JP2008042964A - Secondary battery protective device - Google Patents

Secondary battery protective device Download PDF

Info

Publication number
JP2008042964A
JP2008042964A JP2006209952A JP2006209952A JP2008042964A JP 2008042964 A JP2008042964 A JP 2008042964A JP 2006209952 A JP2006209952 A JP 2006209952A JP 2006209952 A JP2006209952 A JP 2006209952A JP 2008042964 A JP2008042964 A JP 2008042964A
Authority
JP
Japan
Prior art keywords
discharge
charge
secondary battery
overdischarge
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006209952A
Other languages
Japanese (ja)
Other versions
JP4811181B2 (en
Inventor
Masatoshi Sugimoto
雅俊 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2006209952A priority Critical patent/JP4811181B2/en
Publication of JP2008042964A publication Critical patent/JP2008042964A/en
Application granted granted Critical
Publication of JP4811181B2 publication Critical patent/JP4811181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To prevent thermal damage on a semiconductor charge/discharge device through a simple arrangement of low circuit loss and to facilitate detection of the charge/discharge current and the current direction in a secondary battery protective device for protecting a secondary battery against overdischarge and overcharge. <P>SOLUTION: An overdischarge detection circuit 13 and an overcharge detection circuit 14 detect overdischarge and overcharge, a discharge overcurrent detection circuit 15 and a charge overcurrent detection circuit 16 detect discharge overcurrent and charge overcurrent, direction of a current flowing through a discharge FET Q1 and a charge FET Q2 inserted in series into the charge/discharge path of a secondary battery 10 is detected, and a discharge control circuit 11 and a charge control circuit 12 perform on/off control of the discharge FET Q1 and a charge FET Q2 based on these detection results. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リチウムイオン電池などの二次電池を保護する二次電池保護装置、特に二次電池の充放電電流を制御する半導体デバイスの熱破壊を防止する二次電池保護装置に関する。   The present invention relates to a secondary battery protection device that protects a secondary battery such as a lithium ion battery, and more particularly to a secondary battery protection device that prevents thermal destruction of a semiconductor device that controls charge / discharge current of the secondary battery.

リチウムイオン電池などの二次電池を収納した電池パックには、二次電池を過放電及び過充電から保護する保護回路が集積化されて収容されている。図7はこのような電池パックに収容された従来の二次電池保護装置の回路構成を示すブロック図であり、電池パック1が充電器2に接続された状態を示している。   A battery pack that houses a secondary battery such as a lithium ion battery contains an integrated protection circuit that protects the secondary battery from overdischarge and overcharge. FIG. 7 is a block diagram showing a circuit configuration of a conventional secondary battery protection device housed in such a battery pack, and shows a state in which the battery pack 1 is connected to the charger 2.

電池パック1には、二次電池10の放電制御用の半導体デバイスである放電FETQ1及び充電制御用の半導体デバイスである充電FETQ2のオン(ON)、オフ(OFF)をそれぞれ制御する放電制御回路101及び充電制御回路102と、二次電池10の過放電を検出する過放電検出回路103及び二次電池の過充電を検出する過充電検出回路104と、通常状態での二次電池10の放電過電流を検出する放電過電流検出回路105が設けられている。Dp1,Dp2は放電FETQ1、充電FETQ2の寄生ダイオードであり、S1,S2はソース、D1,D2はドレイン、G1,G2はゲートである。   The battery pack 1 includes a discharge control circuit 101 that controls on / off of a discharge FET Q1 that is a semiconductor device for discharge control of the secondary battery 10 and a charge FET Q2 that is a semiconductor device for charge control. The charge control circuit 102, the overdischarge detection circuit 103 for detecting overdischarge of the secondary battery 10, the overcharge detection circuit 104 for detecting overcharge of the secondary battery, and the overdischarge of the secondary battery 10 in a normal state. A discharge overcurrent detection circuit 105 for detecting current is provided. Dp1 and Dp2 are parasitic diodes of the discharge FET Q1 and the charge FET Q2, S1 and S2 are sources, D1 and D2 are drains, and G1 and G2 are gates.

また、電池パック1には、二次電池10のプラス(+)側とマイナス(−)側の出力端子が設けられており、これらの出力端子は、二次電池10の充電時には充電器2の充電回路20からの充電電流が入力される入力端子となる。   Further, the battery pack 1 is provided with positive (+) and negative (−) output terminals of the secondary battery 10, and these output terminals are connected to the charger 2 when the secondary battery 10 is charged. It becomes an input terminal to which the charging current from the charging circuit 20 is input.

次に、上記構成の二次電池保護装置の動作について説明する。ここでは、過充電検出電圧を4.3V、過充電解除電圧を4.0V、また過放電検出電圧を2.5V、過放電解除電圧を2.8Vとして説明する。   Next, the operation of the secondary battery protection device having the above configuration will be described. Here, the overcharge detection voltage is 4.3V, the overcharge release voltage is 4.0V, the overdischarge detection voltage is 2.5V, and the overdischarge release voltage is 2.8V.

電池パック1に充電器2が接続されると、充電器2は二次電池10の電池電圧を判断し、所定の電圧より低下している場合には、二次電池10に対し図6に示すように定電流充電及び定電圧充電を行う。図6は二次電池10の充電制御動作を示す図であり、二次電池10の電池電圧と充電電流を時刻の経過とともに示している。そして、同図に示すように、正常な充電器2により4.2Vで定電圧充電される場合は、二次電池10は過充電状態にはならない。しかし、故障した充電器などが接続された場合に、4.2Vを超えた電圧で充電し続けられると、4.3Vの過充電電圧が検出されて過充電保護動作が実行される。   When the charger 2 is connected to the battery pack 1, the charger 2 determines the battery voltage of the secondary battery 10, and when the voltage is lower than the predetermined voltage, the secondary battery 10 is shown in FIG. Thus, constant current charging and constant voltage charging are performed. FIG. 6 is a diagram showing the charging control operation of the secondary battery 10, and shows the battery voltage and charging current of the secondary battery 10 over time. As shown in the figure, when the battery charger 2 is charged at a constant voltage of 4.2 V by the normal charger 2, the secondary battery 10 is not overcharged. However, when a faulty charger or the like is connected and charging continues with a voltage exceeding 4.2V, an overcharge voltage of 4.3V is detected and an overcharge protection operation is performed.

図8は従来の二次電池保護装置の過充電保護動作を示すタイムチャートである。ここでは、放電FETQ1のゲート電圧、充電FETQ2のゲート電圧、過充電検出信号(過充電検出電圧)、放電FETQ1と充電FETQ2のS1−S2電圧(ソース間電圧)、及び電池電圧を示している。   FIG. 8 is a time chart showing the overcharge protection operation of the conventional secondary battery protection device. Here, the gate voltage of the discharge FET Q1, the gate voltage of the charge FET Q2, the overcharge detection signal (overcharge detection voltage), the S1-S2 voltage (source voltage) of the discharge FET Q1 and the charge FET Q2, and the battery voltage are shown.

充電時、電池パック1の過充電検出回路104は、二次電池10が過充電されないように電池電圧を監視している。検出電圧が予め設定された過充電設定電圧より低い場合、過充電検出回路104は通常状態であることを出力信号をL(LOW)レベルにして充電制御回路102に通知する。通常状態では、充電制御回路102は充電FETQ2のゲートG2をH(HIGH)レベルにし、充電FETQ2をオンにして充電電流を通電させる。過充電検出回路104が過充電検出電圧より高い電池電圧を検出した場合、過充電検出回路104は過充電状態であることを出力信号をHレベルにして充電制御回路102に通知する。過充電状態では、充電制御回路102は充電FETQ2のゲートG2をLレベルにし、充電FETQ2をオフにして充電電流を切断させる。これにより、過充電保護状態となる。   During charging, the overcharge detection circuit 104 of the battery pack 1 monitors the battery voltage so that the secondary battery 10 is not overcharged. When the detected voltage is lower than the preset overcharge setting voltage, the overcharge detection circuit 104 notifies the charge control circuit 102 that the output signal is at the L (LOW) level that the normal state is established. In the normal state, the charge control circuit 102 sets the gate G2 of the charge FET Q2 to the H (HIGH) level, turns on the charge FET Q2, and energizes the charge current. When the overcharge detection circuit 104 detects a battery voltage higher than the overcharge detection voltage, the overcharge detection circuit 104 sets the output signal to H level and notifies the charge control circuit 102 that the overcharge state is present. In the overcharge state, the charge control circuit 102 sets the gate G2 of the charge FET Q2 to the L level, turns off the charge FET Q2, and disconnects the charge current. Thereby, it will be in an overcharge protection state.

その後、故障した充電器などが外されて放電電流が流れ、過充電検出回路104が過充電解除電圧より低い電池電圧を検出すると、過充電検出回路104は過充電状態が解除されたことを出力信号をLレベルにして充電制御回路102に通知する。これを受けて、充電制御回路102は充電FETQ2をオンにする。これにより、通常状態に復帰する。   After that, when a faulty charger or the like is removed and a discharge current flows and the overcharge detection circuit 104 detects a battery voltage lower than the overcharge release voltage, the overcharge detection circuit 104 outputs that the overcharge state has been released. The signal is set to L level and the charge control circuit 102 is notified. In response to this, the charging control circuit 102 turns on the charging FET Q2. As a result, the normal state is restored.

ここで、図8のタイムチャートにおいて、S1−S2電圧は、(S2の電位)−(S1の電位)=(S2の電位)−GND(0V)=(S2の電位)であり、最初は少しマイナスで、充電FETQ2がオフになった直後に(電池電圧)−(充電電圧)となる。   Here, in the time chart of FIG. 8, the S1-S2 voltage is (potential of S2)-(potential of S1) = (potential of S2) -GND (0V) = (potential of S2). It is minus, and immediately after the charge FET Q2 is turned off, it becomes (battery voltage)-(charge voltage).

図9は従来の二次電池保護装置の過放電保護動作を示すタイムチャートである。ここでは、放電FETQ1のゲート電圧、充電FETQ2のゲート電圧、過放電検出信号(過放電検出電圧)、放電FETQ1と充電FETQ2のS1−S2電圧(ソース間電圧)、及び電池電圧を示している。   FIG. 9 is a time chart showing the overdischarge protection operation of the conventional secondary battery protection device. Here, the gate voltage of the discharge FET Q1, the gate voltage of the charge FET Q2, the overdischarge detection signal (overdischarge detection voltage), the S1-S2 voltage (source voltage) of the discharge FETQ1 and the charge FETQ2, and the battery voltage are shown.

電池パック1に図示しない負荷装置が接続されると、二次電池10は負荷へ電力を供給すべく放電状態となり、過放電検出回路103は、二次電池10が過放電にならないように電池電圧を監視する。検出電圧が予め設定された過放電検出電圧より高い場合、過放電検出回路103は通常状態であることを出力信号をLレベルにして放電制御回路101に通知する。通常状態では、放電制御回路101は放電FETQ1のゲートG1をHレベルにし、放電FETQ1をオンにして放電電流を通電させる。過放電検出回路103が過放電検出電圧より低い電池電圧を検出した場合は、過放電検出回路103は過放電状態であることを出力信号をHレベルにして放電制御回路101に通知する。過放電状態では、放電制御回路101は放電FETQ1のゲートG1をLレベルにし、放電FETQ1をオフにして放電電流を切断させる。これにより、過放電保護状態となる。   When a load device (not shown) is connected to the battery pack 1, the secondary battery 10 is in a discharge state to supply power to the load, and the overdischarge detection circuit 103 is connected to the battery voltage so that the secondary battery 10 is not overdischarged. To monitor. When the detected voltage is higher than the preset overdischarge detection voltage, the overdischarge detection circuit 103 sets the output signal to L level and notifies the discharge control circuit 101 that the normal state is present. In the normal state, the discharge control circuit 101 sets the gate G1 of the discharge FET Q1 to the H level, turns on the discharge FET Q1, and energizes the discharge current. When the overdischarge detection circuit 103 detects a battery voltage lower than the overdischarge detection voltage, the overdischarge detection circuit 103 sets the output signal to the H level and notifies the discharge control circuit 101 that it is in an overdischarge state. In the overdischarge state, the discharge control circuit 101 sets the gate G1 of the discharge FET Q1 to the L level, turns off the discharge FET Q1, and cuts the discharge current. Thereby, it will be in an overdischarge protection state.

その後、充電器2が接続されて充電電流が流れ、過放電検出回路103が過放電解除電圧より高い電池電圧を検出すると、過放電検出回路103は過放電状態が解除されたことを出力信号をLレベルにして放電制御回路101に通知する。これを受けて、放電制御回路101は放電FETQ1をオンにする。これにより、通常状態に復帰する。   After that, when the charger 2 is connected and charging current flows and the overdischarge detection circuit 103 detects a battery voltage higher than the overdischarge release voltage, the overdischarge detection circuit 103 outputs an output signal indicating that the overdischarge state has been released. Set to L level and notify the discharge control circuit 101. In response to this, the discharge control circuit 101 turns on the discharge FET Q1. As a result, the normal state is restored.

また、放電時、二次電池10を異常負荷あるいは負荷短絡による過電流から保護するため、放電過電流検出回路105は、放電FETQ1と充電FETQ2に流れる電流を電圧値に変換して監視している。検出電圧が予め設定された過電流検出電圧より低い場合、放電過電流検出回路105は通常状態であることを放電制御回路101に通知する。通常状態では、放電制御回路101は放電FETQ1をオンにして放電電流を通電させる。放電過電流検出回路105が過電流検出電圧より高い電圧を検出した場合は、放電過電流検出回路105は過電流状態であることを放電制御回路101に通知する。過電流状態では、放電制御回路101は放電FETQ1をオフにして放電電流を切断させる。これにより、過電流保護状態となる。   Further, at the time of discharging, in order to protect the secondary battery 10 from an overcurrent caused by an abnormal load or a load short circuit, the discharge overcurrent detection circuit 105 converts the current flowing through the discharge FET Q1 and the charge FET Q2 into voltage values and monitors them. . When the detected voltage is lower than the preset overcurrent detection voltage, the discharge overcurrent detection circuit 105 notifies the discharge control circuit 101 that it is in a normal state. In a normal state, the discharge control circuit 101 turns on the discharge FET Q1 to pass a discharge current. When the discharge overcurrent detection circuit 105 detects a voltage higher than the overcurrent detection voltage, the discharge overcurrent detection circuit 105 notifies the discharge control circuit 101 that it is in an overcurrent state. In the overcurrent state, the discharge control circuit 101 turns off the discharge FET Q1 to cut off the discharge current. Thereby, it will be in an overcurrent protection state.

ここで、図9のタイムチャートにおいて、S1−S2電圧は、上述のように(S2の電位)であり、最初は少しプラスで、放電FETQ1がオフになった直後に電池電圧となる。   Here, in the time chart of FIG. 9, the S1-S2 voltage is (the potential of S2) as described above, and is slightly positive at first, and becomes the battery voltage immediately after the discharge FET Q1 is turned off.

図10は上述の従来の二次電池保護装置の充放電制御動作を示す図である。また、図11は二次電池保護装置の充放電制御動作における電流経路を示す図であり、放電FETQ1と充電FETQ2に流れる電流の経路を示している。同図の(A)は通常時の充放電電流経路、(B)は過充電保護時の放電電流経路、(C)は過放電保護時の充電電流経路をそれぞれ示している。   FIG. 10 is a diagram illustrating a charge / discharge control operation of the above-described conventional secondary battery protection device. FIG. 11 is a diagram illustrating a current path in the charge / discharge control operation of the secondary battery protection device, and illustrates a path of a current flowing through the discharge FET Q1 and the charge FET Q2. (A) of the figure shows the charging / discharging current path at the normal time, (B) shows the discharging current path at the time of overcharge protection, and (C) shows the charging current path at the time of overdischarge protection.

過充電保護状態からの放電において、放電電流は充電FETQ2の寄生ダイオードDp2を経由して流れ、放電する。このため、寄生ダイオードDp2の順方向電圧による損失が発生して熱となり、半導体(IC)を過熱させる。大電流で放電した場合には、半導体が熱破壊することがある。   In the discharge from the overcharge protection state, the discharge current flows through the parasitic diode Dp2 of the charge FET Q2 and is discharged. For this reason, loss due to the forward voltage of the parasitic diode Dp2 is generated and becomes heat, and the semiconductor (IC) is overheated. When discharged with a large current, the semiconductor may be thermally destroyed.

また、過放電保護状態からの充電において、充電電流は放電FETQ1の寄生ダイオードDp1を経由して流れ、充電する。このため、同様に寄生ダイオードDp1の順方向電圧による損失が発生して熱となり、半導体を過熱させる。そして、大電流で充電した場合には、同様に半導体が熱破壊することがある。   Further, in the charging from the overdischarge protection state, the charging current flows through the parasitic diode Dp1 of the discharge FET Q1 and is charged. For this reason, the loss due to the forward voltage of the parasitic diode Dp1 is similarly generated and becomes heat, and the semiconductor is overheated. And when charged with a large current, the semiconductor may be similarly thermally destroyed.

そこで、規定値以上の充放電電流が所定時間以上連続して流れた場合に、放電FETQ1、充電FETQ2をオンさせることで、寄生ダイオードDp1,Dp2に流れる電流を抑えて半導体の熱破壊を防止することが提案されている(例えば、特許文献1参照)。この保護装置では、直列接続された放電FETと充電FETの電流経路に抵抗を接続して充放電電流を検出している。   Therefore, when the charge / discharge current exceeding the specified value flows continuously for a predetermined time or longer, the discharge FET Q1 and the charge FET Q2 are turned on to suppress the current flowing through the parasitic diodes Dp1 and Dp2, thereby preventing the semiconductor from being thermally destroyed. Has been proposed (see, for example, Patent Document 1). In this protective device, a charge / discharge current is detected by connecting a resistor to the current path of the discharge FET and the charge FET connected in series.

また、過充電で充電FETをオフにしているときに放電を検知すると充電FETをオンにし、過放電で放電FETをオフにしているときに充電を検知すると放電FETをオンにすることで、同様に半導体の熱破壊を防止することも提案されている(例えば、特許文献2参照)。この場合、放電を検知するのはオンしている放電FETの放電電流による電圧ドロップからであり、充電を検知するのはオンしている充電FETの充電電流による電圧ドロップからである。
特開2002−204534号公報 特開平10−290530号公報
In addition, when discharging is detected when the charging FET is turned off due to overcharge, the charging FET is turned on. When charging is detected when discharging the FET is turned off due to overdischarge, the discharge FET is turned on. In addition, it has also been proposed to prevent thermal breakdown of semiconductors (see, for example, Patent Document 2). In this case, the discharge is detected from a voltage drop caused by the discharge current of the discharge FET that is turned on, and the charge is detected from a voltage drop caused by the charge current of the charge FET that is turned on.
JP 2002-204534 A JP-A-10-290530

上記のように構成された従来の二次電池保護装置では、過充電保護状態での放電動作時及び過放電保護状態での充電動作時に半導体FETの寄生ダイオードによる電力損失のために過熱して半導体が熱破壊するのを防止する必要があるが、充放電電流を検出する手段として抵抗を挿入し、この抵抗の両端電圧を検出しているので、回路損失が大きいという問題点がある。   In the conventional secondary battery protection device configured as described above, the semiconductor overheats due to power loss due to the parasitic diode of the semiconductor FET during the discharge operation in the overcharge protection state and during the charge operation in the overdischarge protection state. However, there is a problem that the circuit loss is large because a resistor is inserted as a means for detecting the charge / discharge current and the voltage across the resistor is detected.

また、充放電FETの充放電電流の電圧ドロップを検出する場合には、電圧ドロップの量が小さいので検出が難しいとともに、接地電位ではない2点間(FETのソース電位とドレイン間)の電位差を測定するので、回路構成が複雑になるという問題点がある。すなわち、FETをオンさせた状態で電流を検出する必要があり、通常FETのオン抵抗は数mΩ〜数十mΩで、1Aの電流で数mV〜数十mVの電圧しか発生しないので、電流方向の検出も非常に難しくなる。   In addition, when detecting the voltage drop of the charge / discharge current of the charge / discharge FET, it is difficult to detect because the amount of voltage drop is small, and the potential difference between two points (between the source potential and drain of the FET) that is not the ground potential is calculated. Since the measurement is performed, there is a problem that the circuit configuration becomes complicated. That is, it is necessary to detect the current with the FET turned on, and the on-resistance of the FET is normally several mΩ to several tens mΩ, and only a voltage of several mV to several tens mV is generated with a current of 1 A. It becomes very difficult to detect.

本発明は、このような点に鑑みてなされたものであり、回路損失の小さい簡易な構成で半導体が熱破壊するのを防止でき、また充放電電流の検出及び電流方向の検出が容易な二次電池保護装置を提供することを目的とする。   The present invention has been made in view of the above points, and can prevent a semiconductor from being thermally destroyed with a simple configuration with small circuit loss, and can easily detect a charge / discharge current and a current direction. An object of the present invention is to provide a secondary battery protection device.

本発明では上記課題を解決するために、二次電池の放電電流を制御する放電制御用の半導体デバイス及び前記二次電池の充電電流を制御する充電制御用の半導体デバイスと、前記放電制御用の半導体デバイス及び前記充電制御用の半導体デバイスのオン、オフを制御する制御回路と、前記二次電池の過放電状態を検出する過放電検出回路及び前記二次電池の過充電状態を検出する過充電検出回路と、前記二次電池が過放電状態にあるときに前記放電制御用の半導体デバイスによる電圧ドロップにより充電電流を検出する過放電時充電電流検出手段及び前記二次電池が過充電状態にあるときに前記充電制御用の半導体デバイスによる電圧ドロップにより放電電流を検出する過充電時放電電流検出手段と、を有し、前記放電制御用の半導体デバイスと前記充電制御用の半導体デバイスは前記二次電池の充放電電流経路に互いに直列に介装され、前記制御回路は、前記過放電検出回路が過放電状態を検出していないときは前記放電制御用の半導体デバイスをオンするとともに前記過放電検出回路が過放電状態を検出しているときは前記過放電時充電電流検出手段の検出結果に応じて前記放電制御用の半導体デバイスのオン、オフを制御し、前記過充電検出回路が過充電状態を検出していないときは前記充電制御用の半導体デバイスをオンとするとともに前記過充電検出回路が過充電状態を検出しているときは前記過充電時放電電流検出手段の検出結果に応じて前記充電制御用の半導体デバイスのオン、オフを制御することを特徴とする二次電池保護装置が提供される。   In order to solve the above problems, the present invention provides a semiconductor device for discharge control that controls the discharge current of a secondary battery, a semiconductor device for charge control that controls the charge current of the secondary battery, and the discharge control semiconductor device. Control circuit for controlling on / off of semiconductor device and semiconductor device for charge control, overdischarge detection circuit for detecting overdischarge state of secondary battery, and overcharge for detecting overcharge state of secondary battery A detection circuit, a charge current detecting means for detecting overcharge by a voltage drop by the discharge control semiconductor device when the secondary battery is in an overdischarge state, and the secondary battery are in an overcharge state A discharge current detecting means for detecting an overcurrent by a voltage drop caused by a voltage drop caused by the charge control semiconductor device. And the semiconductor device for charge control are inserted in series in the charge / discharge current path of the secondary battery, and the control circuit performs the discharge control when the overdischarge detection circuit does not detect an overdischarge state. When the overdischarge detection circuit detects an overdischarge state, the semiconductor device for discharge control is turned on / off according to the detection result of the overcurrent charge current detection means. Control, when the overcharge detection circuit does not detect an overcharge state, the semiconductor device for charge control is turned on and when the overcharge detection circuit detects an overcharge state, the overcharge There is provided a secondary battery protection device that controls on / off of the semiconductor device for charge control according to the detection result of the hourly discharge current detection means.

このような二次電池保護装置によれば、過放電時充電電流検出手段及び過充電時放電電流検出手段により、充放電電流経路に互いに直列に介装された放電制御用の半導体デバイスと充電制御用の半導体デバイスに流れる電流を検出してそれらの半導体デバイスのオン、オフを制御するため、回路損失の小さい簡易な構成で半導体が熱破壊するのを防止でき、また充放電電流の検出及び電流方向の検出が容易になる。   According to such a secondary battery protection device, the over-discharge charge current detection means and the over-charge discharge current detection means are connected to the charge / discharge current path in series with each other and the charge control semiconductor device and the charge control. Since the current flowing in the semiconductor device for the device is detected and the on / off of the semiconductor device is controlled, the semiconductor can be prevented from being thermally destroyed with a simple configuration with small circuit loss, and the charge / discharge current detection and current Direction detection is easy.

本発明の二次電池保護装置は、過放電時充電電流検出手段及び過充電時放電電流検出手段により、充放電電流経路に互いに直列に介装された放電制御用の半導体デバイスと充電制御用の半導体デバイスに流れる電流を検出してそれらの半導体デバイスのオン、オフを制御するため、回路損失の小さい簡易な構成で半導体が熱破壊するのを防止でき、また充放電電流の検出及び電流方向の検出が容易になるという利点がある。   The secondary battery protection device of the present invention includes a charge control semiconductor device and a charge control semiconductor device that are interposed in series in a charge / discharge current path by an overdischarge charge current detection unit and an overcharge discharge current detection unit. By detecting the current flowing through the semiconductor devices and controlling the on / off of these semiconductor devices, it is possible to prevent the semiconductor from being thermally destroyed with a simple configuration with small circuit loss, and also to detect the charge / discharge current and to detect the current direction. There is an advantage that detection becomes easy.

以下、本発明の実施の形態を図面を参照して説明する。
図1及び図2は本発明の実施の形態の二次電池保護装置の回路構成を示すブロック図である。図1は電池パック1が充電器2に接続された状態を示し、図2は電池パック1が負荷装置3に接続された状態を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 and 2 are block diagrams showing a circuit configuration of the secondary battery protection device according to the embodiment of the present invention. FIG. 1 shows a state where the battery pack 1 is connected to the charger 2, and FIG. 2 shows a state where the battery pack 1 is connected to the load device 3.

電池パック1には、二次電池10と、二次電池10の放電電流を制御する放電制御用の半導体デバイスである放電FETQ1及び二次電池10の充電電流を制御する充電制御用の半導体デバイスである充電FETQ2と、放電FETQ1のオン、オフを制御する放電制御回路11及び充電FETQ2のオン、オフを制御する充電制御回路12と、二次電池10の過放電状態を検出する過放電検出回路13及び二次電池10の過充電状態を検出する過充電検出回路14と、通常状態での放電過電流を検出する放電過電流検出回路15及び充電過電流を検出する充電過電流検出回路16が設けられている。   The battery pack 1 includes a secondary battery 10, a discharge FET Q <b> 1 that is a semiconductor device for discharge control that controls the discharge current of the secondary battery 10, and a semiconductor device for charge control that controls the charge current of the secondary battery 10. A certain charge FETQ2, a discharge control circuit 11 for controlling on / off of the discharge FETQ1, a charge control circuit 12 for controlling on / off of the charge FETQ2, and an overdischarge detection circuit 13 for detecting an overdischarge state of the secondary battery 10. And an overcharge detection circuit 14 for detecting an overcharge state of the secondary battery 10, a discharge overcurrent detection circuit 15 for detecting a discharge overcurrent in a normal state, and a charge overcurrent detection circuit 16 for detecting a charge overcurrent. It has been.

また、放電過電流検出回路15及び充電過電流検出回路16により、二次電池10が過放電状態にあるときに放電FETQ1による電圧ドロップにより充電電流を検出する過放電時充電電流検出手段及び二次電池10が過充電状態にあるときに充電FETQ2による電圧ドロップにより放電電流を検出する過充電時放電電流検出手段が構成されており、これらの過放電時充電電流検出手段及び過充電時放電電流検出手段は、充放電電流の電流経路に互いに直列に介装された放電FETQ1及び充電FETQ2のソース間電圧を検出することで、電流方向を検出する。そして、放電制御回路11及び充電制御回路12は、その検出結果に応じて放電FETQ1及び充電FETQ2のオン、オフを制御する。   Further, the discharge overcurrent detection circuit 15 and the charge overcurrent detection circuit 16 detect a charge current when overcharged by a voltage drop by the discharge FET Q1 when the secondary battery 10 is in an overdischarge state, The overcharge discharge current detection means for detecting the discharge current by voltage drop by the charge FET Q2 when the battery 10 is in the overcharge state is configured, and these overdischarge charge current detection means and overcharge discharge current detection. The means detects the current direction by detecting the voltage between the sources of the discharge FET Q1 and the charge FET Q2 that are interposed in series in the current path of the charge / discharge current. Then, the discharge control circuit 11 and the charge control circuit 12 control the on / off of the discharge FET Q1 and the charge FET Q2 according to the detection result.

Dp1,Dp2は放電FETQ1、充電FETQ2の寄生ダイオードであり、S1,S2はソース、D1,D2はドレイン、G1,G2はゲートである。
また、電池パック1には、二次電池10のプラス(+)側とマイナス(−)側の出力端子が設けられており、これらの出力端子は、二次電池10の充電時には充電器2の充電回路20からの充電電流が入力される入力端子となる。
Dp1 and Dp2 are parasitic diodes of the discharge FET Q1 and the charge FET Q2, S1 and S2 are sources, D1 and D2 are drains, and G1 and G2 are gates.
Further, the battery pack 1 is provided with positive (+) and negative (−) output terminals of the secondary battery 10, and these output terminals are connected to the charger 2 when the secondary battery 10 is charged. It becomes an input terminal to which the charging current from the charging circuit 20 is input.

過放電検出回路13は、二次電池10の電池電圧が電池特性から決められた過放電電圧以下に低下すると、過放電状態であることを放電制御回路11に通知する。過充電検出回路14は、二次電池10の電池電圧が電池特性から決められた過充電電圧以上に高くなると、過充電状態であることを充電制御回路12に通知する。   When the battery voltage of the secondary battery 10 falls below the overdischarge voltage determined from the battery characteristics, the overdischarge detection circuit 13 notifies the discharge control circuit 11 that it is in an overdischarge state. When the battery voltage of the secondary battery 10 becomes higher than the overcharge voltage determined from the battery characteristics, the overcharge detection circuit 14 notifies the charge control circuit 12 that it is in an overcharge state.

放電過電流検出回路15は、放電時に異常負荷あるいは負荷短絡による放電過電流から二次電池10及び回路素子を保護するため、放電FETQ1と充電FETQ2を流れる電流を監視する。このとき、放電FETQ1と充電FETQ2を流れる電流は、前述のS1−S2電圧として検出する。そして、放電過電流検出電圧より高い電圧を検出すると、放電過電流状態であることを放電制御回路11に通知する。   The discharge overcurrent detection circuit 15 monitors the current flowing through the discharge FET Q1 and the charge FET Q2 in order to protect the secondary battery 10 and circuit elements from discharge overcurrent caused by abnormal load or load short-circuit during discharge. At this time, the current flowing through the discharge FET Q1 and the charge FET Q2 is detected as the aforementioned S1-S2 voltage. When a voltage higher than the discharge overcurrent detection voltage is detected, the discharge control circuit 11 is notified of the discharge overcurrent state.

放電制御回路11は、過放電検出回路13と放電過電流検出回路15の出力に基づいて放電FETQ1のゲート電圧をHレベルあるいはLレベルに変化させ、ドレインD1とソースS1間を通電状態あるいは切断状態に制御する。但し、充電FETQ2がオフしている過充電保護状態では、放電電流が充電FETQ2の寄生ダイオードDp2を経由して流れるので放電過電流を正確に検出できないため、放電過電流検出回路15の出力は放電電流検出信号として扱う。   The discharge control circuit 11 changes the gate voltage of the discharge FET Q1 to the H level or the L level based on the outputs of the overdischarge detection circuit 13 and the discharge overcurrent detection circuit 15, and the energized state or the disconnected state between the drain D1 and the source S1. To control. However, in the overcharge protection state in which the charge FET Q2 is off, the discharge current flows through the parasitic diode Dp2 of the charge FET Q2, and thus the discharge overcurrent cannot be detected accurately. Therefore, the output of the discharge overcurrent detection circuit 15 is discharged. Treat as current detection signal.

充電過電流検出回路16は、充電時に異常な充電器などによる充電過電流から二次電池10及び回路素子を保護するため、放電FETQ1と充電FETQ2を流れる電流を監視する。このとき、放電FETQ1と充電FETQ2を流れる電流は、同様にS1−S2電圧として検出する。そして、充電過電流検出電圧(負電圧)より低い電圧を検出すると、充電過電流状態であることを充電制御回路12に通知する。   The charge overcurrent detection circuit 16 monitors the current flowing through the discharge FET Q1 and the charge FET Q2 in order to protect the secondary battery 10 and circuit elements from the charge overcurrent caused by an abnormal charger or the like during charging. At this time, the current flowing through the discharge FET Q1 and the charge FET Q2 is similarly detected as the S1-S2 voltage. When a voltage lower than the charge overcurrent detection voltage (negative voltage) is detected, the charge control circuit 12 is notified of the charge overcurrent state.

充電制御回路12は、過充電検出回路14と充電過電流検出回路16の出力に基づいて充電FETQ2のゲート電圧をHレベルあるいはLレベルに変化させ、ドレインD2とソースS2間を通電状態あるいは切断状態に制御する。但し、放電FETQ1がオフしている過放電保護状態では、充電電流が放電FETQ1の寄生ダイオードDp1を経由して流れるので充電過電流を正確に検出できないため、充電過電流検出回路16の出力は充電電流検出信号として扱う。   The charge control circuit 12 changes the gate voltage of the charge FET Q2 to H level or L level based on the outputs of the overcharge detection circuit 14 and the charge overcurrent detection circuit 16, and energizes or disconnects the drain D2 and the source S2. To control. However, in the overdischarge protection state in which the discharge FET Q1 is off, the charge current flows through the parasitic diode Dp1 of the discharge FET Q1, and therefore the charge overcurrent cannot be accurately detected. Therefore, the output of the charge overcurrent detection circuit 16 is charged. Treat as current detection signal.

次に、上記構成の二次電池保護装置の充放電制御動作について説明する。ここでは、過充電検出電圧を4.3V、過充電解除電圧を4.0V、過放電検出電圧を2.5V、過放電解除電圧を2.8V、また放電過電流検出電圧を0.15V、充電過電流検出電圧を−0.15Vとし、放電FETQ1及び充電FETQ2の各オン時の抵抗を25mΩとして説明する。   Next, the charge / discharge control operation of the secondary battery protection device having the above configuration will be described. Here, the overcharge detection voltage is 4.3V, the overcharge release voltage is 4.0V, the overdischarge detection voltage is 2.5V, the overdischarge release voltage is 2.8V, the discharge overcurrent detection voltage is 0.15V, In the following description, it is assumed that the charge overcurrent detection voltage is −0.15 V and the on-state resistances of the discharge FET Q1 and the charge FET Q2 are 25 mΩ.

まず、過充電検出及び復帰動作について説明する。図3は実施の形態の二次電池保護装置の過充電保護動作を示すタイムチャートである。ここでは、放電FETQ1のゲート電圧、充電FETQ2のゲート電圧、放電過電流検出信号、過充電検出信号(過充電検出電圧)、放電FETQ1と充電FETQ2のS1−S2電圧、及び電池電圧を示している。   First, overcharge detection and recovery operations will be described. FIG. 3 is a time chart showing the overcharge protection operation of the secondary battery protection device of the embodiment. Here, the gate voltage of the discharge FET Q1, the gate voltage of the charge FET Q2, the discharge overcurrent detection signal, the overcharge detection signal (overcharge detection voltage), the S1-S2 voltage of the discharge FET Q1 and the charge FET Q2, and the battery voltage are shown. .

通常状態では、充電電流が1A、充電電圧が4.2Vの正常な充電器2が電池パック1に接続された場合、図6に示すように、二次電池10に対して時刻t1まで1Aの定電流充電が行われ、その後4.2vの定電圧充電が行われる。このとき、充電器2は正常であるので、過充電電圧は検出されない。   In a normal state, when a normal charger 2 having a charging current of 1 A and a charging voltage of 4.2 V is connected to the battery pack 1, as shown in FIG. Constant current charging is performed, and then 4.2v constant voltage charging is performed. At this time, since the charger 2 is normal, the overcharge voltage is not detected.

故障した充電器などが接続された場合に、二次電池10の電池電圧が4.2Vを超えても過剰な充電電流が通電し続けた状態が継続し、電池電圧が4.3Vの過充電検出電圧より高くなると、過充電検出回路14は過充電になったことを出力信号をHレベルにして充電制御回路12に通知する。充電制御回路12は、その信号を受けると充電FETQ2をオフにし、これ以上充電されないように充電電流を遮断する。これにより、過充電保護状態となる。   When a faulty charger or the like is connected, even if the battery voltage of the secondary battery 10 exceeds 4.2V, the state in which excessive charging current continues to be continued continues, and the battery voltage is overcharged to 4.3V. When it becomes higher than the detection voltage, the overcharge detection circuit 14 sets the output signal to H level and notifies the charge control circuit 12 that the overcharge has occurred. When the charge control circuit 12 receives the signal, the charge control circuit 12 turns off the charge FET Q2, and cuts off the charge current so that it is not charged any more. Thereby, it will be in an overcharge protection state.

故障した充電器などが取り外され、負荷装置3が接続されると二次電池10から負荷30に放電電流が流れるが、最初は充電FETQ2の寄生ダイオードDp2を通して放電するため、少しの放電電流に対しても、放電FETQ1のソースS1に対し充電FETQ2のソースS2の電圧が充電FETQ2の寄生ダイオードDp2の順方向電圧降下により+0.6Vまで高くなる。放電過電流検出回路15は、この電圧が+0.15Vの放電過電流検出電圧より高い電圧であるので、その電圧を検出すると出力信号をHレベルにして充電制御回路12に通知する。充電制御回路12は、その信号を受けると充電FETQ2をオンにする。これにより、充電FETQ2は25mΩの低抵抗状態となる。なお、放電制御回路11は、過充電検出回路14の出力信号がHレベルであるときに放電過電流検出回路15の出力信号がHレベルになっても、寄生ダイオードDp2の順方向電圧降下によるものと判断して、放電FETQ1をオフにはしない。   When a failed charger or the like is removed and the load device 3 is connected, a discharge current flows from the secondary battery 10 to the load 30. Initially, the discharge is performed through the parasitic diode Dp2 of the charge FET Q2, so However, the voltage of the source S2 of the charge FET Q2 is increased to +0.6 V due to the forward voltage drop of the parasitic diode Dp2 of the charge FET Q2 with respect to the source S1 of the discharge FET Q1. Since this voltage is higher than the discharge overcurrent detection voltage of +0.15 V, the discharge overcurrent detection circuit 15 sets the output signal to H level and notifies the charge control circuit 12 when the voltage is detected. When receiving the signal, the charging control circuit 12 turns on the charging FET Q2. As a result, the charge FET Q2 enters a low resistance state of 25 mΩ. The discharge control circuit 11 is caused by a forward voltage drop of the parasitic diode Dp2 even if the output signal of the discharge overcurrent detection circuit 15 becomes H level when the output signal of the overcharge detection circuit 14 is H level. Therefore, the discharge FET Q1 is not turned off.

充電制御回路12は、設定期間T1msの間充電FETQ2をオンにする。充電FETQ2がオンのとき、低抵抗状態となるため、充電FETQ2のソースS2の電圧は+0.15Vより低くなり、放電過電流検出回路15の出力信号はLレベルとなる。充電制御回路12は、設定期間T1msの経過後、充電FETQ2をオフにする。このオフ期間の時に放電状態が継続している場合は、放電過電流検出回路15の出力信号が再びHレベルになるので、充電制御回路12は再び設定期間T1msの間充電FETQ2をオンにし、設定期間T1msの経過後に充電FETQ2をオフにする。また、このオフ期間の時に放電過電流検出回路15の出力信号がLレベルになる場合は、充電FETQ2のソースS2の電圧は+0.15Vより低くなり、負荷装置3が外されたかもしくは充電されていることを示しているので、充電制御回路12は充電FETQ2をオフにしたままにする。そして、放電過電流検出回路15は負荷装置3の接続を監視し続け、負荷装置3が接続されて放電過電流検出回路15の出力信号が再びHレベルになると、充電制御回路12は再び設定期間T1msの間充電FETQ2をオンにし、設定期間T1msの経過後、充電FETQ2をオフにする。   The charge control circuit 12 turns on the charge FET Q2 for a set period T1 ms. When the charging FET Q2 is on, the resistance is in a low resistance state, so that the voltage of the source S2 of the charging FET Q2 becomes lower than +0.15 V, and the output signal of the discharge overcurrent detection circuit 15 becomes L level. The charge control circuit 12 turns off the charge FET Q2 after the set period T1ms has elapsed. If the discharge state continues during this off period, the output signal of the discharge overcurrent detection circuit 15 becomes H level again, so that the charge control circuit 12 turns on the charge FET Q2 again for the set period T1ms and sets it. After the elapse of the period T1ms, the charging FET Q2 is turned off. Further, when the output signal of the discharge overcurrent detection circuit 15 becomes L level during this off period, the voltage of the source S2 of the charge FET Q2 becomes lower than + 0.15V, and the load device 3 is removed or charged. Therefore, the charging control circuit 12 keeps the charging FET Q2 turned off. Then, the discharge overcurrent detection circuit 15 continues to monitor the connection of the load device 3, and when the load device 3 is connected and the output signal of the discharge overcurrent detection circuit 15 becomes H level again, the charge control circuit 12 again sets the set period. The charging FET Q2 is turned on for T1 ms, and the charging FET Q2 is turned off after the set period T1 ms has elapsed.

上述の動作を繰り返して放電が継続され、二次電池10の電池電圧が4.0Vの過充電解除電圧より低くなると、過充電検出回路14は二次電池10が過充電状態から通常状態に復帰したことを出力信号をLレベルにして充電制御回路12に通知する。充電制御回路12は、その信号を受けると充電FETQ2をオンに固定し、充電電流を通電させる。これにより、通常動作状態となる。   When the above operation is repeated and discharging is continued, and the battery voltage of the secondary battery 10 becomes lower than the overcharge release voltage of 4.0 V, the overcharge detection circuit 14 returns the secondary battery 10 from the overcharge state to the normal state. This is notified to the charge control circuit 12 by setting the output signal to L level. When receiving the signal, the charging control circuit 12 fixes the charging FET Q2 to be on and supplies a charging current. As a result, a normal operation state is established.

以上の動作により、例えば2Aの放電で充電FETQ2側の損失は、オン期間で25[mV]×22[A2]=100mW、オフ期間で0.6[V]×2000[mA]=1200mWとなる。したがって、オン期間とオフ期間の比を4:1として動作させた場合の充電FETQ2の損失は、(100×4+1200×1)÷5=320mWとなる。これは、充電FETQ2の寄生ダイオードDp2のみを使ったときの損失1200mWと比較して約1/4の損失となる。 With the above operation, for example, the loss on the charge FET Q2 side due to the discharge of 2A is 25 [mV] × 2 2 [A 2 ] = 100 mW in the on period and 0.6 [V] × 2000 [mA] = 1200 mW in the off period. It becomes. Therefore, the loss of the charge FET Q2 when the ratio of the on period to the off period is 4: 1 is (100 × 4 + 1200 × 1) ÷ 5 = 320 mW. This is a loss of about ¼ compared to the loss of 1200 mW when only the parasitic diode Dp2 of the charge FET Q2 is used.

ここで、図3のタイムチャートにおいて、S1−S2電圧は、(S2の電位)−(S1の電位)=(S2の電位)−GND(0V)=(S2の電位)であり、最初は少しマイナスで、充電FETQ2がオフになった直後に(電池電圧)−(充電電圧)となる。   Here, in the time chart of FIG. 3, the S1-S2 voltage is (potential of S2)-(potential of S1) = (potential of S2) -GND (0V) = (potential of S2). It is minus, and immediately after the charge FET Q2 is turned off, it becomes (battery voltage)-(charge voltage).

次に、過放電検出及び復帰動作について説明する。図4は実施の形態の二次電池保護装置の過放電保護動作を示すタイムチャートである。ここでは、放電FETQ1のゲート電圧、充電FETQ2のゲート電圧、充電過電流検出信号、過放電検出信号(過放電検出電圧)、放電FETQ1と充電FETQ2のS1−S2電圧、及び電池電圧を示している。   Next, the overdischarge detection and recovery operation will be described. FIG. 4 is a time chart showing the overdischarge protection operation of the secondary battery protection device of the embodiment. Here, the gate voltage of the discharge FET Q1, the gate voltage of the charge FET Q2, the charge overcurrent detection signal, the overdischarge detection signal (overdischarge detection voltage), the S1-S2 voltage of the discharge FET Q1 and the charge FET Q2, and the battery voltage are shown. .

過放電検出回路13は、二次電池10が過放電にならないように電池電圧を監視している。2.5Vの過放電検出電圧より高い電池電圧のときは、二次電池10が通常状態であることを出力信号をLレベルにして放電制御回路11に通知する。通常状態では、放電制御回路11は放電FETQ1をオンにして放電電流を通電させる。   The overdischarge detection circuit 13 monitors the battery voltage so that the secondary battery 10 does not overdischarge. When the battery voltage is higher than the 2.5V overdischarge detection voltage, the output signal is set to L level and the discharge control circuit 11 is notified that the secondary battery 10 is in the normal state. In the normal state, the discharge control circuit 11 turns on the discharge FET Q1 to energize the discharge current.

通常の使用状態では、負荷装置3は二次電池10が過放電状態となる前に装置自身で放電を中止するため、過放電は検出されない。負荷装置3の故障などにより過放電状態なっても放電し続けようとした場合は、電池電圧が2.5Vの過放電検出電圧より低くなったときに、過放電検出回路13は過放電状態であることを出力信号をHレベルにして放電制御回路11に通知する。放電制御回路11は、その信号を受けると放電FETQ1をオフにし、二次電池10の放電が進まないように放電電流を遮断させる。これにより、過放電保護状態となる。   In a normal use state, the load device 3 stops discharging by itself before the secondary battery 10 is overdischarged, so that overdischarge is not detected. If it is attempted to continue discharging even if an overdischarge state occurs due to a failure of the load device 3 or the like, the overdischarge detection circuit 13 is in an overdischarge state when the battery voltage becomes lower than the 2.5V overdischarge detection voltage. This is notified to the discharge control circuit 11 by setting the output signal to H level. When receiving the signal, the discharge control circuit 11 turns off the discharge FET Q1, and cuts off the discharge current so that the secondary battery 10 does not discharge. Thereby, it will be in an overdischarge protection state.

故障した負荷装置3などが取り外され、充電器2が接続されると二次電池10に充電電流が流れるが、最初は放電FETQ1の寄生ダイオードDp1を通して充電するため、少しの充電電流に対しても、放電FETQ1のソースS1に対し充電FETQ2のソースS2の電圧が放電FETQ1の寄生ダイオードDp1の順方向電圧降下により−0.6Vまで低くなる。充電過電流検出回路16は、この電圧が−0.15Vの充電過電流検出電圧より低い電圧であるので、その電圧を検出すると出力信号をHレベルにして放電制御回路11に通知する。放電制御回路11は、その信号を受けると放電FETQ1をオンにする。これにより、放電FETQ1は25mΩの低抵抗状態となる。なお、充電制御回路12は、過放電検出回路13の出力信号がHレベルであるときに充電過電流検出回路16の出力信号がHレベルになっても、寄生ダイオードDp1の順方向電圧降下によるものと判断して、充電FETQ2をオフにはしない。   When the failed load device 3 or the like is removed and the charger 2 is connected, a charging current flows through the secondary battery 10. Initially, charging is performed through the parasitic diode Dp1 of the discharge FET Q1, and therefore, even for a small amount of charging current. The voltage of the source S2 of the charge FET Q2 is lowered to -0.6 V due to the forward voltage drop of the parasitic diode Dp1 of the discharge FET Q1 with respect to the source S1 of the discharge FET Q1. Since this voltage is lower than the charge overcurrent detection voltage of −0.15 V, the charge overcurrent detection circuit 16 sets the output signal to the H level and notifies the discharge control circuit 11 when the voltage is detected. When receiving the signal, the discharge control circuit 11 turns on the discharge FET Q1. As a result, the discharge FET Q1 is in a low resistance state of 25 mΩ. The charge control circuit 12 is caused by the forward voltage drop of the parasitic diode Dp1 even if the output signal of the charge overcurrent detection circuit 16 becomes H level when the output signal of the overdischarge detection circuit 13 is H level. Therefore, the charging FET Q2 is not turned off.

放電制御回路11は、設定期間T2msの間放電FETQ1をオンにする。放電FETQ1がオンのとき、低抵抗状態となるため、充電FETQ2のソースS2の電圧は−0.15Vより高くなり、充電過電流検出回路16の出力信号はLレベルとなる。放電制御回路11は、設定期間T2msの経過後、放電FETQ1をオフにする。このオフ期間の間、充電状態が継続している場合は、充電過電流検出回路16の出力信号が再びHレベルになるので、放電制御回路11は再び設定期間T2msの間放電FETQ1をオンにし、設定期間T2msの経過後に放電FETQ1をオフにする。このオフ期間の時に充電過電流検出回路16の出力信号がLレベルの場合は、充電FETQ2のソースS2の電圧は−0.15Vより高くなり、充電器2が外されたかもしくは充電されていないこと、または負荷が接続されたことを示しているので、放電制御回路11は放電FETQ1をオフにしたままにする。そして、充電過電流検出回路16は充電器2の接続を監視し続け、充電器2が接続されて充電過電流検出回路16の出力信号が再びHレベルになると、放電制御回路11は再び設定期間T2msの間放電FETQ1をオンにし、設定期間T2msの経過後、放電FETQ1をオフにする。   The discharge control circuit 11 turns on the discharge FET Q1 for a set period T2 ms. When the discharge FET Q1 is on, a low resistance state is entered, so that the voltage at the source S2 of the charge FET Q2 becomes higher than −0.15 V, and the output signal of the charge overcurrent detection circuit 16 becomes L level. The discharge control circuit 11 turns off the discharge FET Q1 after the set period T2ms has elapsed. If the charging state continues during this off period, the output signal of the charge overcurrent detection circuit 16 becomes H level again, so that the discharge control circuit 11 turns on the discharge FET Q1 again for the set period T2ms, The discharge FET Q1 is turned off after the set period T2ms has elapsed. If the output signal of the charge overcurrent detection circuit 16 is L level during this off period, the voltage of the source S2 of the charge FET Q2 is higher than −0.15 V, and the charger 2 is disconnected or not charged. In other words, the discharge control circuit 11 keeps the discharge FET Q1 turned off. Then, the charging overcurrent detection circuit 16 continues to monitor the connection of the charger 2, and when the charger 2 is connected and the output signal of the charging overcurrent detection circuit 16 becomes H level again, the discharge control circuit 11 again sets the set period. The discharge FET Q1 is turned on for T2ms, and the discharge FET Q1 is turned off after the set period T2ms has elapsed.

上述の動作を繰り返して充電が継続され、二次電池10の電池電圧が2.8Vの過放電解除電圧より高くなると、過放電検出回路13は二次電池10が過放電状態から通常状態に復帰したことを出力信号をLレベルにして放電制御回路11に通知する。放電制御回路11は、その信号を受けると放電FETQ1をオンに固定し、放電電流を通電させる。これにより、通常状態に復帰する。   When the above operation is repeated and charging is continued and the battery voltage of the secondary battery 10 becomes higher than the overdischarge release voltage of 2.8 V, the overdischarge detection circuit 13 returns the secondary battery 10 from the overdischarge state to the normal state. This is notified to the discharge control circuit 11 by setting the output signal to L level. Upon receiving the signal, the discharge control circuit 11 fixes the discharge FET Q1 to be on and supplies a discharge current. As a result, the normal state is restored.

以上の動作により、例えば1Aの充電で放電FETQ1側の損失は、オン期間で25[mV]×12[A2]=25mW、オフ期間で0.6[V]×1000[mA]=600mWとなる。したがって、オン期間とオフ期間の比を4:1として動作させた場合の放電FETQ1の損失は、(25×4+600×1)÷5=140mWとなる。これは、放電FETQ1の寄生ダイオードDp1のみを使ったときの損失600mWと比較して約1/4の損失となる。 With the above operation, for example, the loss on the discharge FET Q1 side when charging at 1 A is 25 [mV] × 1 2 [A 2 ] = 25 mW in the on period and 0.6 [V] × 1000 [mA] = 600 mW in the off period. It becomes. Therefore, the loss of the discharge FET Q1 when the ratio of the on period to the off period is 4: 1 is (25 × 4 + 600 × 1) / 5 = 140 mW. This is a loss of about ¼ compared to the loss of 600 mW when only the parasitic diode Dp1 of the discharge FET Q1 is used.

ここで、図4のタイムチャートにおいて、S1−S2電圧は、上述のように(S2の電位)であり、最初は少しプラスで、放電FETQ1がオフになった直後に電池電圧となる。   Here, in the time chart of FIG. 4, the S1-S2 voltage is (the potential of S2) as described above, and is slightly positive at first, and becomes the battery voltage immediately after the discharge FET Q1 is turned off.

次に、図1及び図2の構成における各回路間の結線について説明する。過充電保護状態では、放電FETQ1を常にオンにしておくが、放電制御回路11は過充電検出回路14の出力情報が必要である。すなわち、過充電状態→充電FETオフ→少しの放電電流でも+0.6Vを検出→放電過電流と勘違い→放電FETオフという不具合を防止するために、過充電状態で充電FETQ2がオフしていることの情報が必要である。過放電保護状態では、充電FETQ2を常にオンにしておくが、充電制御回路12は過放電検出回路13の出力情報が必要である。すなわち、過放電状態→放電FETオフ→少しの充電電流でも−0.6Vを検出→充電過電流と勘違い→充電FETオフという不具合を防止するために、過放電状態で放電FETQ1がオフしていることの情報が必要である。   Next, the connection between each circuit in the structure of FIG.1 and FIG.2 is demonstrated. In the overcharge protection state, the discharge FET Q1 is always turned on, but the discharge control circuit 11 needs the output information of the overcharge detection circuit 14. In other words, overcharge condition → charge FET off → detect + 0.6V even with a little discharge current → misunderstand that it is discharge overcurrent → charge FET Q2 is off in overcharge condition to prevent the problem of discharge FET off Information is needed. In the overdischarge protection state, the charge FET Q2 is always turned on, but the charge control circuit 12 needs the output information of the overdischarge detection circuit 13. In other words, in order to prevent the problem of overdischarge state → discharge FET off → detection of −0.6V even with a little charge current → charge overcurrent misunderstanding → charge FET off, discharge FET Q1 is off in the overdischarge state. Information is needed.

また、過充電状態において放電電流の存在を知るために、充電制御回路12は放電過電流検出回路15の出力情報が必要であり、過放電状態において充電電流の存在を知るために、放電制御回路11は充電過電流検出回路16の出力情報が必要である。   Further, in order to know the presence of the discharge current in the overcharge state, the charge control circuit 12 needs the output information of the discharge overcurrent detection circuit 15, and in order to know the existence of the charge current in the overdischarge state, the discharge control circuit 11 needs output information of the charge overcurrent detection circuit 16.

図5は上述の実施の形態の二次電池保護装置の充放電制御動作を示す図である。実施の形態では、放電FETQ1及び充電FETQ2の寄生ダイオードDp1,Dp2の順方向の電圧ドロップを使うので、0.6Vと比較的大きな信号が得られ、検出が容易である。また、寄生ダイオードDp1,Dp2のソース間電圧(S1−S2電圧)の検出はソースS2の電位のみでよいので、回路構成が簡単であり、安価なものとなる。すなわち、回路損失の小さい簡易な構成で半導体が熱破壊するのを防止でき、また充放電電流の検出及び電流方向の検出が容易になる。   FIG. 5 is a diagram showing a charge / discharge control operation of the secondary battery protection device of the above-described embodiment. In the embodiment, since the forward voltage drop of the parasitic diodes Dp1 and Dp2 of the discharge FET Q1 and the charge FET Q2 is used, a relatively large signal of 0.6 V is obtained and detection is easy. Further, since the source-to-source voltage (S1-S2 voltage) of the parasitic diodes Dp1, Dp2 can be detected only by the potential of the source S2, the circuit configuration is simple and inexpensive. That is, it is possible to prevent the semiconductor from being thermally destroyed with a simple configuration with a small circuit loss, and it becomes easy to detect the charge / discharge current and the current direction.

本発明の実施の形態の二次電池保護装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the secondary battery protection apparatus of embodiment of this invention. 本発明の実施の形態の二次電池保護装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the secondary battery protection apparatus of embodiment of this invention. 実施の形態の二次電池保護装置の過充電保護動作を示すタイムチャートである。It is a time chart which shows the overcharge protection operation | movement of the secondary battery protection apparatus of embodiment. 実施の形態の二次電池保護装置の過放電保護動作を示すタイムチャートである。It is a time chart which shows the overdischarge protection operation | movement of the secondary battery protection apparatus of embodiment. 実施の形態の二次電池保護装置の充放電制御動作を示す図である。It is a figure which shows the charging / discharging control operation | movement of the secondary battery protection apparatus of embodiment. 二次電池の充電制御動作を示す図である。It is a figure which shows charge control operation | movement of a secondary battery. 従来の二次電池保護装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the conventional secondary battery protection apparatus. 従来の二次電池保護装置の過充電保護動作を示すタイムチャートである。It is a time chart which shows the overcharge protection operation | movement of the conventional secondary battery protection apparatus. 従来の二次電池保護装置の過放電保護動作を示すタイムチャートである。It is a time chart which shows the overdischarge protection operation | movement of the conventional secondary battery protection apparatus. 従来の二次電池保護装置の充放電制御動作を示す図である。It is a figure which shows the charge / discharge control operation | movement of the conventional secondary battery protection apparatus. 二次電池保護装置の充放電制御動作における電流経路を示す図である。It is a figure which shows the electric current path | route in the charge / discharge control operation | movement of a secondary battery protection apparatus.

符号の説明Explanation of symbols

1 電池パック
2 充電器
3 負荷装置
10 二次電池
11 放電制御回路
12 充電制御回路
13 過放電検出回路
14 過充電検出回路
15 放電過電流検出回路
16 充電過電流検出回路
20 充電回路
30 負荷
Q1 放電FET
Q2 充電FET
DESCRIPTION OF SYMBOLS 1 Battery pack 2 Charger 3 Load apparatus 10 Secondary battery 11 Discharge control circuit 12 Charge control circuit 13 Overdischarge detection circuit 14 Overcharge detection circuit 15 Discharge overcurrent detection circuit 16 Charge overcurrent detection circuit 20 Charge circuit 30 Load Q1 Discharge FET
Q2 Charge FET

Claims (6)

二次電池の放電電流を制御する放電制御用の半導体デバイス及び前記二次電池の充電電流を制御する充電制御用の半導体デバイスと、
前記放電制御用の半導体デバイス及び前記充電制御用の半導体デバイスのオン、オフを制御する制御回路と、
前記二次電池の過放電状態を検出する過放電検出回路及び前記二次電池の過充電状態を検出する過充電検出回路と、
前記二次電池が過放電状態にあるときに前記放電制御用の半導体デバイスによる電圧ドロップにより充電電流を検出する過放電時充電電流検出手段及び前記二次電池が過充電状態にあるときに前記充電制御用の半導体デバイスによる電圧ドロップにより放電電流を検出する過充電時放電電流検出手段と、
を有し、
前記放電制御用の半導体デバイスと前記充電制御用の半導体デバイスは前記二次電池の充放電電流経路に互いに直列に介装され、
前記制御回路は、前記過放電検出回路が過放電状態を検出していないときは前記放電制御用の半導体デバイスをオンするとともに前記過放電検出回路が過放電状態を検出しているときは前記過放電時充電電流検出手段の検出結果に応じて前記放電制御用の半導体デバイスのオン、オフを制御し、前記過充電検出回路が過充電状態を検出していないときは前記充電制御用の半導体デバイスをオンとするとともに前記過充電検出回路が過充電状態を検出しているときは前記過充電時放電電流検出手段の検出結果に応じて前記充電制御用の半導体デバイスのオン、オフを制御することを特徴とする二次電池保護装置。
A semiconductor device for discharge control for controlling the discharge current of the secondary battery, and a semiconductor device for charge control for controlling the charge current of the secondary battery;
A control circuit for controlling on / off of the semiconductor device for discharge control and the semiconductor device for charge control;
An overdischarge detection circuit for detecting an overdischarge state of the secondary battery and an overcharge detection circuit for detecting an overcharge state of the secondary battery;
Charge current detection means during overdischarge for detecting a charge current by voltage drop by the semiconductor device for discharge control when the secondary battery is in an overdischarge state, and charging when the secondary battery is in an overcharge state Overcurrent discharge current detection means for detecting discharge current by voltage drop by a semiconductor device for control,
Have
The semiconductor device for discharge control and the semiconductor device for charge control are interposed in series with each other in a charge / discharge current path of the secondary battery,
The control circuit turns on the semiconductor device for discharge control when the overdischarge detection circuit does not detect an overdischarge state, and when the overdischarge detection circuit detects an overdischarge state, The semiconductor device for charge control is controlled when the overcharge detection circuit detects no overcharge state by controlling on / off of the semiconductor device for discharge control according to the detection result of the charge current detection means during discharge. And when the overcharge detection circuit detects an overcharge state, on / off of the semiconductor device for charge control is controlled according to the detection result of the discharge current detection means during overcharge. A secondary battery protection device.
前記過充電時放電電流検出手段及び前記過放電時充電電流検出手段は、それぞれ通常状態における前記二次電池の放電過電流を検出する放電過電流検出回路及び充電過電流を検出する充電過電流検出回路からなることを特徴とする請求項1記載の二次電池保護装置。   The overcharge discharge current detection means and the overdischarge charge current detection means are respectively a discharge overcurrent detection circuit for detecting a discharge overcurrent of the secondary battery in a normal state and a charge overcurrent detection for detecting a charge overcurrent. The secondary battery protection device according to claim 1, comprising a circuit. 前記放電過電流検出回路及び前記充電過電流検出回路は、前記互いに直列に介装された前記放電制御用の半導体デバイスと前記充電制御用の半導体デバイスからなる直列回路の両端電圧によりそれぞれ放電電流及び充電電流を検出することを特徴とする請求項2記載の二次電池保護装置。   The discharge overcurrent detection circuit and the charge overcurrent detection circuit are respectively configured to have a discharge current and a voltage across a series circuit including the discharge control semiconductor device and the charge control semiconductor device interposed in series with each other. The secondary battery protection device according to claim 2, wherein a charging current is detected. 前記直列回路の一端を基準電位に接続し、他端の電位のみを検出することを特徴とする請求項3記載の二次電池保護装置。   4. The secondary battery protection device according to claim 3, wherein one end of the series circuit is connected to a reference potential and only the potential of the other end is detected. 前記過充電検出回路が過充電を検出しているときに、前記放電制御用の半導体デバイスをオンにするとともに、前記過放電時充電電流検出手段が充電電流を検出すると前記充電制御用の半導体デバイスを所定期間オンすることを特徴とする請求項1記載の二次電池保護装置。   When the overcharge detection circuit detects overcharge, the semiconductor device for charge control is turned on, and the charge control semiconductor device for charge control is detected when the overdischarge charge current detection means detects a charge current. The secondary battery protection device according to claim 1, wherein the battery is turned on for a predetermined period. 前記過放電検出回路が過放電を検出しているときに、前記充電制御用の半導体デバイスをオンにするとともに、前記過放電時充電電流検出手段が放電電流を検出すると前記放電制御用の半導体デバイスを所定期間オンすることを特徴とする請求項1記載の二次電池保護装置。
When the overdischarge detection circuit detects overdischarge, the semiconductor device for charge control is turned on, and when the overcurrent discharge current detection means detects a discharge current, the semiconductor device for discharge control The secondary battery protection device according to claim 1, wherein the battery is turned on for a predetermined period.
JP2006209952A 2006-08-01 2006-08-01 Secondary battery protection device Active JP4811181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006209952A JP4811181B2 (en) 2006-08-01 2006-08-01 Secondary battery protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006209952A JP4811181B2 (en) 2006-08-01 2006-08-01 Secondary battery protection device

Publications (2)

Publication Number Publication Date
JP2008042964A true JP2008042964A (en) 2008-02-21
JP4811181B2 JP4811181B2 (en) 2011-11-09

Family

ID=39177385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209952A Active JP4811181B2 (en) 2006-08-01 2006-08-01 Secondary battery protection device

Country Status (1)

Country Link
JP (1) JP4811181B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024243A1 (en) * 2009-08-26 2011-03-03 パナソニック株式会社 Overcharge protection circuit, battery package, and charging system
JP2011211867A (en) * 2010-03-30 2011-10-20 Hitachi Koki Co Ltd Battery pack
JP5110168B2 (en) * 2008-09-25 2012-12-26 ミツミ電機株式会社 Battery protection device and battery pack incorporating the same
CN104659873A (en) * 2013-11-25 2015-05-27 三美电机株式会社 Protection circuit for charging battery, battery protection module, battery pack, and processing method
KR20210053730A (en) * 2019-11-04 2021-05-12 (주)바롬코리아 Overcurrent protection device for charging-discharging of battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285810A (en) * 1997-04-07 1998-10-23 Seiko Instr Inc Charge and discharge controlling circuit and charging system power device
JPH11215716A (en) * 1998-01-20 1999-08-06 Matsushita Electric Ind Co Ltd Battery managing apparatus, battery package, and electronic appliance
JP2001169477A (en) * 1999-12-08 2001-06-22 Mitsumi Electric Co Ltd Protective method and protective circuit for secondary battery
JP2002199594A (en) * 2000-12-26 2002-07-12 Ricoh Co Ltd Charging/discharging protective circuit, battery pack with the charging/discharging protective circuit built-in, and electronic apparatus using the battery pack
JP2007325434A (en) * 2006-06-01 2007-12-13 Ricoh Co Ltd Charge/discharge protective circuit, battery pack incorporating the charge/discharge protective current, and electronic apparatus using the battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10285810A (en) * 1997-04-07 1998-10-23 Seiko Instr Inc Charge and discharge controlling circuit and charging system power device
JPH11215716A (en) * 1998-01-20 1999-08-06 Matsushita Electric Ind Co Ltd Battery managing apparatus, battery package, and electronic appliance
JP2001169477A (en) * 1999-12-08 2001-06-22 Mitsumi Electric Co Ltd Protective method and protective circuit for secondary battery
JP2002199594A (en) * 2000-12-26 2002-07-12 Ricoh Co Ltd Charging/discharging protective circuit, battery pack with the charging/discharging protective circuit built-in, and electronic apparatus using the battery pack
JP2007325434A (en) * 2006-06-01 2007-12-13 Ricoh Co Ltd Charge/discharge protective circuit, battery pack incorporating the charge/discharge protective current, and electronic apparatus using the battery pack

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110168B2 (en) * 2008-09-25 2012-12-26 ミツミ電機株式会社 Battery protection device and battery pack incorporating the same
WO2011024243A1 (en) * 2009-08-26 2011-03-03 パナソニック株式会社 Overcharge protection circuit, battery package, and charging system
JP2011211867A (en) * 2010-03-30 2011-10-20 Hitachi Koki Co Ltd Battery pack
CN104659873A (en) * 2013-11-25 2015-05-27 三美电机株式会社 Protection circuit for charging battery, battery protection module, battery pack, and processing method
KR20150060550A (en) * 2013-11-25 2015-06-03 미쓰미덴기가부시기가이샤 Protection circuit, battery protection module, battery pack for secondary battery, and method for processing the same
JP2015104217A (en) * 2013-11-25 2015-06-04 ミツミ電機株式会社 Secondary battery protection circuit, battery protection module, battery pack and processing method
US10074875B2 (en) 2013-11-25 2018-09-11 Mitsumi Electric Co., Ltd. Protection circuit for secondary battery, battery protection module, battery pack, and method
KR102390648B1 (en) * 2013-11-25 2022-04-26 미쓰미덴기가부시기가이샤 Protection circuit, battery protection module, battery pack for secondary battery, and method for processing the same
KR20210053730A (en) * 2019-11-04 2021-05-12 (주)바롬코리아 Overcurrent protection device for charging-discharging of battery
KR102268295B1 (en) * 2019-11-04 2021-06-23 (주)바롬코리아 Overcurrent protection device for charging-discharging of battery

Also Published As

Publication number Publication date
JP4811181B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
KR101162792B1 (en) Charge/discharge protection circuit and power-supply unit
KR101987352B1 (en) Secondary battery protection integrated circuit, secondary battery protection apparatus and battery pack
JP4844468B2 (en) Secondary battery protection device and semiconductor integrated circuit device
EP1533881B1 (en) Battery Protection Circuit
US9893343B2 (en) Battery pack and electric device
KR102254471B1 (en) A secondary protection ic, method for controlling the secondary protection ic, and protection module and battery pack for the same
JP2020198695A (en) Secondary battery protection circuit, secondary battery protection apparatus, battery pack, and secondary battery protection circuit control method
US8896270B2 (en) Semiconductor integrated circuit, protection circuit, and battery pack
JP2009131020A (en) Overcurrent protection circuit and battery pack
KR20080060177A (en) Battery state monitoring circuit and battery device
KR20180118076A (en) Charging/discharging control circuit and battery device
JP4811181B2 (en) Secondary battery protection device
JP5064776B2 (en) Pack battery
JP2005312140A (en) Charging and discharging control circuit
JP2006121827A (en) Protection circuit for secondary battery
JP2004146307A (en) Battery unit
KR101093839B1 (en) Protect circuit of secondary battery
JP4051708B2 (en) Battery fault detector
JP5638795B2 (en) Battery state monitoring circuit and battery device
JPH10150721A (en) Protective circuit for secondary battery
JP6947999B1 (en) Secondary battery protection circuit, battery pack, battery system and secondary battery protection method
JP2020198773A (en) Secondary battery protection circuit, secondary battery protection apparatus, battery pack, and secondary battery protection circuit control method
JP4536040B2 (en) Electrical equipment
JP2011030283A (en) Battery controller and battery pack
KR101088896B1 (en) Electronic fuse device for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Ref document number: 4811181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250