET6をオンオフに切り換える入力回路7とを備える。   The battery pack shown in the circuit diagram of FIG. 2 includes a charging switching element 2 that is connected in series with the rechargeable battery 1 to block the charging current of the battery 1, and a discharge current of the battery 1 that is connected in series with the battery 1. Switching element 3 for cutting off the battery, control circuit 4 for detecting the battery voltage and controlling switching element 2 for charging and switching element 3 for discharging on and off, and temperature sensor 5 for detecting the temperature of battery 1 And a protection FET 6 that is switched on and off at the battery temperature detected by the temperature sensor 5 and connected in series with the battery 1, and an input circuit 7 that switches the protection FET 6 on and off.

充電用のスイッチング素子2と放電用のスイッチング素子3と保護FET6は、逆方向に通電できる寄生ダイオード2a、3aを有するMOSFETである。充電用のスイッチング素子2は、電池1の充電電流を制御するので充電電流を順方向に流す方向に接続される。したがって、この充電用のスイッチング素子2がオフに切り換えられると、電池1の充電電流は遮断される。さらに、放電用のスイッチング素子3は、電池1の放電電流を制御するので放電電流を順方向に流す方向に接続される。したがって、この放電用のスイッチング素子3がオフに切り換えられると、電池1の放電電流は遮断される。   The switching element 2 for charging, the switching element 3 for discharging, and the protection FET 6 are MOSFETs having parasitic diodes 2a and 3a that can be energized in the reverse direction. Since the charging switching element 2 controls the charging current of the battery 1, the charging switching element 2 is connected in a direction in which the charging current flows in the forward direction. Therefore, when the charging switching element 2 is switched off, the charging current of the battery 1 is cut off. Furthermore, since the discharge switching element 3 controls the discharge current of the battery 1, it is connected in the direction in which the discharge current flows in the forward direction. Therefore, when the discharge switching element 3 is switched off, the discharge current of the battery 1 is cut off.

制御回路4は、電池1の電圧を検出して、充電用のスイッチング素子2と放電用のスイッチング素子3をオンオフに制御する。制御回路4は、充電用のスイッチング素子2と放電用のスイッチング素子3のFETゲートに、オン信号又オフ信号を出力して、FETをオンオフに切り換える。図3は、制御回路4が、充電用のスイッチング素子2と放電用のスイッチング素子3をオンオフに制御する状態を示す。この図に示すように、制御回路4は、充電している電池1の電圧が過充電電圧よりも高くなると、充電用のスイッチング素子2をオフに切り換えて電池1の過充電を防止する。このとき放電用のスイッチング素子3はオンに保持される。また、制御回路4は、放電している電池1の電圧が過放電電圧よりも低くなると、放電用のスイッチング素子3をオフに切り換えて電池1の過放電を防止する。このとき、充電用のスイッチング素子2はオンに保持される。制御回路4は、図3に示すように、過充電電圧を4.1V〜4.3V/セルとし、過放電電圧を2.6V〜3.2V/セルとしている。この制御回路4は、電池1の電圧が、過充電電圧と過放電電圧の間にあるとき、充電用のスイッチング素子2と放電用のスイッチング素子3の両方をオン状態として、パック電池を充放電できる状態とする。電池1の電圧が過充電電圧よりも高くなると、充電用のスイッチング素子2をオフにして充電できない状態として過充電を防止し、過放電電圧よりも低くなると放電用のスイッチング素子3をオフにして放電を停止して、過放電を防止する。   The control circuit 4 detects the voltage of the battery 1 and controls the charging switching element 2 and the discharging switching element 3 to be turned on and off. The control circuit 4 outputs an on signal or an off signal to the FET gates of the charging switching element 2 and the discharging switching element 3 to switch the FET on and off. FIG. 3 shows a state in which the control circuit 4 controls the switching element 2 for charging and the switching element 3 for discharging to be turned on and off. As shown in this figure, when the voltage of the battery 1 being charged becomes higher than the overcharge voltage, the control circuit 4 switches off the charging switching element 2 to prevent the battery 1 from being overcharged. At this time, the discharging switching element 3 is kept on. Further, when the voltage of the discharged battery 1 becomes lower than the overdischarge voltage, the control circuit 4 switches the discharge switching element 3 to OFF to prevent the battery 1 from being overdischarged. At this time, the charging switching element 2 is kept on. As shown in FIG. 3, the control circuit 4 has an overcharge voltage of 4.1 V to 4.3 V / cell and an overdischarge voltage of 2.6 V to 3.2 V / cell. When the voltage of the battery 1 is between the overcharge voltage and the overdischarge voltage, the control circuit 4 charges and discharges the battery pack by turning on both the charging switching element 2 and the discharging switching element 3. Make it ready. When the voltage of the battery 1 is higher than the overcharge voltage, the charging switching element 2 is turned off to prevent overcharging, and when the voltage is lower than the overdischarge voltage, the discharging switching element 3 is turned off. Stop discharge to prevent overdischarge.

