JP2008310118A - Variable optical attenuator - Google Patents

Variable optical attenuator Download PDF

Info

Publication number
JP2008310118A
JP2008310118A JP2007158555A JP2007158555A JP2008310118A JP 2008310118 A JP2008310118 A JP 2008310118A JP 2007158555 A JP2007158555 A JP 2007158555A JP 2007158555 A JP2007158555 A JP 2007158555A JP 2008310118 A JP2008310118 A JP 2008310118A
Authority
JP
Japan
Prior art keywords
faraday
self
variable optical
magnetic field
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007158555A
Other languages
Japanese (ja)
Other versions
JP4931070B2 (en
Inventor
Hiroaki Ono
博章 小野
Hidenori Nakada
英則 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2007158555A priority Critical patent/JP4931070B2/en
Publication of JP2008310118A publication Critical patent/JP2008310118A/en
Application granted granted Critical
Publication of JP4931070B2 publication Critical patent/JP4931070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To totally save electric power by continuously varying an optical attenuation amount and reducing a current value which needs to be always supplied to adjust the optical attenuation amount. <P>SOLUTION: A polarizer 10 and an analyzer 12 are disposed between an input collimation system and an output collimation system, and a discrete variation type optical attenuating mechanism 14 having self-holding type Faraday rotators FR1 and FR2 and a continuous variation type optical attenuating mechanism 16 having a continuous power supply type Faraday rotors FR3 are arrayed between the polarizer and analyzer linearly along an optical axis. Switching control over a current direction to a magnetic field applying means of the self-holding type Faraday rotors and power supply control over a current value to a magnetic field applying means of the continuous power supply type Faraday rotor are combined with each other to interpolate a discrete optical attenuation amount by the discrete variation type optical attenuating mechanism with a continuous optical attenuation amount by the continuous variation type optical attenuating mechanism, thereby adjusting the optical attenuation amount in detail. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、偏光子と検光子の間に、自己保持型ファラデー回転子を有する離散可変型光減衰機構と常時通電型ファラデー回転子を有する連続可変型光減衰機構とを組み込んだ可変光アッテネータに関し、更に詳しく述べると、自己保持型ファラデー回転子の磁界印加手段への電流方向の切換制御と常時通電型ファラデー回転子の磁界印加手段への電流値の通電制御とを組み合わせることにより、離散可変型光減衰機構による離散的光減衰量を連続可変型光減衰機構による連続的光減衰量で補間し、光減衰量を調整するようにした可変光アッテネータに関するものである。この可変光アッテネータは、例えば光通信システムでの光パワーレベルの調整などに有用である。   The present invention relates to a variable optical attenuator in which a discrete variable optical attenuation mechanism having a self-holding Faraday rotator and a continuously variable optical attenuation mechanism having an always energizing Faraday rotator are incorporated between a polarizer and an analyzer. More specifically, a discrete variable type can be obtained by combining the current direction switching control to the magnetic field application means of the self-holding type Faraday rotator and the current value conduction control to the magnetic field application means of the constant current type Faraday rotator. The present invention relates to a variable optical attenuator that interpolates a discrete optical attenuation amount by an optical attenuation mechanism with a continuous optical attenuation amount by a continuously variable optical attenuation mechanism and adjusts the optical attenuation amount. This variable optical attenuator is useful for adjusting the optical power level in an optical communication system, for example.

ファラデー回転子の回転角を制御することにより光減衰量を調整する磁気光学方式の可変光アッテネータは周知である。このような可変光アッテネータは、例えば光通信システムでの光パワーレベルの調整などに使用されている。   A magneto-optic variable optical attenuator that adjusts the amount of light attenuation by controlling the rotation angle of the Faraday rotator is well known. Such a variable optical attenuator is used, for example, for adjusting an optical power level in an optical communication system.

磁気光学方式の可変光アッテネータとしては、入力コリメート系と出力コリメート系の間に偏光子とファラデー回転子と検光子を配列し、前記ファラデー回転子のファラデー回転角を制御することにより光減衰量を調整する構成が一般的である。ここでファラデー回転角は、外部からの印加磁界の強さによって制御される。ここで、外部磁界を発生させる磁界印加手段へは、最大で数十mA程度の電流値が必要とされ、必要な光減衰量を保持するには継続して電流を供給し続ける必要があり、常時、かなりの電力が必要となる。従来の可変光アッテネータの光減衰特性の典型的な例を図5に示す。通電していない状態での光減衰量がほぼ0dBの場合、最大光減衰量を得るためには約60mAもの電流が必要となる。例えば光減衰量20dBが必要な場合、約45mAもの電流を常時供給し続けなければならない。   As a variable optical attenuator of the magneto-optical system, a polarizer, a Faraday rotator, and an analyzer are arranged between an input collimating system and an output collimating system, and the optical attenuation is controlled by controlling the Faraday rotation angle of the Faraday rotator. The configuration to adjust is common. Here, the Faraday rotation angle is controlled by the strength of the externally applied magnetic field. Here, the magnetic field applying means for generating the external magnetic field requires a current value of about several tens of mA at the maximum, and it is necessary to continuously supply the current in order to maintain the necessary light attenuation amount. At all times, considerable power is required. A typical example of the optical attenuation characteristic of the conventional variable optical attenuator is shown in FIG. In the case where the light attenuation amount in a state where current is not supplied is approximately 0 dB, a current of about 60 mA is required to obtain the maximum light attenuation amount. For example, when an optical attenuation of 20 dB is required, a current of about 45 mA must be continuously supplied.

他方、低消費電力型の光アッテネータとしては、入力コリメート系と出力コリメート系の間に偏光子と自己保持型ファラデー回転子と検光子を配列し、前記自己保持型ファラデー回転子のファラデー回転角を制御することにより光減衰量を調整する構成がある(特許文献1参照)。この場合、ファラデー回転角の制御は、磁界印加手段への電流方向の切換によって行われる。従って、ファラデー回転角を可変したいときのみ瞬間的に通電すればよいので、消費電力を低減できる利点はあるものの、実現できる光減衰量は不連続(離散的)となり、細かな光減衰量の調整が行えず、そのため用途が限られてしまう。
特開2007−114746号公報
On the other hand, as a low power consumption type optical attenuator, a polarizer, a self-holding Faraday rotator and an analyzer are arranged between an input collimating system and an output collimating system, and the Faraday rotation angle of the self-holding Faraday rotator is set. There is a configuration in which the amount of light attenuation is adjusted by controlling (see Patent Document 1). In this case, the Faraday rotation angle is controlled by switching the current direction to the magnetic field applying means. Therefore, since it is only necessary to energize instantaneously only when it is desired to change the Faraday rotation angle, although there is an advantage that power consumption can be reduced, the light attenuation that can be realized becomes discontinuous (discrete), and fine adjustment of the light attenuation is possible. Can not be performed, and therefore the application is limited.
JP 2007-114746 A

本発明が解決しようとする課題は、光減衰量を連続的に可変でき、しかも光減衰量の調整のために常時供給する必要がある電流値を低減できるようにし、全体としても省電力化を図ることができるようにすることである。   The problem to be solved by the present invention is that the amount of light attenuation can be continuously varied, and the current value that needs to be constantly supplied to adjust the amount of light attenuation can be reduced, and overall power saving can be achieved. Is to be able to plan.

本発明は、入力コリメート系と出力コリメート系の間に偏光子と検光子を配置すると共に、それら偏光子と検光子の間に、自己保持型ファラデー回転子を有する離散可変型光減衰機構と常時通電型ファラデー回転子を有する連続可変型光減衰機構とを光軸に沿って一直線上に配列し、前記自己保持型ファラデー回転子の磁界印加手段への電流方向の切換制御と常時通電型ファラデー回転子の磁界印加手段への電流値の通電制御とを組み合わせることにより、離散可変型光減衰機構による離散的光減衰量を連続可変型光減衰機構による連続的光減衰量で補間し、光減衰量を調整することを特徴とする可変光アッテネータである。   According to the present invention, a polarizer and an analyzer are disposed between an input collimating system and an output collimating system, and a discrete variable optical attenuation mechanism having a self-holding Faraday rotator and a constant variable optical attenuation mechanism are provided between the polarizer and the analyzer. A continuously variable optical attenuating mechanism having an energizing Faraday rotator is arranged on a straight line along the optical axis, and the current direction switching control to the magnetic field applying means of the self-holding Faraday rotator and the always energizing Faraday rotation Combined with current control of the current value to the magnetic field application means of the child, the amount of light attenuation is interpolated by the amount of continuous light attenuation by the continuously variable light attenuation mechanism. The variable optical attenuator is characterized in that is adjusted.

ここで、離散可変型光減衰機構は、複数の自己保持型ファラデー回転子と位相子とからなり、自己保持型ファラデー回転子による回転角を位相子でオフセットさせるのが好ましい。位相子は、(1/2)×(2n−1)波長板(但し、nは正の整数)である。   Here, it is preferable that the discrete variable optical attenuation mechanism includes a plurality of self-holding Faraday rotators and phase shifters, and the rotation angle of the self-holding Faraday rotator is offset by the phase shifters. The phaser is a (1/2) × (2n−1) wave plate (where n is a positive integer).

自己保持型ファラデー回転子は、例えば半硬質磁性材料からなる磁気ヨークにコイルを巻装した磁界印加手段と、前記磁気ヨークのギャップ間に挿入されるファラデー素子からなる。あるいは、軟磁性材料からなる磁気ヨークにコイルを巻装した磁界印加手段と、前記磁気ヨークのギャップ間に挿入される保磁力を有するファラデー素子からなる構成でもよい。   The self-holding type Faraday rotator includes magnetic field applying means in which a coil is wound around a magnetic yoke made of, for example, a semi-hard magnetic material, and a Faraday element inserted between the gaps of the magnetic yoke. Or the structure which consists of a Faraday element which has the coercive force inserted between the magnetic field application means which wound the coil around the magnetic yoke which consists of soft magnetic materials, and the said magnetic yoke may be sufficient.

常時通電型ファラデー回転子は、ファラデー素子と、該ファラデー素子を磁気飽和させる永久磁石と、磁気ヨークにコイルを巻装し前記ファラデー素子に可変磁界を印加する可変磁界印加手段とからなる。   The normally energized Faraday rotator includes a Faraday element, a permanent magnet that magnetically saturates the Faraday element, and variable magnetic field applying means that winds a coil around a magnetic yoke and applies a variable magnetic field to the Faraday element.

ここで自己保持型ファラデー回転子は、ファラデー回転角が±12.5度と±22.5度の2種類の組み合わせとし、常時通電型ファラデー回転子は、ファラデー回転角が35〜60度の範囲をカバーするものが好ましい。   Here, the self-holding type Faraday rotator has a combination of two types of Faraday rotation angles of ± 12.5 degrees and ± 22.5 degrees, and the normally energized Faraday rotator has a Faraday rotation angle of 35 to 60 degrees. It is preferable to cover those.

本発明の可変光アッテネータは、自己保持型ファラデー回転子を有する離散可変型光減衰機構と常時通電型ファラデー回転子を有する連続可変型光減衰機構とを組み込み、自己保持型ファラデー回転子の磁界印加手段への電流方向の切換制御と常時通電型ファラデー回転子の磁界印加手段への電流値の通電制御とを組み合わせ、離散可変型光減衰機構による離散的光減衰量を連続可変型光減衰機構による連続的光減衰量で補間するように構成しているため、光減衰量を広範囲にわたって、しかも細かく調整することができる。また、離散可変型光減衰機構による離散的光減衰量の調整は、可変の必要があるときのみ所定の向きに瞬間的に通電すればよく、連続可変型光減衰機構による連続的光減衰量の調整は、常時通電ではあるが小電流値でよいので、トータルとして供給電流を低減でき、省電力化を図ることができる。   The variable optical attenuator of the present invention incorporates a discrete variable optical attenuation mechanism having a self-holding Faraday rotator and a continuously variable optical attenuation mechanism having a normally energized Faraday rotator to apply a magnetic field to the self-holding Faraday rotator. The switching control of the current direction to the means and the current control of the current value to the magnetic field applying means of the normally energized Faraday rotator are combined, and the discrete light attenuation amount by the discrete variable optical attenuation mechanism is determined by the continuously variable optical attenuation mechanism. Since the interpolation is performed with the continuous light attenuation amount, the light attenuation amount can be finely adjusted over a wide range. In addition, the adjustment of the discrete light attenuation by the discrete variable optical attenuation mechanism may be carried out instantaneously in a predetermined direction only when the variable needs to be changed. Although the adjustment is always energized, a small current value may be used, so that the supply current can be reduced as a whole, and power saving can be achieved.

本発明に係る可変光アッテネータの一例の要部を図1に示す。偏光子10と検光子12の間に、自己保持型ファラデー回転子を有する離散可変型光減衰機構14と常時通電型ファラデー回転子を有する連続可変型光減衰機構16とが光軸に沿って一直線上に配列される。可変光アッテネータ全体の各光学部品の配列状態を図2に示す。偏光子10の入射側に入力コリメート系20が位置し、また検光子12の出射側に出力コリメート系22が位置する。   The principal part of an example of the variable optical attenuator according to the present invention is shown in FIG. Between the polarizer 10 and the analyzer 12, a discrete variable optical attenuation mechanism 14 having a self-holding Faraday rotator and a continuously variable optical attenuation mechanism 16 having an always energizing Faraday rotator are straightened along the optical axis. Arranged on a line. FIG. 2 shows an arrangement state of each optical component in the entire variable optical attenuator. An input collimating system 20 is located on the incident side of the polarizer 10, and an output collimating system 22 is located on the exit side of the analyzer 12.

偏光子10及び検光子12は、好ましくは平行平面型(対向する入出射面が互いに平行平面)複屈折部材であり、例えばルチル(TiO2 )やYVO4 などからなる。離散可変型光減衰機構14は、2種類の自己保持型ファラデー回転子FR1,FR2と1/2波長板HWPとからなり、自己保持型ファラデー回転子FR1,FR2による回転角を1/2波長板HWPでオフセットさせる構成である。連続可変型光減衰機構16は、常時通電型ファラデー回転子FR3からなる。 The polarizer 10 and the analyzer 12 are preferably parallel plane type (opposing input and output surfaces are parallel to each other) birefringent members, and are made of, for example, rutile (TiO 2 ) or YVO 4 . The discrete variable optical attenuating mechanism 14 includes two types of self-holding Faraday rotators FR1 and FR2 and a half-wave plate HWP. The rotation angle by the self-holding Faraday rotators FR1 and FR2 is a half-wave plate. In this configuration, offset is performed by HWP. The continuously variable optical attenuation mechanism 16 is composed of a constantly energized Faraday rotator FR3.

2種類の自己保持型ファラデー回転子FR1,FR2は、それぞれ半硬質磁性材料からなる磁気ヨークにコイルを巻装した磁界印加手段と、前記磁気ヨークのギャップ間に挿入されるファラデー素子からなる。その構造例を図3に示す。両方のファラデー素子F1,F2は、同一の磁気光学材料からなるものでよく、その場合にファラデー回転角の違いはファラデー素子F1,F2の厚みを変えることで実現できる。磁気ヨーク30が半硬質磁性材料からなることから、コイルC1,C2への通電によって磁気ヨーク30が磁化すると、その磁化状態は通電を停止しても保持され、ギャップ内のファラデー素子F1,F2には飽和磁界H1が印加され続けることになる。ファラデー素子F1,F2に印加される磁界の向きは、コイルC1,C2への通電方向を逆方向に切り換えることで変えることができる。   The two types of self-holding Faraday rotators FR1 and FR2 are each composed of a magnetic field applying means in which a coil is wound around a magnetic yoke made of a semi-hard magnetic material, and a Faraday element inserted between the gaps of the magnetic yoke. An example of the structure is shown in FIG. Both Faraday elements F1 and F2 may be made of the same magneto-optical material. In this case, the difference in Faraday rotation angle can be realized by changing the thickness of the Faraday elements F1 and F2. Since the magnetic yoke 30 is made of a semi-hard magnetic material, when the magnetic yoke 30 is magnetized by energization of the coils C1 and C2, the magnetization state is maintained even when the energization is stopped, and the Faraday elements F1 and F2 in the gap are retained. Will continue to be applied with the saturation magnetic field H1. The direction of the magnetic field applied to the Faraday elements F1 and F2 can be changed by switching the energization direction to the coils C1 and C2 to the opposite direction.

常時通電型ファラデー回転子FR3は、ファラデー素子F3と、該ファラデー素子F3を磁気飽和させる永久磁石32と、磁気ヨークにコイルC3を巻装し前記ファラデー素子F3に可変磁界を印加する可変磁界印加手段とからなる。この磁気ヨークは軟磁性材料からなる。図1のAに示すように、永久磁石によりファラデー素子に光軸方向の固定磁界H2を印加して磁気飽和させ、それに垂直な方向(光軸に垂直なx方向)に磁気ヨークとコイルによって可変磁界H3を印加する。コイルC3への通電電流によって可変磁界の大きさが変化し、これら固定磁界H2と可変磁界H3との合成磁界がファラデー素子F3に印加され、その合成磁界の光軸方向の成分によってファラデー回転角が制御される。   The normally energized Faraday rotator FR3 includes a Faraday element F3, a permanent magnet 32 for magnetically saturating the Faraday element F3, and a variable magnetic field applying means for applying a variable magnetic field to the Faraday element F3 by winding a coil C3 around a magnetic yoke. It consists of. This magnetic yoke is made of a soft magnetic material. As shown in FIG. 1A, a permanent magnet applies a fixed magnetic field H2 in the optical axis direction to the Faraday element to magnetically saturate it, and is variable by a magnetic yoke and a coil in a direction perpendicular to it (x direction perpendicular to the optical axis). A magnetic field H3 is applied. The magnitude of the variable magnetic field is changed by the energization current to the coil C3, and the combined magnetic field of the fixed magnetic field H2 and the variable magnetic field H3 is applied to the Faraday element F3, and the Faraday rotation angle depends on the component of the combined magnetic field in the optical axis direction. Be controlled.

2つの自己保持型ファラデー回転子FR1,FR2、及び常時通電型ファラデー回転子FR3のファラデー回転角を、それぞれθF1、θF2、θF3としたとき、それらを透過した光の偏波面の合成回転角θtotal は、θF1+θF2+θF3となる。θF1+θF2の回転角を1/2波長板HWPでオフセットさせて自己保持させ、細かな回転角θF3を調整する。自己保持型ファラデー回転子FR1,FR2は、切り換え時のみ電力を必要とするが、細かな光減衰量の調整は常時通電型ファラデー回転子FR3のみの電力で済むため、全体として消費電力は大幅に低減できることになる。   When the Faraday rotation angles of the two self-holding Faraday rotators FR1 and FR2 and the normally energized Faraday rotator FR3 are θF1, θF2 and θF3, respectively, the combined rotation angle θtotal of the polarization plane of the light transmitted therethrough is , ΘF1 + θF2 + θF3. The rotation angle θF1 + θF2 is offset by the half-wave plate HWP to be self-held, and the fine rotation angle θF3 is adjusted. The self-holding type Faraday rotators FR1 and FR2 require electric power only at the time of switching. However, since fine adjustment of the light attenuation amount can be performed only by the electric power of the always-on type Faraday rotator FR3, the power consumption as a whole is greatly increased. It can be reduced.

入力コリメート系20と出力コリメート系22には、それぞれ光ファイバ40、フェルール42とレンズ44からなるビームウエスト系を用いる。1/2波長板HWPにより光の偏波面にオフセット角を設定すると、所望の光減衰量の範囲での波長特性及び温度特性を改善することができる。なお、1/2波長板HWPは、光軸上のどの位置に組み込んでもよいが、ビームウエスト位置に組み込むのが好ましい。そこで、ここでは2つの自己保持型ファラデー回転子と常時通電型ファラデー回転子の間に配置する。1/2波長板HWPは、例えば水晶(SiO2 )からなる。 As the input collimating system 20 and the output collimating system 22, a beam waist system including an optical fiber 40, a ferrule 42, and a lens 44 is used. Setting the offset angle on the plane of polarization of light by the half-wave plate HWP can improve the wavelength characteristics and temperature characteristics within the desired range of light attenuation. The half-wave plate HWP may be incorporated at any position on the optical axis, but is preferably incorporated at the beam waist position. Therefore, here, they are arranged between the two self-holding Faraday rotators and the normally energized Faraday rotator. The half-wave plate HWP is made of, for example, quartz (SiO 2 ).

このような構成にすると、自己保持型ファラデー回転子FR1,FR2の磁界印加手段への電流方向の切換制御と常時通電型ファラデー回転子FR3の磁界印加手段への電流値の通電制御とを組み合わせることにより、離散可変型光減衰機構14による離散的光減衰量を連続可変型光減衰機構16による連続的光減衰量で補間し、光減衰量を細かく調整することができる。   With such a configuration, the switching control of the current direction to the magnetic field applying means of the self-holding type Faraday rotators FR1, FR2 and the energization control of the current value to the magnetic field applying means of the constantly energizing type Faraday rotator FR3 are combined. Thus, it is possible to finely adjust the light attenuation amount by interpolating the discrete light attenuation amount by the discrete variable light attenuation mechanism 14 with the continuous light attenuation amount by the continuous variable light attenuation mechanism 16.

図1及び図2に示すように、入力コリメート系20、偏光子10、2種類の自己保持型ファラデー回転子FR1,FR2と1/2波長板HWPとを有する離散可変型光減衰機構14、常時通電型ファラデー回転子FR3を有する連続可変型光減衰機構16、検光子12、及び出力コリメート系22を、その順に、光軸に沿って一直線上に配列する。   As shown in FIGS. 1 and 2, an input collimating system 20, a polarizer 10, two types of self-holding Faraday rotators FR1 and FR2, and a half-wave plate HWP, a discrete variable optical attenuation mechanism 14, always The continuously variable optical attenuation mechanism 16, the analyzer 12, and the output collimating system 22 having the energization type Faraday rotator FR3 are arranged in a straight line along the optical axis in this order.

離散可変型光減衰機構14の2種類の自己保持型ファラデー回転子FR1,FR2は、それぞれファラデー素子と、該ファラデー素子に個別に外部磁界を印加できるコイル付き磁気ヨーク(半硬質磁性材料製)からなる。ここで、2個のファラデー素子F1、F2としては、ファラデー回転角がθF1:12.5度、θF2:22.5度のものを用いる。従って、一方の自己保持型ファラデー回転子は、外部磁界の方向によって光の偏波面を+12.5度か−12.5度のいずれかに切り換えることができ、他方の自己保持型ファラデー回転子は、外部磁界の方向によって光の偏波面を+22.5度か−22.5度のいずれかに切り換えることができる。1/2波長板HWPは、その光学軸を0度(水平方向、即ちx方向)に設定する。連続可変型光減衰機構16の常時通電型ファラデー回転子FR3は、ファラデー素子と、該ファラデー素子を磁気飽和させる永久磁石と、磁気ヨークにコイルを巻装し前記ファラデー素子に可変磁界を印加する可変磁界印加手段とからなる。ここでは、ファラデー素子F3としてファラデー回転角θF3:60度のものを用いている。従って、この常時通電型ファラデー回転子FR3は、通電する電流値に応じて0〜60度まで光の偏波面を変えることができる。   The two types of self-holding Faraday rotators FR1 and FR2 of the discrete variable optical attenuating mechanism 14 include a Faraday element and a magnetic yoke with a coil (made of a semi-rigid magnetic material) that can individually apply an external magnetic field to the Faraday element. Become. Here, as the two Faraday elements F1 and F2, those having Faraday rotation angles of θF1: 12.5 degrees and θF2: 22.5 degrees are used. Therefore, one self-holding Faraday rotator can switch the polarization plane of light to either +12.5 degrees or -12.5 degrees depending on the direction of the external magnetic field, and the other self-holding Faraday rotator Depending on the direction of the external magnetic field, the polarization plane of light can be switched to either +22.5 degrees or −22.5 degrees. The half-wave plate HWP has its optical axis set to 0 degree (horizontal direction, that is, the x direction). The continuously energized Faraday rotator FR3 of the continuously variable optical attenuating mechanism 16 is a variable that applies a variable magnetic field to the Faraday element by winding a Faraday element, a permanent magnet that magnetically saturates the Faraday element, and a coil around a magnetic yoke. Magnetic field applying means. Here, a Faraday element F3 having a Faraday rotation angle θF3 of 60 degrees is used. Therefore, this always energized Faraday rotator FR3 can change the plane of polarization of light from 0 to 60 degrees in accordance with the energized current value.

入力コリメート系20から入力した光は、偏光子10にて水平成分と垂直成分に偏波分離される。分離されたそれぞれの光の偏波は、2つの自己保持型ファラデー回転子FR1,FR2と1/2波長板HWPによって所定の回転角を持つ偏波となり、更に常時通電型ファラデー回転子FR3によって任意の回転角の偏波となって、検光子12にて偏波合成される。2つの偏波は、検光子12によって結合する成分と発散する成分に分けられる。ここで、発散する成分が存在すると、結合する成分は入力時のパワーレベルに比べて減衰することになる。   Light input from the input collimating system 20 is polarized and separated into a horizontal component and a vertical component by the polarizer 10. The polarization of each of the separated lights becomes a polarization having a predetermined rotation angle by the two self-holding Faraday rotators FR1 and FR2 and the half-wave plate HWP, and is further arbitrarily determined by the always energizing Faraday rotator FR3. The polarization is synthesized by the analyzer 12. The two polarized waves are divided into a component coupled by the analyzer 12 and a component diverging. Here, if there is a diverging component, the combined component is attenuated compared to the power level at the time of input.

この常時通電型ファラデー回転子FR3は、コイルC3へ通電する電流値を0〜10mAの範囲で可変すると、ファラデー回転角は35〜60度の範囲で光の偏波面を変えることができる。自己保持型ファラデー回転子FR1,FR2の両コイルC1,C2への電流方向、各ファラデー回転子F1〜F3のファラデー回転角、及び合成回転角の可変領域と光減衰量の可変領域を表1に示す。   This constant energization type Faraday rotator FR3 can change the plane of polarization of the light within a Faraday rotation angle range of 35 to 60 degrees when the value of the current energized to the coil C3 is varied within the range of 0 to 10 mA. Table 1 shows the current direction to the coils C1 and C2 of the self-holding type Faraday rotators FR1 and FR2, the Faraday rotation angles of the Faraday rotators F1 to F3, the variable range of the combined rotation angle, and the variable range of optical attenuation. Show.

Figure 2008310118
Figure 2008310118

光減衰特性を図4に示す。常時通電型ファラデー回転子FR3として、ファラデー回転角が35〜60度をカバーするものを用いれば、光減衰特性曲線は連続する。#1〜#4は、表1の組み合わせに対応している。なお、ファラデー回転角が35〜60度をカバーするためにはコイル電流は0〜10mAの範囲で可変できればよい。従って、自己保持型ファラデー回転子FR1,FR2のコイル電流の向きと、常時通電型ファラデー回転子FR3へのコイル電流の制御(0〜10mAの範囲での制御)によって、所望の光減衰量となるように自由に調整できることになる。   The light attenuation characteristic is shown in FIG. If a constant current type Faraday rotator FR3 having a Faraday rotation angle of 35 to 60 degrees is used, the light attenuation characteristic curve is continuous. # 1 to # 4 correspond to the combinations in Table 1. In order to cover the Faraday rotation angle of 35 to 60 degrees, the coil current only needs to be variable in the range of 0 to 10 mA. Therefore, a desired light attenuation is obtained by controlling the direction of the coil current of the self-holding type Faraday rotators FR1 and FR2 and controlling the coil current to the normally energized Faraday rotator FR3 (control in the range of 0 to 10 mA). Can be adjusted freely.

例えば、第1及び第2の自己保持型ファラデー回転子の両磁気ギャップの印加磁界方向が共に正方向であれば、両ファラデー素子を透過した光のファラデー回転角はθF1+θF2で+12.5+22.5=+35度となり、1/2波長板で−35度となる。常時通電型ファラデー回転子によるファラデー回転角は+35〜+60度なので、合成回転角は0〜+25度となる。第1の自己保持型ファラデー回転子の磁気ギャップの印加磁界方向のみを負方向に切り換えると、両ファラデー素子を透過した光のファラデー回転角はθF1+θF2で−12.5+22.5=+10度となり、1/2波長板で−10度となる。常時通電型ファラデー回転子によるファラデー回転角は+35〜+60度なので、合成回転角は+25〜+50度となる。第1の自己保持型ファラデー回転子の磁気ギャップの印加磁界方向を正方向に、第2の自己保持型ファラデー回転子の磁気ギャップの印加磁界方向を負方向に切り換えると、両ファラデー素子を透過した光のファラデー回転角はθF1+θF2で+12.5−22.5=−10度となり、1/2波長板で+10度となる。常時通電型ファラデー回転子によるファラデー回転角は+35〜+60度なので、合成回転角は+45〜+70度となる。第1及び第2の自己保持型ファラデー回転子の両磁気ギャップの印加磁界方向が共に負方向であれば、両ファラデー素子を透過した光のファラデー回転角はθF1+θF2で−12.5−22.5=−35度となり、1/2波長板で+35度となる。常時通電型ファラデー回転子によるファラデー回転角は+35〜+60度なので、合成回転角は+70〜+95度となる。このように、第1及び第2の自己保持型ファラデー回転子の磁化方向の組み合わせと常時通電型ファラデー回転子の可変磁界の調整によって、合成回転角可変領域は、0〜+95度となり、光減衰量可変領域は0〜最大となる。   For example, if the applied magnetic field directions of both magnetic gaps of the first and second self-holding Faraday rotators are both positive, the Faraday rotation angle of the light transmitted through both Faraday elements is θF1 + θF2 + 12.5 + 22.5 = +35 degrees and -35 degrees with a half-wave plate. Since the Faraday rotation angle by the normally energized Faraday rotator is +35 to +60 degrees, the combined rotation angle is 0 to +25 degrees. When only the applied magnetic field direction of the magnetic gap of the first self-holding type Faraday rotator is switched to the negative direction, the Faraday rotation angle of the light transmitted through both Faraday elements is −12.5 + 22.5 = + 10 degrees at θF1 + θF2. / 10 degrees with a two-wavelength plate. Since the Faraday rotation angle by the normally energized Faraday rotator is +35 to +60 degrees, the combined rotation angle is +25 to +50 degrees. When the applied magnetic field direction of the magnetic gap of the first self-holding type Faraday rotator is switched to the positive direction and the applied magnetic field direction of the magnetic gap of the second self-holding type Faraday rotator is switched to the negative direction, both Faraday elements are transmitted. The Faraday rotation angle of light is + 12.5-22.5 = −10 degrees at θF1 + θF2, and +10 degrees at a half-wave plate. Since the Faraday rotation angle by the normally energized Faraday rotator is +35 to +60 degrees, the combined rotation angle is +45 to +70 degrees. If the applied magnetic field directions of both magnetic gaps of the first and second self-holding Faraday rotators are both negative, the Faraday rotation angle of the light transmitted through both Faraday elements is θF1 + θF2, which is −12.5-22.5. = -35 degrees, and +35 degrees with a half-wave plate. Since the Faraday rotation angle by the normally energized Faraday rotator is +35 to +60 degrees, the combined rotation angle is +70 to +95 degrees. Thus, by adjusting the combination of the magnetization directions of the first and second self-holding Faraday rotators and adjusting the variable magnetic field of the constantly energizing Faraday rotator, the combined rotation angle variable region becomes 0 to +95 degrees, and light attenuation The amount variable region is 0 to the maximum.

この例では、常時通電型ファラデー回転子でコイルへ通電する電流値を0〜10mAの範囲で可変しているが、0〜20mAの範囲で可変できるとすると、ファラデー回転角は20〜60度の範囲で光の偏波面を変えることができる。その場合、2種類の自己保持型ファラデー回転子へのコイル電流の向きの組み合わせと常時通電型ファラデー回転子の可変磁界の調整で、合成回転角可変領域は0〜+95度となり、しかも2種類の自己保持型ファラデー回転子へのコイル電流の向きの組み合わせに対して常時通電型ファラデー回転子の可変磁界の調整による合成回転角可変領域にかなりのオーバーラップが生じるため、コイル電流は多少増えるが光減衰量の可変をより一層スムーズに行うことができる。   In this example, the current value energized to the coil by the always-on type Faraday rotator is varied in the range of 0 to 10 mA. However, if the current value can be varied in the range of 0 to 20 mA, the Faraday rotation angle is 20 to 60 degrees. The polarization plane of light can be changed within a range. In that case, by combining the direction of the coil current to the two types of self-holding Faraday rotators and adjusting the variable magnetic field of the constantly energizing Faraday rotator, the combined rotation angle variable region becomes 0 to +95 degrees, and two types Since there is a considerable overlap in the combined rotation angle variable region by adjusting the variable magnetic field of the always-on type Faraday rotator with respect to the combination of the direction of the coil current to the self-holding Faraday rotator, the coil current increases slightly, but the light The amount of attenuation can be changed more smoothly.

上記の例では、自己保持型ファラデー回転子は、半硬質磁性材料からなる磁気ヨークにコイルを巻装した磁界印加手段と、前記磁気ヨークのギャップ間に挿入されるファラデー素子から構成されているが、軟磁性材料からなる磁気ヨークにコイルを巻装した磁界印加手段と、前記磁気ヨークのギャップ間に挿入される保磁力を有するファラデー素子からなる構成でもよい。その場合、ファラデー素子自身の保磁力を利用することで、ファラデー回転角の自己保持が可能である。   In the above example, the self-holding type Faraday rotator is composed of a magnetic field applying means in which a coil is wound around a magnetic yoke made of a semi-hard magnetic material, and a Faraday element inserted between the gaps of the magnetic yoke. The magnetic field applying means may be a magnetic yoke made of a soft magnetic material, and a Faraday element having a coercive force inserted between the gaps of the magnetic yoke. In that case, the Faraday rotation angle can be self-maintained by utilizing the coercive force of the Faraday element itself.

また、上記の例では、離散可変型光減衰機構に2種類の自己保持型ファラデー回転子を組み合わせているが、3種類以上の自己保持型ファラデー回転子を組み合わせてもよい。自己保持型ファラデー回転子を多くすれば、構造は複雑化し大型化する問題はあるが、常時通電型ファラデー回転子のコイル電流値をより小さくすることが可能となる。   In the above example, two types of self-holding Faraday rotators are combined with the discrete variable optical attenuation mechanism, but three or more types of self-holding Faraday rotators may be combined. If the number of self-holding Faraday rotators is increased, the structure becomes complicated and there is a problem that the size of the Faraday rotator is increased, but the coil current value of the constantly energizing Faraday rotator can be made smaller.

本発明に係る可変光アッテネータの一例を示す説明図。Explanatory drawing which shows an example of the variable optical attenuator which concerns on this invention. その光学部品の配列状態を示す説明図。Explanatory drawing which shows the arrangement | sequence state of the optical component. 自己保持型ファラデー回転子の構造例を示す説明図。Explanatory drawing which shows the structural example of a self-holding type Faraday rotator. 本発明に係る可変光アッテネータの光減衰特性の一例を示すグラフ。The graph which shows an example of the optical attenuation characteristic of the variable optical attenuator which concerns on this invention. 従来の可変光アッテネータの光減衰特性の典型例を示すグラフ。The graph which shows the typical example of the optical attenuation characteristic of the conventional variable optical attenuator.

符号の説明Explanation of symbols

10 偏光子
12 検光子
14 離散可変型光減衰機構
16 連続可変型光減衰機構
20 入力コリメート系
22 出力コリメート系
30 磁気ヨーク
32 永久磁石
DESCRIPTION OF SYMBOLS 10 Polarizer 12 Analyzer 14 Discrete variable optical attenuation mechanism 16 Continuous variable optical attenuation mechanism 20 Input collimating system 22 Output collimating system 30 Magnetic yoke 32 Permanent magnet

Claims (7)

入力コリメート系と出力コリメート系の間に偏光子と検光子を配置すると共に、それら偏光子と検光子の間に、自己保持型ファラデー回転子を有する離散可変型光減衰機構と常時通電型ファラデー回転子を有する連続可変型光減衰機構とを光軸に沿って一直線上に配列し、前記自己保持型ファラデー回転子の磁界印加手段への電流方向の切換制御と前記常時通電型ファラデー回転子の磁界印加手段への電流値の通電制御とを組み合わせることにより、離散可変型光減衰機構による離散的光減衰量を連続可変型光減衰機構による連続的光減衰量で補間し、光減衰量を調整することを特徴とする可変光アッテネータ。   A discrete variable optical attenuation mechanism with a self-holding Faraday rotator and a normally energized Faraday rotation between the input collimator system and the output collimator system. A continuously variable optical attenuating mechanism having a magnetic element arranged in a straight line along the optical axis, switching control of the current direction to the magnetic field applying means of the self-holding Faraday rotator, and the magnetic field of the normally energized Faraday rotator Combined with current control of the current value to the application means, the optical attenuation is adjusted by interpolating the discrete optical attenuation by the discrete variable optical attenuation mechanism with the continuous optical attenuation by the continuous variable optical attenuation mechanism. A variable optical attenuator characterized by that. 離散可変型光減衰機構は、複数の自己保持型ファラデー回転子と位相子とからなり、自己保持型ファラデー回転子による回転角を位相子でオフセットさせる請求項1記載の可変光アッテネータ。   2. The variable optical attenuator according to claim 1, wherein the discrete variable optical attenuation mechanism includes a plurality of self-holding Faraday rotators and phase shifters, and the rotation angle of the self-holding Faraday rotator is offset by the phase shifters. 位相子が、(1/2)×(2n−1)波長板(但し、nは正の整数)である請求項2記載の可変光アッテネータ。   The variable optical attenuator according to claim 2, wherein the phase shifter is a (1/2) x (2n-1) wave plate (where n is a positive integer). 自己保持型ファラデー回転子は、半硬質磁性材料からなる磁気ヨークにコイルを巻装した磁界印加手段と、前記磁気ヨークのギャップ間に挿入されるファラデー素子からなる請求項2又は3記載の可変光アッテネータ。   4. The variable light according to claim 2, wherein the self-holding type Faraday rotator comprises magnetic field applying means in which a coil is wound around a magnetic yoke made of a semi-hard magnetic material, and a Faraday element inserted between the gaps of the magnetic yoke. Attenuator. 自己保持型ファラデー回転子は、軟磁性材料からなる磁気ヨークにコイルを巻装した磁界印加手段と、前記磁気ヨークのギャップ間に挿入される保磁力を有するファラデー素子からなる請求項2又は3記載の可変光アッテネータ。   4. The self-holding type Faraday rotator comprises magnetic field applying means in which a coil is wound around a magnetic yoke made of a soft magnetic material, and a Faraday element having a coercive force inserted between the gaps of the magnetic yoke. Variable optical attenuator. 常時通電型ファラデー回転子は、ファラデー素子と、該ファラデー素子を磁気飽和させる永久磁石と、磁気ヨークにコイルを巻装し前記ファラデー素子に可変磁界を印加する可変磁界印加手段とからなる請求項1乃至5のいずれかに記載の可変光アッテネータ。   The normally energized Faraday rotator comprises a Faraday element, a permanent magnet for magnetically saturating the Faraday element, and variable magnetic field applying means for applying a variable magnetic field to the Faraday element by winding a coil around a magnetic yoke. The variable optical attenuator according to any one of 5 to 5. 自己保持型ファラデー回転子は、ファラデー回転角が±12.5度と±22.5度の2種類の組み合わせであり、常時通電型ファラデー回転子は、ファラデー回転角が35〜60度をカバーするものである請求項1乃至6のいずれかに記載の可変光アッテネータ。   The self-holding type Faraday rotator is a combination of two types of Faraday rotation angles of ± 12.5 degrees and ± 22.5 degrees, and the normally energized Faraday rotator covers a Faraday rotation angle of 35 to 60 degrees. The variable optical attenuator according to claim 1, wherein the variable optical attenuator is one.
JP2007158555A 2007-06-15 2007-06-15 Variable optical attenuator Active JP4931070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158555A JP4931070B2 (en) 2007-06-15 2007-06-15 Variable optical attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158555A JP4931070B2 (en) 2007-06-15 2007-06-15 Variable optical attenuator

Publications (2)

Publication Number Publication Date
JP2008310118A true JP2008310118A (en) 2008-12-25
JP4931070B2 JP4931070B2 (en) 2012-05-16

Family

ID=40237759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158555A Active JP4931070B2 (en) 2007-06-15 2007-06-15 Variable optical attenuator

Country Status (1)

Country Link
JP (1) JP4931070B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305057A (en) * 1999-02-18 2000-11-02 Fujitsu Ltd Optical attenuation device having different kind of magnetooptic optical attenuating elements cascaded and optical transmission device
JP2001117060A (en) * 1999-10-21 2001-04-27 Tokin Corp Optical switch
WO2002029477A1 (en) * 2000-10-04 2002-04-11 Mitsubishi Denki Kabushiki Kaisha Optical variable attenuator
JP2006208948A (en) * 2005-01-31 2006-08-10 Fdk Corp Variable optical attenuator
JP2007114746A (en) * 2005-09-21 2007-05-10 Fdk Corp Faraday rotational angle varying device and variable optical attenuator using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000305057A (en) * 1999-02-18 2000-11-02 Fujitsu Ltd Optical attenuation device having different kind of magnetooptic optical attenuating elements cascaded and optical transmission device
JP2001117060A (en) * 1999-10-21 2001-04-27 Tokin Corp Optical switch
WO2002029477A1 (en) * 2000-10-04 2002-04-11 Mitsubishi Denki Kabushiki Kaisha Optical variable attenuator
JP2006208948A (en) * 2005-01-31 2006-08-10 Fdk Corp Variable optical attenuator
JP2007114746A (en) * 2005-09-21 2007-05-10 Fdk Corp Faraday rotational angle varying device and variable optical attenuator using same

Also Published As

Publication number Publication date
JP4931070B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
US6594068B2 (en) High switching speed digital faraday rotator device and optical switches containing the same
JP3779054B2 (en) Variable optical filter
JP5647828B2 (en) Reflective variable optical attenuator
US7444040B2 (en) Magneto-optical component
JP3771228B2 (en) Magneto-optical components
JP4931070B2 (en) Variable optical attenuator
JP4863371B2 (en) Faraday rotation angle variable device and variable optical attenuator using the same
US7280264B2 (en) Magneto-optical device
JP2005099737A (en) Magnetooptic optical component
JP2007248779A (en) Optical isolator
JP4972982B2 (en) Polarization control device and polarization operation device
JP2567697B2 (en) Faraday rotation device
JP3881505B2 (en) Faraday rotator and optical device using the same
JP4707059B2 (en) Split ratio switching type optical splitter
JP2010145913A (en) Magneto-optical light modulator
JP2005345491A (en) Magneto-optical component
JP4149248B2 (en) Optical parts
JP2006065027A (en) Variable optical attenuator
JP2005049610A (en) Optical component
JP2006243039A (en) Magneto-optic optical component
JP2005221644A (en) Magnetooptic optical component
JP2007047359A (en) Optical device
JP2005049653A (en) Magneto-optical light part
JP2004077617A (en) Variable light attenuator with optical isolator function
JP2003084236A (en) Optical attenuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120209

R150 Certificate of patent or registration of utility model

Ref document number: 4931070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250