JP2008309697A - Ultrasonic section inspection method and device - Google Patents

Ultrasonic section inspection method and device Download PDF

Info

Publication number
JP2008309697A
JP2008309697A JP2007158811A JP2007158811A JP2008309697A JP 2008309697 A JP2008309697 A JP 2008309697A JP 2007158811 A JP2007158811 A JP 2007158811A JP 2007158811 A JP2007158811 A JP 2007158811A JP 2008309697 A JP2008309697 A JP 2008309697A
Authority
JP
Japan
Prior art keywords
ultrasonic
transducer
received
transducer array
transducers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007158811A
Other languages
Japanese (ja)
Other versions
JP5145783B2 (en
Inventor
Hajime Takada
一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007158811A priority Critical patent/JP5145783B2/en
Publication of JP2008309697A publication Critical patent/JP2008309697A/en
Application granted granted Critical
Publication of JP5145783B2 publication Critical patent/JP5145783B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent occurrence of a tooth omission during inspection in application of ultrasonic flaw detection using an oscillator array to a subject transferred at high speed. <P>SOLUTION: When a section of the subject is inspected using the oscillator array including a large number of unidimensionally arranged ultrasonic oscillators, ultrasonic waves are transmitted from a part of or all of ultrasonic oscillators of the oscillator array, reflected waves generated by the transmitted ultrasonic waves are received using a part or all of the ultrasonic oscillators of the oscillator array, and the received signals are converted to digital waveform signals. Based on a distance between each oscillator of an ultrasonic oscillator group composed of a plurality of ultrasonic oscillators selected from the oscillator array and a continuous receiving focal position formed in the subject, the time axis of the digitized received signal of each oscillator is converted, and a curtain of received needle beams is formed under the oscillator array by adding and composing the received signal with converted time axis of each oscillator. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、超音波による断面検査方法及び装置に係り、特に、連続的に搬送される被検体の検査を超音波を用いて行なう超音波検査装置、あるいは、超音波送受波器を走査して被検体の検査を行なう超音波検査装置に用いるのに好適な、超音波による断面検査方法及び装置に関する。   The present invention relates to an ultrasonic cross-sectional inspection method and apparatus, and in particular, by scanning an ultrasonic inspection apparatus or ultrasonic transducer that performs ultrasonic inspection on an object that is continuously conveyed. The present invention relates to an ultrasonic cross-sectional inspection method and apparatus suitable for use in an ultrasonic inspection apparatus for inspecting a subject.

金属材料等の工業製品は、その内部に有害な欠陥が無いことを確認するため、超音波を用いて検査されることが多い。近年、軽量化を目的とした金属材料の薄肉化、環境対策のための製造プロセス変更、更に、長寿命化を目的とした内部品質改善などのために、φ20μm程度の超微小内部欠陥を金属材料の全長・全断面にわたって検出することが必要になってきている。製造される金属材料製品全数の全長・全断面を検査するためには、製造ラインにおいて搬送されている製品の検査を行う必要がある。前記超微小欠陥の検出が必要な製品の搬送速度は、最大で1000mm/s程度である。従って、1000mm/sの高速で搬送される製品の全長・全断面にわたり、φ20μm程度の大きさの超微小欠陥を検出することが必要になっている。   Industrial products such as metal materials are often inspected using ultrasonic waves in order to confirm that there are no harmful defects inside. In recent years, ultra-fine internal defects of about φ20μm have been made into metal to reduce the thickness of metal materials for weight reduction, change the manufacturing process for environmental measures, and improve internal quality for longer life. It has become necessary to detect the entire length and cross section of the material. In order to inspect the full length and the entire cross section of the total number of manufactured metal material products, it is necessary to inspect the products conveyed in the production line. The conveyance speed of the product that needs to detect the ultra-fine defect is about 1000 mm / s at the maximum. Accordingly, it is necessary to detect an ultra-fine defect having a size of about φ20 μm over the entire length and the entire cross section of a product conveyed at a high speed of 1000 mm / s.

前記超音波を用いた検査装置は超音波探傷装置と称されている。これらの装置において前記内部欠陥を検出するにあたり、高速な検査を目的として超音波ビームを電子的に走査する手法が使われている。このうち、従来より用いられているリニア電子走査と称される走査方式を図6により説明する。   The inspection apparatus using the ultrasonic waves is called an ultrasonic flaw detector. In these apparatuses, a technique of electronically scanning an ultrasonic beam for the purpose of high-speed inspection is used to detect the internal defect. Among these, a scanning method called linear electronic scanning which has been conventionally used will be described with reference to FIG.

図6は従来の超音波検査装置の構成を示すブロック図である。図6において、101は振動子アレイを示す。振動子アレイ101には、その先端部に多数の超音波振動子(以下、単に素子と称する)が等間隔でアレイ状に並べてあり、このうち複数の素子を一組として駆動し、決められた位置に超音波ビームを集束させる。図示の例では、素子総数が64個(1011〜10164)、1組に用いる素子数を8個としている。各素子には素子番号1〜64が付されている。B1〜B57は各素子1011〜10164により形成される超音波ビームを示す。102は、これら超音波ビームB1〜B57の送受波を制御する制御回路である。 FIG. 6 is a block diagram showing a configuration of a conventional ultrasonic inspection apparatus. In FIG. 6, 101 indicates a transducer array. The transducer array 101 has a number of ultrasonic transducers (hereinafter simply referred to as “elements”) arranged in an array at equal intervals at the tip, and a plurality of elements are driven and determined as a set. Focus the ultrasonic beam into position. In the illustrated example, the total number of elements is 64 (101 1 to 101 64 ), and the number of elements used in one set is eight. Element numbers 1 to 64 are assigned to the respective elements. B 1 to B 57 denote ultrasonic beams formed by the elements 101 1 to 101 64 . A control circuit 102 controls transmission / reception of the ultrasonic beams B 1 to B 57 .

ここで、超音波ビームB1〜B57の送受波動作の概略を説明する。まず、素子1011〜1018の8個を1組として駆動することにより、素子1011〜1018の中心線上に集束点を持つ超音波ビームB1を送受波する。次に素子1012〜1019を1組として駆動することにより、素子1012〜1019の中心線上に集束点を持つ超音波ビームB2を送受波する。以下同様に駆動素子群を1つずつシフトさせ、最後は素子10157〜10164の駆動により、超音波ビームB57を送受波する。このような動作により、素子配列ピッチに等しいピッチで、被検体に対して超音波ビームを電子走査する。上述の集束超音波ビームの送受波及び電子走査に必要な制御は、振動子アレイ101に接続された制御回路102において行なわれる。 Here, an outline of the transmission / reception operation of the ultrasonic beams B 1 to B 57 will be described. First, by driving eight elements 101 1 to 101 8 as a set, an ultrasonic beam B 1 having a focusing point on the center line of the elements 101 1 to 101 8 is transmitted and received. By then driving the element 101 2-101 9 as one set, the ultrasonic beams B 2 having a focal point on the element 101 2-101 9 centerline transmitting and receiving waves. Similarly, the drive element group is shifted one by one, and finally the ultrasonic beam B 57 is transmitted and received by driving the elements 101 57 to 101 64 . By such an operation, an ultrasonic beam is electronically scanned on the subject at a pitch equal to the element arrangement pitch. Control necessary for the transmission / reception of the focused ultrasonic beam and the electronic scanning described above is performed by the control circuit 102 connected to the transducer array 101.

なお、送波ビームの集束は、超音波を送波するために各素子に与える電気パルスの印加タイミングを、前記1組の素子の中で変更することによって可能である。受波ビームの集束は、前記1組の素子が受波した信号を、素子毎に個別の時間だけ遅延させて加算することによって達成できる。   Note that the transmission beam can be focused by changing the application timing of the electric pulse applied to each element in order to transmit the ultrasonic wave in the one set of elements. The focusing of the received beam can be achieved by adding the signals received by the one set of elements while delaying each element for an individual time.

上述したリニア電子走査は、超音波探触子の機械走査を行なう方法に比べ、20倍程度の高速な検査が可能であるとされている。しかし、金属材料等の搬送ラインにおいて、秒速1m程度の高速で搬送される被検体を、前記リニア電子走査を用いて検査しようとすると、1回の電子走査が終了するまでに、被検体のかなりの長さの部分が通過してしまうために、検査に歯抜けが発生する問題があった。   The linear electronic scanning described above is said to be capable of high-speed inspection about 20 times as compared with a method of performing mechanical scanning of an ultrasonic probe. However, when a subject transported at a high speed of about 1 m / second in a transport line of metal material or the like is to be inspected using the linear electronic scanning, a considerable amount of the subject must be observed before one electronic scanning is completed. Since the length of the portion passes, there is a problem that missing teeth occur in the inspection.

リニア電子走査による検査を高速化するための先行技術として、特許文献1が挙げられる。この特許文献1は、「多数の超音波振動素子の配列に沿って超音波ビームの走査を行なう超音波検査装置において、前記超音波ビームのすべてを連続する複数のビーム領域に区分するビーム領域区分手段と、前記各ビーム領域を所定の順で選択してゆくビーム領域選択手段と、選択されたビーム領域における1つの超音波ビームを当該ビーム領域が選択される毎に順次シフトしてゆくシフト手段とを設けたこと」によってリニア電子走査の高速化を図ることを提案している。   As a prior art for speeding up the inspection by linear electronic scanning, Patent Document 1 is cited. This patent document 1 describes, “In an ultrasonic inspection apparatus that scans an ultrasonic beam along an array of a large number of ultrasonic vibration elements, a beam area section that divides all of the ultrasonic beams into a plurality of continuous beam areas. Means, a beam area selection means for selecting each of the beam areas in a predetermined order, and a shift means for sequentially shifting one ultrasonic beam in the selected beam area each time the beam area is selected. It has been proposed to increase the speed of linear electronic scanning.

又、被検体の断面検査を高速化するための先行技術として、特許文献2が挙げられる。この特許文献2は、「被検材表面に沿って配列可能な複数の振動子を有する超音波変換器アレイと、超音波変換器アレイの各振動子をスパイクパルスで励振する励振手段と、各振動子で受信した超音波受信エコーを振動子毎の波形データとして記憶する波形メモリと、振動子毎の波形データが記憶された前記波形メモリの内容を読み出し、加算器にて位相合成する位相合成手段と、上記波形メモリの読み出しにおいて、その各波形メモリのアドレスを電子走査範囲内の任意位置に対するダイナミックフォーカスのビーム路程距離に相当するアドレスとして与える焦点手段とを備えることを特徴とする超音波探傷装置。」によって被検体の断面検査の高速化を図ることを提案している。   Patent Document 2 is cited as a prior art for speeding up the cross-sectional inspection of a subject. This Patent Document 2 states that “an ultrasonic transducer array having a plurality of transducers that can be arranged along the surface of a test material, an excitation unit that excites each transducer of the ultrasonic transducer array with a spike pulse, Waveform memory that stores ultrasonic reception echoes received by transducers as waveform data for each transducer, and phase synthesis that reads out the contents of the waveform memory that stores the waveform data for each transducer and performs phase synthesis using an adder And a focus means for giving the address of each waveform memory as an address corresponding to the beam path distance of the dynamic focus with respect to an arbitrary position within the electronic scanning range in reading out the waveform memory. It has been proposed to speed up the cross-sectional inspection of the subject by using the “apparatus”.

特開平3−248058号公報Japanese Patent Laid-Open No. 3-248058 特開2003−28846号公報JP 2003-28846 A

しかし、特許文献1では、電子的な切り替えによって超音波ビームの走査が行われることに変わりはなく、前記した検査の歯抜け問題の解決には程遠い状況であった。   However, in Patent Document 1, the scanning of the ultrasonic beam is performed by electronic switching, and the situation is far from solving the problem of missing teeth in the inspection described above.

又、特許文献2では、波形メモリに記憶された振動子アレイの全受波信号データから、受波の焦点を形成する際に、焦点の深さ位置を順次変更する必要があるため、このプロセスに時間がかかる問題があった。特許文献2の[0042]には、1つの断面検査が1msで終了する例が示されているが、例えば被検材の速度が1000mm/s(60mpm)である場合には、1mm置きにしか被検材の検査を行うことができない。これでは例えば、被検材にφ100μm程度の円形平面欠陥があったとしても、この欠陥へ垂直に超音波ビームがあたる確率は1/10よりも小さい。   In Patent Document 2, it is necessary to sequentially change the depth position of the focal point when forming the focal point of the received wave from all the received signal data of the transducer array stored in the waveform memory. There was a problem that took time. [0042] of Patent Document 2 shows an example in which one cross-sectional inspection is completed in 1 ms. For example, when the speed of the test material is 1000 mm / s (60 mpm), the cross-sectional inspection is only performed every 1 mm. The test material cannot be inspected. In this case, for example, even if a specimen has a circular plane defect of about φ100 μm, the probability that an ultrasonic beam hits the defect perpendicularly is smaller than 1/10.

又、特許文献2では、n個の素子によって受波されたn個の受波信号全てを位相合成することにより、特定の位置に受波ビームの焦点を形成していた。nとして200が例示されている。焦点位置における受波ビームの径は開口の大きさに反比例するので、nが大きいことは欠陥検出能や分解能向上の観点から良さそうに思われる。しかし、振動子アレイを構成する個々の超音波振動子(素子ともいう)は配列方向にある程度の幅を有しているため、個々の超音波振動子の受波指向性は、ある程度狭い角度範囲に限られる。例えば、振動子アレイの公称周波数を5MHzとし、配列方向での素子幅を0.8mm(一般的な5MHz振動子アレイの素子幅はこの程度)として考えると、受波ビーム中心軸での受波効率に対して−6dB以内の受波効率となる角度(受波指向性という)は約12°(ビーム中心軸に対して)である。   In Patent Document 2, the focus of a received beam is formed at a specific position by phase-combining all n received signals received by n elements. 200 is illustrated as n. Since the diameter of the received beam at the focal position is inversely proportional to the size of the aperture, it is likely that n is large from the viewpoint of defect detection capability and resolution improvement. However, since the individual ultrasonic transducers (also referred to as elements) that constitute the transducer array have a certain width in the arrangement direction, the receiving directivity of the individual ultrasonic transducers has a certain narrow angle range. Limited to. For example, assuming that the nominal frequency of the transducer array is 5 MHz and the element width in the arrangement direction is 0.8 mm (the element width of a general 5 MHz transducer array is about this), reception at the center axis of the received beam The angle at which the receiving efficiency is within −6 dB with respect to the efficiency (referred to as receiving directivity) is about 12 ° (with respect to the beam center axis).

この振動子アレイを用い、焦点に対する受波指向性が−6dB以内となる素子のみを用いて、振動子アレイから距離50mmの位置に焦点を形成することを考える。仮に焦点の直上に位置する素子を素子iとしたとき、焦点に対する受波指向性が−6dB以内となる素子jは素子iから約11mmに位置する。素子幅は0.8mmとしたから、素子jは素子iから13〜14番目の素子である。ゆえに、上記の場合、受波ビームの焦点に主に寄与する素子は全体で30素子足らずである。   Consider using this transducer array to form a focal point at a distance of 50 mm from the transducer array using only elements with a receiving directivity with respect to the focal point of -6 dB or less. Assuming that the element located immediately above the focal point is the element i, the element j having a wave receiving directivity with respect to the focal point within −6 dB is located about 11 mm from the element i. Since the element width is 0.8 mm, the element j is the thirteenth to fourteenth elements from the element i. Therefore, in the above case, the number of elements mainly contributing to the focus of the received beam is less than 30 in total.

このように特許文献2に示された技術を上記一般的なケースに適用するにしても、8割以上の素子の位相合成処理が無駄になっている問題があった。更に、特許文献2に示された装置を製造現場におけるオンライン探傷へ適用する場合には、焦点形成にほとんど寄与しない8割以上の素子が受波した信号に含まれる現場特有の周期性ノイズが加算によって増大するため、振幅の大きなノイズ信号が発生し易い問題があった。振幅の大きなノイズ信号は、誤検出の原因となるため、オンライン探傷では最も嫌われる不具合である。   As described above, even when the technique disclosed in Patent Document 2 is applied to the above general case, there is a problem that the phase synthesis processing of 80% or more elements is wasted. Furthermore, when the apparatus shown in Patent Document 2 is applied to on-line flaw detection at a manufacturing site, periodic noise peculiar to the site included in a signal received by 80% or more of elements that hardly contribute to focus formation is added. Therefore, there is a problem that a noise signal having a large amplitude is likely to be generated. A noise signal having a large amplitude is a problem that is most disliked in online flaw detection because it causes false detection.

本発明は、前記従来の問題点を解決するべくなされたもので、振動子アレイを用いた超音波探傷を、高速に移送される被検体の検査に適用するに当たり、検査に歯抜けが発生しないようにすることを課題とする。更に、本発明は、振幅が大きなノイズが発生しない探傷方法及び装置を提供することを課題とする。   The present invention has been made to solve the above-described conventional problems, and in applying ultrasonic flaw detection using a transducer array to an inspection of an object to be transported at high speed, no tooth loss occurs in the inspection. The challenge is to do so. Furthermore, an object of the present invention is to provide a flaw detection method and apparatus in which noise having a large amplitude does not occur.

本発明は、1次元に配列された多数の超音波振動子からなる振動子アレイを用いて被検体の断面を検査するにあたり、前記振動子アレイの一部または全ての超音波振動子から超音波を送波し、該送波された超音波によって生起された反射波を、前記振動子アレイの一部または全ての超音波振動子を用いて受波し、該受波された信号をディジタルの波形信号へ変換し、前記振動子アレイの中から選択された複数の超音波振動子で構成される第1の超音波振動子群の各振動子と前記被検体内部に形成する連続的な受波焦点との距離に基づき、前記各振動子のディジタル化された受波信号の時間軸を変換し、前記各振動子の変換受波信号を同時に加算合成する超音波による断面検査方法であって、前記振動子アレイを、複数の超音波振動子で構成される、前記第1の超音波振動子群とは異なる超音波振動子のグループにグループ分けし、各グループにおいて、グループ内の複数の超音波振動子が受波した複数の信号に相異なる遅延を加えた上で、該遅延された複数の信号を加算することにより1つの信号にまとめることにより、前記課題を解決したものである。   When inspecting a cross section of a subject using a transducer array composed of a large number of ultrasonic transducers arranged one-dimensionally, the present invention can apply ultrasonic waves from a part or all of the ultrasonic transducers. And the reflected wave generated by the transmitted ultrasonic wave is received using a part or all of the ultrasonic transducers of the transducer array, and the received signal is digitally transmitted. Each of the transducers of the first ultrasound transducer group that is converted into a waveform signal and is composed of a plurality of ultrasound transducers selected from the transducer array, and the continuous reception formed inside the subject. A cross-sectional inspection method using ultrasonic waves, which converts a time axis of a digitized received signal of each transducer based on a distance from a wave focus and simultaneously adds and synthesizes the converted received signals of each transducer. The transducer array is composed of a plurality of ultrasonic transducers. Grouped into a group of ultrasonic transducers different from the first ultrasonic transducer group, and in each group, a plurality of signals received by a plurality of ultrasonic transducers in the group have different delays. In addition, the above-described problems are solved by adding the plurality of delayed signals into one signal.

ここで、複数の超音波振動子からなる第1の超音波振動子群を複数個とし、前記複数個の超音波振動子群において加算合成を同時に行うことができる。   Here, a plurality of first ultrasonic transducer groups including a plurality of ultrasonic transducers can be provided, and addition and synthesis can be simultaneously performed in the plurality of ultrasonic transducer groups.

本発明は、又、1次元に配列された多数の超音波振動子からなる振動子アレイを用いて被検体の断面を検査する装置で、前記振動子アレイの一部または全ての超音波振動子から超音波を送波する手段と、該送波された超音波によって生起された反射波を、前記振動子アレイの一部または全ての超音波振動子を用いて受波する手段と、該受波された信号をディジタルの波形信号へ変換する手段と、前記振動子アレイの中から選択された複数の超音波振動子で構成される第1の超音波振動子群の各振動子と前記被検体内部に形成する連続的な受波焦点位置との距離に基づき、前記各振動子のディジタル化された受波信号の時間軸を変換する手段と、前記各振動子の変換受波信号を同時に加算合成する手段とを備えた超音波による断面検査装置であって、前記振動子アレイを複数の超音波振動子で構成される、前記第1の超音波振動子群とは異なる超音波振動子のグループにグループ分けし、各グループにおいて、グループ内の複数の超音波振動子が受波した複数の信号に相異なる遅延を加える遅延手段と、該遅延された複数の信号を加算することにより1つの信号にまとめる加算手段と、を備えたものである。   The present invention is also an apparatus for inspecting a cross section of a subject using a transducer array composed of a large number of ultrasonic transducers arranged one-dimensionally, and a part or all of the ultrasonic transducers of the transducer array. Means for transmitting an ultrasonic wave from the apparatus, means for receiving a reflected wave generated by the transmitted ultrasonic wave using a part or all of the ultrasonic transducers of the transducer array, and the receiving unit. Means for converting a wave signal into a digital waveform signal; each transducer of a first ultrasonic transducer group composed of a plurality of ultrasonic transducers selected from the transducer array; The means for converting the time axis of the digitized received signal of each transducer based on the distance from the continuous received focus position formed inside the specimen, and the converted received signal of each transducer simultaneously An ultrasonic cross-sectional inspection device equipped with a means for addition synthesis The transducer array is divided into groups of ultrasonic transducers that are different from the first ultrasonic transducer group, and each group includes a plurality of ultrasonic transducers. A delay unit that adds different delays to the plurality of signals received by the ultrasonic transducer; and an addition unit that adds the plurality of delayed signals into a single signal.

ここで、前記加算合成する手段は、複数個の第1の超音波振動子群における加算合成を同時に行うことができる。   Here, the means for adding and synthesizing can simultaneously add and synthesize the plurality of first ultrasonic transducer groups.

本発明では、振動子アレイの一部または全ての超音波振動子から超音波を送波し、該送波された超音波によって生起された反射波を、前記振動子アレイの一部または全ての超音波振動子を用いて受波し、該受波された信号をディジタルの波形信号へ変換した上で、前記振動子アレイの中から選択された複数の超音波振動子で構成される超音波振動子群の各振動子と前記被検体内部に形成する連続的な受波焦点位置との距離に基づき、前記各振動子のディジタル化された受波信号の時間軸を変換し、前記各振動子の変換受波信号を同時に加算合成するようにしたので、振動子アレイの下に受波ニードルビームのカーテンを形成することが可能となる。よって、高速に移動する物体の検査において、リニア電子走査に伴う検査の歯抜けが発生することが無く、特に、高速に移動する物体の全体積の検査が可能になるという従来に無い利点がある。   In the present invention, ultrasonic waves are transmitted from a part or all of the ultrasonic transducers of the transducer array, and the reflected waves generated by the transmitted ultrasonic waves are transmitted to a part or all of the transducer arrays. An ultrasonic wave received by an ultrasonic transducer, converted from the received signal into a digital waveform signal, and composed of a plurality of ultrasonic transducers selected from the transducer array Based on the distance between each transducer of the transducer group and the continuous receiving focus position formed inside the subject, the time axis of the digitized received signal of each transducer is converted, and each oscillation Since the converted reception signals of the child are added and synthesized at the same time, a curtain of the reception needle beam can be formed under the transducer array. Therefore, in the inspection of an object moving at high speed, there is no occurrence of inspection missing due to linear electronic scanning, and in particular, there is an unprecedented advantage that the entire volume of an object moving at high speed can be inspected. .

以下、図面を参照して、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は実施形態を単純化した例を示すブロック図、図2は本実施形態における着目点を示す説明図、図3は特定した2つの素子と焦点との間を超音波が伝搬する時間の相対的な関係を示す説明図、図4は本実施形態の全体像を示すブロック図である。   FIG. 1 is a block diagram showing a simplified example of the embodiment, FIG. 2 is an explanatory diagram showing a point of interest in this embodiment, and FIG. 3 is a diagram showing the time of propagation of ultrasonic waves between the two specified elements and the focal point. FIG. 4 is a block diagram showing an overall image of the present embodiment.

実施形態として、素子総数384個、受波集束ビームの形成に用いる1組の素子数を24個とした場合について説明する。本実施形態では、24個の素子を用いて、その配列方向中心の下方に焦点が連続する1つの細い受波ビーム(以下、ニードルビーム)を形成し、更に384個の全素子から選択が可能な24個の素子群の配列の下に受波ニードルビームを同時に形成することにより、振動子アレイ1の直下に受波ニードルビームが隙間なく並んだ受波ニードルビームカーテンを形成する例を示している。本実施形態では、24個の素子を受波集束ビームの焦点が連続するようにしている。   As an embodiment, a case will be described in which the total number of elements is 384, and the number of elements in one set used to form a received focused beam is 24. In the present embodiment, 24 thin elements are used to form one narrow receiving beam (hereinafter referred to as a needle beam) having a continuous focal point below the center of the arrangement direction, and a selection from all 384 elements is possible. An example of forming a receiving needle beam curtain in which receiving needle beams are arranged directly below the transducer array 1 by forming receiving needle beams simultaneously under an array of 24 element groups is shown. Yes. In the present embodiment, the focus of the received focused beam is made continuous with 24 elements.

図1(単純化図)及び図4(全体図)に示すように、本実施形態は、振動子アレイ1、該振動子アレイ1の各素子11〜1384から超音波を送波するため、各素子11〜1384に電気パルスを印加するパルサ21〜2384、各素子11〜1384が受波した超音波による信号を増幅するための受波増幅器31〜3384、増幅後の受波した超音波による信号を複数素子を単位(図では4素子、以下グループと称する)として遅延させる遅延素子41〜4384、前記遅延させた受波超音波信号を複数素子(図では4素子)として加算合成する加算合成器51〜5384(図では添え字は4おき)、加算合成後の受波超音波信号をディジタル化された受波信号へ変換するA/D変換器61〜6384(図では添え字は4おき)、ディジタル化された受波信号の時間軸を変換する時間軸変換部111〜11384(図では添え字は4おき)、時間軸が変換された信号を格納する波形メモリ121〜12384、及び、記憶された時間軸変換信号を用いて、振動子1iと1i+1との中間の直下に形成される焦点が切れ目無く連続した1つのニードルビームによって受波するのと等価な受波信号を生成する加算合成処理部13からなる。 As shown in FIG. 1 (simplified view) and FIG. 4 (overall view), in this embodiment, ultrasonic waves are transmitted from the transducer array 1 and the elements 1 1 to 1 384 of the transducer array 1. , reception amplifier 3 1 to 3 384 to pulser 2 1 to 2 384 that apply electric pulses to elements 1 1 to 1 384, each device 1 1 to 1 384 amplifies the ultrasonic signal received by, Delay elements 4 1 to 4 384 for delaying the amplified ultrasonic signals received in units of multiple elements (in the figure, 4 elements, hereinafter referred to as groups), and the delayed received ultrasonic signals to multiple elements ( Adder / synthesizers 5 1 to 5 384 (four subscripts are shown in the figure) for adding and synthesizing as four elements in the figure, and A / D for converting the received ultrasonic signal after addition and synthesis into a digitized received signal Converters 6 1 to 6 384 (in the figure, subscripts are every 4th), time of digitized received signal Time axis converters 11 1 to 11 384 for converting axes (in the figure, subscripts are every fourth), waveform memories 12 1 to 12 384 for storing signals whose time axes have been converted, and stored time axis conversion signals Is used to generate a reception signal equivalent to reception by a single needle beam with a continuous focal point formed immediately below between the transducers 1i and 1i + 1. Become.

即ち、本実施形態では、振動子アレイ11〜1384の素子毎に、パルサ21〜2384、受波増幅器31〜3384、遅延素子41〜4384、及び、波形メモリ121〜12384が備えられている。又、複数(図では4)素子につき1個の割合で、加算合成器51〜5384(図では添え字は4おき)、A/D変換器61〜6384(図では添え字は4おき)、時間軸変換部111〜11384(図では添え字は4おき)が備えられている。 That is, in this embodiment, for each element of the transducer arrays 1 1 to 1 384 , the pulsars 2 1 to 2 384 , the receiving amplifiers 3 1 to 3 384 , the delay elements 4 1 to 4 384 , and the waveform memory 12 1 ~ 12 384 are provided. In addition, in the ratio of one for a plurality of elements (4 in the figure), the adder / synthesizers 5 1 to 5 384 (in the figure, subscripts are every four), and the A / D converters 6 1 to 6 384 (in the figure, the subscripts are 4), time axis converters 11 1 to 11 384 (in the figure, subscripts are every 4th).

ここで、遅延素子41〜4384、加算合成器51〜5384(図では添え字は4おき)の役割を詳しく説明する。遅延素子41〜4384は図中4おきに同一の長さで描かれている。これは、前記素子による信号の遅延時間が同一であることを意味する。遅延素子41〜4384はグループ内に入力される受波増幅器31〜3384からの受波超音波信号をそれぞれ異なる時間遅延させる。遅延素子41〜4384によってそれぞれ異なる時間遅延された受波超音波信号は、加算合成器51〜5384において加算合成され、1つの信号にまとめられる。 Here, the roles of the delay elements 4 1 to 4 384 and the adder / synthesizers 5 1 to 5 384 (subscripts are every 4th in the figure) will be described in detail. The delay elements 4 1 to 4 384 are drawn with the same length every fourth interval in the figure. This means that the delay time of the signal by the element is the same. The delay elements 4 1 to 4 384 respectively delay the received ultrasonic signals from the receiving amplifiers 3 1 to 3 384 input into the group by different times. The received ultrasonic signals delayed by different times by the delay elements 4 1 to 4 384 are added and synthesized by the adder / synthesizers 5 1 to 5 384 and combined into one signal.

前記遅延素子のグループ内における遅延時間は添え字の増分に対して一定の時間Δtが上乗せされるように設定されている。Δtとして、隣り合う素子が受波した同一エコー源からのエコー信号が加算合成器5j-4における加算合成において干渉を起こさないよう十分大きな時間が選ばれている。このように構成すると、振動子アレイ1j-4〜1j-1に受波され、受波増幅器3j-4〜3j-1によって増幅された信号を、個々の信号の形態を保持したまま、1つの信号にまとめることができるため、高価なA/D変換器の個数を減ずることによる製作コストの大幅な低減を図ることができる。 The delay time in the group of delay elements is set so that a fixed time Δt is added to the increment of the subscript. As Δt, a sufficiently long time is selected so that echo signals from the same echo source received by adjacent elements do not cause interference in the addition synthesis in the addition synthesizer 5 j-4 . With this configuration, the signals received by the transducer arrays 1 j-4 to 1 j-1 and amplified by the receiving amplifiers 3 j-4 to 3 j-1 are retained in the form of individual signals. Since the signals can be combined into one signal, the manufacturing cost can be greatly reduced by reducing the number of expensive A / D converters.

図2は本実施形態における受波ニードルビーム形成の考え方を示している。振動子アレイ1の全素子11〜1384から超音波を送波する。又、被検体からの超音波の反射信号(エコー)を、振動子アレイ1の全素子11〜1384を用いて受波する。各素子11〜1384によって受波された超音波による信号は、それぞれ図1に示した受波増幅器31〜3384によって増幅された後、A/D変換器41〜4384によってディジタル信号に変換される。これらディジタル化された信号の位相合わせを行ったのち、加算合成を行うことにより、図1に示したような受波集束ビームを形成できる。 FIG. 2 shows the concept of receiving needle beam formation in this embodiment. Ultrasonic waves are transmitted from all the elements 1 1 to 1 384 of the transducer array 1. In addition, an ultrasonic reflection signal (echo) from the subject is received using all the elements 11 to 384 of the transducer array 1. Signal by ultrasonic wave reception by the elements 1 1 to 1 384 are amplified by the reception amplifier 3 1 to 3 384 shown in FIG. 1, respectively, digital by the A / D converter 41 to 384 Converted to a signal. After performing phase matching of these digitized signals, addition and synthesis can be performed to form a received focused beam as shown in FIG.

本実施形態では、図2に示すように、素子1i-12〜1i+11の下に振動子アレイ1から距離FRの位置に受波ビーム焦点を形成する場合に、素子1i-12〜1i+11と焦点との間の距離は、距離FRの増加に対して単調増加する関数で表されることに着目した。図2に示した例では、焦点を1i-1及び1iの中心の直下に設定しているので、焦点に一番近い素子は1i-1及び1iである。該素子と焦点との間を超音波が伝搬する時間と、焦点から一番遠い素子1i-12と焦点との間を超音波が伝搬する時間とを対比させて図3に示す。この計算では、超音波が伝搬する媒体での超音波の速度を1500m/s、素子ピッチpを0.2mmとし、FRを4mm〜25mmまで変化させた。 In the present embodiment, as shown in FIG. 2, when a receiving beam focus is formed at a distance F R from the transducer array 1 below the elements 1 i-12 to 1 i + 11 , the element 1 i− the distance between the 12 to 1 i + 11 and the focal point is focused to be expressed by a function which increases monotonically with increasing distance F R. In the example shown in FIG. 2, since the set focus directly under the center of the 1 i-1 and 1 i, the closest element to the focus is 1 i-1 and 1 i. FIG. 3 shows a comparison between the time for which the ultrasonic wave propagates between the element and the focal point and the time for the ultrasonic wave to propagate between the element 1 i-12 farthest from the focal point and the focal point. In this calculation, the ultrasound velocity in medium ultrasound propagates to 1500 m / s, the element pitch p and 0.2 mm, was changed F R to 4Mm~25mm.

図3に示すように、前記2つの素子と焦点との間を超音波が伝搬するのに要する時間は、単調に変化する関数関係(以下、伝搬時間相対関係)を持つ。ここで、図3の横軸は図2の距離di-1を伝搬時間に変換したもので、縦軸は図2の距離di-12を伝搬時間に変換したものである。従って、一方の素子が受波した信号の時間軸(受波した時刻)を、図3に示した関係を用いて、他方の素子が受波した信号の時間軸(受波した時刻)に合わせれば(以下、時間軸変換と言う)、焦点と振動子アレイ1との距離FRが変化しても、常に両者の位相を合致させることができる。 As shown in FIG. 3, the time required for the ultrasonic wave to propagate between the two elements and the focal point has a monotonously changing functional relationship (hereinafter referred to as a propagation time relative relationship). Here, the horizontal axis in FIG. 3 is obtained by converting the distance d i-1 in FIG. 2 into the propagation time, and the vertical axis is obtained by converting the distance d i-12 in FIG. 2 into the propagation time. Therefore, the time axis of the signal received by one element (the time of reception) is matched with the time axis of the signal received by the other element (the time of reception) using the relationship shown in FIG. if (hereinafter, referred to as time axis conversion), also vary the distance F R between the focus and the transducer array 1, it is always possible to match the two phases.

素子1i-1と焦点との間を超音波が伝搬する時間と、素子1i-12以外の素子と焦点との間を超音波が伝搬する時間との間にも図3と同様の関係があるため、これらの関係を予め計算し、受波した信号の時間軸変換を行えば、焦点と振動子アレイ1との距離FRにかかわらず、同様に、素子1i-12以外の素子と素子1i-1との位相も合致させることができる。即ち、各素子1i-12〜1i+11が受波した信号の時間軸変換を行えば、素子1i-12〜1i+11の下に、焦点が切れ目なく連続する細い受波ビームを形成することができる。この受波ビームは、一点鎖線を中心とした細い領域に局在するニードルビームといえる。 The relationship between the time for the ultrasonic wave to propagate between the element 1 i-1 and the focal point and the time for the ultrasonic wave to propagate between the element other than the element 1 i-12 and the focal point are the same as in FIG. because there are, these relationships precomputed, by performing time-axis conversion of the signals received, regardless of the distance F R between the focus and the transducer array 1, similarly, the element 1 i-12 than the element And the phase of the element 1 i-1 can also be matched. That is, a narrow reception beam each element 1 i-12 ~1 i + 11 is by performing time axis conversion of the signals received, under the elements 1 i-12 ~1 i + 11, the focus is continuously seamlessly Can be formed. This received beam can be said to be a needle beam that is localized in a thin region centered on the alternate long and short dash line.

なお、上記説明では時間軸変換の基準とする素子を素子1i-1として説明を行ったが、基準とする素子は24個の素子のいずれであってもよい。但し、焦点に一番近い素子を基準に時間軸変換を行うようにすると、時間軸変換後のデータの数を一番少なくできる(素子と焦点との間の超音波伝搬時間が最も短い。)ので、装置製作上のメリットがある。 In the above description, the element used as a reference for time axis conversion is described as the element 1 i-1 , but the element used as the reference may be any of 24 elements. However, if the time axis conversion is performed on the basis of the element closest to the focal point, the number of data after the time axis conversion can be minimized (the ultrasonic propagation time between the element and the focal point is the shortest). So there is a merit in device manufacturing.

より具体的には、前記時間軸変換は以下のように行われる。時間軸変換の基準とする素子を素子1i-1としてこの時間軸をtとする。すると、時間軸を変換される素子(例えば、素子1i-12)の時間軸ti-12は、図3を参考にして、関数を用いて、ti-12=fi-12 (t)と書くことができる。このとき素子1i-12により受波された信号は、その振幅を関数Aによって表すと、Ai-12(ti-12)と表される。従って、時間軸変換の操作はAi-12(t)を求めることに他ならず、逆関数を用いてAi-12(f-1 i-12(ti-12))とも書くことができる。時間軸変換部11には、この操作に必要な時間軸変換関係が設定部21から予め与えられている。ここで取り扱っている信号はディジタルデータであり、焦点に一番近い素子のデータ数が最も少ない(超音波の伝搬距離が短い)ので、焦点に一番近い素子を基準にすると、他の素子の時間軸変換では、データ数を減じる処理が行われる。データ数を減じるには、振幅が大きいデータが失われないように工夫された間引き処理を行うとよい。 More specifically, the time axis conversion is performed as follows. An element used as a reference for time axis conversion is an element 1 i-1 , and this time axis is t. Then, the time axis t i-12 of the element whose time axis is converted (for example, the element 1 i-12 ) is expressed by t i−12 = f i−12 (t ) Can be written. At this time, the signal received by the element 1 i-12 is expressed as A i-12 (t i-12 ) when its amplitude is expressed by a function A. Therefore, the operation of time axis conversion is nothing but finding A i-12 (t), and it can be written as A i-12 (f -1 i-12 (t i-12 )) using an inverse function. it can. A time axis conversion relationship necessary for this operation is given to the time axis conversion unit 11 from the setting unit 21 in advance. The signal handled here is digital data, and the number of data of the element closest to the focal point is the smallest (the propagation distance of the ultrasonic wave is short). In the time axis conversion, processing for reducing the number of data is performed. In order to reduce the number of data, it is advisable to perform a thinning process that is devised so that data with a large amplitude is not lost.

図1は、上記の一点鎖線を中心としたビームの集束サイズに対応した細い領域に局在する受波ニードルビームを1本形成する単純化された構成を示している。振動子アレイの素子1i-12〜1i+11下の距離FRS〜FREの間に焦点が切れ目なく連続する受波ニードルビームを形成できるよう、受波され、A/D変換された信号の時間軸変換を行う時間軸変換部11が備えられている。 FIG. 1 shows a simplified configuration in which one receiving needle beam localized in a narrow region corresponding to the beam focusing size centered on the one-dot chain line is formed. Waves are received and A / D converted so that a receiving needle beam having a continuous focal point can be formed between the distances F RS to F RE below the elements 1 i-12 to 1 i + 11 of the transducer array. A time axis conversion unit 11 that performs time axis conversion of the signal is provided.

具体的な動作は以下のとおりである。振動子アレイ1の全素子11〜1384から超音波を送波する。又、被検体からの超音波の反射信号(エコー)を、振動子アレイ1の全素子11〜1384を用いて受波する。各素子1i-12〜1i+11によって受波された超音波による信号は、それぞれ受波増幅器3i-12〜3i+11によって増幅された後、遅延素子4i-12〜4i+11によって複数素子(図中では4素子)を単位として遅延され、加算合成器5i-12〜5i+8(図では添え字は4おき)によって加算合成された後、A/D変換器6i-12〜6i+8(図では添え字は4おき)によってディジタル信号に変換される。時間軸変換部11i-12〜11i+8(図では添え字は4おき)は、距離FRS〜FREの間に焦点を連続的に設定するように、設定部21に予め計算され記憶された伝搬時間相対関係のデータを入力し、それに基づき、基準にする素子以外の素子が受波した信号の時間軸を変換して波形メモリ12i-12〜12i+11へ送付する。基準にする素子の信号は、そのまま送付される。図1では、1つの時間軸変換部11i-12〜11i+8への4素子分の重畳された信号が入力されるため、前記1つの時間軸変換部は4素子分の時間軸変換データを作成して、素子毎に用意された波形メモリ12i-12〜12i+11へ送付する。 The specific operation is as follows. Ultrasonic waves are transmitted from all the elements 1 1 to 1 384 of the transducer array 1. In addition, an ultrasonic reflection signal (echo) from the subject is received using all the elements 11 to 384 of the transducer array 1. The ultrasonic signals received by the elements 1 i-12 to 1 i + 11 are amplified by the receiving amplifiers 3 i-12 to 3 i + 11 , respectively, and then delayed elements 4 i-12 to 4 i. +11 delayed in units (4 elements in the figure) more elements by, after being summed combined by summing combiner 5 i-12 ~5 i + 8 ( subscript in FIG shaped four intervals), a / D converter The digital signals are converted by the devices 6 i-12 to 6 i + 8 (in the figure, subscripts are every fourth). The time axis conversion units 11 i-12 to 11 i + 8 (in the figure, subscripts are every fourth) are calculated in advance in the setting unit 21 so as to set the focal point continuously between the distances F RS to F RE. Based on the stored propagation time relative data, the time axis of the signal received by the elements other than the reference element is converted and sent to the waveform memories 12 i-12 to 12 i + 11 . The signal of the element used as a reference is sent as it is. In FIG. 1, since four elements of superimposed signals are input to one time axis conversion unit 11 i-12 to 11 i + 8 , the one time axis conversion unit performs time axis conversion for four elements. Data is created and sent to the waveform memories 12 i-12 to 12 i + 11 prepared for each element.

波形メモリ12i-12〜12i+11に記録された信号は、加算合成処理部13へ送られて加算合成される。このようにして距離FRS〜FREの間に形成された焦点が切れ目なく連続した受波ニードルビームによって受波された信号が得られる。 The signals recorded in the waveform memories 12 i−12 to 12 i + 11 are sent to the addition / synthesis processing unit 13 to be added / synthesized. In this way, a signal received by the receiving needle beam having a continuous focal point formed between the distances F RS to F RE is obtained.

図4は、振動子アレイ1の素子の下方に受波ニードルビームを同時に並べて受波ニードルビームカーテンを形成する構成を示している。この構成では、振動子アレイ1のうち、素子1j〜1j+1(j=12、13、14、‥‥、370、371、372)の下に合計361本の受波ニードルビームが形成される。図4では、図面の煩雑化を避けるため、素子1i-13〜1i+10、素子1i-12〜1i+11、及び素子1i-11〜1i+12のそれぞれの下に受波ニードルビームを形成する様子を示している。素子1i-13〜1i+10により形成される受波ニードルビームをNBi-1、素子1i-12〜1i+11により形成される受波ニードルビームをNBi、素子1i-11〜1i+12により形成される受波ニードルビームをNBi+1とする。 FIG. 4 shows a configuration in which the receiving needle beam curtain is formed by simultaneously arranging the receiving needle beams below the elements of the transducer array 1. In this configuration, a total of 361 receiving needle beams are formed under the elements 1 j to 1 j + 1 (j = 12, 13, 14,..., 370, 371, 372) of the transducer array 1. Is done. In FIG. 4, in order to avoid complication of the drawing, elements 1 i-13 to 1 i + 10 , elements 1 i-12 to 1 i + 11 , and elements 1 i-11 to 1 i + 12 are respectively located below. It shows how a receiving needle beam is formed. The receiving needle beam formed by the elements 1 i-13 to 1 i + 10 is NB i-1 , the receiving needle beam formed by the elements 1 i-12 to 1 i + 11 is NB i , and the element 1 i- A receiving needle beam formed by 11 to 1 i + 12 is denoted as NB i + 1 .

振動子アレイ1、パルサ2、受波増幅器3、遅延素子4、加算合成器5、及びA/D変換器6の動作は既に図1を用いて説明したものと同等である。   The operations of the transducer array 1, the pulser 2, the receiving amplifier 3, the delay element 4, the adder / synthesizer 5, and the A / D converter 6 are the same as those already described with reference to FIG.

振動子アレイの1つの素子が同時に24本の受波ニードルビーム形成に用いられるため、合計24個の時間軸変換された信号を各素子に接続された波形メモリに記憶する必要がある。このため、波形メモリ121〜12384は24個の領域に分かれている。 Since one element of the transducer array is used to form 24 receiving needle beams at the same time, it is necessary to store a total of 24 time-axis converted signals in a waveform memory connected to each element. Therefore, the waveform memories 12 1 to 12 384 is divided into 24 regions.

波形メモリ12へ時間軸変換された信号を送り出す時間軸変換部11は、各素子と24個の受波ニードルビームを形成する位置との距離に応じて、受波信号から24個の時間軸変換された信号を生成して波形メモリ12へ送付する。波形メモリ12に記録された受波信号から、例えば受波ニードルビームNBi-1による受波信号を得るためには、波形メモリ12i-13〜12i+10に記録された時間軸変換された信号の中から、素子1i-13〜1i+10の下に受波ニードルビームを形成するように時間軸変換された信号を加算合成処理部13i-1へ送る。これら信号は加算合成処理部13i-1において加算合成される。 The time axis conversion unit 11 for sending the signal subjected to time axis conversion to the waveform memory 12 converts 24 time axes from the received signal according to the distance between each element and the positions where the 24 received needle beams are formed. The generated signal is generated and sent to the waveform memory 12. In order to obtain, for example, a received signal by the received needle beam NB i-1 from the received signal recorded in the waveform memory 12, the time axis conversion recorded in the waveform memories 12 i-13 to 12 i + 10 is performed. Then, a signal subjected to time-axis conversion so as to form a receiving needle beam under the elements 1 i-13 to 1 i + 10 is sent to the addition / synthesis processing unit 13 i-1 . These signals are added and synthesized in the addition synthesis processing unit 13 i-1 .

このようにして距離FRS〜FREの間に形成された受波ニードルビームNBi-1によって受波された信号が得られる。他の受波ニードルビームにより受波された信号も同様のプロセスを用いて得ることができる。 In this manner, a signal received by the receiving needle beam NB i-1 formed between the distances F RS to F RE is obtained. Signals received by other receiving needle beams can be obtained using a similar process.

本実施形態では、説明の煩雑化を避けるため、1種類の媒体の中で前記受波ニードルビームによる受波を行なう構成を示した。金属材料の水浸探傷等のように媒体が2種類以上ある場合には、上記した距離の計算において、超音波の屈折を考慮することは言うまでもない。   In this embodiment, in order to avoid complication of explanation, the configuration in which the wave is received by the wave-receiving needle beam in one type of medium is shown. Needless to say, when there are two or more types of media such as a water immersion flaw detection of a metal material, refraction of ultrasonic waves is taken into consideration in the above-described calculation of distance.

又、本実施形態では、24個の素子の下に焦点が連続する受波ニードルビームを形成する方法を示した。これは一例であって、ビーム形成に用いる素子の数は4以上であればいくつでもよい。   In the present embodiment, a method of forming a receiving needle beam having a continuous focal point under 24 elements has been described. This is an example, and any number of elements used for beam forming may be used as long as it is four or more.

一般に受波ビームの送波方向での集束範囲は、焦点と振動子アレイとの距離に応じて大きくなるので、これに応じて受波ビーム焦点間の距離を定めるようにすると良い。   In general, the focusing range in the transmission direction of the received beam is increased according to the distance between the focal point and the transducer array. Therefore, it is preferable to determine the distance between the received beam focal points accordingly.

なお、焦点位置における超音波のビーム径dは、概ね(1)式のように表される。
d=λ・F/D …(1)
ここに、λ:超音波の波長、F:集束ビームの焦点距離、D:グループ化された振動子の幅(素子ピッチ×素子数に相当)
Note that the ultrasonic beam diameter d at the focal position is approximately expressed by equation (1).
d = λ · F / D (1)
Where λ is the wavelength of the ultrasonic wave, F is the focal length of the focused beam, D is the width of the grouped transducer (element pitch × number of elements)

従って、振動子幅Dを一定としたまま、焦点距離Fを大きくすると、ビーム径dが大きくなるので、焦点距離Fに応じて所望のビーム径となるようにDを変更する構成も可能である。具体的には、焦点距離Fに応じて受波ニードルビーム形成に用いる素子の数を変更すると良い。   Accordingly, if the focal length F is increased while the transducer width D is kept constant, the beam diameter d increases, so that it is possible to change D so as to obtain a desired beam diameter according to the focal length F. . Specifically, the number of elements used for forming the receiving needle beam may be changed according to the focal length F.

なお、送波においては、振動子アレイ1の全素子から同時に超音波を送波してもよいし、パルサ2から振動子アレイ1の各素子へ電気パルスを印加するタイミングを制御することにより、振動子アレイ1の法線に対して斜めに超音波を送波するか、あるいは、振動子アレイの下に集束するように超音波を送波してもよい。要は、検出したい内部欠陥の形状に応じて、十分なS/Nを有するエコーが得られるように送波の方法を選択すればよい。   In the transmission, ultrasonic waves may be transmitted simultaneously from all elements of the transducer array 1, or by controlling the timing of applying an electrical pulse from the pulsar 2 to each element of the transducer array 1, The ultrasonic wave may be transmitted obliquely with respect to the normal line of the transducer array 1 or may be transmitted so as to be focused under the transducer array. In short, the transmission method may be selected so that an echo having a sufficient S / N can be obtained according to the shape of the internal defect to be detected.

ここで、改めて、特許文献2に対する本願発明の利点について述べる。   Here, the advantage of the present invention over Patent Document 2 will be described again.

(1)特許文献2では、振動子アレイが受波した信号を2次元のメモリに記録し、メモリ内を走査することにより、所定の深さ範囲全体に受波ビーム焦点を形成するようにしていた。これに対し、本願発明では、下記のとおり、受波ビーム焦点形成にそのまま用いることができるように、受波信号を加工した信号をメモリに記憶するようにしたので、メモリ内を走査する必要がなくなり、処理速度の著しい高速化を図ることができる。 (1) In Patent Document 2, a signal received by the transducer array is recorded in a two-dimensional memory, and the inside of the memory is scanned to form a received beam focus in the entire predetermined depth range. It was. On the other hand, in the present invention, as described below, the signal obtained by processing the received signal is stored in the memory so that it can be used as it is for forming the received beam focus. Therefore, it is necessary to scan the memory. The processing speed can be significantly increased.

1)受波ビーム焦点形成に必要な信号をA/D変換した直後に、予め抽出、又は、時間軸変換してからメモリに記憶する。   1) Immediately after A / D conversion of a signal necessary for receiving beam focus formation, it is previously extracted or time axis converted and stored in a memory.

2)メモリに記憶された信号は加算処理のみに用い、受波ビーム焦点が所望の方向へ連続的に形成される。   2) The signal stored in the memory is used only for addition processing, and the receiving beam focus is continuously formed in a desired direction.

(2)特許文献2では、n個の素子によって受波されたn個の受波信号全てを位相合成することにより、特定の位置に受波ビームの焦点を形成していた。この場合、受波ビーム形成に寄与しない振動子が高い割合で含まれるため、位相合成における計算に無駄が多いばかりでなく、大きな振幅のノイズ信号の発生原因になっていた。本願発明では、振動子アレイ1の中から小さな振動子群を選び、この振動子群のみで受波ビーム焦点を形成するようにしたので、特許文献2のような計算の無駄の問題や大きな振幅のノイズ信号の発生の問題は全くない。 (2) In Patent Document 2, the focus of a received beam is formed at a specific position by phase-combining all n received signals received by n elements. In this case, since a high percentage of transducers that do not contribute to receiving beam formation are included, not only is there a lot of waste in the calculation in phase synthesis, but it also causes generation of a noise signal with a large amplitude. In the present invention, since a small transducer group is selected from the transducer array 1 and the received beam focus is formed only by this transducer group, there is a problem of wasteful calculation and a large amplitude as in Patent Document 2. There is no problem of generation of noise signal.

図5は、本発明の有効性を検証するため、厚さ2〜3mmの薄鋼板の中にある微小な非金属介在物の検出を、周波数50MHz、素子ピッチ0.1mm、素子数384の振動子アレイを用いて行った結果を示す。この実験においては、鋼板を移送ステージを用いて搬送しながら非金属介在物の検出を行なった。本発明の装置として、第1及び第2実施形態の装置を用いて実験を行った。対比のため、特許文献2に示された受波焦点の形成方法を実現し得る装置も準備して実験を行なった。更に、一般的な電子走査技術との対比のため、同じ振動子アレイを用いて、一般的なリニア電子走査(集束した送受波ビームを電子走査)を用いた実験も行なった。図5は各実験において得られたC-scopeであり、内部欠陥からのエコー信号の振幅を検出して、その振幅に応じて輝度変調を行なって内部欠陥像を表示している。図5のC-scopeの水平方向は、鋼板の搬送方向である。一般的なリニア電子走査では、受波集束ビームの焦点距離を複数回変更して(焦点距離を変更する毎に鋼板を搬送し直して実験)、最も明瞭な内部欠陥像が得られた場合(水中焦点距離:15mm)のC-scopeを示している。図5の本発明による装置及び特許文献2の装置を用いて得られたC-scopeは、一般的なリニア電子走査によって得られたC-scopeを基準として、これと同等のC-scopeが得られる最高限界速度で鋼板を搬送した場合に得られたC-scopeである。本発明の場合、第1及び第2実施形態の装置ともにほぼ同等の内部欠陥像が得られたため、図5では第2実施形態の装置を用いて得られたC-scopeを示した。上記実験における最高搬送速度及び図5に示した領域を映像化するのに要した時間を表1に示す。但し、一般的なリニア電子走査の場合には、1つの焦点距離設定における鋼板搬送最高速度及び所要時間を示した。厚さ2〜3mmの鋼板の全断面をくまなく検査するためには、一般的なリニア電子走査の場合には、検出に要する時間のみで考えても表1の所要時間の10倍程度の時間が必要である。   In order to verify the effectiveness of the present invention, FIG. 5 shows the detection of minute non-metallic inclusions in a thin steel plate having a thickness of 2 to 3 mm by vibration with a frequency of 50 MHz, an element pitch of 0.1 mm, and an element number of 384. The result performed using the child array is shown. In this experiment, the non-metallic inclusions were detected while the steel plate was conveyed using a transfer stage. Experiments were performed using the apparatus of the first and second embodiments as the apparatus of the present invention. For comparison, an apparatus capable of realizing the receiving focus forming method disclosed in Patent Document 2 was also prepared and tested. Further, for comparison with a general electronic scanning technique, an experiment using general linear electronic scanning (electronic scanning of a focused transmission / reception beam) was performed using the same transducer array. FIG. 5 shows a C-scope obtained in each experiment, which detects the amplitude of an echo signal from an internal defect and modulates the luminance according to the amplitude to display an internal defect image. The horizontal direction of the C-scope in FIG. 5 is the conveying direction of the steel plate. In general linear electronic scanning, when the focal length of the received focused beam is changed multiple times (experiments are carried out by transporting the steel sheet each time the focal length is changed), the clearest internal defect image is obtained ( C-scope of underwater focal length: 15 mm) is shown. The C-scope obtained by using the apparatus according to the present invention in FIG. 5 and the apparatus of Patent Document 2 is equivalent to a C-scope obtained by general linear electronic scanning. This is a C-scope obtained when a steel plate is conveyed at the maximum speed limit. In the case of the present invention, since substantially the same internal defect images were obtained with the apparatuses of the first and second embodiments, FIG. 5 shows a C-scope obtained using the apparatus of the second embodiment. Table 1 shows the maximum conveyance speed in the above experiment and the time required to visualize the region shown in FIG. However, in the case of general linear electronic scanning, the maximum steel plate conveyance speed and the required time at one focal length setting are shown. In order to thoroughly inspect the entire cross section of a steel sheet having a thickness of 2 to 3 mm, in the case of general linear electronic scanning, even if only the time required for detection is considered, the time is about 10 times the required time in Table 1. is required.

図5のC-scope及び表1を参照すると、本発明に係る装置では、従来の装置(特許文献2の装置、一般的なリニア電子走査による装置)と比べて、10〜100倍の速度で鋼板を搬送しても、ほとんど相違がない内部欠陥映像が得られることがわかる。特許文献2の装置では、n個の素子によって受波されたn個の受波信号全てを位相合成するため、受波ビーム形成に寄与しない振動子が高い割合で含まれるので、これら受波ビーム形成に寄与しない振動子が受波した信号に含まれていた周期性ノイズによって、C-scope全体にわたりノイズレベルが高くなった。図5には前記した特許文献2の装置の問題点がはっきり現れている。又、本発明に係る装置の超音波の送受波繰り返しは10kHzであるのに対し、特許文献2の装置の超音波の送受波繰り返しは、特許文献2に示されているとおり1kHzが限界であった。本発明に係る装置は高速に移送される被検体の検査に有利に適用可能である。   Referring to the C-scope of FIG. 5 and Table 1, the apparatus according to the present invention is 10 to 100 times faster than the conventional apparatus (the apparatus of Patent Document 2, the apparatus based on general linear electronic scanning). It can be seen that even if the steel plate is conveyed, an internal defect image with almost no difference can be obtained. In the apparatus of Patent Document 2, since all the n received signals received by the n elements are phase-synthesized, a high percentage of transducers that do not contribute to receiving beam formation are included. Due to the periodic noise contained in the signal received by the vibrator that does not contribute to the formation, the noise level increased throughout the C-scope. FIG. 5 clearly shows the problem of the device of Patent Document 2 described above. The ultrasonic transmission / reception repetition of the apparatus according to the present invention is 10 kHz, whereas the ultrasonic transmission / reception repetition of the apparatus of Patent Document 2 is limited to 1 kHz as shown in Patent Document 2. It was. The apparatus according to the present invention can be advantageously applied to the examination of a subject transferred at high speed.

第2及び第3実施形態の装置では、振動子アレイ1の全素子11〜1384から超音波を送受信していたが、一部の素子を用いて超音波を送受信することも可能である。又、全素子数も128個や384個に限定されない。 In the devices of the second and third embodiments, ultrasonic waves are transmitted and received from all the elements 1 1 to 1 384 of the transducer array 1, but it is also possible to transmit and receive ultrasonic waves using some elements. . Further, the total number of elements is not limited to 128 or 384.

本発明を実施するための超音波検査装置の実施形態の単純化された構成を示すブロック図The block diagram which shows the simplified structure of embodiment of the ultrasonic inspection apparatus for implementing this invention 本発明の考え方を示す説明図Explanatory drawing showing the concept of the present invention 特定した2つの素子と焦点との間を超音波が伝搬する時間の相対的な関係を示す説明図Explanatory drawing which shows the relative relationship of the time when an ultrasonic wave propagates between two specified elements and a focus 本発明を実施するための超音波検査装置の実施形態の全体構成を示すブロック図The block diagram which shows the whole structure of embodiment of the ultrasonic inspection apparatus for implementing this invention 第3実施形態の装置と特許文献2及び従来のリニア電子走査により得られたC−scopeを比較して示す図The figure which compares and shows C-scope obtained by the apparatus of 3rd Embodiment, patent document 2, and the conventional linear electronic scanning. 従来の超音波検査装置の構成を示すブロック図Block diagram showing the configuration of a conventional ultrasonic inspection apparatus

符号の説明Explanation of symbols

1…振動子アレイ
1〜1128…超音波振動子
1〜2128…パルサ
1〜3128…受波増幅器
1〜4128…遅延素子
1〜5128…加算増幅器
1〜6128…A/D変換器
111〜11128…時間軸変換部
121〜12128…波形メモリ
131〜13384…加算合成処理部
1 ... transducer array 1 1 to 1 128 ... ultrasonic oscillators 21 to 128 ... pulsar 3 1 to 3 128 ... reception amplifier 41 to 128 ... delay elements 5 1 to 5 128 ... summing amplifier 6 1 6 128 ... A / D converter 11 1 to 11 128 ... time-axis conversion unit 12 1 to 12 128 ... waveform memory 13 1 to 13 384 ... addition synthesis processing unit

Claims (4)

1次元に配列された多数の超音波振動子からなる振動子アレイを用いて被検体の断面を検査するにあたり、前記振動子アレイの一部または全ての超音波振動子から超音波を送波し、該送波された超音波によって生起された反射波を、前記振動子アレイの一部または全ての超音波振動子を用いて受波し、該受波された信号をディジタルの波形信号へ変換し、前記振動子アレイの中から選択された複数の超音波振動子で構成される第1の超音波振動子群の各振動子と前記被検体内部に形成する連続的な受波焦点との距離に基づき、前記各振動子のディジタル化された受波信号の時間軸を変換し、前記各振動子の変換受波信号を同時に加算合成する超音波による断面検査方法であって、
前記振動子アレイを、複数の超音波振動子で構成される、前記第1の超音波振動子群とは異なる超音波振動子のグループにグループ分けし、
各グループにおいて、グループ内の複数の超音波振動子が受波した複数の信号に相異なる遅延を加えた上で、
該遅延された複数の信号を加算することにより1つの信号にまとめることを特徴とする超音波による断面検査方法。
When inspecting a cross section of a subject using a transducer array composed of a large number of ultrasonic transducers arranged one-dimensionally, ultrasonic waves are transmitted from a part or all of the transducers of the transducer array. The reflected wave generated by the transmitted ultrasonic wave is received using some or all of the ultrasonic transducers of the transducer array, and the received signal is converted into a digital waveform signal. Each transducer of the first ultrasound transducer group composed of a plurality of ultrasound transducers selected from the transducer array and a continuous receiving focus formed inside the subject. Based on the distance, the time axis of the digitized received signal of each transducer is converted, and the ultrasonic cross section inspection method for simultaneously adding and synthesizing the converted received signal of each transducer,
The transducer array is grouped into a group of ultrasonic transducers different from the first ultrasonic transducer group, each of which includes a plurality of ultrasonic transducers,
In each group, after adding different delays to multiple signals received by multiple ultrasonic transducers in the group,
A cross-sectional inspection method using ultrasonic waves, characterized in that a plurality of delayed signals are added to be combined into one signal.
複数の超音波振動子からなる第1の超音波振動子群を複数個とし、前記複数個の超音波振動子群において加算合成を同時に行うことを特徴とする請求項1に記載の超音波による断面検査方法。   2. The ultrasonic wave according to claim 1, wherein a plurality of first ultrasonic transducer groups each including a plurality of ultrasonic transducers are added, and addition and synthesis are simultaneously performed in the plurality of ultrasonic transducer groups. Cross section inspection method. 1次元に配列された多数の超音波振動子からなる振動子アレイを用いて被検体の断面を検査する装置で、前記振動子アレイの一部または全ての超音波振動子から超音波を送波する手段と、該送波された超音波によって生起された反射波を、前記振動子アレイの一部または全ての超音波振動子を用いて受波する手段と、該受波された信号をディジタルの波形信号へ変換する手段と、前記振動子アレイの中から選択された複数の超音波振動子で構成される第1の超音波振動子群の各振動子と前記被検体内部に形成する連続的な受波焦点位置との距離に基づき、前記各振動子のディジタル化された受波信号の時間軸を変換する手段と、前記各振動子の変換受波信号を同時に加算合成する手段とを備えた超音波による断面検査装置であって、
前記振動子アレイを複数の超音波振動子で構成される、前記第1の超音波振動子群とは異なる超音波振動子のグループにグループ分けし、
各グループにおいて、グループ内の複数の超音波振動子が受波した複数の信号に相異なる遅延を加える遅延手段と、
該遅延された複数の信号を加算することにより1つの信号にまとめる加算手段と、
を備えたことを特徴とする超音波による断面検査装置。
An apparatus for inspecting a cross section of a subject using a transducer array composed of a large number of ultrasonic transducers arranged one-dimensionally, and transmitting ultrasonic waves from a part or all of the transducers of the transducer array Means for receiving reflected waves generated by the transmitted ultrasonic waves using a part or all of the ultrasonic transducers of the transducer array, and digitally converting the received signals. And a transducer formed in a first ultrasonic transducer group composed of a plurality of ultrasonic transducers selected from the transducer array and a continuous formed inside the subject. A means for converting the time axis of the digitized received signal of each transducer based on the distance to a typical received focus position, and a means for simultaneously adding and synthesizing the converted received signal of each transducer. An ultrasonic cross-section inspection apparatus provided,
Grouping the transducer array into a group of ultrasonic transducers different from the first ultrasonic transducer group, which is composed of a plurality of ultrasonic transducers,
In each group, delay means for adding different delays to a plurality of signals received by a plurality of ultrasonic transducers in the group,
Adding means for adding a plurality of delayed signals into one signal;
A cross-sectional inspection apparatus using ultrasonic waves, comprising:
前記加算合成する手段は、複数個の第1の超音波振動子群における加算合成を同時に行うことを特徴とする請求項3に記載の超音波による断面検査装置。   The ultrasonic cross-sectional inspection apparatus according to claim 3, wherein the adding and synthesizing unit simultaneously performs addition and synthesis in the plurality of first ultrasonic transducer groups.
JP2007158811A 2007-06-15 2007-06-15 Ultrasonic cross-section inspection method and apparatus Expired - Fee Related JP5145783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158811A JP5145783B2 (en) 2007-06-15 2007-06-15 Ultrasonic cross-section inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158811A JP5145783B2 (en) 2007-06-15 2007-06-15 Ultrasonic cross-section inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2008309697A true JP2008309697A (en) 2008-12-25
JP5145783B2 JP5145783B2 (en) 2013-02-20

Family

ID=40237423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158811A Expired - Fee Related JP5145783B2 (en) 2007-06-15 2007-06-15 Ultrasonic cross-section inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP5145783B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232044A (en) * 2013-05-29 2014-12-11 株式会社東芝 Ultrasonic flaw detection device, method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134146A (en) * 1981-02-13 1982-08-19 Shimadzu Corp Ultrasonic diagnostic apparatus
JPH03103787A (en) * 1989-09-18 1991-04-30 Yokogawa Medical Syst Ltd Wave receiving digital beam former of phased array type ultrasonic wave device
JPH057587A (en) * 1991-07-02 1993-01-19 Fujitsu Ltd Ultrasonic receiver
JPH06233769A (en) * 1993-02-08 1994-08-23 Fujitsu Ltd Ultrasonic diagnostic system
JP2004049926A (en) * 2002-07-23 2004-02-19 Medison Co Ltd Digital receiving focusing device
JP2006208326A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method and device for inspection of cross section by ultrasonic wave
JP2007170871A (en) * 2005-12-19 2007-07-05 Jfe Steel Kk Method and device for inspection of cross section by ultrasonic wave

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134146A (en) * 1981-02-13 1982-08-19 Shimadzu Corp Ultrasonic diagnostic apparatus
JPH03103787A (en) * 1989-09-18 1991-04-30 Yokogawa Medical Syst Ltd Wave receiving digital beam former of phased array type ultrasonic wave device
JPH057587A (en) * 1991-07-02 1993-01-19 Fujitsu Ltd Ultrasonic receiver
JPH06233769A (en) * 1993-02-08 1994-08-23 Fujitsu Ltd Ultrasonic diagnostic system
JP2004049926A (en) * 2002-07-23 2004-02-19 Medison Co Ltd Digital receiving focusing device
JP2006208326A (en) * 2005-01-31 2006-08-10 Jfe Steel Kk Method and device for inspection of cross section by ultrasonic wave
JP2007170871A (en) * 2005-12-19 2007-07-05 Jfe Steel Kk Method and device for inspection of cross section by ultrasonic wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014232044A (en) * 2013-05-29 2014-12-11 株式会社東芝 Ultrasonic flaw detection device, method, and program

Also Published As

Publication number Publication date
JP5145783B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP4984519B2 (en) Method and apparatus for inspecting cross section of metal material by ultrasonic wave
US8584526B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection equipment
US8590381B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection equipment
CN103901108A (en) Phased-array ultrasonic detection method for interfacial de-bonding of composite material
JP5871274B2 (en) Ultrasonic flaw detection apparatus and method
PL211835B1 (en) Ultrasound sensor for non-destructive control of metallurgical products
JP2010276465A (en) Ultrasonic flaw detector and method therefor
JP4542814B2 (en) Ultrasonic inspection method
JP2012117825A (en) Ultrasonic sensor and ultrasonic flaw detection device
JP5964774B2 (en) Ultrasonic diagnostic apparatus, signal processing method and program for ultrasonic diagnostic apparatus
JP3635453B2 (en) Ultrasonic shear wave oblique angle flaw detection method and apparatus
JP3606132B2 (en) Ultrasonic flaw detection method and apparatus
CN113994204B (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, and steel manufacturing method
JP5145783B2 (en) Ultrasonic cross-section inspection method and apparatus
US20120210795A1 (en) Two-dimensional virtual array probe for three-dimensional ultrasonic imaging
JP4419598B2 (en) Ultrasonic flaw detection
JP2006208326A (en) Method and device for inspection of cross section by ultrasonic wave
JP2001255308A (en) Method and apparatus for ultrasonic flaw detection
JP2013002961A (en) Ultrasonic flaw detection method and device for round-bar steel
JP5709357B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JPH09133657A (en) Method and apparatus for ultrasonic flaw detection
JPH1114611A (en) Electronic scanning system ultrasonic inspection equipment
FR3119892A1 (en) Agile UNDT dual-array EMATs/Laser-Pulse device for scanning metallurgical objects
JP2016080567A (en) Ultrasonic flaw detection method and device
JP2024071788A (en) Ultrasonic inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R150 Certificate of patent or registration of utility model

Ref document number: 5145783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees