JP2010145913A - Magneto-optical light modulator - Google Patents

Magneto-optical light modulator Download PDF

Info

Publication number
JP2010145913A
JP2010145913A JP2008325342A JP2008325342A JP2010145913A JP 2010145913 A JP2010145913 A JP 2010145913A JP 2008325342 A JP2008325342 A JP 2008325342A JP 2008325342 A JP2008325342 A JP 2008325342A JP 2010145913 A JP2010145913 A JP 2010145913A
Authority
JP
Japan
Prior art keywords
magneto
light
analyzer
optic
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008325342A
Other languages
Japanese (ja)
Other versions
JP5305386B2 (en
Inventor
Hirotaka Kawai
博貴 河合
Tomokazu Imura
智和 井村
Hiromitsu Umezawa
浩光 梅澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2008325342A priority Critical patent/JP5305386B2/en
Publication of JP2010145913A publication Critical patent/JP2010145913A/en
Application granted granted Critical
Publication of JP5305386B2 publication Critical patent/JP5305386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the extinction ratio of a magneto-optical light modulator used in a visible light band, and to increase display contrast in a display device. <P>SOLUTION: In the magneto-optical light modulator, a polarizer 10, a magneto-optical crystal 12 and an analyzer 16 are arranged in an optical path so that light advances, in the order; the magneto-optical crystal is composed of a rare-earth iron garnet single crystal; and a magnetization direction of the magneto-optical crystal is controlled by a variable magnetic field application means for applying a variable magnetic field to the magneto-optical crystal for varying the transmission light quantity output from the analyzer. A linear phaser 14 is inserted between the magneto-optical crystal and the analyzer, in a state such that the transmission light quantity from the analyzer is minimized; the linear phaser is set at an angle at which the elliptical ratio of polarized light, after transmitting through the linear phaser, when the linear phaser is rotated in a light incident surface, is minimized; and the analyzer is arranged so that the transmission axis of the analyzer is orthogonal to the major axis of elliptically polarized light which is transmitted through the linear phaser. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、偏光子と希土類鉄ガーネット単結晶からなる磁気光学結晶と検光子を、その順に光が進行するように光路中に配置し、磁気光学結晶のファラデー効果を利用して検光子から出力する透過光量を可変する磁気光学光変調器に関し、更に詳しく述べると、磁気光学結晶と検光子との間に直線位相子を挿入し、偏光子による直線偏光が、磁気光学結晶を透過することによって生じる楕円偏光を、直線位相子によって直線偏光に戻して検光子に入力するように構成した磁気光学光変調器に関するものである。この技術は、例えば表示デバイスに用いる光強度変調器のコントラスト改善に有用である。   In the present invention, a magneto-optic crystal composed of a polarizer and a rare earth iron garnet single crystal and an analyzer are arranged in the optical path so that light travels in that order, and output from the analyzer using the Faraday effect of the magneto-optic crystal. More specifically, the magneto-optic light modulator that changes the amount of transmitted light is described. By inserting a linear phase retarder between the magneto-optic crystal and the analyzer, the linearly polarized light by the polarizer is transmitted through the magneto-optic crystal. The present invention relates to a magneto-optic light modulator configured so that the generated elliptically polarized light is converted back to linearly polarized light by a linear phase shifter and input to the analyzer. This technique is useful for improving the contrast of a light intensity modulator used in a display device, for example.

光変調器は、透過光の強度を変調する光デバイスであり、駆動方式によって、音響光学方式、電気光学方式、及び磁気光学方式などがある。音響光学方式は、原理的には超音波による屈折率分布によって回折格子を形成させるため、消費電力が大きく、相当大きな電源が必要となる。電気光学方式の場合は、電気光学効果を利用するものであり、オン−オフのコントラスト比を大きくするには、電圧を印加する範囲を長くとる(即ち素子の光路長を長くする)必要があり、大型化が避けられない。それらに対して磁気光学方式は、ファラデー効果を利用するもので、光路長の短縮、低コスト化、低消費電力化の可能性があり、他の方式に比べて遙かに有利と考えられている。   The optical modulator is an optical device that modulates the intensity of transmitted light, and there are an acousto-optic method, an electro-optic method, a magneto-optic method, and the like depending on a driving method. In the acousto-optic method, in principle, a diffraction grating is formed by a refractive index distribution by ultrasonic waves, so that power consumption is large and a considerably large power source is required. In the case of the electro-optic method, the electro-optic effect is used, and in order to increase the on-off contrast ratio, it is necessary to increase the voltage application range (that is, increase the optical path length of the element). Larger size is inevitable. On the other hand, the magneto-optical method uses the Faraday effect, and there is a possibility of shortening the optical path length, reducing the cost, and reducing the power consumption, and is considered to be much more advantageous than other methods. Yes.

磁気光学方式の公知例としては、特許文献1に示されているような、光通信で使用する磁気光学光変調器がある。磁気光学光変調器は、光路中に、偏光子と磁気光学素子と検光子を、その順に配置し、前記磁気光学素子のファラデー効果を利用して検光子からの出力光量を変調するように構成されている。磁気光学素子は、磁気光学材料と、それに磁界を印加する磁界印加手段などからなる。ここで磁気光学材料としては、典型的には希土類鉄ガーネット結晶が用いられている。   As a known example of the magneto-optical system, there is a magneto-optical light modulator used in optical communication as disclosed in Patent Document 1. The magneto-optic light modulator is configured such that a polarizer, a magneto-optic element, and an analyzer are arranged in that order in the optical path, and the output light amount from the analyzer is modulated using the Faraday effect of the magneto-optic element. Has been. The magneto-optical element includes a magneto-optical material and magnetic field applying means for applying a magnetic field thereto. Here, rare earth iron garnet crystal is typically used as the magneto-optical material.

ところで、携帯電話機程度のサイズあるいは眼鏡等に装着できる超小型のレーザプロジェクタが開発されている。いずれも小型のレーザと光線走査装置を使って、投影面上で光を高速に動かすことによる残像効果を利用して映像を投影するものである。これらにおいて、カラー映像を投影するためには、当然のことながらRGBの3色の光源を必要とし、それらのうちR(赤色)とB(青色)については発光強度を直接制御できるデバイス(半導体レーザ)が確立している。しかし、G(緑色)については、現在のところ、そのようなデバイスはなく、半導体励起レーザの第2高調波発生(SHG)のレーザを使用することが有望視されている。しかしながら、電源の制御(厳密な素子の温度制御を含む)を行わないと発振効率が著しく低下してしまうため、G(緑色)については、緑色の安定したレーザ発振の後、光源からの光強度を外部光変調器によって変調する方式が採用される。   By the way, an ultra-small laser projector that can be attached to a size equivalent to a cellular phone or glasses is being developed. In either case, a small laser and a beam scanning device are used to project an image using the afterimage effect by moving light at high speed on the projection surface. In these, in order to project a color image, it is a matter of course that light sources of three colors of RGB are required, and among them, a device (semiconductor laser) that can directly control the emission intensity for R (red) and B (blue) ) Is established. However, for G (green), there is currently no such device, and it is considered promising to use a semiconductor-pumped laser second harmonic generation (SHG) laser. However, if the power supply control (including strict element temperature control) is not performed, the oscillation efficiency will be significantly reduced. For G (green), the light intensity from the light source after the stable laser oscillation of green A method is used in which the light is modulated by an external light modulator.

このような表示デバイスでは、可視光帯(例えば緑色光:波長532nm)の光を取り扱うことになるが、外部光変調器として上記のような従来の磁気光学光変調器を採用すると、消光比(最大強度と最小強度の比)は20dB程度以下に止まり、期待する値ほど高くならない。因みに、光通信の光アイソレータなどに使われている磁気光学結晶(希土類鉄ガーネット結晶)では40dB以上の消光比が得られている。消光比が悪いということは、表示デバイスにおいては表示のコントラストが低くなることを意味し、表示デバイスを高性能化できないという問題を生じる。
特許第4056726号公報
Such a display device handles light in the visible light band (for example, green light: wavelength 532 nm). However, when the conventional magneto-optic light modulator as described above is used as the external light modulator, the extinction ratio ( The ratio of the maximum intensity to the minimum intensity is only about 20 dB or less and does not become as high as expected. Incidentally, a magneto-optical crystal (rare earth iron garnet crystal) used in an optical isolator for optical communication has an extinction ratio of 40 dB or more. A poor extinction ratio means that the display device has a low contrast of display, which causes a problem that the performance of the display device cannot be improved.
Japanese Patent No. 4056726

本発明が解決しようとする課題は、可視光帯で用いる磁気光学光変調器の消光比を改善し、表示デバイスにおける表示のコントラストを大きくすることである。   The problem to be solved by the present invention is to improve the extinction ratio of the magneto-optic light modulator used in the visible light band and increase the display contrast in the display device.

可視光帯で用いる磁気光学光変調器の消光比が低い原因は、磁気光学結晶での光吸収による磁気円2色性にある。即ち、磁気光学結晶である希土類鉄ガーネット単結晶は、例えば緑色光(波長532nm)では光吸収により1〜2dB/μm程度もの大きな吸収損失が生じる。そのため、偏光子からの直線偏光は、磁気光学結晶を透過する際に、偏光面が回転するだけでなく、光の鈍り(リタデーション)が生じて楕円偏光になる。その楕円偏光が検光子に入力すると、楕円偏光の長軸方向に対して検光子透過軸が直交していても、楕円偏光の短軸成分が検光子から出力し、最小透過光量が大きくなってしまう。これが、可視光帯で用いる磁気光学光変調器の消光比が低い原因である。そこで本発明では、磁気光学結晶を透過した楕円偏光を直線位相子によって直線偏光に戻し、それによって最小透過光量を極力低く抑えるように工夫されている。   The reason for the low extinction ratio of the magneto-optic light modulator used in the visible light band is magnetic dichroism due to light absorption in the magneto-optic crystal. That is, the rare earth iron garnet single crystal which is a magneto-optical crystal causes a large absorption loss of about 1 to 2 dB / μm due to light absorption in green light (wavelength 532 nm), for example. Therefore, when the linearly polarized light from the polarizer is transmitted through the magneto-optic crystal, not only does the polarization plane rotate, but also the light becomes dull (retardation) and becomes elliptically polarized light. When the elliptically polarized light is input to the analyzer, even if the analyzer transmission axis is orthogonal to the major axis direction of the elliptically polarized light, the short axis component of the elliptically polarized light is output from the analyzer and the minimum transmitted light amount increases. End up. This is the reason why the extinction ratio of the magneto-optic light modulator used in the visible light band is low. Therefore, the present invention is devised so that elliptically polarized light transmitted through the magneto-optic crystal is converted back to linearly polarized light by a linear phase shifter, thereby minimizing the minimum amount of transmitted light.

即ち本発明は、偏光子と磁気光学結晶と検光子を、その順に光が進行するように光路中に配置し、前記磁気光学結晶は希土類鉄ガーネット単結晶からなり、該磁気光学結晶に磁界を印加する可変磁界印加手段で磁気光学結晶の磁化方向を制御することにより、検光子から出力する透過光量を可変する磁気光学光変調器において、磁気光学結晶と検光子との間に直線位相子を挿入し、検光子からの透過光量が最小となる状態のときに、前記直線位相子は、それを光入射面内で回転させたときに直線位相子透過後の偏光の楕円率が最小となる角度に設定され、前記検光子は、直線位相子を透過した楕円偏光の長軸に対して検光子透過軸が直交するように設置されていることを特徴とする磁気光学光変調器である。なお、光路は必ずしも一方向の直線である必要はなく,途中にミラー等の反射による折り返しがあってもよい。   That is, in the present invention, a polarizer, a magneto-optic crystal, and an analyzer are arranged in an optical path so that light travels in that order, and the magneto-optic crystal is composed of a rare earth iron garnet single crystal, and a magnetic field is applied to the magneto-optic crystal. By controlling the magnetization direction of the magneto-optic crystal with the variable magnetic field applying means to be applied, in a magneto-optic light modulator that varies the amount of transmitted light output from the analyzer, a linear phase shifter is provided between the magneto-optic crystal and the analyzer. When the linear phase shifter is inserted and rotated in the light incident plane, the ellipticity of the polarized light after passing through the linear phase shifter is minimized. The magneto-optic light modulator is characterized in that the analyzer is set so that the analyzer transmission axis is orthogonal to the major axis of the elliptically polarized light transmitted through the linear phase shifter. Note that the optical path does not necessarily have to be a straight line in one direction, and may be turned back by reflection from a mirror or the like.

また本発明は、偏光子と磁気光学結晶と検光子を、その順に光が進行するように光路中に配置し、前記磁気光学結晶は希土類鉄ガーネット単結晶からなり、該磁気光学結晶に高周波磁界を印加するコイルによって光進行方向に対する磁気光学結晶の磁化方向を制御することにより、検光子から出力する透過光量を変調する磁気光学光変調器において、磁気光学結晶と検光子との間に直線位相子を挿入し、磁気光学結晶に印加される高周波磁界の光進行方向と同方向もしくは逆方向の成分が最大となる状態のときに、前記直線位相子は、それを光入射面内方向で回転させたときに直線位相子透過後の偏光の楕円率が最小となる角度に設定され、前記検光子は、直線位相子を透過した楕円偏光の長軸に対して検光子透過軸が直交するように設置されていることを特徴とする磁気光学光変調器である。   According to the present invention, a polarizer, a magneto-optic crystal, and an analyzer are arranged in the optical path so that light travels in that order, and the magneto-optic crystal is made of a rare earth iron garnet single crystal, and the magneto-optic crystal has a high-frequency magnetic field. In a magneto-optic light modulator that modulates the amount of transmitted light output from the analyzer by controlling the magnetization direction of the magneto-optic crystal with respect to the light traveling direction by a coil that applies, a linear phase between the magneto-optic crystal and the analyzer When a component is inserted and the component of the high-frequency magnetic field applied to the magneto-optic crystal is in the same or opposite direction as the light traveling direction, the linear phase shifter rotates it in the light incident plane direction. The ellipticity of the polarized light after passing through the linear phase shifter is set to an angle that causes the analyzer to be orthogonal to the major axis of the elliptically polarized light that has passed through the linear phase shifter. Installed in It is the magneto-optical modulator according to claim is.

前記磁気光学結晶は、非磁性基板上に液相エピタキシャル成長させた希土類鉄ガーネット単結晶をアニール処理(熱処理)したものであり、該磁気光学結晶を中心に同心状にコイルが巻回され、該コイルに高周波電流を通電することにより、磁気光学結晶の光入射面に対して垂直方向の高周波磁界が印加されるようにするのが好ましい。   The magneto-optic crystal is obtained by annealing (heat treatment) a rare-earth iron garnet single crystal grown on a non-magnetic substrate by liquid phase epitaxy, and a coil is wound concentrically around the magneto-optic crystal. It is preferable that a high-frequency magnetic field in a direction perpendicular to the light incident surface of the magneto-optic crystal is applied by applying a high-frequency current to the magnetic optical crystal.

前記直線位相子は、その位相差δが、
δmin +nπ≦δ≦(n+1)π−δmin
δmin =1.5×d×α
但し、
n=0,1,2,・・・
d:磁気光学結晶内の光路の入射面垂直成分長(μm)
α:透過光の吸収係数(dB/μm)
を満たすものとする。ここで、磁気光学結晶内の光路の入射面垂直成分長(以下、垂直光路長と表記する)とは、例えば偏光子と、磁気光学結晶と、直線位相子と、検光子とが直線的に配列されている場合(後述する図2のような構成)は、光は磁気光学結晶内を1回透過するだけであるから,磁気光学結晶の厚さとなる。これに対し,磁気光学結晶の背面にミラー等を設置し,光が反射して再び入射面から出射する場合は、光は磁気光学結晶内を2回通過するため、磁気光学結晶の厚さの2倍となる。
The linear phase shifter has a phase difference δ of
δ min + nπ ≦ δ ≦ (n + 1) π−δ min
δ min = 1.5 × d × α
However,
n = 0, 1, 2,...
d: vertical component length of incident plane of light path in magneto-optic crystal (μm)
α: Absorption coefficient of transmitted light (dB / μm)
Shall be satisfied. Here, the incident surface vertical component length of the optical path in the magneto-optical crystal (hereinafter referred to as the vertical optical path length) is, for example, that a polarizer, a magneto-optical crystal, a linear phase shifter, and an analyzer are linear. In the case of the arrangement (the configuration as shown in FIG. 2 described later), the light is transmitted through the magneto-optical crystal only once, and thus becomes the thickness of the magneto-optical crystal. On the other hand, when a mirror or the like is installed on the back surface of the magneto-optic crystal and the light is reflected and emitted from the incident surface again, the light passes through the magneto-optic crystal twice, so that the thickness of the magneto-optic crystal Doubled.

希土類鉄ガーネット単結晶の組成は、
(RBi)3 (FeM)5 12
但し、R:1種以上の希土類元素、M:Ga,Al,Inから選ばれる1種以上の元素
であることが好ましい。
The composition of rare earth iron garnet single crystal is
(RBi) 3 (FeM) 5 O 12
However, R is preferably one or more rare earth elements and one or more elements selected from M: Ga, Al, and In.

本発明に係る磁気光学光変調器は、光路中の磁気光学結晶と検光子との間に直線位相子が挿入され、該直線位相子は、最小透過光量状態で、直線位相子を光入射面内で回転させたときに該直線位相子透過後の偏光の楕円率が最小となる角度に設定されているので、楕円偏光が直線偏光もしくはそれに極めて近い状態(楕円率が非常に小さい状態)に戻り、他方、検光子は、直線位相子を透過した楕円偏光の長軸に対して検光子透過軸が直交するように設置されているので、最小透過光量を非常に低く抑えることができる。その結果、消光比が大幅に改善され、表示ディスプレイに適用した場合にはコントラストが大幅に向上する。因みに、直線位相子が無い場合にはコントラストが20dB未満であるが、直線位相子を配置することにより40dB以上にすることが可能である。   In the magneto-optic light modulator according to the present invention, a linear phase retarder is inserted between a magneto-optic crystal and an analyzer in an optical path, and the linear phase retarder is a light incident surface with the minimum transmitted light amount. Is set to an angle that minimizes the ellipticity of the polarized light after passing through the linear phase shifter when rotated in the linearly polarized state, so that the elliptically polarized light is linearly polarized or very close to it (the ellipticity is very small). On the other hand, the analyzer is installed so that the analyzer transmission axis is orthogonal to the major axis of the elliptically polarized light transmitted through the linear phase shifter, so that the minimum amount of transmitted light can be kept very low. As a result, the extinction ratio is greatly improved, and the contrast is greatly improved when applied to a display. Incidentally, the contrast is less than 20 dB when there is no linear phase retarder, but it can be increased to 40 dB or more by arranging the linear phase retarder.

図1は、本発明に係る磁気光学光変調器の構成と動作を示す説明図である。磁気光学光変調器は、偏光子10と、希土類鉄ガーネット単結晶からなる磁気光学結晶12と、直線位相子14と、検光子16とが、その順に光が進行するように配置されている。ここで、直線位相子14は、最小透過光量状態において、直線位相子を光入射面内で回転させたときに該直線位相子透過後の偏光の楕円率が最小となる向きに設定されており、検光子16は、直線位相子14を透過した楕円偏光の長軸に対して検光子透過軸が直交するように設置されている。   FIG. 1 is an explanatory diagram showing the configuration and operation of a magneto-optic light modulator according to the present invention. In the magneto-optic light modulator, a polarizer 10, a magneto-optic crystal 12 made of a rare earth iron garnet single crystal, a linear phase shifter 14, and an analyzer 16 are arranged so that light travels in that order. Here, the linear phase shifter 14 is set in such a direction that the ellipticity of the polarized light after passing through the linear phase shifter is minimized when the linear phase shifter is rotated within the light incident surface in the minimum transmitted light amount state. The analyzer 16 is installed so that the analyzer transmission axis is orthogonal to the major axis of the elliptically polarized light transmitted through the linear phase shifter 14.

磁気光学光変調器へ入射する可視光(例えば波長532nmの緑色光)は、偏光子10を通過することによって直線偏光になる。図1の例では、偏光子透過軸10aが水平方向であるため、偏光子10を透過した光は水平方向の直線偏光になっている。この直線偏光が、外部からの印加磁界により光の進行方向と同方向あるいは逆方向に磁化されている磁気光学結晶(希土類鉄ガーネット単結晶)12を通過すると、偏光面が回転(ファラデー回転)する。それと同時に、磁気光学結晶12での光吸収(1〜2dB/μm程度の吸収損失)のために光が鈍る。これらによって、磁気光学結晶12を通過すると、入射した直線偏光は、主軸(長軸)が回転した楕円偏光となる。   Visible light (for example, green light having a wavelength of 532 nm) incident on the magneto-optic light modulator becomes linearly polarized light by passing through the polarizer 10. In the example of FIG. 1, since the polarizer transmission axis 10a is in the horizontal direction, the light transmitted through the polarizer 10 is linearly polarized in the horizontal direction. When this linearly polarized light passes through a magneto-optic crystal (rare earth garnet single crystal) 12 that is magnetized in the same or opposite direction as the light traveling direction by an externally applied magnetic field, the plane of polarization rotates (Faraday rotation). . At the same time, the light becomes dull due to light absorption by the magneto-optical crystal 12 (absorption loss of about 1 to 2 dB / μm). As a result, when passing through the magneto-optical crystal 12, the incident linearly polarized light becomes elliptically polarized light whose principal axis (major axis) is rotated.

図1において、Aは最小透過光量が得られる状態(光遮断)の動作を、Bは最大透過光量が得られる状態(光透過)の動作を、それぞれ表している。Aでは、外部からの印加磁界方向(白抜き矢印で示す)は光の進行方向と同方向であり、そのとき主軸は時計回りに回転するものとする。ここでは時計回りを正と定義する。それに対して、Bでは、外部からの印加磁界方向(白抜き矢印で示す)は光の進行方向と逆方向であり、主軸の回転方向は反時計回りとなる。但し、光の進行方向に外部磁界を印加した場合に必ず主軸の回転方向が時計回りになるということではなく、印加磁界方向が反転すれば、回転方向も反転するということである。主軸の回転角は、単位長さ当たりの回転角θF と垂直光路長dの積となる。 In FIG. 1, A represents an operation in a state where the minimum transmitted light amount can be obtained (light blocking), and B represents an operation in a state where the maximum transmitted light amount can be obtained (light transmission). In A, the direction of the magnetic field applied from the outside (indicated by the white arrow) is the same as the traveling direction of the light, and the main axis rotates clockwise at that time. Here, clockwise is defined as positive. On the other hand, in B, the direction of the applied magnetic field from the outside (indicated by the white arrow) is the opposite direction to the light traveling direction, and the rotation direction of the main shaft is counterclockwise. However, when an external magnetic field is applied in the traveling direction of light, the rotation direction of the main shaft does not always turn clockwise. If the applied magnetic field direction is reversed, the rotation direction is also reversed. The rotation angle of the main shaft is the product of the rotation angle θ F per unit length and the vertical optical path length d.

図1のA(光遮断)では、磁気光学結晶12からの楕円偏光が、直線位相子14を通過することにより、適当な位相差が与えられてほぼ直線偏光(直線偏光と見なせるほどに楕円率は非常に小さくなる)に戻る。この直線偏光の偏光軸(楕円偏光の主軸)に対して、検光子透過軸16aが直交するように配置されているので、検光子16から出力する透過光量は極めて小さくなる。それに対して、図1のB(光透過)の場合には、磁気光学結晶12からの楕円偏光が直線位相子14を通過することにより、逆に楕円率は若干大きくなる。そして、その楕円偏光の検光子透過軸成分が、検光子16を透過することになる。   In FIG. 1A (light blocking), the elliptically polarized light from the magneto-optical crystal 12 passes through the linear phase retarder 14, so that an appropriate phase difference is given and the ellipticity is such that it can be regarded as substantially linearly polarized light (linearly polarized light). Is very small). Since the analyzer transmission axis 16a is arranged so as to be orthogonal to the polarization axis of this linearly polarized light (the main axis of elliptically polarized light), the amount of transmitted light output from the analyzer 16 becomes extremely small. On the other hand, in the case of B (light transmission) in FIG. 1, the ellipticity from the magneto-optical crystal 12 passes through the linear phase retarder 14 and the ellipticity is slightly increased. Then, the analyzer transmission axis component of the elliptically polarized light is transmitted through the analyzer 16.

因みに、図1のA(光遮断)において直線位相子が無い場合を想定すると、磁気光学結晶通過後の楕円偏光の長軸に対して検光子透過軸を直交させる場合に最も検光子透過光量を小さくすることができるが、その場合でも楕円偏光の短軸成分は検光子を通過してしまうため最小透過光量を小さくできない。光変調器としては、光の変調幅、つまり最大透過光量Pmax と最小透過光量Pmin の比であるコントラストPmin /Pmax が大きいことが重要である。しかし、上記のように、直線位相子が無い場合には最小透過光量を小さくできないので、コントラストの向上は望めないことになる。 Incidentally, assuming that there is no linear phase shifter in A (light blocking) in FIG. 1, when the analyzer transmission axis is orthogonal to the major axis of the elliptically polarized light after passing through the magneto-optic crystal, the analyzer transmitted light amount is the largest. Even in that case, the short-axis component of elliptically polarized light passes through the analyzer, so the minimum transmitted light amount cannot be reduced. As an optical modulator, it is important that the modulation width of light, that is, the contrast P min / P max that is the ratio of the maximum transmitted light amount P max and the minimum transmitted light amount P min is large. However, as described above, when there is no linear phase retarder, the minimum amount of transmitted light cannot be reduced, so that improvement in contrast cannot be expected.

コントラストに影響する要因としては、回転角の可変幅と偏光の楕円率がある。楕円偏光と検光子透過軸16aの関係を、図1のCに示す。検光子を通過する光量Pは、楕円偏光の長軸をImax 、短軸をImin とすると、
P=(Imax cosα+Imin sinα)2 ・・・(1)
となる。ここでαは、楕円偏光の長軸と検光子透過軸とのなす角度である。上記(1)式より、透過光量を最小にするには、α=π/2で、且つImin を小さくすることである。αは検光子透過軸の設定角度であるので、楕円偏光の長軸と直交方向に設置することが適当である。Imin は、偏光の楕円率と関係しており、楕円率が小さいこと(直線偏光であること)が望ましいことになる。
Factors affecting the contrast include the variable width of the rotation angle and the ellipticity of the polarization. The relationship between the elliptically polarized light and the analyzer transmission axis 16a is shown in FIG. The amount of light P that passes through the analyzer is expressed as follows: the major axis of elliptically polarized light is I max and the minor axis is I min .
P = (I max cos α + I min sin α) 2 (1)
It becomes. Here, α is an angle formed by the major axis of elliptically polarized light and the analyzer transmission axis. From the above equation (1), in order to minimize the amount of transmitted light, α = π / 2 and I min should be reduced. Since α is the setting angle of the analyzer transmission axis, it is appropriate to install it in the direction orthogonal to the major axis of elliptically polarized light. I min is related to the ellipticity of polarized light, and it is desirable that the ellipticity is small (linearly polarized light).

そのため本発明では、直線位相子によって楕円率の小さい偏光に戻し、検光子透過軸を楕円偏光長軸と直交させている。その場合の最小透過光量Pmin は次式で表される。
min =[Imax cos(π/2)+Imin sin(π/2)]2
=(Imin 2 ・・・(2)
以上のことから、最小透過光量は偏光の楕円率と直結しており、楕円率を小さくすることが重要であることが分かる。
Therefore, in the present invention, the linear phase retarder returns the polarized light with a small ellipticity, and the analyzer transmission axis is orthogonal to the elliptical polarization long axis. In this case, the minimum transmitted light amount P min is expressed by the following equation.
P min = [I max cos (π / 2) + I min sin (π / 2)] 2
= (I min ) 2 (2)
From the above, it can be seen that the minimum transmitted light amount is directly connected to the ellipticity of polarized light, and it is important to reduce the ellipticity.

他方、透過光量を最大にするには、α=0で、且つImax を大きくする必要がある。本発明ではα=π/2に設定しているので、透過光量は、上記(2)式より、
max =[Imax cos(π/2+x)+Imin sin(π/2+x)]2 ・・・(3)
となる。ここでxは偏光面の変化量であり、本発明の場合は、正方向に磁界を印加したときの磁気光学結晶透過による回転角θF dと直線位相子通過による回転La の和と、逆方向に磁界を印加したときの磁気光学結晶通過による回転角−θF dと直線位相子通過による回転Lb の和との差になる。よって、(3)式は、次式のように変換される。
max ={Imax sin[2θF d+(La −Lb )]+Imin cos[2θF d+(La −Lb )]}2
これより、最大透過光量Pmax の条件としては、[2θF d+(La −Lb )]=π/2で、且つImax が大きいこととなる。
On the other hand, in order to maximize the amount of transmitted light, α = 0 and I max must be increased. Since α = π / 2 is set in the present invention, the amount of transmitted light is calculated from the above equation (2).
P max = [I max cos (π / 2 + x) + I min sin (π / 2 + x)] 2 (3)
It becomes. Where x is the variation of the polarization plane, in the case of the present invention, the sum of rotation L a by the rotation angle theta F d and linear retarder passing by magneto-optical crystal transparent when the forward direction by applying a magnetic field, This is the difference between the rotation angle −θ F d due to passage through the magneto-optic crystal when a magnetic field is applied in the reverse direction and the sum of rotation L b due to passage through the linear phase shifter. Therefore, the expression (3) is converted as the following expression.
P max = {I max sin [2θ F d + (L a −L b )] + I min cos [2θ F d + (L a −L b )]} 2
From this, as conditions for the maximum transmitted light amount P max , [2θ F d + (L a −L b )] = π / 2 and I max is large.

しかし、Imax は磁気光学結晶の吸収に依存しているため、垂直光路長dを大きくすることは、回転角をπ/2に近づけることにより角度ずれロスを小さくすることと、吸収でImax が小さくなることによるロス増加の両面を持つため、その兼ね合いによる適当な膜厚dが存在し、最大透過光量Pmax のとき、[2θF d+(La −Lb )]=π/2とはならない場合もある。 However, since I max depends on the absorption of the magneto-optic crystal, increasing the vertical optical path length d reduces the angle shift loss by bringing the rotation angle close to π / 2 and reduces the I max by absorption. Therefore, there is an appropriate film thickness d due to the balance, and when the maximum amount of transmitted light P max , [2θ F d + (L a −L b )] = π / 2. Sometimes it is not possible.

本発明で重要なことは、光の鈍りを補正するために挿入した直線位相子がImax 及び回転角差へ与える影響である。Imax に対しては、Imax >>ΔIであり、影響は小さい。ここでΔIは、直線位相子透過直前のI’max と直線位相子透過後のImax の差である。このΔIは、Pmin と同程度の大きさであり、そのためPmin を小さくすることには大きく寄与する。回転角差に対しても、2θF d>>(La −Lb )であり、影響は小さい。これより、直線位相子を挿入することは、Pmin を小さくすることの効果のみがあり、その他に悪影響は与えない点で優れている。 What is important in the present invention is the effect that the linear phase retarder inserted to correct the dullness of light has on I max and the rotation angle difference. For I max , I max >> ΔI and the effect is small. Here, ΔI is a difference between I ′ max immediately before transmission through the linear phase shifter and I max after transmission through the linear phase shifter. This ΔI is about the same as P min, and therefore greatly contributes to reducing P min . Also for the rotation angle difference, 2θ F d >> (L a −L b ), and the influence is small. Thus, inserting a linear phase shifter is excellent in that it only has the effect of reducing P min and does not adversely affect others.

測定に用いた本発明の具体的構成例を図2に示す。この磁気光学光変調器も、偏光子10と、希土類鉄ガーネット単結晶からなる磁気光学結晶12と、直線位相子14と、検光子16とが、その順に光が進行するように光路中に配置されている。磁気光学結晶12の外側に、円筒状の鉄心とコイルから形成される電磁石20を配置し、−40〜40kA/mの磁界が印加できるように構成する。直線位相子14は、波長532nmの緑色光における位相差が6.8度であり、電磁石20の磁界を+40kA/mにしたときに、磁気光学結晶(希土類鉄ガーネット単結晶)12を透過した光の主軸(長軸)と該直線位相子14の進相軸を合わせるように設置する。合わせる方法は、直線位相子が無い状態で、磁界を+40kA/mにして、検光子16を光入射面内で回転させ、透過光量が最小になる角度で固定し、その状態で直線位相子14を磁気光学結晶12と検光子16の間に挿入し、直線位相子14を光入射面内で回転させて、検光子16を透過する光量が最小になるようにする方法である。なお、磁気光学結晶12は、(CaGd)3 (MgZrGa)5 12で表される非磁性基板22上に、液相エピタキシャル法により育成したものである。その組成は(GdYBi)3 (FeGa)5 12、膜厚は3μmである。なお、磁気光学結晶(希土類鉄ガーネット単結晶)は、育成後にトップ温度1000℃で10時間アニール処理(熱処理)してある。 A specific configuration example of the present invention used for the measurement is shown in FIG. Also in this magneto-optic light modulator, a polarizer 10, a magneto-optic crystal 12 made of a rare earth iron garnet single crystal, a linear phase shifter 14, and an analyzer 16 are arranged in the optical path so that light proceeds in that order. Has been. An electromagnet 20 formed of a cylindrical iron core and a coil is disposed outside the magneto-optical crystal 12 so that a magnetic field of −40 to 40 kA / m can be applied. The linear phase shifter 14 has a phase difference of 6.8 degrees in green light having a wavelength of 532 nm, and light transmitted through the magneto-optic crystal (rare earth iron garnet single crystal) 12 when the magnetic field of the electromagnet 20 is set to +40 kA / m. The main axis (long axis) of the linear phase shifter 14 and the fast axis of the linear phase shifter 14 are aligned. The alignment is performed by setting the magnetic field to +40 kA / m in a state where there is no linear phase shifter, rotating the analyzer 16 in the light incident plane, and fixing the angle at which the transmitted light amount is minimized, and in this state, the linear phase shifter 14 Is inserted between the magneto-optical crystal 12 and the analyzer 16, and the linear phase shifter 14 is rotated within the light incident surface so that the amount of light transmitted through the analyzer 16 is minimized. The magneto-optic crystal 12 is grown on a nonmagnetic substrate 22 represented by (CaGd) 3 (MgZrGa) 5 O 12 by a liquid phase epitaxial method. Its composition is (GdYBi) 3 (FeGa) 5 O 12 and the film thickness is 3 μm. The magneto-optic crystal (rare earth iron garnet single crystal) is annealed (heat treated) at a top temperature of 1000 ° C. for 10 hours after growth.

このような測定系を用いて、直線位相子が無い場合(従来方式)と直線位相子が有る場合(本発明)について、波長532nmで1mWの光を入射したときの、ファラデー回転角と消光比の磁界依存性測定した。測定は、検光子を回転させる回転検光子法を用いた。測定結果を図3〜4に示す。いずれもAは直線位相子が無い場合(従来方式)、Bは直線位相子が有る場合(本発明)である。   Using such a measurement system, the Faraday rotation angle and the extinction ratio when 1 mW of light is incident at a wavelength of 532 nm when there is no linear phaser (conventional method) and when there is a linear phaser (present invention). The magnetic field dependence of was measured. The measurement was performed using a rotating analyzer method in which the analyzer is rotated. The measurement results are shown in FIGS. In both cases, A is a case where there is no linear phase retarder (conventional method), and B is a case where there is a linear phase retarder (present invention).

従来方式(直線位相子が無い場合)では、ファラデー回転角は、図3のAに示すように±14.6度で飽和し、その可変幅は29.2度であった。消光比は、図4のAに示すように、ファラデー回転角の絶対値が大きくなるに従い小さくなった。絶対値が14.6度のときは24.5dBであった。続いて、磁界を+40kA/mにして、検光子を光入射面内で回転させ、透過光量が最小になる角度で固定した。この状態で磁界を−40kA/m〜+40kA/mまで可変させ、透過光量を測定した。その結果、図5のAに示すように、最大透過光量は−10.7dBm、コントラストは18.2dBであった。   In the conventional method (in the case where there is no linear phase shifter), the Faraday rotation angle is saturated at ± 14.6 degrees as shown in FIG. 3A, and the variable width is 29.2 degrees. As shown in FIG. 4A, the extinction ratio decreased as the absolute value of the Faraday rotation angle increased. When the absolute value was 14.6 degrees, it was 24.5 dB. Subsequently, the magnetic field was set to +40 kA / m, the analyzer was rotated within the light incident surface, and fixed at an angle at which the transmitted light amount was minimized. In this state, the magnetic field was varied from −40 kA / m to +40 kA / m, and the amount of transmitted light was measured. As a result, as shown in FIG. 5A, the maximum transmitted light amount was −10.7 dBm, and the contrast was 18.2 dB.

本発明(直線位相子が有る場合)では、図3のAとBとの比較から、ファラデー回転角は殆ど変わっていない。これに対して、消光比についてみると、図4のAとBとの比較から、本発明では、プラス磁界側の飽和値が大きくなり、マイナス磁界側の飽和値は小さくなったことが分かる。続いて、磁界を+40kA/mにして、検光子を光入射面内で回転させ、透過光量が最小になる角度で固定した状態で、磁界を−40kA/m〜+40kA/mまで可変させ、透過光量を測定すると、図5のBに示すように、最大透過光量は−10.5dBm、コントラストは44.0dBであった。   In the present invention (when there is a linear phase shifter), the Faraday rotation angle is hardly changed from the comparison between A and B in FIG. On the other hand, regarding the extinction ratio, it can be seen from the comparison between A and B in FIG. 4 that the saturation value on the plus magnetic field side is large and the saturation value on the minus magnetic field side is small in the present invention. Subsequently, the magnetic field is set to +40 kA / m, the analyzer is rotated within the light incident surface, and the magnetic field is varied from −40 kA / m to +40 kA / m in a state where the transmitted light amount is fixed at the minimum angle, and transmitted. When the amount of light was measured, as shown in FIG. 5B, the maximum amount of transmitted light was −10.5 dBm, and the contrast was 44.0 dB.

これらの測定結果から、本発明は従来方式(直線位相子が無い場合)と比較して、コントラストを大幅に改善できることが確認できた。なお、コントラストを大幅に改善できたのは、直線位相子を挿入したことにより、プラス磁界側の消光比の飽和値が大きくなり、その状態で光を遮断する角度に検光子を設置しているためである。また、最大透過光量が従来方式と同程度の値であったことは、直線位相子挿入により、マイナス磁界側での消光比飽和値の劣化の影響が殆どないことを示している。   From these measurement results, it was confirmed that the present invention can significantly improve the contrast as compared with the conventional method (when there is no linear phase retarder). In addition, the contrast was greatly improved because the saturation value of the extinction ratio on the plus magnetic field side was increased by inserting a linear phase shifter, and the analyzer was installed at an angle that blocks light in that state. Because. Further, the fact that the maximum transmitted light amount is the same value as that of the conventional method indicates that there is almost no influence of the deterioration of the extinction ratio saturation value on the negative magnetic field side due to the insertion of the linear phase retarder.

ここで、直線位相子の位相差を6.8度に設定したのは、そのときに最もコントラストを大きくできるからである。この最適な位相差は、希土類鉄ガーネット単結晶の吸収係数と垂直光路長に関係する考えられる。そこで、吸収係数や垂直光路長の異なるものについて、図2の測定系を用いて、コントラストが最大になるときの位相差を調べた。ここで、直線位相子と検光子の設置方法は上記と同じである。また、膜厚が垂直光路長となっている。結果を図6〜7に示す。図6は、位相差と吸収係数の関係を示したものであり、同じ膜厚(垂直光路長)で見ると直線関係になっている。図7は、図6の各膜厚での直線の傾きと膜厚の関係を表したものであり、直線関係が得られている。   Here, the reason why the phase difference of the linear phase shifter is set to 6.8 degrees is that the contrast can be maximized at that time. This optimum phase difference is considered to be related to the absorption coefficient and the vertical optical path length of the rare earth iron garnet single crystal. Therefore, the phase difference at the time when the contrast is maximized was examined using the measurement system shown in FIG. 2 for those having different absorption coefficients and vertical optical path lengths. Here, the installation method of the linear phase shifter and the analyzer is the same as described above. The film thickness is the vertical optical path length. The results are shown in FIGS. FIG. 6 shows the relationship between the phase difference and the absorption coefficient. When viewed at the same film thickness (vertical optical path length), the relationship is linear. FIG. 7 shows the relationship between the slope of the straight line at each film thickness of FIG. 6 and the film thickness, and a linear relationship is obtained.

この結果から、最適位相差δopt は次式で導かれた。
δopt =1.5×d×α
d:磁気光学結晶内の光路の入射面垂直成分長(μm)
α:透過光の吸収係数(dB/μm)
これより、希土類鉄ガーネット単結晶の厚みと吸収係数がわかれば、位相差は算出可能となる。ここで、このδopt は、その直線位相子の進相軸とそこに入射する偏光の主軸(長軸)を合わせたときの位相差である。よって、これ以上の位相差を持つ直線位相子の場合は、進相軸を主軸から傾ければ、コントラストを同様に大きくできる。その意味でδopt は、必要な最小位相差δmin と言える。但し、それ以上であっても、波の周期性から周期的にコントラストを大きくできない位相差が存在する。それらを除いた位相差δは、次式で表される。
δmin +nπ≦δ≦(n+1)π−δmin
但し、n=0,1,2,・・・
From this result, the optimum phase difference δ opt was derived by the following equation.
δ opt = 1.5 × d × α
d: vertical component length of incident plane of light path in magneto-optic crystal (μm)
α: Absorption coefficient of transmitted light (dB / μm)
From this, the phase difference can be calculated if the thickness and absorption coefficient of the rare earth iron garnet single crystal are known. Here, δ opt is a phase difference when the fast axis of the linear phase shifter and the main axis (long axis) of polarized light incident thereon are matched. Therefore, in the case of a linear phaser having a phase difference larger than this, the contrast can be increased similarly if the fast axis is tilted from the main axis. In that sense, δ opt can be said to be a necessary minimum phase difference δ min . However, there is a phase difference that cannot be increased periodically due to the periodicity of the waves, even if it is more than that. The phase difference δ excluding these is expressed by the following equation.
δ min + nπ ≦ δ ≦ (n + 1) π−δ min
However, n = 0, 1, 2,...

<実施例1>
(CaGd)3 (MgZrGa)5 12で表される、厚さが700μmで1インチ形状の非磁性基板に、液相エピタキシャル法により、組成が(GdYBi)3 (FeGa)5 12の磁性ガーネット単結晶を3μm育成した。それを1mm角に切断し、1000℃で10時間熱処理して磁気光学結晶とした。この磁気光学結晶について、波長532nmにおける吸収係数を測定したところ、1.5dB/μmであった。磁気光学結晶を、銅線を巻きつけた鉄心の中に配置し、その前後に偏光子と検光子を設置した。光は、偏光子、磁気光学結晶、検光子の順に通過する。鉄心に巻きつけたコイルに正逆電流を流すことにより、磁気光学結晶には、光の進行方向と同方向をプラスとした場合に−40〜+40kA/mの磁界が印加できる。ここで、マイナスは光の進行方向と逆方向の磁界強度を表している。この状態で、波長532nm、1mWの光を入射し、磁界を+40kA/mにして、検光子を光入射面内で回転させ、透過光量が最小になる角度で固定した。次に、磁気光学結晶と検光子の間に波長532nmにおける位相差が6.8度の直線位相子を挿入し、光入射面内で回転させて、検光子を透過する光量が最小になるようにした。この状態で、磁界を−40kA/m〜+40kA/mまで可変させ、透過光量を測定した。その結果、最大透過光量ては−10.5dBm、コントラストは44.0dBであった。
<Example 1>
A magnetic garnet having a composition of (GdYBi) 3 (FeGa) 5 O 12 is formed on a nonmagnetic substrate represented by (CaGd) 3 (MgZrGa) 5 O 12 and having a thickness of 700 μm and 1 inch by liquid phase epitaxy. Single crystals were grown to 3 μm. It was cut into 1 mm square and heat-treated at 1000 ° C. for 10 hours to obtain a magneto-optical crystal. With respect to this magneto-optical crystal, the absorption coefficient at a wavelength of 532 nm was measured and found to be 1.5 dB / μm. The magneto-optic crystal was placed in an iron core wound with a copper wire, and a polarizer and an analyzer were placed before and after that. Light passes in the order of a polarizer, a magneto-optic crystal, and an analyzer. By applying a forward / reverse current to the coil wound around the iron core, a magnetic field of −40 to +40 kA / m can be applied to the magneto-optic crystal when the same direction as the light traveling direction is positive. Here, minus represents the magnetic field intensity in the direction opposite to the traveling direction of light. In this state, light with a wavelength of 532 nm and 1 mW was incident, the magnetic field was set to +40 kA / m, the analyzer was rotated within the light incident surface, and was fixed at an angle at which the amount of transmitted light was minimized. Next, a linear phase shifter having a phase difference of 6.8 degrees at a wavelength of 532 nm is inserted between the magneto-optic crystal and the analyzer and rotated in the light incident plane so that the amount of light transmitted through the analyzer is minimized. I made it. In this state, the magnetic field was varied from −40 kA / m to +40 kA / m, and the amount of transmitted light was measured. As a result, the maximum amount of transmitted light was -10.5 dBm, and the contrast was 44.0 dB.

<実施例2>
(CaGd)3 (MgZrGa)5 12で表される、厚さが700μmで1インチ形状の非磁性基板に、液相エピタキシャル法により、組成が(GdYBi)3 (FeGa)5 12の磁性ガーネット単結晶を3μm育成した。それを1mm角に切断し、1000℃で10時間熱処理して磁気光学結晶とした。この磁気光学結晶について、波長532nmにおける吸収係数を測定したところ、1.5dB/μmであった。磁気光学結晶を、銅線を巻きつけた鉄心の中に配置し、その前に偏光子を、直後に532nmにおける位相差が45度の直線位相子を、その後ろに検光子を設置した。光は、偏光子、磁気光学結晶、直線位相子、検光子の順に通過する。鉄心に巻きつけたコイルに正逆電流を流すことにより、磁気光学結晶には、光の進行方向と同方向をプラスとした場合に−40〜+40kA/mの磁界が印加できる。ここでも、マイナスは光の進行方向と逆方向の磁界強度を表している。この状態で、波長532nm、1mWの光を入射し、磁界を+40kA/mにして、検光子を光入射面内で半周回転させ、透過光量の最小値を測定した。次に、直線位相子を光入射面内で5度程度回転させて固定し、検光子を半周回転させて透過光量の最小値を測定した。この作業を繰り返し、透過光量が最も小さくなる直線位相子角度領域を見つけ、その付近で直線位相子角度を微調整して、透過光量が最小になる角度で固定し、検光子も透過光量が最小になる角度で固定した。この状態で磁界を−40kA/m〜+40kA/mまで可変させ、透過光量を測定した。その結果、最大透過光量は−10.2dBm、コントラストは44.3dBとなった。
<Example 2>
A magnetic garnet having a composition of (GdYBi) 3 (FeGa) 5 O 12 is formed on a nonmagnetic substrate represented by (CaGd) 3 (MgZrGa) 5 O 12 and having a thickness of 700 μm and a size of 1 inch by liquid phase epitaxy. Single crystals were grown to 3 μm. It was cut into 1 mm square and heat-treated at 1000 ° C. for 10 hours to obtain a magneto-optical crystal. With respect to this magneto-optical crystal, the absorption coefficient at a wavelength of 532 nm was measured and found to be 1.5 dB / μm. The magneto-optic crystal was placed in an iron core wound with a copper wire, a polarizer was placed in front of it, a linear phase retarder with a phase difference of 45 degrees at 532 nm was placed immediately after that, and an analyzer was placed behind it. Light passes in the order of a polarizer, a magneto-optic crystal, a linear phase shifter, and an analyzer. By applying a forward / reverse current to the coil wound around the iron core, a magnetic field of −40 to +40 kA / m can be applied to the magneto-optical crystal when the same direction as the light traveling direction is positive. Here, minus represents the magnetic field intensity in the direction opposite to the traveling direction of light. In this state, light having a wavelength of 532 nm and 1 mW were incident, the magnetic field was set to +40 kA / m, the analyzer was rotated half a turn on the light incident surface, and the minimum value of the transmitted light amount was measured. Next, the linear phase shifter was fixed by rotating it about 5 degrees within the light incident plane, and the analyzer was rotated half a turn to measure the minimum value of the amount of transmitted light. Repeat this process to find the linear phaser angle area where the transmitted light intensity is the smallest, finely adjust the linear phaser angle near it and fix it at the angle that minimizes the transmitted light intensity, and the analyzer also minimizes the transmitted light intensity Fixed at an angle. In this state, the magnetic field was varied from −40 kA / m to +40 kA / m, and the amount of transmitted light was measured. As a result, the maximum transmitted light amount was −10.2 dBm, and the contrast was 44.3 dB.

<比較例>
(CaGd)3 (MgZrGa)5 12で表される、厚さが700μmで1インチ形状の非磁性基板に、液相エピタキシャル法により、組成が(GdYBi)3 (FeGa)5 12の磁性ガーネット単結晶を3μm育成した。それを1mm角に切断し、1000℃で10時間熱処理して磁気光学結晶とした。その磁気光学結晶について、波長532nmにおける吸収係数を測定したところ、1.5dB/μmであった。磁気光学結晶を、銅線を巻きつけた鉄心の中に配置し、その前後に偏光子と検光子を設置した。光は、偏光子、磁気光学結晶、検光子の順に通過する。鉄心に巻きつけたコイルに正逆電流を流すことにより、磁気光学結晶には、光の進行方向と同方向をプラスとした場合に−40〜+40kA/mの磁界が印加できる。ここでも、マイナスは光の進行方向と逆方向の磁界強度を表している。この状態で、波長532nm、1mWの光を入射し、磁界を+40kA/mにして、検光子を光入射面内で回転させ、透過光量が最小になる角度で固定した。次に、磁界を−40kA/m〜+40kA/mまで可変させ、透過光量を測定した。その結果、最大透過光量は−10.7dBm、コントラストは18.2dBであった。
<Comparative example>
A magnetic garnet having a composition of (GdYBi) 3 (FeGa) 5 O 12 is formed on a nonmagnetic substrate represented by (CaGd) 3 (MgZrGa) 5 O 12 and having a thickness of 700 μm and 1 inch by liquid phase epitaxy. Single crystals were grown to 3 μm. It was cut into 1 mm square and heat-treated at 1000 ° C. for 10 hours to obtain a magneto-optical crystal. With respect to the magneto-optical crystal, the absorption coefficient at a wavelength of 532 nm was measured and found to be 1.5 dB / μm. The magneto-optic crystal was placed in an iron core wrapped with a copper wire, and a polarizer and an analyzer were placed before and after that. Light passes in the order of a polarizer, a magneto-optic crystal, and an analyzer. By applying a forward / reverse current to the coil wound around the iron core, a magnetic field of −40 to +40 kA / m can be applied to the magneto-optic crystal when the same direction as the light traveling direction is positive. Here, minus represents the magnetic field intensity in the direction opposite to the traveling direction of light. In this state, light with a wavelength of 532 nm and 1 mW was incident, the magnetic field was set to +40 kA / m, the analyzer was rotated within the light incident plane, and was fixed at an angle at which the amount of transmitted light was minimized. Next, the magnetic field was varied from −40 kA / m to +40 kA / m, and the amount of transmitted light was measured. As a result, the maximum transmitted light amount was -10.7 dBm, and the contrast was 18.2 dB.

本発明に係る磁気光学光変調器の構成と動作の説明図。Explanatory drawing of a structure and operation | movement of a magneto-optical light modulator based on this invention. 本発明に係る磁気光学光変調器の具体的構成例を示す説明図。FIG. 3 is an explanatory diagram showing a specific configuration example of a magneto-optic light modulator according to the present invention. ファラデー回転角の磁界依存性を示すグラフ。The graph which shows the magnetic field dependence of Faraday rotation angle. 消光比の磁界依存性を示すグラフ。The graph which shows the magnetic field dependence of an extinction ratio. 光出力の磁界依存性を示すグラフ。The graph which shows the magnetic field dependence of optical output. 膜厚をパラメータとしたときの吸収係数と位相差の関係を示すグラフ。The graph which shows the relationship between an absorption coefficient when a film thickness is used as a parameter, and a phase difference. 膜厚と位相差係数との関係を示すグラフ。The graph which shows the relationship between a film thickness and a phase difference coefficient.

符号の説明Explanation of symbols

10 偏光子
12 磁気光学結晶
14 直線位相子
16 検光子
DESCRIPTION OF SYMBOLS 10 Polarizer 12 Magneto-optical crystal 14 Linear phase shifter 16 Analyzer

Claims (5)

偏光子と磁気光学結晶と検光子を、その順に光が進行するように光路中に配置し、前記磁気光学結晶は希土類鉄ガーネット単結晶からなり、該磁気光学結晶に磁界を印加する可変磁界印加手段で磁気光学結晶の磁化方向を制御することにより、検光子から出力する透過光量を可変する磁気光学光変調器において、
磁気光学結晶と検光子との間に直線位相子を挿入し、検光子からの透過光量が最小となる状態のときに、前記直線位相子は、それを光入射面内で回転させたときに直線位相子透過後の偏光の楕円率が最小となる角度に設定され、前記検光子は、直線位相子を透過した楕円偏光の長軸に対して検光子透過軸が直交するように設置されていることを特徴とする磁気光学光変調器。
A polarizer, a magneto-optic crystal, and an analyzer are arranged in the optical path so that light travels in that order, and the magneto-optic crystal is made of a rare earth iron garnet single crystal, and a variable magnetic field application that applies a magnetic field to the magneto-optic crystal By controlling the magnetization direction of the magneto-optic crystal by means, the magneto-optic light modulator that varies the amount of transmitted light output from the analyzer,
When a linear phase shifter is inserted between the magneto-optical crystal and the analyzer, and the amount of light transmitted from the analyzer is minimized, the linear phase shifter is rotated in the light incident plane. The angle at which the ellipticity of the polarized light after passing through the linear phaser is minimized is set, and the analyzer is installed so that the analyzer transmission axis is orthogonal to the major axis of the elliptically polarized light that has passed through the linear phaser. A magneto-optic light modulator characterized by comprising:
偏光子と磁気光学結晶と検光子を、その順に光が進行するように光路中に配置し、前記磁気光学結晶は希土類鉄ガーネット単結晶からなり、該磁気光学結晶に高周波磁界を印加するコイルによって光進行方向に対する磁気光学結晶の磁化方向を制御することにより、検光子から出力する透過光量を変調する磁気光学光変調器において、
磁気光学結晶と検光子との間に直線位相子を挿入し、磁気光学結晶に印加される高周波磁界の光進行方向と同方向もしくは逆方向の成分が最大となる状態のときに、前記直線位相子は、それを光入射面内方向で回転させたときに直線位相子透過後の偏光の楕円率が最小となる角度に設定され、前記検光子は、直線位相子を透過した楕円偏光の長軸に対して検光子透過軸が直交するように設置されていることを特徴とする磁気光学光変調器。
A polarizer, a magneto-optic crystal, and an analyzer are arranged in the optical path so that light travels in that order. The magneto-optic crystal is composed of a rare earth iron garnet single crystal, and a coil that applies a high-frequency magnetic field to the magneto-optic crystal. In the magneto-optic light modulator that modulates the amount of transmitted light output from the analyzer by controlling the magnetization direction of the magneto-optic crystal with respect to the light traveling direction,
When a linear phase shifter is inserted between the magneto-optic crystal and the analyzer, and the component in the same direction or opposite to the light traveling direction of the high-frequency magnetic field applied to the magneto-optic crystal is maximized, the linear phase is The polarizer is set to an angle at which the ellipticity of the polarized light after passing through the linear phase shifter is minimized when it is rotated in the light incident plane direction, and the analyzer has a length of elliptically polarized light transmitted through the linear phase shifter. A magneto-optic light modulator characterized in that the analyzer transmission axis is orthogonal to the axis.
前記磁気光学結晶は、非磁性基板上に液相エピタキシャル成長させた希土類鉄ガーネット単結晶をアニール処理したものであり、該磁気光学結晶を中心に同心状にコイルが巻回され、該コイルに高周波電流を通電することにより、磁気光学結晶の光入射面に対して垂直方向の高周波磁界が印加されるようにした請求項2記載の磁気光学光変調器。   The magneto-optic crystal is obtained by annealing a rare earth iron garnet single crystal grown on a non-magnetic substrate by liquid phase epitaxial growth. A coil is concentrically wound around the magneto-optic crystal, and a high-frequency current is passed through the coil. The magneto-optic light modulator according to claim 2, wherein a high-frequency magnetic field perpendicular to the light incident surface of the magneto-optic crystal is applied by energizing. 前記直線位相子は、その位相差δが、
δmin +nπ≦δ≦(n+1)π−δmin
δmin =1.5×d×α
但し、
n=0,1,2,・・・
d:磁気光学結晶内の光路の入射面垂直成分長(μm)
α:透過光の吸収係数(dB/μm)
を満たすものである請求項1乃至3のいずれかに記載の磁気光学光変調器。
The linear phase shifter has a phase difference δ of
δ min + nπ ≦ δ ≦ (n + 1) π−δ min
δ min = 1.5 × d × α
However,
n = 0, 1, 2,...
d: vertical component length of incident plane of light path in magneto-optic crystal (μm)
α: Absorption coefficient of transmitted light (dB / μm)
The magneto-optic light modulator according to claim 1, wherein:
希土類鉄ガーネット単結晶の組成が、
(RBi)3 (FeM)5 12
但し、
R:1種以上の希土類元素
M:Ga,Al,Inから選ばれる1種以上の元素
である請求項1乃至4のいずれかに記載の磁気光学光変調器。
The composition of the rare earth iron garnet single crystal is
(RBi) 3 (FeM) 5 O 12
However,
5. The magneto-optic light modulator according to claim 1, wherein R: one or more rare earth elements M: one or more elements selected from Ga, Al, and In.
JP2008325342A 2008-12-22 2008-12-22 Magneto-optic light modulator Expired - Fee Related JP5305386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008325342A JP5305386B2 (en) 2008-12-22 2008-12-22 Magneto-optic light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008325342A JP5305386B2 (en) 2008-12-22 2008-12-22 Magneto-optic light modulator

Publications (2)

Publication Number Publication Date
JP2010145913A true JP2010145913A (en) 2010-07-01
JP5305386B2 JP5305386B2 (en) 2013-10-02

Family

ID=42566383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008325342A Expired - Fee Related JP5305386B2 (en) 2008-12-22 2008-12-22 Magneto-optic light modulator

Country Status (1)

Country Link
JP (1) JP5305386B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130715A (en) * 2011-12-21 2013-07-04 Fdk Corp Light modulator
CN111913310A (en) * 2020-07-16 2020-11-10 清华-伯克利深圳学院筹备办公室 Magneto-optical modulation device and large-phase-difference magneto-optical modulation method for incident visible light

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11212044A (en) * 1998-01-23 1999-08-06 Fujitsu Ltd Variable optical filter
JP2002202484A (en) * 2000-10-27 2002-07-19 Matsushita Electric Ind Co Ltd Optical signal transmission system and magnetooptical modulator used therefor
JP2003248206A (en) * 2002-02-25 2003-09-05 Tdk Corp Variable optical attenuator
JP2006259074A (en) * 2005-03-16 2006-09-28 Fdk Corp Magnetooptic device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11212044A (en) * 1998-01-23 1999-08-06 Fujitsu Ltd Variable optical filter
JP2002202484A (en) * 2000-10-27 2002-07-19 Matsushita Electric Ind Co Ltd Optical signal transmission system and magnetooptical modulator used therefor
JP2003248206A (en) * 2002-02-25 2003-09-05 Tdk Corp Variable optical attenuator
JP2006259074A (en) * 2005-03-16 2006-09-28 Fdk Corp Magnetooptic device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130715A (en) * 2011-12-21 2013-07-04 Fdk Corp Light modulator
CN111913310A (en) * 2020-07-16 2020-11-10 清华-伯克利深圳学院筹备办公室 Magneto-optical modulation device and large-phase-difference magneto-optical modulation method for incident visible light
CN111913310B (en) * 2020-07-16 2024-04-09 清华-伯克利深圳学院筹备办公室 Magneto-optical modulation device and large-phase-difference magneto-optical modulation method for incident visible light

Also Published As

Publication number Publication date
JP5305386B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
US5739943A (en) Polarization control unit
US20050180673A1 (en) Faraday structured waveguide
Wolfe et al. Thin‐film waveguide magneto‐optic isolator
JPS6011327B2 (en) Thin film optical waveguide device
JP5305386B2 (en) Magneto-optic light modulator
US4671621A (en) Optical systems with antireciprocal polarization rotators
US6833941B2 (en) Magneto-optic optical device
JP3583515B2 (en) Polarization scrambler device
Wolfe et al. Magneto-optic waveguide isolators based on laser annealed (Bi, Ga) YIG films
JPH07315995A (en) Low saturated magnetic field bismuth substituted rare earth element-iron garnet single crystal and its use
JP4220267B2 (en) Faraday rotator and optical component using the same
JP2010134241A (en) Magneto-optical light modulation element
JP2007071982A (en) Faraday rotation angle varying device
JP2010134245A (en) Magneto-optical light modulation element
JP2567697B2 (en) Faraday rotation device
JP3764825B2 (en) Optical attenuator
JP2003248206A (en) Variable optical attenuator
JP5852875B2 (en) Light modulator
JP2006065027A (en) Variable optical attenuator
JP4149248B2 (en) Optical parts
JPH03142415A (en) Light intensity modulating element
JP2916995B2 (en) Magnetic garnet for optical devices
JP2005049653A (en) Magneto-optical light part
WO2005071470A1 (en) Variable faraday rotor and variable optical attenuator
JPH0588133A (en) Magneto-optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees