JP2008310090A - Halftone phase shift mask - Google Patents

Halftone phase shift mask Download PDF

Info

Publication number
JP2008310090A
JP2008310090A JP2007158324A JP2007158324A JP2008310090A JP 2008310090 A JP2008310090 A JP 2008310090A JP 2007158324 A JP2007158324 A JP 2007158324A JP 2007158324 A JP2007158324 A JP 2007158324A JP 2008310090 A JP2008310090 A JP 2008310090A
Authority
JP
Japan
Prior art keywords
phase
film
light
phase modulation
modulation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007158324A
Other languages
Japanese (ja)
Other versions
JP4528803B2 (en
Inventor
Hideo Kaneko
英雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007158324A priority Critical patent/JP4528803B2/en
Priority to KR1020080039460A priority patent/KR101333372B1/en
Publication of JP2008310090A publication Critical patent/JP2008310090A/en
Application granted granted Critical
Publication of JP4528803B2 publication Critical patent/JP4528803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a photomask with high resolution while decreasing the depth of a pattern. <P>SOLUTION: A translucent part (A) and a semi-translucent part (B) are formed on one major surface of a substrate 11 made of quartz, calcium fluoride or the like transparent to exposure light, on which phase modulation sections are respectively provided for changing phases of light propagating in a medium in contact with the pattern surface of the mask during exposure. For example, an optical film 13 provided in the translucent part (A) acts as a phase modulation section 1 having a thickness d<SB>1</SB>, while an optical film 12 provided in the semi-translucent part (B) acts as a phase modulation section 2 having a thickness d<SB>2</SB>. The phase ϕ<SB>1</SB>of transmitted light in the optical film 13 and the phase ϕ<SB>01</SB>of light propagating in the medium to the depth d<SB>1</SB>satisfy ϕ<SB>1</SB>=ϕ<SB>01</SB>+Δϕ<SB>1</SB>(wherein Δϕ<SB>1</SB>>0); while the phase ϕ<SB>2</SB>of transmitted light in the optical film 12 and the phase ϕ<SB>02</SB>of light propagating in the medium to the depth d<SB>2</SB>satisfy ϕ<SB>2</SB>=ϕ<SB>02</SB>+Δϕ<SB>2</SB>(wherein Δϕ<SB>2</SB><0). By this configuration, pattern depth can be designed by using a difference in the phase change in a plurality of optical films and a photomask with high resolution can be obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体集積回路等の製造などに用いられるハーフトーン型の位相シフトマスクに関する。   The present invention relates to a halftone phase shift mask used for manufacturing a semiconductor integrated circuit or the like.

IC、LSI又はVLSI等の半導体集積回路の製造をはじめとして、広範囲な用途に用いられているフォトマスクは、例えば、透光性基板上にクロムを主成分とする遮光膜が形成されたフォトマスクブランクを用い、この遮光膜に紫外線や電子線等を露光光とするフォトリソグラフィ法により所定のパターンを形成したものである。近年では、半導体集積回路の高集積化等の市場要求に伴ってパターンの微細化が急速に進行し、露光工程でのレジスト解像度を高めるための露光波長の短波長化やレンズの開口数の増大により対応がなされてきた。   Photomasks used in a wide range of applications including the manufacture of semiconductor integrated circuits such as ICs, LSIs, and VLSIs are, for example, photomasks in which a light-shielding film containing chromium as a main component is formed on a translucent substrate A blank is used, and a predetermined pattern is formed on the light-shielding film by a photolithography method using ultraviolet rays, electron beams or the like as exposure light. In recent years, along with market demands such as higher integration of semiconductor integrated circuits, pattern miniaturization has rapidly progressed, and the exposure wavelength has been shortened and the numerical aperture of the lens has been increased to increase the resist resolution in the exposure process. Has been addressed.

しかしながら、露光波長の短波長化は装置や材料のコスト増大を招く結果となるという問題がある。また、レンズの開口数の増大は解像度の向上という利点の反面、焦点深度の減少を招く結果、プロセスの安定性が低下し、製品の歩留まりに悪影響を及ぼすという問題がある。このような問題の解決に対して有効なパターン転写法のひとつに「位相シフトマスク」をフォトマスクとして用いる「位相シフト法」が知られている。   However, there is a problem that shortening the exposure wavelength results in an increase in the cost of the apparatus and materials. In addition, while increasing the numerical aperture of the lens has the advantage of improving the resolution, it results in a decrease in the depth of focus. As a result, there is a problem in that the process stability is lowered and the product yield is adversely affected. As one of pattern transfer methods effective for solving such problems, a “phase shift method” using a “phase shift mask” as a photomask is known.

図1は、位相シフト法で用いられる位相シフトマスク(ハーフトーン型位相シフトマスク)の例を説明するための断面図で、図1(A)は位相シフト部が単層の「単層型」(例えば特許文献1)、図1(B)は位相シフト部を位相調整膜と透過率調整膜の2層構造とした「2層型」(例えば特許文献2)の位相シフトマスクを示している。なお、「2層型」の位相シフトマスクは、短波長露光(露光波長が200nm以下)用のフォトマスクとして有用であることが知られている(特許文献3)。   FIG. 1 is a cross-sectional view for explaining an example of a phase shift mask (halftone type phase shift mask) used in the phase shift method. FIG. 1A is a “single layer type” in which the phase shift portion is a single layer. (For example, Patent Document 1) and FIG. 1B show a phase shift mask of “two-layer type” (for example, Patent Document 2) in which the phase shift portion has a two-layer structure of a phase adjustment film and a transmittance adjustment film. . In addition, it is known that the “two-layer type” phase shift mask is useful as a photomask for short wavelength exposure (exposure wavelength is 200 nm or less) (Patent Document 3).

これらの位相シフトマスクには、露光光に対して透明な基板1の一方主面上に、基板1の主面が露出している領域(透光部:A)と、位相シフト膜2がパターニングされた領域(半透光部:B)とが形成され、これらの領域を透過した光は、透光部Aの透過光の位相(φ)と半透光部Bの透過光の位相(φ+π)とで位相差が概ねπ(180°)であり、パターン境界部分における透光部と半透光部との透過光同士の干渉により回折によるコントラストの低下を改善し、転写像のコントラストを向上させることが可能となる。なお、「2層型」の位相シフト膜2は、位相調整膜2aと透過率調整膜2bの2層が積層されている。 In these phase shift masks, a region where the main surface of the substrate 1 is exposed (translucent portion: A) and the phase shift film 2 are patterned on one main surface of the substrate 1 that is transparent to exposure light. Region (semi-transparent portion: B) is formed, and the light transmitted through these regions is transmitted light phase (φ 0 ) of the translucent portion A and transmitted light phase of the semi-transparent portion B ( (φ 0 + π) and the phase difference is approximately π (180 °), and the contrast reduction due to diffraction is improved by the interference of the transmitted light between the translucent part and the semi-transparent part at the pattern boundary, and the transferred image The contrast can be improved. The “two-layer type” phase shift film 2 is formed by laminating two layers of a phase adjustment film 2a and a transmittance adjustment film 2b.

このような位相シフトマスクに関連しては、透明基板と位相シフト膜との間にエッチングストッパとしてのクロム膜を設ける構成(特許文献4)や遮光膜中を透過してきた光の位相をほぼ零にするために位相遅延膜と位相進行膜を積層させて遮光膜を形成する構成(特許文献5)なども提案されている。
特開平7−140635号公報 特開平4−136854号公報 特開2005−084682号公報 特開2001−337436号公報 特開2006−215297号公報
In relation to such a phase shift mask, a structure in which a chromium film as an etching stopper is provided between a transparent substrate and a phase shift film (Patent Document 4), or the phase of light transmitted through the light shielding film is substantially zero. In order to achieve this, a configuration (Patent Document 5) in which a light shielding film is formed by laminating a phase retardation film and a phase progression film has been proposed.
JP-A-7-140635 JP-A-4-136854 Japanese Patent Laying-Open No. 2005-084682 JP 2001-337436 A JP 2006-215297 A

従来のハーフトーン型位相シフトマスクでは、「単層型」にせよ「2層型」にせよ、透光部には透光部と半透光部との間に位相差を生じさせるための光学膜が設けられておらず半透光部のみで位相調整がなされる構成とされているため、パターンの深さは上記の位相調整を担う位相シフト膜の膜厚と等しいこととなる。ところが、位相シフト膜が厚い場合には、その成膜中にパーティクルやハーフピンホールなどの欠陥が増大したり、パターニングを施した後には、露光時にパターン側面から漏れ出てくる所定の位相差と異なる光が多くなり、透光部と半透光部の境界領域で本来の位相差を生じさせることが困難となるといった問題がある。特に、位相調整用にSiOのような高透過率の材料を用いた場合には、屈折率が小さいために、所定の位相差を得ようとすると必然的にその膜厚を厚くする必要があるため、上記問題は深刻となる。 In a conventional halftone phase shift mask, whether it is a “single layer type” or “two layer type”, an optical for causing a phase difference between the light transmitting part and the semi-light transmitting part in the light transmitting part. Since the film is not provided and the phase adjustment is performed only by the semi-translucent portion, the pattern depth is equal to the film thickness of the phase shift film responsible for the phase adjustment. However, when the phase shift film is thick, defects such as particles and half pinholes increase during the film formation, or after patterning, a predetermined phase difference that leaks out from the side surface of the pattern during exposure. There is a problem that the amount of different light increases and it becomes difficult to cause an original phase difference in the boundary region between the translucent part and the semi-translucent part. In particular, when a material having a high transmittance such as SiO 2 is used for phase adjustment, since the refractive index is small, it is inevitably necessary to increase the film thickness in order to obtain a predetermined phase difference. As a result, the above problem becomes serious.

本発明は、上記問題点を解決するためになされたもので、その目的とするところは、透光部と半透光部のそれぞれにおいて伝搬光の位相調整を行い、これにより、パターンの深さを浅く形成することを可能とすることにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to adjust the phase of propagating light in each of the light-transmitting portion and the semi-light-transmitting portion, and thereby the depth of the pattern. It is to make it possible to form the film shallowly.

かかる課題を解決するために、本発明のハーフトーン型位相シフトマスクは、透明基板上に透光部と半透光部とを有し、前記透光部と前記半透光部のそれぞれには露光時にマスクのパターン面が接している媒質を伝播する光に対して位相を変える位相変調部が設けられており、前記透光部と半透光部の一方の位相変調部を厚みdの位相変調部1、他方を厚みdの位相変調部2とした場合、前記位相変調部1を透過した光の位相φは前記媒質中をdだけ伝播した光の位相φ01と次式の関係:φ=φ01+Δφ(Δφ>0)を満足し、前記位相変調部2を透過した光の位相φは前記媒質中をdだけ伝播した光の位相φ02と次式の関係:φ=φ02+Δφ(Δφ<0)を満足する。 In order to solve such a problem, the halftone phase shift mask of the present invention has a translucent part and a semi-translucent part on a transparent substrate, and each of the translucent part and the semi-translucent part has A phase modulation unit that changes the phase of the light propagating through the medium that is in contact with the pattern surface of the mask during exposure is provided, and one phase modulation unit of the translucent unit and the semi-translucent unit has a thickness of d 1 . When the phase modulation unit 1 and the other phase modulation unit 2 having a thickness d 2 are used, the phase φ 1 of the light transmitted through the phase modulation unit 1 is equal to the phase φ 01 of the light propagated through the medium by d 1 and the following equation: The relationship: φ 1 = φ 01 + Δφ 1 (Δφ 1 > 0) is satisfied, and the phase φ 2 of the light transmitted through the phase modulator 2 is next to the phase φ 02 of the light propagated through the medium by d 2 Expression relationship: φ 2 = φ 02 + Δφ 2 (Δφ 2 <0) is satisfied.

例えば、前記位相変調部2は前記半透光部に設けられ、前記位相変調部1は前記透光部に設けられている。   For example, the phase modulation unit 2 is provided in the semi-translucent unit, and the phase modulation unit 1 is provided in the translucent unit.

好ましくは、前記半透光部に透過率調整膜が設けられており、当該透過率調整膜は前記位相変調部2である。   Preferably, a transmittance adjusting film is provided in the semi-translucent portion, and the transmittance adjusting film is the phase modulating portion 2.

好ましくは、前記位相変調部2を透過した光と前記位相変調部1を透過した光の位相差が実質的にπ(ラジアン)であるように構成される。   Preferably, the phase difference between the light transmitted through the phase modulation unit 2 and the light transmitted through the phase modulation unit 1 is substantially π (radian).

本発明において、前記位相変調部2である前記透過率調整膜は、シリコン、モリブデン、モリブデンシリサイドの少なくとも1種からなる光学膜とすることができ、前記位相変調部1は、シリコン酸化物、シリコン窒化物、シリコン酸窒化物の少なくとも1種からなる光学膜とすることができる。   In the present invention, the transmittance adjusting film that is the phase modulation unit 2 may be an optical film made of at least one of silicon, molybdenum, and molybdenum silicide, and the phase modulation unit 1 may be formed of silicon oxide, silicon An optical film made of at least one of nitride and silicon oxynitride can be obtained.

本発明においては、従来は半透過部の設計によってのみパターン深さが定まっていたものを、複数の光学膜中で受ける位相変化の差を利用してパターン深さを設計することとしたので、浅いパターン形成が可能となり、その結果、高い解像度のフォトマスクを得ることができる。   In the present invention, since the pattern depth is conventionally determined only by the design of the semi-transmissive portion, the pattern depth is designed using the difference in phase change received in a plurality of optical films. A shallow pattern can be formed, and as a result, a high-resolution photomask can be obtained.

以下、図面を参照して本発明のハーフトーン型位相シフトマスクについて説明する。   Hereinafter, the halftone phase shift mask of the present invention will be described with reference to the drawings.

図2は、本発明のハーフトーン型位相シフトマスクの基本的な構成例を説明するための断面図で、露光光に対して透明な石英やフッ化カルシウムなどの基板11の一方主面上に、透光部Aと半透光部Bとが形成され、透光部Aと半透光部Bの両方に位相変調部を設け、透光部Aと半透光部Bのどちらか一方の位相変調部(厚みdの位相変調部1)を透過した光の位相φ1が、露光時にマスクのパターン面が接している媒質中をdだけ伝播した光の位相φ01とφ=φ01+Δφ(Δφ>0)の関係を満足し、且つ、透光部Aと半透光部Bの他方(厚みdの位相変調部2)を透過した光の位相φが、上記媒質中をdだけ伝播した光の位相φ02とφ=φ02+Δφ(Δφ<0)の関係を満足するように設計されている。なお、図2に示した例では、透光部Aに設けられた光学膜13が位相変調部1であり、半透光部Bに設けられた光学膜12が位相変調部2である。 FIG. 2 is a cross-sectional view for explaining a basic configuration example of the halftone phase shift mask of the present invention, on one main surface of a substrate 11 such as quartz or calcium fluoride that is transparent to exposure light. The translucent part A and the semi-translucent part B are formed, the phase modulating part is provided in both the translucent part A and the semi-translucent part B, and either the translucent part A or the semi-translucent part B is provided. phase modulation unit phase phi 1 of the light transmitted through the (phase modulation unit 1 of the thickness d 1) is a medium in which the pattern surface of the mask is in contact during exposure of light propagated by d 1 phase phi 01 and phi 1 = satisfy the relationship of φ 01 + Δφ 1 (Δφ 1 > 0), and light-transmitting part a and the semi-light-transmitting portion other phase phi 2 of the light transmitted through the (phase modulation unit 2 of the thickness d 2) and B, It is designed for the medium so as to satisfy the relationship d 2 only light phase phi 02 that propagates φ 2 = φ 02 + Δφ 2 (Δφ 2 <0) . In the example shown in FIG. 2, the optical film 13 provided in the translucent part A is the phase modulation part 1, and the optical film 12 provided in the semi-transparent part B is the phase modulation part 2.

位相変調部を透過した光の振幅透過率tは、t=texp(−iδ)と表記することができる。なお、エネルギ透過率TはT=t・t*である。ここで、位相変調部の膜厚(d)に相当する長さの上記媒質中(屈折率n)を波長λの光が伝播したときの位相変化δをδ=φとするとφ0=2πnd/λとなるが、本発明においては、位相変調部を通過したときの位相変化δ(=φ)が、Δφ=φ−φとしたときに、位相変調部1ではΔφ>0となり、位相変調部2ではΔφ<0となるようにする。 The amplitude transmittance t of the light transmitted through the phase modulation unit can be expressed as t = t 0 exp (−iδ). The energy transmittance T is T = t · t * . Here, assuming that the phase change δ 0 when light of wavelength λ propagates in the medium (refractive index n 0 ) having a length corresponding to the film thickness (d) of the phase modulation portion is δ 0 = φ 0 , φ 0 = 2πn 0 d / λ and becomes, in the present invention, a phase change when it passes through the phase modulation unit δ (= φ) is, when the Δφ = φ-φ 0, the phase modulation unit 1 [Delta] [phi > 0, and the phase modulation unit 2 satisfies Δφ <0.

位相変調部は上記関係を満足するものであればよく、膜で構成する場合には、単層構造でも多層構造でもよい。また、膜中で組成変化をもたせるようにしてもよい。例えば、組成が均一な単層膜で位相変調部を構成する場合には、当該膜の透過率tは次式で与えられる。   The phase modulation unit may be any as long as it satisfies the above relationship, and may be a single layer structure or a multilayer structure when it is formed of a film. Further, the composition may be changed in the film. For example, in the case where the phase modulation unit is configured by a single layer film having a uniform composition, the transmittance t of the film is given by the following equation.

(数1)
t=t0・exp(-i・φ)
= tS1t10・exp(-i・2πdn1)/λ)/(1+rS1r10・exp(-4πi・dn1/λ)
(Equation 1)
t = t 0・ exp (-i ・ φ)
= t S1 t 10・ exp (-i ・ 2πdn 1 ) / λ) / (1 + r S1 r 10・ exp (-4πi ・ dn 1 / λ)

ここで、iは虚数単位、dは膜厚、nは膜の複素屈折率(屈折率n=n−ik(n:屈折率、k:消衰係数)、tS1は基板と膜の界面での振幅透過率(エネルギ透過率TS1=tS1・tS1 *)、t10は膜と上記媒質の界面での振幅透過率(エネルギ透過率T10=t10・t10 *)、rS1は基板と膜の界面での振幅反射率、そして、r10は膜と上記媒質の界面での振幅反射率である。 Here, i is an imaginary unit, d is a film thickness, n 1 is a complex refractive index of the film (refractive index n 1 = n−ik (n: refractive index, k: extinction coefficient), and t S1 is a relationship between the substrate and the film. Amplitude transmittance at the interface (energy transmittance T S1 = t S1 · t S1 * ), t 10 is an amplitude transmittance at the interface between the film and the medium (energy transmittance T 10 = t 10 · t 10 * ), r S1 is the amplitude reflectance at the interface between the substrate and the film, and r 10 is the amplitude reflectance at the interface between the film and the medium.

本発明では、位相変調部の膜厚(d)に相当する長さの上記媒質中を光が伝播したときの位相変化を上記同様φ0とし、Δφ=φ-φ0としたときに、位相変調部1ではΔφ>0を、位相変調部2ではΔφ<0を満足すればよい。 In the present invention, the phase change when light propagates through the medium having a length corresponding to the film thickness (d) of the phase modulation portion is set to φ 0 as described above, and when Δφ = φ−φ 0 The modulation unit 1 may satisfy Δφ> 0, and the phase modulation unit 2 may satisfy Δφ <0.

一般に、膜の屈折率が上記媒質より大きく、吸収係数が0に近い誘電体膜は位相変調部1として機能し、また、上記媒質よりも屈折率の小さな膜を選べば位相変調膜2として機能するが、吸収係数の大きな膜では膜の屈折率が上記媒質の屈折率より大きくても位相変調部2として上記式を満たすときに位相変調部2としての機能を有する。例えば、膜中での多重反射を無視できるとき、基板の屈折率をnS、膜の屈折率をn=n−ik、膜厚をd、上記媒質の屈折率をn0としたときに、透過光t=t・exp(−i・φ)の位相φは、φ=2πnd/λ+ε(ここで、ε=-tan-1[k(n2-nSn0)/{n(nS+n)(n0+n)+k2(nS+n0+n)}]である)となる。 In general, a dielectric film having a refractive index of the film larger than that of the medium and having an absorption coefficient close to 0 functions as the phase modulation unit 1, and functions as the phase modulation film 2 if a film having a refractive index smaller than that of the medium is selected. However, a film having a large absorption coefficient has a function as the phase modulation unit 2 when the above formula is satisfied as the phase modulation unit 2 even if the refractive index of the film is larger than the refractive index of the medium. For example, when multiple reflections in the film can be ignored, the refractive index of the substrate is n S , the refractive index of the film is n 1 = n−ik, the film thickness is d, and the refractive index of the medium is n 0. , The phase φ of the transmitted light t = t 0 · exp (−i · φ) is φ = 2πnd / λ + ε (where ε = −tan −1 [k (n 2 −n S n 0 ) / {n ( n S + n) (n 0 + n) + k 2 (n S + n 0 + n)}].

このφがφより小さければ位相変調部2として機能する。つまり、位相変調部2となるためには、Δφ=φ−φ=2π(n−n)d/λ+ε<0を満たせばよい。 The phi functions as the phase modulator 2 is smaller than phi 0. That is, in order to become the phase modulation unit 2, Δφ = φ−φ 0 = 2π (n−n 0 ) d / λ + ε <0 may be satisfied.

また、上式(数1)において、例えば、膜の屈折率が上記媒質より大きくても、ある程度の吸収係数をもっていると、膜厚を選ぶことで、位相変調部2として機能する。つまり、膜が厚くなるにしたがって、上式のΔφは負で絶対値が大きくなっていき、ある膜厚で極値となり、その後、Δφは負で絶対値が小さくなっていき、ついには正の値となる。位相変化量が上記媒質中を伝播するよりも位相変化量が少ない膜厚に選べば位相シフト膜2として機能し、位相変化量が上記媒質中を伝播するよりも位相変化量が大きい膜厚に選べば位相シフト膜1として機能する。   In the above equation (Equation 1), for example, even if the refractive index of the film is larger than that of the medium, if the film has a certain absorption coefficient, it functions as the phase modulation unit 2 by selecting the film thickness. In other words, as the film becomes thicker, Δφ in the above equation is negative and the absolute value increases, becomes an extreme value at a certain film thickness, then Δφ is negative and the absolute value decreases, and finally becomes positive. Value. If the phase change amount is selected so that the phase change amount is smaller than that propagating in the medium, it functions as the phase shift film 2, and the phase change amount is larger than that propagating in the medium. If selected, it functions as the phase shift film 1.

位相変調部が単層で構成する場合を例に説明したが、複数層で構成されるときも同様である。例えば、多重反射を無視できるときは、おのおのの膜の屈折率が上記媒質より大きくても、おのおのの膜界面での位相の変化の合計が負の値となり、その大きさが、多層を構成する膜内を伝播するときの位相の変化と同じ厚みの上記媒質を伝播するときの位相の変化との差よりも絶対値が大きければ位相変調部2として機能し、逆のときは位相変調部1として機能する。上記媒質や基板との接する膜の複素屈折率(n=n−ik)差が大きく、膜内での多重反射を無視できないときは膜内での多重反射も考慮する必要がある。また、吸収係数が0でない場合は界面での位相変化も考慮する必要がある。 Although the case where the phase modulation unit is configured by a single layer has been described as an example, the same applies to the case where the phase modulation unit is configured by a plurality of layers. For example, when multiple reflections can be ignored, even if the refractive index of each film is larger than that of the above medium, the total phase change at each film interface becomes a negative value, and the magnitude constitutes a multilayer. If the absolute value is larger than the difference between the phase change when propagating in the film and the phase change when propagating through the medium having the same thickness, it functions as the phase modulation unit 2, and vice versa. Function as. When the complex refractive index (n f = n−ik) difference of the film in contact with the medium or the substrate is large and multiple reflection in the film cannot be ignored, it is necessary to consider the multiple reflection in the film. Further, when the absorption coefficient is not 0, it is necessary to consider the phase change at the interface.

図2に図示した光学膜12は、膜中を伝搬する露光光に、上記媒質中を伝搬する光に対して「−β」の位相変化を付与するとともに、光透過率を所定の値に調整する透過率調整膜をも兼ねている。半透光部Bの光透過率は透光部Aの1〜50%程度であればよく、より好ましくは3〜30%程度となるように調整する。このような光透過率調整により、半透光部Bを透過した後の露光光がレジストの感度以下の強度となるように調整される。   The optical film 12 shown in FIG. 2 gives the exposure light propagating through the film a phase change of “−β” with respect to the light propagating through the medium, and adjusts the light transmittance to a predetermined value. It also serves as a transmittance adjusting film. The light transmittance of the semi-translucent portion B may be about 1 to 50% of the translucent portion A, and more preferably adjusted to be about 3 to 30%. By adjusting the light transmittance as described above, the exposure light after passing through the semi-translucent portion B is adjusted so as to have an intensity lower than the sensitivity of the resist.

光学膜13は、膜中を伝搬する露光光に、上記媒質中を伝搬する光に対して「+α」だけの位相変化を付与し、その結果、透光部Aの透過光の位相(φ+α)と半透光部Bの透過光の位相(φ−β)とで位相差が所定の値(一般には、π(180°))となるようにするための位相調整膜であり、透過率調整膜よりも高い透過率の膜である。 The optical film 13 gives the exposure light propagating in the film a phase change of “+ α” with respect to the light propagating in the medium. As a result, the phase of the transmitted light (φ 0) + Α) and a phase adjustment film for making a phase difference a predetermined value (generally π (180 °)) between the phase (φ 0 −β) of the transmitted light of the semi-translucent portion B, It is a film having a higher transmittance than the transmittance adjusting film.

これらの光学膜12(位相変調部2を構成する位相変調膜)は、例えば露光波長が193nmの場合には、シリコン、モリブデン、モリブデンシリサイドの膜とすることができ、上式を満たすように膜厚を選ぶことによって、位相変調部2として機能する。また、光学膜13(位相変調部1を構成する位相変調膜)は、シリコン酸化物、シリコン窒化物、シリコン酸窒化物の膜やこれらの膜にMo,Ta,Zrなどの金属を含んだ膜とすることができる。   For example, when the exposure wavelength is 193 nm, these optical films 12 (phase modulation films constituting the phase modulation unit 2) can be made of silicon, molybdenum, molybdenum silicide films, and satisfy the above formula. By selecting the thickness, it functions as the phase modulation unit 2. The optical film 13 (phase modulation film constituting the phase modulation unit 1) is a film of silicon oxide, silicon nitride, silicon oxynitride, or a film containing a metal such as Mo, Ta, or Zr in these films. It can be.

透光部Aと半透光部Bをこのように構成すると、パターンの深さを浅く形成することが可能となり、その結果、高い解像度のフォトマスクを得ることができる。なお、位相変調部は透光部または半透光部において基板を掘り込むことによって形成してもよく、基板の掘り込みと位相調整膜の両方を用いてもよい。   If the light-transmitting part A and the semi-light-transmitting part B are configured in this way, the depth of the pattern can be reduced, and as a result, a high-resolution photomask can be obtained. Note that the phase modulation unit may be formed by digging a substrate in the light-transmitting part or the semi-light-transmitting part, or both the substrate digging and the phase adjusting film may be used.

図3及び図4は本発明の原理を説明するための図である。位相変調部内では位相変調部と上記媒質や基板などとの界面の効果や位相変調部位内の多重反射しており、必ずしもこの図のように伝播するわけではないが、位相変調部位に入る光及び出る光は図に示したような変化をするため、位相変調部位ではあたかもこれらの図に示したように光が伝播しているようになっている。   3 and 4 are diagrams for explaining the principle of the present invention. In the phase modulation unit, the effect of the interface between the phase modulation unit and the medium or the substrate or the multiple reflection in the phase modulation part is not necessarily propagated as shown in this figure, but the light entering the phase modulation part and Since the emitted light changes as shown in the drawings, the light propagates as if shown in these drawings at the phase modulation portion.

図3(A)および(B)はそれぞれ、上記媒質中に置かれた厚みtの「位相変調部2」および「位相変調部1」中を伝搬する際にどのような位相変化を受けるかを説明するための図である。   3 (A) and 3 (B) show how the phase change is caused when propagating through the “phase modulation unit 2” and “phase modulation unit 1” of thickness t placed in the medium, respectively. It is a figure for demonstrating.

「位相変調部2」中を伝搬することによって位相変化が小さくなる一方、「位相変調部1」中を伝搬する際には位相変化は大きくなる。そして、これらの媒体からの透過光の位相差がπ(180°)となるように光学膜設計を行えば、位相シフトマスク用の基板を得ることができる。例えば、位相差をπ(180°)とするとともに、「位相変調部2」の厚みと「位相変調部1」の厚みを等しくするように光学膜設計を行えば、原理的にはパターンの深さ(透光部と半透光部の段差)が「ゼロ」の位相シフトマスクとすることができ、極めて高い解像度のフォトマスクを得ることができる。 While propagating through the “phase modulation unit 2”, the phase change becomes small, while when propagating through the “phase modulation unit 1”, the phase change becomes large. A substrate for a phase shift mask can be obtained by designing the optical film so that the phase difference of transmitted light from these media is π (180 °). For example, if the optical film is designed so that the phase difference is π (180 °) and the thickness of the “phase modulation unit 2” is equal to the thickness of the “phase modulation unit 1”, in principle the pattern depth Thus, a phase shift mask having a “zero” thickness (a step between the light-transmitting portion and the semi-light-transmitting portion) can be obtained, and a photomask with extremely high resolution can be obtained.

これに対して、図4に例示して示すように、透光部に特別な光学膜を設けず半透光部に設けた位相シフト膜のみで位相調整がなされる従来型の位相シフトマスクの場合には、位相シフト膜を「位相変調膜1」で形成する場合(図4(B))、透過光の位相と対比されるべき位相は、これら光学膜の厚みtと同じ距離だけ上記媒質中を伝搬する光の位相である。このため、位相差がπ(180°)となるような位相シフト膜の膜厚を薄くすることによってしかパターンの深さ(透光部と半透光部の段差)を浅く形成することができない。   On the other hand, as illustrated in FIG. 4, a conventional phase shift mask in which phase adjustment is performed only by a phase shift film provided in a semi-translucent part without providing a special optical film in the translucent part. In this case, when the phase shift film is formed of “phase modulation film 1” (FIG. 4B), the phase to be compared with the phase of transmitted light is the same distance as the thickness t of these optical films. It is the phase of light propagating through the inside. For this reason, the depth of the pattern (the step between the translucent portion and the semi-transparent portion) can be formed shallow only by reducing the thickness of the phase shift film so that the phase difference is π (180 °). .

つまり、本発明においては、従来は単一膜の設計によってのみパターン深さを浅くすることが可能であったものを、透過部と半透過部のそれぞれの位相変調部で受ける位相変化の差を利用してパターン深さを浅くすることを可能とするものであり、位相シフトマスクの設計自由度を大幅に拡大するものである。   In other words, in the present invention, the difference in phase change received by the phase modulation unit of the transmissive part and the semi-transmissive part, which has conventionally been possible to reduce the pattern depth only by the design of a single film, This makes it possible to make the pattern depth shallower, and greatly expands the design freedom of the phase shift mask.

なお、一般的には露光時にマスクのパターン面が接している媒質は空気や窒素ガスなどの屈折率が1の媒質であるが、マスクパターンを、屈折率が1よりも大きい媒質中に置いて(例えば、屈折率が大きい液体中などに浸漬して)露光するような場合にも適用可能である。このような場合、従来のように半透光部のみに屈折率が上記媒質よりも大きな位相変調部を設けた構成では位相変調部と上記媒質との屈折率差が小さくなり、所定の位相変化を得るためには位相変調部はより厚くなるが、本発明の場合にはそのような不都合を改善できる。   In general, the medium in contact with the mask pattern surface during exposure is a medium having a refractive index of 1, such as air or nitrogen gas. However, the mask pattern is placed in a medium having a refractive index greater than 1. The present invention can also be applied to a case where exposure is performed (for example, by immersion in a liquid having a high refractive index). In such a case, in the conventional configuration in which only the semi-transmission part is provided with a phase modulation part having a refractive index larger than that of the medium, the difference in refractive index between the phase modulation part and the medium becomes small, and a predetermined phase change occurs. However, in the case of the present invention, such inconvenience can be improved.

図5は、本発明の位相シフトマスクの作製プロセスを説明するための図である。先ず、透明な石英からなる基板11の上に、シリコン・ターゲットをArでスパッタリングしてシリコン膜20を17nm形成する(図5(A))。このシリコン膜20は透過率調整膜として機能し、193nmの露光波長において位相変調部2となる膜である。なお、シリコン膜20の厚みを17nmとしたのはこの膜の透過率を約6%とするためであり、設定透過率の値に応じて膜厚は適宜設定される。   FIG. 5 is a diagram for explaining a manufacturing process of the phase shift mask of the present invention. First, on a substrate 11 made of transparent quartz, a silicon target is sputtered with Ar to form a silicon film 20 having a thickness of 17 nm (FIG. 5A). This silicon film 20 functions as a transmittance adjusting film, and is a film that becomes the phase modulation section 2 at an exposure wavelength of 193 nm. The reason why the thickness of the silicon film 20 is 17 nm is that the transmittance of this film is about 6%, and the film thickness is appropriately set according to the value of the set transmittance.

このシリコン膜に電子ビーム用化学増幅型ポジレジストを塗布してフォトリソグラフィにより所定のパターンを形成し(図5(B))、このレジストパターン21をマスクとしてシリコン膜20をエッチングする(図5(C))。   A chemical amplification type positive resist for electron beam is applied to the silicon film and a predetermined pattern is formed by photolithography (FIG. 5B), and the silicon film 20 is etched using the resist pattern 21 as a mask (FIG. C)).

パターニングされたシリコン膜20とレジスト21の上に、位相変調部1を構成し位相調整層となる酸化シリコン膜22を140nm形成する(図5(D))。なお、この成膜は、シリコン・ターゲットをArガスと酸素ガスでスパッタリングして行っている。この酸化シリコン膜の140nmという厚みは、上述のシリコン膜20(17nm)の透過光との位相差を露光時のマスクのパターン面が接している媒質である空気中でπ(180°)とするための選択の結果である。   On the patterned silicon film 20 and the resist 21, a 140 nm-thickness silicon oxide film 22 constituting the phase modulation unit 1 and serving as a phase adjustment layer is formed (FIG. 5D). This film formation is performed by sputtering a silicon target with Ar gas and oxygen gas. The thickness of this silicon oxide film of 140 nm is such that the phase difference from the transmitted light of the above-described silicon film 20 (17 nm) is π (180 °) in the air that is the medium in contact with the mask pattern surface during exposure. Is the result of selection for.

次に、レジスト21上の酸化シリコン膜22bをリフトオフにより除去し、酸化シリコン膜22aよりなる「位相変調部1」である光学膜13を備えた透光部とシリコン膜20よりなる「位相変調部2」である光学膜12を備えた半透光部を形成する(図5(E))。   Next, the silicon oxide film 22b on the resist 21 is removed by lift-off, and a “transmission portion” including the optical film 13 which is the “phase modulation portion 1” made of the silicon oxide film 22a and the “phase modulation portion” made of the silicon film 20. A semi-transparent portion including the optical film 12 that is “2” is formed (FIG. 5E).

本実施例で得られる位相シフトマスクは、パターンの深さ(透光部と半透光部の段差)が123nm(140nm−17nm)であり、193nmの入射光に対する半透光部の透過率6%、位相差180°の位相シフト膜を従来法で形成する場合(約190nm)に比較して約70nm浅くすることができる。   The phase shift mask obtained in this example has a pattern depth (step difference between the light-transmitting portion and the semi-light-transmitting portion) of 123 nm (140 nm-17 nm), and the transmittance of the semi-light-transmitting portion with respect to incident light of 193 nm is 6 %, A phase shift film having a phase difference of 180 ° can be made shallower by about 70 nm than when a conventional method is used (about 190 nm).

位相シフト法で用いられる位相シフトマスクの構成例を説明するための断面図で、(A)は位相シフト部が単層の「単層型」、(B)は位相シフト部が2層の「2層型」の位相シフトマスクである。It is sectional drawing for demonstrating the structural example of the phase shift mask used by the phase shift method, (A) is a "single layer type" with a single phase shift part, (B) This is a “two-layer type” phase shift mask. 本発明のハーフトーン型位相シフトマスクの基本的な構成例を説明するための断面図である。It is sectional drawing for demonstrating the basic structural example of the halftone type phase shift mask of this invention. 本発明の原理を説明するための図で、(A)および(B)はそれぞれ、媒質中に置かれた厚みtの「位相変調部2」および「位相変調部1」中を伝搬する際にどのような位相変化を受けるかを説明するための図である。In the drawings for explaining the principle of the present invention, (A) and (B) are respectively shown when propagating through a “phase modulation unit 2” and a “phase modulation unit 1” having a thickness t placed in a medium. It is a figure for demonstrating what kind of phase change it receives. 従来型の位相シフトマスクの場合の位相シフト膜中での位相変化を説明するための図である。It is a figure for demonstrating the phase change in the phase shift film in the case of a conventional phase shift mask. 本発明の位相シフトマスクの作製プロセス例を説明するための図である。It is a figure for demonstrating the example of a manufacturing process of the phase shift mask of this invention.

符号の説明Explanation of symbols

11 基板
12 「位相変調部2」である光学膜
13 「位相変調部1」である光学膜
20 シリコン膜
21 レジスト
22a、22b 酸化シリコン膜
DESCRIPTION OF SYMBOLS 11 Board | substrate 12 Optical film which is "phase modulation part 2" 13 Optical film which is "phase modulation part 1" 20 Silicon film 21 Resist 22a, 22b Silicon oxide film

Claims (7)

透明基板上に透光部と半透光部とを有するハーフトーン型位相シフトマスクであって、
前記透光部と前記半透光部のそれぞれには露光時にマスクのパターン面が接している媒質を伝播する光に対して位相を変える位相変調部が設けられており、
前記透光部と半透光部の一方の位相変調部を厚みdの位相変調部1、他方を厚みdの位相変調部2とした場合、前記位相変調部1を透過した光の位相φは前記媒質中をdだけ伝播した光の位相φ01と次式の関係:φ=φ01+Δφ(Δφ>0)を満足し、前記位相変調部2を透過した光の位相φは前記媒質中をdだけ伝播した光の位相φ02と次式の関係:φ=φ02+Δφ(Δφ<0)を満足することを特徴とする位相シフトマスク。
A halftone phase shift mask having a translucent part and a semi-translucent part on a transparent substrate,
Each of the translucent part and the semi-translucent part is provided with a phase modulation part that changes the phase with respect to the light propagating through the medium with which the mask pattern surface is in contact during exposure,
When one of the light transmitting part and the semi-light transmitting part is a phase modulating part 1 having a thickness d 1 and the other is a phase modulating part 2 having a thickness d 2 , the phase of the light transmitted through the phase modulating part 1 φ 1 satisfies the relationship between the phase φ 01 of the light propagated through the medium by d 1 and the following formula: φ 1 = φ 01 + Δφ 1 (Δφ 1 > 0), and the light transmitted through the phase modulator 2 phase phi 2 the relation between the phase phi 02 and the formula of the light propagating in the medium by d 2: φ 2 = φ 02 + Δφ 2 (Δφ 2 <0) the phase shift mask, characterized by satisfying the.
前記位相変調部2は前記半透光部に設けられ、前記位相変調部1は前記透光部に設けられている請求項1に記載のハーフトーン型位相シフトマスク。   The halftone phase shift mask according to claim 1, wherein the phase modulation unit 2 is provided in the semi-translucent unit, and the phase modulation unit 1 is provided in the translucent unit. 前記半透光部に透過率調整膜が設けられている請求項1又は2に記載のハーフトーン型位相シフトマスク。   The halftone phase shift mask according to claim 1, wherein a transmittance adjusting film is provided on the semi-translucent portion. 前記透過率調整膜は前記位相変調部2である請求項3に記載のハーフトーン型位相シフトマスク。   The halftone phase shift mask according to claim 3, wherein the transmittance adjusting film is the phase modulation unit 2. 前記位相変調部2を透過した光と前記位相変調部1を透過した光の位相差が実質的にπ(ラジアン)であることを特徴とする請求項1乃至4の何れか1項に記載のハーフトーン型位相シフトマスク。   5. The phase difference between the light transmitted through the phase modulation unit 2 and the light transmitted through the phase modulation unit 1 is substantially π (radian). 6. Halftone phase shift mask. 前記位相変調部2は、シリコン、モリブデン、モリブデンシリサイドの少なくとも1種からなる光学膜である請求項1乃至5の何れか1項に記載のハーフトーン型位相シフトマスク。   The halftone phase shift mask according to claim 1, wherein the phase modulation unit 2 is an optical film made of at least one of silicon, molybdenum, and molybdenum silicide. 前記位相変調部1は、シリコン酸化物、シリコン窒化物、シリコン酸窒化物の少なくとも1種からなる光学膜である請求項1乃至6の何れか1項に記載のハーフトーン型位相シフトマスク。   The halftone phase shift mask according to claim 1, wherein the phase modulation unit 1 is an optical film made of at least one of silicon oxide, silicon nitride, and silicon oxynitride.
JP2007158324A 2007-06-15 2007-06-15 Halftone phase shift mask Active JP4528803B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007158324A JP4528803B2 (en) 2007-06-15 2007-06-15 Halftone phase shift mask
KR1020080039460A KR101333372B1 (en) 2007-06-15 2008-04-28 Halftone type phase shift mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158324A JP4528803B2 (en) 2007-06-15 2007-06-15 Halftone phase shift mask

Publications (2)

Publication Number Publication Date
JP2008310090A true JP2008310090A (en) 2008-12-25
JP4528803B2 JP4528803B2 (en) 2010-08-25

Family

ID=40237739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158324A Active JP4528803B2 (en) 2007-06-15 2007-06-15 Halftone phase shift mask

Country Status (2)

Country Link
JP (1) JP4528803B2 (en)
KR (1) KR101333372B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136854A (en) * 1990-09-28 1992-05-11 Hitachi Ltd Photomask and production thereof, formation of pattern by using this method and photomask blank
JPH07140635A (en) * 1992-11-21 1995-06-02 Ulvac Seibaku Kk Phase shift mask and its production and exposure method using the phase shift mask
JP2001337436A (en) * 2000-05-25 2001-12-07 Dainippon Printing Co Ltd Halftone phase shift photomask and blanks for the same
JP2003121988A (en) * 2001-10-12 2003-04-23 Hoya Corp Method for modifying defective part of halftone phase shifting mask
JP2005084682A (en) * 2003-09-05 2005-03-31 Schott Ag Attenuating phase shift mask blank and photomask
JP2006215297A (en) * 2005-02-04 2006-08-17 Shin Etsu Chem Co Ltd Translucent layered film, photomask blank, photomask and method for manufacturing them
JP2006292840A (en) * 2005-04-06 2006-10-26 Advanced Lcd Technologies Development Center Co Ltd Exposure method and halftone phase shift mask
JP2007114536A (en) * 2005-10-21 2007-05-10 Dainippon Printing Co Ltd Photomask, method for manufacturing the same, and pattern transfer method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100520154B1 (en) * 2000-12-29 2005-10-10 주식회사 하이닉스반도체 Manufacturing method for phase shift of semiconductor device
KR101052654B1 (en) * 2004-06-16 2011-07-28 호야 가부시키가이샤 Semitransmitting film, photomask blank, photomask, and semitransmitting film designing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136854A (en) * 1990-09-28 1992-05-11 Hitachi Ltd Photomask and production thereof, formation of pattern by using this method and photomask blank
JPH07140635A (en) * 1992-11-21 1995-06-02 Ulvac Seibaku Kk Phase shift mask and its production and exposure method using the phase shift mask
JP2001337436A (en) * 2000-05-25 2001-12-07 Dainippon Printing Co Ltd Halftone phase shift photomask and blanks for the same
JP2003121988A (en) * 2001-10-12 2003-04-23 Hoya Corp Method for modifying defective part of halftone phase shifting mask
JP2005084682A (en) * 2003-09-05 2005-03-31 Schott Ag Attenuating phase shift mask blank and photomask
JP2006215297A (en) * 2005-02-04 2006-08-17 Shin Etsu Chem Co Ltd Translucent layered film, photomask blank, photomask and method for manufacturing them
JP2006292840A (en) * 2005-04-06 2006-10-26 Advanced Lcd Technologies Development Center Co Ltd Exposure method and halftone phase shift mask
JP2007114536A (en) * 2005-10-21 2007-05-10 Dainippon Printing Co Ltd Photomask, method for manufacturing the same, and pattern transfer method

Also Published As

Publication number Publication date
JP4528803B2 (en) 2010-08-25
KR101333372B1 (en) 2013-11-28
KR20080110471A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
JP4507216B2 (en) Photomask blank and phase shift mask
TWI481949B (en) Photomask blank, photomask, and methods of manufacturing these
KR101780068B1 (en) Mask blank and method for manufacturing transfer mask
WO2010113475A1 (en) Mask blank and transfer mask
JP5666218B2 (en) Mask blank, transfer mask, and transfer mask set
JP2009104174A (en) Method for manufacturing phase shift mask blank, method for manufacturing phase shift mask, and method for transferring pattern
JP4934237B2 (en) Gray-tone mask manufacturing method, gray-tone mask, and pattern transfer method
KR100845173B1 (en) Extreme ultraviolet mask with molybdenum phase shifter
JP6983641B2 (en) A phase shift mask blank for manufacturing a display device, a method for manufacturing a phase shift mask for manufacturing a display device, and a method for manufacturing a display device.
JP2008310091A (en) Halftone phase shift mask
JPH10186632A (en) Blank for halftone type phase shift mask and halftone type phase shift mask
JP7080070B2 (en) Manufacturing method of photomask and display device
JP4977535B2 (en) Pattern transfer method
JP2005316512A (en) Method of manufacturing phase shift mask blank, method for manufacturing phase shift mask, and method of transferring pattern
JP4528803B2 (en) Halftone phase shift mask
JP4325192B2 (en) Halftone phase shift mask blank and halftone phase shift mask
JP4977794B2 (en) Pattern transfer method and photomask
TW201823856A (en) Method of manufacturing a photomask, photomask, and method of manufacturing a display device
TW202217433A (en) Mask blank, phase shift mask, method of manufacturing phase shift mask, and method of manufacturing semiconductor device
KR20110037890A (en) Mask blank, transfer mask and transfer mask set
JP2006106253A (en) Phase shift mask and method for manufacturing phase shift mask
KR20080110464A (en) Photomask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4528803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150