保護FET6は、オフ状態で充電電流を遮断する。したがって、この保護FET6は、オフ状態にあっては、充電電流を遮断するが寄生ダイオード6aを介して電池1の放電電流を流すように電池1と直列に接続される。   The protection FET 6 cuts off the charging current in the off state. Therefore, the protection FET 6 is connected in series with the battery 1 so as to cut off the charging current in the off state but allow the discharging current of the battery 1 to flow through the parasitic diode 6a.

入力回路7は、電池温度と、電池電圧と、電池1の放電状態を検出して保護FET6をオンオフに制御する。入力回路7は、電池1の温度を検出するために、温度センサ5を接続している。温度センサ5は、電池1に熱結合されて、電池1の温度を検出する。温度センサ5は、サーミスタ等の電池温度に対して電気抵抗が変化するセンサである。サーミスタは、温度が高くなると電気抵抗が減少する負の温度特性を有する。したがって、サーミスタの電気抵抗から電池1の温度を検出できる。   The input circuit 7 detects the battery temperature, the battery voltage, and the discharge state of the battery 1 to control the protection FET 6 on and off. The input circuit 7 is connected to a temperature sensor 5 in order to detect the temperature of the battery 1. The temperature sensor 5 is thermally coupled to the battery 1 and detects the temperature of the battery 1. The temperature sensor 5 is a sensor whose electrical resistance changes with respect to the battery temperature, such as a thermistor. The thermistor has a negative temperature characteristic in which the electrical resistance decreases as the temperature increases. Therefore, the temperature of the battery 1 can be detected from the electrical resistance of the thermistor.

入力回路7は、サーミスタの電気抵抗をデジタル信号に変換し、また、電池1の電圧をデジタル信号に変換するA/Dコンバータ8と、このA/Dコンバータ8から出力されるデジタル信号を演算して、保護FET6のゲートにオンオフ信号を出力する演算回路9を備える。このA/Dコンバータ8は、電池電圧もデジタル信号に変換して演算回路9に出力する。さらに、A/Dコンバータ8は、保護FET6の両端に、放電電流によって発生する寄生ダイオード6aの電圧降下値をデジタル信号に変換して演算回路9に入力する。保護FET6が放電状態にあるかどうかを判定する。   The input circuit 7 converts the electrical resistance of the thermistor into a digital signal, calculates an A / D converter 8 that converts the voltage of the battery 1 into a digital signal, and calculates a digital signal output from the A / D converter 8. And an arithmetic circuit 9 for outputting an on / off signal to the gate of the protection FET 6. The A / D converter 8 also converts the battery voltage into a digital signal and outputs it to the arithmetic circuit 9. Further, the A / D converter 8 converts the voltage drop value of the parasitic diode 6 a generated by the discharge current into both ends of the protection FET 6 into a digital signal and inputs it to the arithmetic circuit 9. It is determined whether the protection FET 6 is in a discharged state.

入力回路7の演算回路9は、A/Dコンバータ8でデジタル信号に変換された温度信号と、電池1の電圧信号を演算して、保護FET6のゲートにオン又はオフ信号を出力する。演算回路9は、電池1の温度が充電停止温度よりも高く、かつ電池1の電圧が保護FET6をオフにするオフ電圧よりも高い状態で保護FET6のゲートにオフ信号を出力して、保護FET6をオフに切り換える。電池1の充電停止温度は、たとえば50℃〜70℃、好ましくは60℃〜70℃に設定される。また、オフ電圧は、たとえば4.4V以上に設定される。   The arithmetic circuit 9 of the input circuit 7 calculates the temperature signal converted into a digital signal by the A / D converter 8 and the voltage signal of the battery 1 and outputs an on / off signal to the gate of the protection FET 6. The arithmetic circuit 9 outputs an off signal to the gate of the protection FET 6 in a state where the temperature of the battery 1 is higher than the charging stop temperature and the voltage of the battery 1 is higher than the off voltage for turning off the protection FET 6. Switch off. The charging stop temperature of the battery 1 is set to, for example, 50 ° C to 70 ° C, preferably 60 ° C to 70 ° C. The off voltage is set to 4.4 V or higher, for example.

この入力回路7は、電池1の温度が50℃〜70℃よりも高くなり、かつ、電池1の電圧が4.4V以上になると、保護FET6をオフに切り換えて、パック電池の充電電流を遮断する。充電用のスイッチング素子2は、オフ電圧である4.4Vよりも低い電圧でオフに切り換えられる。したがって、充電用のスイッチング素子2が正常に動作するかぎり、電池1の電圧は4.4Vまで上昇することはない。ただ、充電用のスイッチング素子2が故障してパック電池が充電されると、電池電圧は4.4Vのオフ電圧まで上昇することがある。本発明のパック電池は、電池電圧が4.4Vよりも高くなって、電池温度が充電停止温度よりも高くなると、保護FET6をオフにして充電を停止するので、充電用のスイッチング素子2が故障しても安全に使用できる。なお、入力回路7については、上述の機能を備えるならば、他の回路構成を採用することも可能である。   When the temperature of the battery 1 becomes higher than 50 ° C. to 70 ° C. and the voltage of the battery 1 becomes 4.4 V or higher, the input circuit 7 switches off the protective FET 6 to cut off the charging current of the battery pack. To do. The charging switching element 2 is switched off at a voltage lower than the off voltage of 4.4V. Therefore, as long as the charging switching element 2 operates normally, the voltage of the battery 1 does not rise to 4.4V. However, when the charging switching element 2 fails and the battery pack is charged, the battery voltage may rise to an off voltage of 4.4V. In the battery pack according to the present invention, when the battery voltage becomes higher than 4.4 V and the battery temperature becomes higher than the charge stop temperature, the protection FET 6 is turned off to stop the charge, so that the charging switching element 2 fails. But it can be used safely. As for the input circuit 7, other circuit configurations may be employed as long as the above-described functions are provided.

保護FET6がオフに切り換えられた状態でパック電池が放電されると、放電電流は保護FET6の寄生ダイオード6aを流れて負荷に供給される。放電電流による寄生ダイオード6aの電圧降下は大きく、発熱も大きくなるので、入力回路7は放電される状態を検出して、保護FET6をオフからオンに切り換える。入力回路7は、放電電流を検出する放電電流検出回路10を備え、放電電流検出回路10が放電電流を検出してオフ状態の保護FET6をオンに切り換える。図の放電電流検出回路10は、演算回路9であって、パック電池の放電を、保護FET6の寄生ダイオード6aに発生する放電電流による電圧降下を検出して、放電状態にあるかどうかを判定する。オフ状態の保護FET6に放電電流が流れると、寄生ダイオード6aの電圧降下、0.7Vの放電電圧が発生する。この放電電圧は、入力回路7に内蔵される増幅回路(図示せず)で増幅されて、A/Dコンバータ8に入力される。A/Dコンバータ8は、保護FET6に放電電流が流れると、増幅された放電電圧をデジタル信号に変換して演算回路9に入力する。放電電流検出回路10である演算回路9は、A/Dコンバータ8から入力される放電電圧を検出して、保護FET6の放電電流を検出する。   When the battery pack is discharged with the protection FET 6 switched off, the discharge current flows through the parasitic diode 6a of the protection FET 6 and is supplied to the load. Since the voltage drop of the parasitic diode 6a due to the discharge current is large and the heat generation is also large, the input circuit 7 detects the discharged state and switches the protection FET 6 from OFF to ON. The input circuit 7 includes a discharge current detection circuit 10 that detects a discharge current. The discharge current detection circuit 10 detects the discharge current and switches on the protection FET 6 in the off state. The discharge current detection circuit 10 shown in the figure is an arithmetic circuit 9 that determines whether the battery pack is discharged by detecting the voltage drop due to the discharge current generated in the parasitic diode 6a of the protection FET 6. . When a discharge current flows through the protection FET 6 in the off state, a voltage drop of the parasitic diode 6a and a discharge voltage of 0.7V are generated. This discharge voltage is amplified by an amplifier circuit (not shown) built in the input circuit 7 and input to the A / D converter 8. When a discharge current flows through the protection FET 6, the A / D converter 8 converts the amplified discharge voltage into a digital signal and inputs the digital signal to the arithmetic circuit 9. The arithmetic circuit 9 which is the discharge current detection circuit 10 detects the discharge voltage input from the A / D converter 8 and detects the discharge current of the protection FET 6.

入力回路7は、保護FET6をオフに切り換える状態で、放電電圧が入力されると、オフの保護FET6をオンに切り換える。オン状態に切り換えられる保護FET6は、内部抵抗が小さくなって、放電電流による電圧降下を著しく低下させる。したがって、放電電流による保護FET6の発熱は小さくなる。保護FET6の発熱が、FETの電圧と電流の積に比例するからである。したがって、パック電池は、保護FET6をオフに切り換える状態で放電されても、保護FET6の加熱を防止できる。また、放電電流の大きさは、負荷のインピーダンスにより特定されるが、パック電池の急速充電電流よりも小さいので、放電して異常な状態となることは少ない。ただ、図示しないが、保護FETとして、充電電流を遮断するFETと直列に、放電電流を遮断するFET(寄生ダイオードの向きを寄生ダイオード6aと逆方向とした状態)を直列に接続して、電池温度が異常に高くなるときには、充電電流と放電電流の両方を遮断することもできる。このパック電池は、放電電流を遮断するFETを、電池の温度が放電停止温度、たとえば50℃〜70℃よりも高く、かつ電池の電圧が過放電電圧よりも低く設定している最低電圧、たとえば2.5Vよりも低いときにオフに切り換える。   When the discharge voltage is input in a state in which the protection FET 6 is switched off, the input circuit 7 switches the off protection FET 6 on. The protection FET 6 switched to the on state has a small internal resistance and remarkably reduces the voltage drop due to the discharge current. Therefore, the heat generation of the protection FET 6 due to the discharge current is reduced. This is because the heat generation of the protection FET 6 is proportional to the product of the voltage and current of the FET. Therefore, even if the battery pack is discharged in a state where the protection FET 6 is switched off, the protection FET 6 can be prevented from being heated. The magnitude of the discharge current is specified by the impedance of the load, but is smaller than the quick charge current of the battery pack, so that it is unlikely to discharge and become abnormal. However, although not shown in the drawing, a protection FET is connected in series with an FET that cuts off the charging current, and an FET that cuts off the discharging current (a state in which the direction of the parasitic diode is opposite to that of the parasitic diode 6a) is connected in series. When the temperature becomes abnormally high, both the charging current and the discharging current can be cut off. This battery pack has an FET that cuts off the discharge current as the lowest voltage at which the battery temperature is set higher than the discharge stop temperature, for example, 50 to 70 ° C., and the battery voltage is set lower than the overdischarge voltage, for example Switch off when below 2.5V.

入力回路7の演算回路9は、図4のフローチャートで保護FET6をオンオフに切り換える。
[n=1のステップ]
スタート時に、保護FET6はオンに制御される。このステップで電池温度が充電停止温度より高いかどうかを判定する。電池温度が充電停止温度よりも低いときは、このステップをループする。
[n=2のステップ]
電池温度が充電停止温度よりも高いと、このステップで電池電圧が、オフ電圧よりも高いかどうかを判定する。電池電圧がオフ電圧よりも高くないときは、n=1のステップにジャンプして、n=1と2のステップをループする。
[n=3のステップ]
電池温度が充電停止温度よりも高く、かつ電池電圧がオフ電圧よりも高いと、保護FET6のゲートに入力する信号をオン信号からオフに切り換えて、保護FET6をオフに切り換える。
[n=4、5のステップ]
その後、このステップで、保護FET6に放電電流が流れているかどうかを判定する。放電電流が流れていると、保護FET6をオフからオンに切り換え、その後、n=4のステップにジャンプして、n=4と5のステップをループする。保護FET6に放電電流が流れていないと、n=1のステップにジャンプする。
The arithmetic circuit 9 of the input circuit 7 switches the protection FET 6 on and off in the flowchart of FIG.
[Step of n = 1]
At the start, the protection FET 6 is controlled to be on. In this step, it is determined whether or not the battery temperature is higher than the charge stop temperature. When the battery temperature is lower than the charge stop temperature, this step is looped.
[Step of n = 2]
If the battery temperature is higher than the charge stop temperature, it is determined in this step whether or not the battery voltage is higher than the off voltage. When the battery voltage is not higher than the off voltage, the process jumps to the step of n = 1 and loops the steps of n = 1 and 2.
[Step n = 3]
When the battery temperature is higher than the charge stop temperature and the battery voltage is higher than the off voltage, the signal input to the gate of the protection FET 6 is switched from the on signal to off, and the protection FET 6 is switched off.
[Steps n = 4, 5]
Thereafter, in this step, it is determined whether or not a discharge current flows through the protection FET 6. When the discharge current is flowing, the protection FET 6 is switched from OFF to ON, and then jumps to the step of n = 4, and the steps of n = 4 and 5 are looped. If no discharge current flows through the protection FET 6, the process jumps to the step of n = 1.

さらに、本発明のパック電池は、入力回路7が保護FET6をオフに切り換えるオフ電圧を、過充電電圧よりも低く、過放電電圧よりも高く、たとえば、4V/セルとし、さらに保護FET6をオフに切り換える充電停止温度を40℃〜50℃に設定することで、電池1の高温充電による劣化を防止しながら充電することもできる。このパック電池は、充電用のスイッチング素子2が故障して保護FET6をオフに切り換えるのではなく、保護FET6を先にオフに切り換えた後、充電用のスイッチング素子2をオフに切り換えることで、安全性を向上させる。すなわち、充電用のスイッチング素子2がオフに切り換えられるよりも先に保護FET6をオフに切り換えるので、充電用のスイッチング素子2が故障しても、保護FET6が充電電流を遮断して安全性を向上させる。   Furthermore, in the battery pack of the present invention, the off voltage at which the input circuit 7 switches the protection FET 6 off is lower than the overcharge voltage and higher than the overdischarge voltage, for example, 4 V / cell, and further the protection FET 6 is turned off. By setting the charge stop temperature to be switched to 40 ° C. to 50 ° C., the battery 1 can be charged while preventing deterioration due to high temperature charging. This battery pack does not switch off the protective FET 6 due to the failure of the charging switching element 2 but switches off the protective FET 6 first, and then switches off the switching element 2 for charging. Improve sexiness. That is, since the protection FET 6 is switched off before the charging switching element 2 is switched off, even if the charging switching element 2 fails, the protection FET 6 cuts off the charging current to improve safety. Let

さらに、本発明のパック電池は、以下の構成を追加することもできる。なお、以下の実施例において、上述の実施例と同等の構成については、同じ符号を付してその説明を省略する。図5と図6の回路図に示すパック電池は、充電器20を接続した場合にのみ、入力回路27が温度保護の動作をする構造としている。このことを実現するために、図のパック電池は、正負の出力端子11に加えて、充電器20の接続を検出する検出端子12を設けている。この検出端子12として、たとえば、サーミスタ端子や機種判別抵抗端子が利用できる。図の入力回路27は、パック電池が充電器20に接続されると、このことを検出端子12からの信号で検出し、この状態でのみ温度保護の動作を行う。すなわち、入力回路27は、パック電池が充電器20に接続される状態で、電池1の温度が所定の温度以上になり、かつ、電池1の電圧がオフ電圧以上になると、保護FET6をオフに切り換えて、パック電池の充電電流を遮断する。この入力回路27は、パック電池が充電器20に接続されない状態では、保護FET6をオン状態に制御する。この構造のパック電池は、電池1の放電状態においては、充電器20から外されて使用されるので、入力回路27が保護FET6をオン状態に制御する。したがって、放電電流は、保護FET6の寄生ダイオード6aを流れることなく、オン状態の保護FET6を流れるので、放電電流による保護FET6の発熱を極減できる。   Furthermore, the following configuration can be added to the battery pack of the present invention. In the following embodiments, the same components as those in the above-described embodiments are denoted by the same reference numerals and description thereof is omitted. The battery pack shown in the circuit diagrams of FIGS. 5 and 6 has a structure in which the input circuit 27 performs the temperature protection operation only when the charger 20 is connected. In order to realize this, the battery pack shown in the figure is provided with a detection terminal 12 for detecting the connection of the charger 20 in addition to the positive and negative output terminals 11. As the detection terminal 12, for example, a thermistor terminal or a model discrimination resistor terminal can be used. When the battery pack is connected to the charger 20, the input circuit 27 shown in the figure detects this by a signal from the detection terminal 12, and performs the temperature protection operation only in this state. In other words, the input circuit 27 turns off the protection FET 6 when the battery 1 is connected to the charger 20 and the temperature of the battery 1 exceeds a predetermined temperature and the voltage of the battery 1 exceeds the OFF voltage. Switch to cut off the battery pack charging current. The input circuit 27 controls the protection FET 6 to be in an on state when the battery pack is not connected to the charger 20. Since the battery pack having this structure is used after being removed from the charger 20 in the discharging state of the battery 1, the input circuit 27 controls the protection FET 6 to be in an ON state. Therefore, since the discharge current flows through the protection FET 6 in the ON state without flowing through the parasitic diode 6a of the protection FET 6, the heat generation of the protection FET 6 due to the discharge current can be greatly reduced.

さらに、図6に示すパック電池は、パック電池が接続される電子機器側において、保護FET6がオフ状態に制御されていることを検出できる構造としている。この図に示すパック電池は、サーミスタ端子である検出端子12に、温度センサ5と検出抵抗13とを直列接続すると共に、この直列回路の一端を入力回路27に、他端をパック電池のマイナスの出力側に接続している。さらに、検出抵抗13の両端には、検出用FET14のドレインとソースを接続すると共に、この検出用FET14のゲートを保護FET6のゲートに接続している。この回路構成によると、入力回路27が保護FET6をオンオフに制御するとき、検出用FET14も同様にオンオフに制御される。このため、保護FET6がオフ状態に制御されると、検出用FET14もオフ状態となり、検出用FET14が検出抵抗13の両端をバイパスしなくなる。これにより、検出端子12に接続される抵抗成分の抵抗値が検出抵抗13の分だけ大きくなる。したがって、パック電池が接続される電子機器側で、この抵抗変化を検出することにより、保護FET6がオフ状態であることを認識できる。   Furthermore, the battery pack shown in FIG. 6 has a structure capable of detecting that the protection FET 6 is controlled to be in an off state on the electronic device side to which the battery pack is connected. In the battery pack shown in this figure, a temperature sensor 5 and a detection resistor 13 are connected in series to a detection terminal 12 which is a thermistor terminal, one end of this series circuit is connected to an input circuit 27 and the other end is negative of the battery pack. Connected to the output side. Further, the drain and source of the detection FET 14 are connected to both ends of the detection resistor 13, and the gate of the detection FET 14 is connected to the gate of the protection FET 6. According to this circuit configuration, when the input circuit 27 controls the protection FET 6 to be turned on / off, the detection FET 14 is similarly controlled to be turned on / off. For this reason, when the protection FET 6 is controlled to be turned off, the detection FET 14 is also turned off, and the detection FET 14 does not bypass both ends of the detection resistor 13. As a result, the resistance value of the resistance component connected to the detection terminal 12 is increased by the detection resistance 13. Therefore, it can be recognized that the protection FET 6 is in the OFF state by detecting this resistance change on the electronic device side to which the battery pack is connected.

以上の実施例のパック電池は、電池電圧を検出して充電用のスイッチング素子2と放電用のスイッチング素子3をオンオフに制御する制御回路4と、保護FET6をオンオフに切り換える入力回路7、27とを別回路として備えている。ただ、本発明のパック電池は、図示しないが、電池温度を検出して保護FETを制御する入力回路を、制御回路に内蔵することもできる。   The battery pack of the embodiment described above includes a control circuit 4 that detects battery voltage and controls the switching element 2 for charging and the switching element 3 for discharging to be turned on and off, and input circuits 7 and 27 that switch the protection FET 6 on and off. As a separate circuit. However, although not shown, the battery pack of the present invention can incorporate an input circuit for detecting the battery temperature and controlling the protection FET in the control circuit.

従来のパック電池の回路図である。It is a circuit diagram of the conventional battery pack. 本発明の一実施例にかかるパック電池の回路図である。1 is a circuit diagram of a battery pack according to an embodiment of the present invention. 制御回路が充電用のスイッチング素子と放電用のスイッチング素子をオンオフに制御する状態を示す図である。It is a figure which shows the state in which a control circuit controls the switching element for charge and the switching element for discharge to on-off. 入力回路が保護FETをオンオフに切り換えるフローチャートである。It is a flowchart in which an input circuit switches a protection FET on and off. 本発明の他の実施例にかかるパック電池の回路図である。It is a circuit diagram of the battery pack according to another embodiment of the present invention. 本発明の他の実施例にかかるパック電池の回路図である。It is a circuit diagram of the battery pack according to another embodiment of the present invention.

符号の説明Explanation of symbols

1…電池
2…充電用のスイッチング素子 2a…寄生ダイオード
3…放電用のスイッチング素子 3a…寄生ダイオード
4…制御回路
5…温度センサ
6…保護FET 6a…寄生ダイオード
7…入力回路
8…A/Dコンバータ
9…演算回路
10…放電電流検出回路
11…出力端子
12…検出端子
13…検出抵抗
14…検出用のスイッチング素子
20…充電器
27…入力回路
91…電池
95…温度センサ
96…保護FET
DESCRIPTION OF SYMBOLS 1 ... Battery 2 ... Switching element for charge 2a ... Parasitic diode 3 ... Switching element for discharge 3a ... Parasitic diode 4 ... Control circuit 5 ... Temperature sensor 6 ... Protection FET 6a ... Parasitic diode 7 ... Input circuit 8 ... A / D Converter 9 ... Arithmetic circuit 10 ... Discharge current detection circuit 11 ... Output terminal 12 ... Detection terminal 13 ... Detection resistor 14 ... Detection switching element 20 ... Charger 27 ... Input circuit 91 ... Battery 95 ... Temperature sensor 96 ... Protection FET

Claims (7)

充電できる電池(1)と直列に接続されて電池(1)の充電電流を遮断する充電用のスイッチング素子(2)と、電池(1)と直列に接続されて電池(1)の放電電流を遮断する放電用のスイッチング素子(3)と、電池電圧を検出して充電用のスイッチング素子(2)と放電用のスイッチング素子(3)をオンオフに制御する制御回路(4)と、電池(1)の温度を検出する温度センサ(5)と、この温度センサ(5)で検出される電池温度でオンオフにスイッチングされ、かつ電池(1)と直列に接続している保護FET(6)とを備えるパック電池であって、
保護FET(6)が寄生ダイオード(6a)を有するFETであって、オフ状態にあっては、充電電流を遮断するが寄生ダイオード(6a)を介して電池(1)の放電電流を流すように電池(1)と直列に接続され、さらに、この保護FET(6)の入力側に、温度センサ(5)からの信号と電池電圧で保護FET(6)をオンオフに切り換える入力回路(7)を接続しており、この入力回路(7)が、電池(1)の温度が充電停止温度よりも高く、かつ電池(1)の電圧が保護FET(6)をオフにするオフ電圧よりも高い状態で保護FET(6)をオフ状態に切り換えるようにしてなるパック電池。
The charging switching element (2) connected in series with the rechargeable battery (1) to cut off the charging current of the battery (1), and the discharging current of the battery (1) connected in series with the battery (1) Discharging switching element (3) for cutting off, control circuit (4) for detecting battery voltage and controlling switching element for charging (2) and switching element for discharging (3) on and off, battery (1 ) And a protection FET (6) that is switched on and off at the battery temperature detected by the temperature sensor (5) and connected in series with the battery (1). A battery pack comprising:
When the protection FET (6) is an FET having a parasitic diode (6a) and is in an OFF state, the charging current is cut off, but the discharge current of the battery (1) is allowed to flow through the parasitic diode (6a). An input circuit (7) that is connected in series with the battery (1) and that switches the protection FET (6) on and off with the signal from the temperature sensor (5) and the battery voltage is connected to the input side of the protection FET (6). This input circuit (7) is in a state where the temperature of the battery (1) is higher than the charge stop temperature and the voltage of the battery (1) is higher than the off voltage that turns off the protection FET (6) A battery pack in which the protection FET (6) is switched off.
前記制御回路(4)は、電池(1)の電圧が過充電電圧よりも高くなると充電用のスイッチング素子(2)をオフに切り換え、電池(1)の電圧が過放電電圧よりも低くなると放電用のスイッチング素子(3)をオフに切り換え、入力回路(7)が保護FET(6)をオフに切り換えるオフ電圧を、過充電電圧よりも高くしている請求項1に記載されるパック電池。   The control circuit (4) switches off the charging switching element (2) when the voltage of the battery (1) becomes higher than the overcharge voltage, and discharges when the voltage of the battery (1) becomes lower than the overdischarge voltage. The battery pack according to claim 1, wherein the switching element (3) is switched off and the off voltage at which the input circuit (7) switches off the protection FET (6) is higher than the overcharge voltage. 充電できる電池(1)がリチウムイオン二次電池であって、過充電電圧が4.1V〜4.3V/セルで、過放電電圧が2.6V〜3.2V/セルで、オフ電圧が4.4V/セル以上である請求項2に記載されるパック電池。   The rechargeable battery (1) is a lithium ion secondary battery, the overcharge voltage is 4.1 V to 4.3 V / cell, the overdischarge voltage is 2.6 V to 3.2 V / cell, and the off voltage is 4 The battery pack according to claim 2, which is 4 V / cell or more. 保護FET(6)をオフに切り換える充電停止温度が50℃〜70℃である請求項1に記載されるパック電池。   The battery pack according to claim 1, wherein a charge stop temperature at which the protection FET (6) is switched off is 50 ° C to 70 ° C. 入力回路(7)が、放電電流を検出する放電電流検出回路(10)を備え、放電電流検出回路(10)が放電電流を検出してオフ状態の保護FET(6)をオンに切り換える請求項1に記載されるパック電池。   The input circuit (7) comprises a discharge current detection circuit (10) for detecting the discharge current, and the discharge current detection circuit (10) detects the discharge current and switches on the off-state protection FET (6). 1. A battery pack described in 1. 前記制御回路(4)は、電池(1)の電圧が過充電電圧よりも高くなると充電用のスイッチング素子(2)をオフに切り換え、電池(1)の電圧が過放電電圧よりも低くなると放電用のスイッチング素子(3)をオフに切り換え、入力回路(7)が保護FET(6)をオフに切り換えるオフ電圧を、過充電電圧よりも低く、過放電電圧よりも高くしている請求項1に記載されるパック電池。   The control circuit (4) switches off the charging switching element (2) when the voltage of the battery (1) becomes higher than the overcharge voltage, and discharges when the voltage of the battery (1) becomes lower than the overdischarge voltage. The switching element (3) is switched off and the off voltage at which the input circuit (7) switches off the protection FET (6) is lower than the overcharge voltage and higher than the overdischarge voltage. A battery pack described in 1. 入力回路(7)が保護FET(6)をオフに切り換える充電停止温度を40℃〜50℃に設定している請求項6に記載されるパック電池。   The battery pack according to claim 6, wherein the charge stop temperature at which the input circuit (7) switches the protection FET (6) off is set to 40 ° C to 50 ° C.
JP2006331156A 2006-12-07 2006-12-07 Pack battery Expired - Fee Related JP5064776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331156A JP5064776B2 (en) 2006-12-07 2006-12-07 Pack battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331156A JP5064776B2 (en) 2006-12-07 2006-12-07 Pack battery

Publications (2)

Publication Number Publication Date
JP2008148419A true JP2008148419A (en) 2008-06-26
JP5064776B2 JP5064776B2 (en) 2012-10-31

Family

ID=39607990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331156A Expired - Fee Related JP5064776B2 (en) 2006-12-07 2006-12-07 Pack battery

Country Status (1)

Country Link
JP (1) JP5064776B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136555A (en) * 2008-12-05 2010-06-17 Sanyo Electric Co Ltd Method and device for controlling charging of secondary battery
JP2012501061A (en) * 2008-08-28 2012-01-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Battery pack
WO2013057821A1 (en) 2011-10-20 2013-04-25 東芝三菱電機産業システム株式会社 Electricity storage device control system
WO2014003085A1 (en) * 2012-06-27 2014-01-03 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and solar power generation unit
CN111600344A (en) * 2019-02-21 2020-08-28 艾普凌科有限公司 Charge/discharge control circuit, charge/discharge control device, and battery device
DE102020203586A1 (en) 2020-03-20 2021-09-23 Robert Bosch Gesellschaft mit beschränkter Haftung Protection device for an electronic component connected to an interface
CN115133626A (en) * 2022-08-09 2022-09-30 湖北亿纬动力有限公司 Battery protection circuit, control method thereof and battery management system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233713A (en) * 1996-02-20 1997-09-05 Internatl Business Mach Corp <Ibm> Protective circuit of secondary battery
JPH10144270A (en) * 1996-11-07 1998-05-29 Hitachi Maxell Ltd Battery pack
JPH11341693A (en) * 1998-05-27 1999-12-10 Denso Corp Set battery having overcharge protective circuit
JP2000116020A (en) * 1998-10-06 2000-04-21 Toyota Motor Corp Charging device and method
JP2001037096A (en) * 1999-07-23 2001-02-09 Matsushita Electric Ind Co Ltd Battery protective circuit
JP2002281660A (en) * 2001-03-21 2002-09-27 Matsushita Electric Ind Co Ltd Protective device of battery pack
JP2006121827A (en) * 2004-10-21 2006-05-11 Ricoh Co Ltd Protection circuit for secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233713A (en) * 1996-02-20 1997-09-05 Internatl Business Mach Corp <Ibm> Protective circuit of secondary battery
JPH10144270A (en) * 1996-11-07 1998-05-29 Hitachi Maxell Ltd Battery pack
JPH11341693A (en) * 1998-05-27 1999-12-10 Denso Corp Set battery having overcharge protective circuit
JP2000116020A (en) * 1998-10-06 2000-04-21 Toyota Motor Corp Charging device and method
JP2001037096A (en) * 1999-07-23 2001-02-09 Matsushita Electric Ind Co Ltd Battery protective circuit
JP2002281660A (en) * 2001-03-21 2002-09-27 Matsushita Electric Ind Co Ltd Protective device of battery pack
JP2006121827A (en) * 2004-10-21 2006-05-11 Ricoh Co Ltd Protection circuit for secondary battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501061A (en) * 2008-08-28 2012-01-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Battery pack
JP2010136555A (en) * 2008-12-05 2010-06-17 Sanyo Electric Co Ltd Method and device for controlling charging of secondary battery
US9391465B2 (en) 2011-10-20 2016-07-12 Toshiba Mitsubishi-Electric Industrial Systems Corporation Electrical storage device management system
WO2013057821A1 (en) 2011-10-20 2013-04-25 東芝三菱電機産業システム株式会社 Electricity storage device control system
US9490510B2 (en) 2012-06-27 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and solar power generation unit
US9088056B2 (en) 2012-06-27 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and solar power generation unit
WO2014003085A1 (en) * 2012-06-27 2014-01-03 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and solar power generation unit
US9991575B2 (en) 2012-06-27 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and solar power generation unit
US10797367B2 (en) 2012-06-27 2020-10-06 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and solar power generation unit
US10978757B2 (en) 2012-06-27 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and solar power generation unit
US11563244B2 (en) 2012-06-27 2023-01-24 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and solar power generation unit
CN111600344A (en) * 2019-02-21 2020-08-28 艾普凌科有限公司 Charge/discharge control circuit, charge/discharge control device, and battery device
DE102020203586A1 (en) 2020-03-20 2021-09-23 Robert Bosch Gesellschaft mit beschränkter Haftung Protection device for an electronic component connected to an interface
CN115133626A (en) * 2022-08-09 2022-09-30 湖北亿纬动力有限公司 Battery protection circuit, control method thereof and battery management system

Also Published As

Publication number Publication date
JP5064776B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
US7898216B2 (en) Rechargeable battery device having a protection circuit for protecting from overcharge and overdischarge
US7816889B2 (en) Method of charging rechargeable battery and protection circuit for rechargeable battery
JP4936227B2 (en) Battery pack and electric tool using the battery pack
WO2012147598A1 (en) Charging/discharging control device, battery pack, electrical equipment, and charging/discharging control method
JP5064776B2 (en) Pack battery
TWI674723B (en) Secondary battery protection circuit and method of operation of secondary battery protection circuit
JP5219463B2 (en) Pack battery
JPH11252809A (en) Over-charging/discharging preventing control method for battery pack and apparatus thereof
JPH10136576A (en) Protection device of secondary battery
JP2003142162A (en) Battery pack
US20080192399A1 (en) Secondary battery apparatus and a protection circuit thereof
US7948210B2 (en) Battery pack and electric tool
JP2005192371A (en) Power supply unit
JP4171274B2 (en) battery pack
JPH06276696A (en) Over-discharge protective circuit of secondary battery
JP2003197268A (en) Battery pack having abnormality protection circuit
JP4342657B2 (en) Secondary battery device and secondary battery protection device
JP2007110877A (en) Battery pack and its charger, and charging method
JP5177842B2 (en) Protection circuit and battery pack
JP2005312140A (en) Charging and discharging control circuit
JP2008042964A (en) Secondary battery protective device
WO2004070908A1 (en) Secondary cell with bypass resistor and secondary cell protective method
JPH10290530A (en) Secondary battery protective circuit
JP2009194980A (en) Secondary battery device
JP2004357440A (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees