JP2008309132A - Variable blade type wind power conversion mechanism - Google Patents

Variable blade type wind power conversion mechanism Download PDF

Info

Publication number
JP2008309132A
JP2008309132A JP2007160182A JP2007160182A JP2008309132A JP 2008309132 A JP2008309132 A JP 2008309132A JP 2007160182 A JP2007160182 A JP 2007160182A JP 2007160182 A JP2007160182 A JP 2007160182A JP 2008309132 A JP2008309132 A JP 2008309132A
Authority
JP
Japan
Prior art keywords
wind
variable
variable blade
wind power
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007160182A
Other languages
Japanese (ja)
Inventor
Yuichi Onishi
裕一 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007160182A priority Critical patent/JP2008309132A/en
Publication of JP2008309132A publication Critical patent/JP2008309132A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a variable blade type wind power conversion mechanism having wind turbine blades reducing the wind speed and wind receiving state of a wind turbine by wind power when a strong wind blows. <P>SOLUTION: In the variable blade type wind power conversion mechanism A, a plurality of trifurcate retaining arms 10a, 10b, 10c are provided on upper and lower sides of a rotating shaft 11x rotatably supported in the vertical direction, and a plurality of variable blades 14 for receiving wind are mounted to vertical support shafts 13x rotatably provided in predetermined radial positions of the pair of retaining arms 10a, 10b, respectively. The variable blade 14 has an approximately arcuate cross section in plane view and length in the vertical support shaft direction corresponding to between the upper and lower retaining arms 10a, 10b. A plummet 18 is mounted to ends of arms 17, 17 of a link mechanism connected to the support shaft 13x. An elastic member 13b is mounted between the plummet 18 and the other retaining arm 10c, and due to the elastic force, the variable blade 14 is held in the fully opened state until predetermined wind speed. During rotation at wind speed not lower than the predetermined one, the centrifugal force of the plummet 18 overpowers the elastic force of the elastic member 13b, to close the variable blade 14 in accordance with the magnitude of the wind speed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、微風から強風まで全ての方位に吹く風を電力や回転力などのエネルギに変換する可変翼式風力変換機構に関する。   The present invention relates to a variable wing type wind power conversion mechanism that converts wind blowing in all directions from light wind to strong wind into energy such as electric power and rotational force.

風力を回転力に変換してそのエネルギを電力等のエネルギとして利用する風車の研究が古くから行われている。風力を回転力に変換して電力等のエネルギを取り出す機構としての所謂風車は、大別すると水平軸型及び垂直軸型の2つに分類され、それぞれに長所と短所がある。垂直軸型は、風の吹く方向に対して垂直方向に設置され、水平軸型のように風の吹く方向に平行に風車を回転させる必要がなく、このような回転機構が必要でないという点で全体の機構が簡単となるという利点がある。   Research on wind turbines that convert wind power into rotational force and use the energy as energy such as electric power has been conducted for a long time. The so-called windmills as a mechanism for extracting energy such as electric power by converting wind power into rotational force are roughly classified into two types, a horizontal axis type and a vertical axis type, and each has advantages and disadvantages. The vertical axis type is installed in a direction perpendicular to the wind blowing direction, and it is not necessary to rotate the windmill parallel to the wind blowing direction like the horizontal axis type, and such a rotation mechanism is not necessary. There is an advantage that the whole mechanism becomes simple.

垂直軸型の風車は、周速比(ブレードの周速度/風速)の高いダリウス型と、周速比の低いサポニウス型が知られている。ダリウス型等の風車は、周速比が高く変換効率が高い半面、風切り音が高く、ブレードの高い工作精度を必要とされる。サポニウス型は、風切り音は低いが、周速が低いため風速を回転トルクに変換する高い変換効率が得られない。しかし、他の形式の風車に比べると、設置場所が限定されず、小型でどこにでも風力発電装置として容易に設置することが出来るという利点がある。   As a vertical axis type windmill, a Darrieus type having a high peripheral speed ratio (blade peripheral speed / wind speed) and a Saponius type having a low peripheral speed ratio are known. On the other hand, Darrieus type windmills have a high peripheral speed ratio and high conversion efficiency, while high wind noise and high blade precision are required. The Saponius type has a low wind noise, but since the peripheral speed is low, high conversion efficiency for converting the wind speed into rotational torque cannot be obtained. However, compared to other types of wind turbines, the installation location is not limited, and there is an advantage that it is small and can be easily installed as a wind power generator anywhere.

サポニウス型の風力発電機構の一例として、特許文献1の「サポ二ウス風力発電装置」が知られている。この風力発電装置は、複数のブレードを放射状に固定した鉛直軸に発電機を連接し、複数のブレードは鉛直軸に固定された上下回転板間に固定され、各ブレードに風抜き穴を形成すると共に、上下回転板間の外周に突設羽根を設けたというものである。この発電装置は、サポニウス型の利点に着目し、かつ大きな回転力(回転速度)を得られるように複数のブレード間で圧縮される気流の流れを改善して多くの発電量を得られるようにしたものである。   As an example of a Saponius type wind power generation mechanism, a “Saponius wind power generation device” of Patent Document 1 is known. In this wind turbine generator, a generator is connected to a vertical shaft in which a plurality of blades are radially fixed, and the plurality of blades are fixed between upper and lower rotating plates fixed to the vertical shaft, and an air vent hole is formed in each blade. In addition, projecting blades are provided on the outer periphery between the upper and lower rotary plates. This power generator pays attention to the advantages of the Saponius type and improves the flow of airflow compressed between multiple blades so as to obtain a large rotational force (rotational speed) so that a large amount of power can be obtained. It is a thing.

このため、各ブレードの回転時に互いに対面する複数のブレード間で圧縮される気流を各ブレードに形成した風抜き穴から逃がすことによりブレード面に負荷される空気圧の抵抗を減らして高速に回転を容易とし、かつ上下回転板間の外周に突設羽根を設けることにより、より高速に回転させるようにしている。   For this reason, airflow compressed between multiple blades facing each other during rotation of each blade is released from the vent holes formed in each blade, reducing the resistance of the air pressure applied to the blade surface and facilitating high-speed rotation In addition, by providing projecting blades on the outer periphery between the upper and lower rotary plates, rotation is performed at a higher speed.

他の例として特許文献2の「風力発電用の風車」が公知である。この風車も垂直軸型で、かつ揚力型、抗力型の利点を活かして発生トルクの増強、広範囲の風速域での利用を可能とするため、垂直回転軸の半径方向に延びる翼支持軸の端に設けられたU字型の雨樋状の受風樋と、U字型のほぼ中心付近から風車回転の円周方向に延びた円弧状の主羽根と、U字型の中心線を対称軸に主羽根とほぼ対称に配置した副羽根とを備えたというものである。この装置では、風の流れの中に置かれた回転翼に作用する風力により、受風樋に働く力のうち平行に働く抗力と、主羽根と副羽根に働く力のうち流れに垂直方向に働く揚力とによりトルクが発生する。   As another example, a “wind turbine for wind power generation” in Patent Document 2 is known. This windmill is also a vertical axis type, and the end of the blade support shaft that extends in the radial direction of the vertical rotation axis in order to increase the generated torque by utilizing the advantages of the lift type and drag type, and to enable use in a wide range of wind speeds The U-shaped rain gutter-shaped wind-receiving gutter provided on the arc, the arc-shaped main blade extending in the circumferential direction of the windmill rotation from the vicinity of the center of the U-shape, and the U-shaped center line are symmetrical axes The sub-wings are arranged substantially symmetrically with the main blades. In this device, due to the wind force acting on the rotor blades placed in the wind flow, the drag force acting on the wind-receiving ridge in parallel and the force acting on the main blade and the sub blade in the direction perpendicular to the flow. Torque is generated by the working lift.

ところで、上記一般的な従来のダリウス型、サポニウス型の風車、あるいは特許文献1、2の風車のいずれも、所定の風速状態で風車の回転速度、回転力を大きくし、最も効率の良い状態で運転できることを前提として説明されている。しかし、実際に風が吹く状態は、風の向きが常に変動し、かつ風速も常に変化する。特に、台風や低気圧が近づくと風速は大きく変動し、25〜35m/sのような強い風速で風車の翼(風受け板)を全開状態のままにして置くと、設置されている風車自体が倒壊する危険性がある。しかし、従来の風車では、通常運転時の作動効率を向上させることに重点があり、上記のような強風時に風車の安全をどのように守るかについてまで検討した例はない。   By the way, the general conventional Darrieus type and Saponius type windmills, and the windmills of Patent Documents 1 and 2 increase the rotational speed and rotational force of the windmill at a predetermined wind speed, and are in the most efficient state. It is explained on the assumption that it can be driven. However, when the wind actually blows, the direction of the wind always changes and the wind speed always changes. In particular, when the typhoon or low pressure approaches, the wind speed fluctuates greatly, and if the wind turbine blade (wind receiving plate) is left fully open at a strong wind speed of 25 to 35 m / s, the installed wind turbine itself There is a risk of collapse. However, in the conventional windmill, there is an emphasis on improving the operation efficiency at the time of normal operation, and there is no example which examined how to protect the safety of a windmill at the time of the above strong wind.

強風時に風車の翼(風受け板)を全開状態に固定して設置すると、強風が増大するその大きさに対応して翼の受ける風速、風力による風車の回転速度はますます大きくなるが、上記強風状態を超えると、風車自体を保持することが困難となり、結局そのような危険状態を予測すると風車を設置することが出来ず、その普及が阻害される要因となる。
特開2002−317749号公報 特開2005−248935号公報
If the wind turbine blades (wind receiving plates) are installed in a fully open state during strong winds, the wind speed received by the blades and the rotation speed of the wind turbines due to the wind force will increase according to the magnitude of the strong wind. Beyond the strong wind condition, it becomes difficult to hold the windmill itself, and if such a dangerous state is predicted, the windmill cannot be installed, which is a factor that hinders its spread.
JP 2002-317749 A JP 2005-248935 A

この発明は、上記の問題に留意して、風車の通常運転時の作動効率を向上させると共に、強風時に風車の翼(風受け板)を全開状態に固定して設置すると、強風時に風車自体が倒壊する危険性が高くなるため、強風が増大するとその大きさに対応して翼の受ける風速、風力による風車の受風状態を減少させるように変化させ得る風車翼を備えた可変翼式風力変換機構を提供することを課題とする。   In consideration of the above problems, the present invention improves the operating efficiency during normal operation of the wind turbine, and when the wind turbine blade (wind receiving plate) is fixed in a fully open state during strong winds, Variable wing wind power conversion with wind turbine blades that can be changed to reduce the wind speed received by the blade and the wind receiving state of the wind turbine by the wind force according to the size of the strong wind as the risk of collapse increases. It is an object to provide a mechanism.

この発明は、上記の課題を解決する手段として、垂直方向に回転自在に支持される回転軸の上下に複数の三叉形状の保持アームを設け、一対の保持アームの半径方向所定位置に回転自在に設けた垂直な支持軸にそれぞれ風を受ける複数の可変翼を取り付け、可変翼は平面視断面が略円弧状で垂直な支持軸方向に上下の保持アーム間に対応する長さとし、支持軸に対して連結したリンク機構のアームの端に錘を取り付け、上記錘と他の保持アーム間に弾性部材を取り付けてその弾性力で所定風速までは可変翼を全開状に保持し、所定以上の風速による回転では錘の遠心力が弾性部材の弾性力に打ち勝って可変翼をその風速の大きさに応じて閉じるように可変翼を開閉自在に設けた可変翼式風力変換機構の構成としたのである。   According to the present invention, as means for solving the above-described problems, a plurality of trident holding arms are provided above and below a rotating shaft that is rotatably supported in the vertical direction, and the pair of holding arms can be freely rotated to a predetermined position in the radial direction. A plurality of variable wings that receive wind are attached to each of the vertical support shafts provided. The variable wings have a substantially arc-shaped cross section in plan view and have a length corresponding to the vertical support shaft direction between the upper and lower holding arms. A weight is attached to the end of the arm of the linked link mechanism, and an elastic member is attached between the weight and the other holding arm, and the variable blade is held in the fully open state by the elastic force up to a predetermined wind speed. In the rotation, the variable wing wind power conversion mechanism is configured so that the variable wing can be opened and closed so that the centrifugal force of the weight overcomes the elastic force of the elastic member and the variable wing is closed according to the magnitude of the wind speed.

上記の構成としたこの発明の可変翼式風力変換機構は、保持アームの半径方向所定位置に、周方向の所定角度間隔で複数個所保持アームに対して回転自在に設けた垂直な支持軸にそれぞれ風を受ける複数の可変翼を取り付けたから、可変翼を全開状態に設定することにより通常時には高効率で全体が回転する。この場合、通常のサポニウス型の風車の翼は2枚であるが、この発明の可変翼式風力変換機構では通常以上の枚数、例えば3枚とすることにより、より多くの風を受ける状態を発生させ、高効率の受風状態を生じさせる。   The variable wing type wind power conversion mechanism of the present invention configured as described above is provided on vertical support shafts provided at predetermined positions in the radial direction of the holding arms and rotatably with respect to the holding arms at predetermined angular intervals in the circumferential direction. Since a plurality of variable blades that receive wind are attached, the variable blades are set to a fully open state so that the entire device rotates with high efficiency during normal times. In this case, the number of blades of a normal Saponius type windmill is two, but in the variable blade type wind power conversion mechanism of the present invention, a state where more winds are received is generated by using a larger number, for example, three. To produce a highly efficient wind receiving state.

この場合、可変翼をその翼先端が略半径方向へ開いた状態で、弾性部材による開放を阻止する回転停止手段を設け、この状態を全開状態として設定する。これは、弾性部材を収縮状又は引張り状態に設定し、これにより蓄積される弾性力が可変翼を開放する方向に付勢して可変翼を全開状に設定するようにした場合、その開放力で可変翼を所定の全開状態に停止させるためである。可変翼は、平面視断面が略円弧状で垂直な支持軸方向に上下の保持板間に対応する長さに設け、その翼外面に作用する抗力と揚力を回転力に変換して高回転数、高回転力の回転を回転軸に伝達する。   In this case, rotation stop means for preventing the variable blade from being opened by the elastic member in a state where the blade tip is opened in the substantially radial direction is provided, and this state is set as a fully open state. This is because when the elastic member is set in a contracted state or in a tension state, and the elastic force accumulated thereby biases the variable wing in the direction to open the variable wing, the opening force of the variable wing is set. This is because the variable blade is stopped in a predetermined fully open state. The variable wing is provided with a length corresponding to the space between the upper and lower holding plates in the direction of the vertical support axis in the shape of a substantially circular arc in plan view, and converts the drag and lift acting on the outer surface of the wing to rotational force to increase the rotational speed The rotation of high rotational force is transmitted to the rotating shaft.

上記構成の可変翼式風力変換機構では、所定以上の風速の風が吹き始めると、可変翼は全開状態から閉じる方向に操作される。これは、支持軸に対してリンク機構のアームを介して錘を取り付け、その弾性力で所定風速までは可変翼を全開状に保持し、所定以上の風速による回転では錘の遠心力が弾性部材の弾性力に打ち勝って可変翼をその風速の大きさに応じて閉じるように可変翼を開閉自在に設けたからであり、風速の大きさに応じて可変翼の開き状態が変化する。そして、例えば、風速35m/s以上の風が吹く時には可変翼を全閉状態として可変翼が吹き飛ばされるのを防止し、可変翼式風力変換機構の全体が強風で倒壊する危険性を防止する。   In the variable wing type wind power conversion mechanism having the above-described configuration, when the wind of a predetermined speed or higher starts to blow, the variable wing is operated from the fully open state to the closing direction. This is because the weight is attached to the support shaft via the arm of the link mechanism, and the variable wing is held in the fully open state up to a predetermined wind speed by the elastic force. This is because the variable blades are provided so as to be openable and closable so as to overcome the elastic force and close the variable blades according to the wind speed, and the open state of the variable blades changes according to the wind speed. For example, when the wind speed of 35 m / s or more is blown, the variable blade is prevented from being blown off with the variable blade fully closed, and the risk of the entire variable blade-type wind power conversion mechanism collapsing with a strong wind is prevented.

この発明の可変翼式風力変換機構は、垂直方向に回転自在に支持される回転軸に保持アームを設け、保持アームの半径方向所定位置に複数個所保持アームに対して回転自在に設けた垂直な支持軸に風を受ける可変翼を取り付け、支持軸に対して錘を取り付け、その弾性力で所定風速までは可変翼を開放状に保持し、所定以上の風速による回転では錘の遠心力が弾性部材の弾性力に打ち勝って可変翼をその風速の大きさに応じて閉じるように可変翼を開閉自在としたから、20m/s以下の通常の風では可変翼が全開状態で作用し、25m/s以上の強風時には可変翼をその風速に応じて閉じるように錘の遠心力で回転するように操作し、35m/s以上の強風時には可変翼を全閉とすることにより可変翼式風力変換機構の全体が倒壊する危険性を防止することが出来るという利点が得られる。   The variable wing type wind power conversion mechanism according to the present invention is provided with a holding arm on a rotating shaft that is rotatably supported in a vertical direction, and a vertical arm that is rotatably provided to a plurality of holding arms at predetermined positions in the radial direction of the holding arm. A variable wing that receives wind is attached to the support shaft, a weight is attached to the support shaft, and the variable blade is held open up to a predetermined wind speed by its elastic force. Since the variable wing can be opened and closed so as to overcome the elastic force of the member and close the variable wing according to the wind speed, the variable wing operates in a fully open state in a normal wind of 20 m / s or less, and 25 m / s The variable wing wind power conversion mechanism is operated by rotating the variable wing with centrifugal force to close the variable wing according to the wind speed when the wind is over s, and by fully closing the variable wing when the wind is over 35m / s. The danger of the whole of collapsing Advantageous in that it can be stopped is obtained.

以下、この発明の実施形態について、図面を参照して説明する。図1は、第1実施形態の可変翼式風力変換機構の外観斜視図、図2は上記可変翼式風力変換機Aの平面図、図3はこの可変翼式風力変換機Aの可変翼14を完全に閉じた状態の外観斜視図を示す。図示のように、この可変翼式風力変換機Aは、支持脚部12Lで支持された基礎台板12上に設けられ、この可変翼式風力変換機Aの上部に発電部Gを設けて構成されている。この可変翼式風力変換機Aは、上下に所定間隔に設けた三叉形状の保持アーム10(10a、10b、10c)の3つの中心を貫通して設けた垂直軸11xの上下端を基礎台板12と発電部Gの下底板20Bに対して軸受12aで回転自在に支持されている。   Embodiments of the present invention will be described below with reference to the drawings. 1 is an external perspective view of the variable wing wind power conversion mechanism of the first embodiment, FIG. 2 is a plan view of the variable wing wind power converter A, and FIG. 3 is a variable wing 14 of the variable wing wind power converter A. The external appearance perspective view of the state which closed completely is shown. As shown in the figure, the variable wing wind power converter A is provided on a base plate 12 supported by a support leg 12L, and a power generator G is provided on the upper part of the variable wing wind power converter A. Has been. This variable wing type wind power converter A has a base plate with upper and lower ends of a vertical shaft 11x provided through three centers of three-pronged holding arms 10 (10a, 10b, 10c) provided vertically at predetermined intervals. 12 and a lower bottom plate 20B of the power generation unit G are rotatably supported by a bearing 12a.

そして、上記保持アーム10a、10bの間に垂直軸11xに対して半径方向の所定距離位置で、かつその周方向に所定の角度間隔で複数個所に可変翼14(図示の例では3箇所、14a、14b、14c)を設けている。なお、上記可変翼14(14a、14b、14c)は、後述するように、所定の風速以上の風に対しては、図示の全開状態から支持軸13xを中心として回転し、図3に示すように、複数の可変翼同士の全体で円筒状に閉じるように構成されており、開閉角度を可変状態に設定することができるため、可変翼と呼んでいる。   The variable blades 14 (three in the illustrated example, 14a) are provided at a plurality of positions at predetermined angular positions in the radial direction with respect to the vertical axis 11x between the holding arms 10a and 10b and at predetermined angular intervals in the circumferential direction. , 14b, 14c). As will be described later, the variable blade 14 (14a, 14b, 14c) rotates around the support shaft 13x from the fully opened state shown in FIG. 3 for winds of a predetermined wind speed or higher. In addition, since the plurality of variable wings are configured to be closed in a cylindrical shape as a whole and the open / close angle can be set in a variable state, they are called variable wings.

基礎台板12は、支持脚部12Lの中間位置に固定して取り付けられ、可変翼式風力変換機Aの上方に設置された発電部Gは、その下底板20Bを支持脚部12Lの上部で支持し、下底板20B上に発電機を設置してその上部を半球状の蓋板20又はレドーム等でカバーしている。発電機の入力軸19は、可変翼式風力変換機Aの垂直軸11xが上部に延長された延長軸11xeに図示しない軸継手により接続されている。なお、最下段の保持アーム10cの材料は、図示の状態では、他の保持アーム10a、10bと同じ板厚としているが、実際には厚さを図示のものより厚くして、重量を大きくし、フライホイールの役目をすることが出来るものとする。   The base base plate 12 is fixedly attached to an intermediate position of the support leg 12L, and the power generation unit G installed above the variable wing wind power converter A has its lower bottom plate 20B positioned above the support leg 12L. The generator is installed on the lower bottom plate 20B, and the upper portion thereof is covered with a hemispherical lid plate 20 or a radome. The input shaft 19 of the generator is connected to an extension shaft 11xe, which is an upper portion of the vertical shaft 11x of the variable wing wind power converter A, by a shaft coupling (not shown). In the illustrated state, the material of the lowermost holding arm 10c has the same plate thickness as the other holding arms 10a and 10b. However, in actuality, the thickness is made thicker than that shown in the figure to increase the weight. , Shall be able to act as a flywheel.

上記可変翼14は、保持アーム10a、10bの間でその半径方向の所定距離位置に垂直方向に取り付けた支持軸13xに対して固定され、支持軸13xの回転と共に回転する。支持軸13xは、保持アーム10a、10b、10cに対して軸受13aにより回転自在に支持され、取り付けられている。また、可変翼14は、平面視断面が略半円弧状であり、かつ垂直方向に半円筒状に延びる翼部材に対しその長さ方向の複数段(図示の例では3段)にブラケット14sを設けて形成されている。   The variable wing 14 is fixed to the support shaft 13x vertically attached to the predetermined distance position in the radial direction between the holding arms 10a and 10b, and rotates together with the rotation of the support shaft 13x. The support shaft 13x is rotatably supported and attached to the holding arms 10a, 10b, and 10c by a bearing 13a. The variable blade 14 has a substantially semicircular arc shape in plan view, and brackets 14s are arranged in a plurality of stages (three stages in the illustrated example) in the length direction of the blade member extending in a semicylindrical shape in the vertical direction. It is provided and formed.

支持軸13xは、その下方の軸部と、この支持軸13xより垂直軸11x寄りの位置に設けた補助支持軸13x’のそれぞれに一対のアーム17、17を回転自在に取り付け、この一対のアーム17、17の先端には錘18を取り付けて一種のリンク機構を構成している。錘18の垂直軸11x寄りの一端にはコイルばねを用いた弾性部材13bが取り付けられている。コイルばねの他端は保持アーム10cの図示しない適宜位置に固定されている。そして、この弾性部材13bにより、通常は可変翼14が最も半径方向に開いた状態で錘18が保持アーム10cと略平行な方向に向けて設定している。   The support shaft 13x has a pair of arms 17 and 17 rotatably attached to a lower shaft portion and an auxiliary support shaft 13x 'provided at a position closer to the vertical shaft 11x than the support shaft 13x. A weight 18 is attached to the tips of 17 and 17 to constitute a kind of link mechanism. An elastic member 13b using a coil spring is attached to one end of the weight 18 near the vertical axis 11x. The other end of the coil spring is fixed to an appropriate position (not shown) of the holding arm 10c. The elastic member 13b normally sets the weight 18 in a direction substantially parallel to the holding arm 10c in a state where the variable blade 14 is opened most radially.

弾性部材13bのコイルばねは、図2に示す可変翼14が最も開放された位置に設定されるに十分な弾性力で自然長さ状態より収縮状に取り付けられ、この収縮状態から可変翼式風力変換機A全体が反時計方向へ回転することにより発生する遠心力により錘18が一対のアーム17、17と共に遠心方向へ振り出され、一方のアーム17が取り付けられた支持軸13xの回転により可変翼14を閉じる方向の力が作用している。しかし、この遠心力が上記弾性部材13bにより設定されている所定の弾性力より小さい限り、可変翼14が閉じられることはなく、上記の最も開いた状態に保持される。   The coil spring of the elastic member 13b is attached in a contracted state from the natural length state with an elastic force sufficient to set the variable blade 14 shown in FIG. 2 to the most open position. The weight 18 is swung in the centrifugal direction together with the pair of arms 17 and 17 by the centrifugal force generated by rotating the entire converter A counterclockwise, and variable by the rotation of the support shaft 13x to which one arm 17 is attached. A force in the direction of closing the wing 14 is acting. However, as long as the centrifugal force is smaller than the predetermined elastic force set by the elastic member 13b, the variable blade 14 is not closed and is held in the most open state.

また、下方の保持板10b上に設けた凸部材15aに対し、支持軸13xに設けたピン15bが図示の位置で当接して可変翼14が支持軸13xを中心として反時計方向に回転する力を阻止する回転停止手段15を備え、この手段により可変翼14を最も開放した位置に保持している。なお、図示の例では、可変翼14の回転方向は、可変翼式風力変換機Aの全体が反時計方向に回転するように設定されていることが前提である。ただし、支持軸13xを中実軸とし、その外周に弾性部材13bのコイルばねを巻き付けるように設けてもよい。また、弾性部材13bは、そのコイルばねの線径や材質を適切に設定することにより弾性係数kを所定の状態に設定するものとする。   In addition, the pin 15b provided on the support shaft 13x abuts the convex member 15a provided on the lower holding plate 10b at the illustrated position so that the variable blade 14 rotates counterclockwise around the support shaft 13x. Rotation stop means 15 for preventing the rotation is provided, and the variable blade 14 is held in the most open position by this means. In the illustrated example, it is assumed that the rotation direction of the variable wing 14 is set so that the entire variable wing wind power converter A rotates counterclockwise. However, the support shaft 13x may be a solid shaft, and the coil spring of the elastic member 13b may be wound around the outer periphery thereof. Moreover, the elastic member 13b shall set the elastic coefficient k to a predetermined state by setting appropriately the wire diameter and material of the coil spring.

弾性係数kを所定の状態に設定するとは、風速が、例えば25m/sを超えた風速で高速回転するとその風速による回転数の増大する割合に応じて増大する遠心力が弾性部材13bのコイルばねの弾性に打ち勝って錘18とアーム17とが外方向へ振られ、これにより可変翼14が閉じる方向に回転を始め、風速が30m/sで可変翼14は80%閉じ、さらにそれを超えると完全に閉じるのに対応する弾性係数の値に設定することを意味する。このように弾性係数を設定すると共に上記所定以上の風速の風ではその風力で可変翼式風力変換機A自体が倒壊する危険性が生じるため、このような風力で倒壊しない構造を前提としている。   When the elastic coefficient k is set to a predetermined state, when the wind speed is rotated at a high speed, for example, at a wind speed exceeding 25 m / s, the centrifugal force that increases according to the rate of increase in the rotational speed due to the wind speed is a coil spring of the elastic member 13b When the weight 18 and the arm 17 are swung outward by overcoming the elasticity of the blade, the variable blade 14 begins to rotate in the closing direction, and when the wind speed is 30 m / s, the variable blade 14 is closed 80% and further exceeds that. It means setting to the value of the elastic modulus corresponding to complete closing. Since the elastic coefficient is set as described above and the wind with a wind speed higher than the predetermined speed has a risk that the variable wing type wind power converter A itself may collapse due to the wind force, such a structure that does not collapse with the wind force is assumed.

基礎台板12は、上述したように、支持脚部12Lの中間位置に固定して取り付けられているが、この場合基礎台板12上の可変翼式風力変換機Aのさらに上方に支持脚部12Lで支持して発電部Gを設置している。基礎台板12は垂直軸11xを軸受12aにより回転自在に支持しており、風力で垂直軸11xが倒れる方向の力に対しても保持できるようにしている。また、垂直軸11xが上方に伸びる延長軸11xeは、発電部Gの入力軸19に図示しない軸継手を介して接続されている。Cbは、出力線である。   As described above, the base plate 12 is fixedly attached to an intermediate position of the support leg 12L. In this case, the support leg is further above the variable wing wind turbine A on the base plate 12. The power generation part G is installed with support at 12L. The base plate 12 supports the vertical shaft 11x by a bearing 12a so as to be rotatable, and can be held against a force in a direction in which the vertical shaft 11x is tilted by wind force. The extension shaft 11xe from which the vertical shaft 11x extends upward is connected to the input shaft 19 of the power generation unit G via a shaft coupling (not shown). Cb is an output line.

なお、上記可変翼式風力変換機Aでは、発電部Gを上部に設置しているが、これは発電部Gに対する水密性が長期間では十分保持できないことを考慮し、水の浸入による発電機の機能の劣化を防止するためであり、水密性を十分保持できる場合は、下部に設けても良い。発電機からの出力配線は、支持脚部12Lに沿って適宜下方へと敷設し、所定の位置に集約して蓄電する、或いは送電する。この場合、出力配線は垂直軸11xを中空軸として、その中に配線するようにしても良い。   In the variable wing type wind power converter A, the power generation unit G is installed at the upper part. This is because the water-tightness of the power generation unit G cannot be sufficiently maintained for a long period of time. In order to prevent the deterioration of the function, if sufficient watertightness can be maintained, it may be provided in the lower part. The output wiring from the generator is appropriately laid down along the support leg portion 12L, and is collected and stored at a predetermined position or transmitted. In this case, the output wiring may be wired in the vertical shaft 11x as a hollow shaft.

上記の構成としたこの実施形態の可変翼式風力変換機Aは、所謂サポニウス型の風車であり、通常のサポニウス型の風車が2枚翼であるのに対して3枚翼とし、かつ各翼は可変翼14として通常の状態では最も高効率で、かつ強風時には可変翼14を閉じてその風力で可変翼式風力変換機Aが倒壊する危険性が生じるのを防止している。可変翼式風力変換機Aが作動を開始すると、風速3m/s程度の微風から25m/sの強風の直前までは通常の状態として可変翼14が半径方向に最も開放された開放状態で図1に示す反時計方向に回転し、その回転力は可変翼14から垂直軸11xへと伝達され、その回転が発電部Gに伝達されてそれぞれの風を受ける状態での風速に応じた回転速度で回転する。   The variable wing type wind power converter A of this embodiment having the above-described configuration is a so-called Saponius type windmill, which has three blades compared to a normal Saponius type windmill having two blades, and each blade. The variable wing 14 has the highest efficiency in a normal state and closes the variable wing 14 in a strong wind to prevent the risk of the variable wing wind power converter A collapsing with the wind force. When the variable wing type wind power converter A starts operating, the variable wing 14 is in the open state in which the variable wing 14 is opened most in the radial direction from the light wind of about 3 m / s to just before the strong wind of 25 m / s. The rotational force is transmitted from the variable wing 14 to the vertical shaft 11x, and the rotation is transmitted to the power generation unit G at a rotational speed corresponding to the wind speed in a state where each wind is received. Rotate.

この通常状態では、支持軸13x内に設けられた弾性部材13bのコイルばねの弾性力により図5の(a)図に示す最も開放された状態に設定されている。そして、図2に示すように、設置された可変翼式風力変換機Aに対して、東西南北いずれの方向から風が吹いても、風車部はその風力、風速に対応して回転する。この場合、例えば図2の右下、即ち略南東から北西の方向に向けて風が吹いたとすると、この方向の風による回転力は、3枚の可変翼14a、14b、14cのうち可変翼14aには翼の表側(円弧表面側)と裏側に沿って流れる風の流速に速度差が生じ、この速度差に基づいて可変翼14aを反時計方向に向かわせる揚力が回転力に変換される。   In this normal state, the most opened state shown in FIG. 5A is set by the elastic force of the coil spring of the elastic member 13b provided in the support shaft 13x. And as shown in FIG. 2, even if a wind blows from any direction of the east, west, north, and south with respect to the installed variable wing type wind power converter A, a windmill part rotates according to the wind force and wind speed. In this case, for example, if the wind blows in the lower right direction of FIG. 2, that is, in the direction from approximately southeast to northwest, the rotational force caused by the wind in this direction is the variable wing 14a out of the three variable wings 14a, 14b, 14c. , A speed difference occurs in the flow velocity of the wind flowing along the front side (arc surface side) and the back side of the blade, and based on this speed difference, the lift force that turns the variable blade 14a counterclockwise is converted into a rotational force.

2つ目の可変翼14bは、その翼内側に直接作用する風力に抗して押される抗力が回転力となり、この回転力により風車部が回転する。3つ目の可変翼14cは、翼表面に風力を受け、反時計方向の回転に対して回転を阻止する方向に作用する。しかし、その風の流れは翼表面に沿って流れて大きな反力とはならず、2つの可変翼14a、14bによる回転力が大きいため結局上記抗力と揚力により風車部が回転する。上記説明では南東から北西の方向への風による作用として説明したが、3つの可変翼14a、14b、14cを設けることにより風が吹く方向は東西南北いずれの方向からであっても同じように作用し、回転する。   In the second variable blade 14b, a drag force that is pushed against the wind force directly acting on the inside of the blade becomes a rotational force, and the windmill portion is rotated by this rotational force. The third variable wing 14c receives wind force on the wing surface and acts in a direction that prevents rotation against counterclockwise rotation. However, the flow of the wind flows along the blade surface and does not generate a large reaction force, and the rotational force of the two variable blades 14a and 14b is large, so that the wind turbine unit is rotated by the drag and lift. In the above description, the action from the southeast to the northwest has been described. However, by providing the three variable wings 14a, 14b, and 14c, the wind blows from the east, west, north, and south directions in the same way. And rotate.

以上は、風速が上述した強風25m/sまでの通常の風による作用であり、上記強風域を超えた場合は、次の通りに作用する。25m/s以上の強風域を超えると可変翼14(14a、14b、14c)による回転速度が大きくなり、支持軸13xの下方に連結されているアーム17の先端の錘18の遠心力が大きくなる。従って、弾性部材13bのコイルばねの弾性により可変翼14a、14b、14cを最大の開放状に保持している開放力より遠心力の方が大きくなり、このため図5の(b)図に示すように、錘18が通常状態より外方へ振り出される。錘18が外方へ振り出されることにより可変翼14a、14b、14cは、支持軸13xを中心にしてその翼部分を閉じる方向に回転する。   The above is an effect | action by the normal wind to the above-mentioned strong wind 25m / s, and when the wind speed exceeds the said strong wind area, it acts as follows. When the wind speed exceeds 25 m / s, the rotational speed of the variable blades 14 (14a, 14b, 14c) increases, and the centrifugal force of the weight 18 at the tip of the arm 17 connected to the lower side of the support shaft 13x increases. . Accordingly, due to the elasticity of the coil spring of the elastic member 13b, the centrifugal force is larger than the opening force that holds the variable wings 14a, 14b, 14c in the maximum open state. As described above, the weight 18 is swung outward from the normal state. By swinging the weight 18 outward, the variable wings 14a, 14b, and 14c rotate around the support shaft 13x in a direction to close the wing portion.

可変翼14a、14b、14cの開放状態が縮小するとその受風面積が減少するが、風速の増大が受風面積の減少より大きくなるため益々回転速度が増大し、風速35m/sに近くなると可変翼14a、14b、14cはその開放状態が80%閉じた状態となり、さらにこの風速以上になると、図5の(c)図に示すように、完全に閉じるように作動する。このため、従来の風力発電装置では、台風や低気圧の接近により風速が増大してそのままでは倒壊する危険性があるような場合でも、この実施形態の可変翼式風力変換機Aは、可変翼14a、14b、14cを閉じることにより、このような危険な状態から保護することが出来る。   When the open state of the variable blades 14a, 14b, and 14c is reduced, the wind receiving area is reduced. However, since the increase in the wind speed is larger than the decrease in the wind receiving area, the rotation speed is increased more and the wind speed is close to 35 m / s. The blades 14a, 14b, and 14c are in a state where their open states are closed by 80%, and when the wind speed is higher than this, the blades 14a, 14b, and 14c operate so as to be completely closed as shown in FIG. For this reason, in the conventional wind power generator, even when the wind speed increases due to the approach of a typhoon or low atmospheric pressure and there is a risk of collapsing as it is, the variable wing type wind power converter A of this embodiment has the variable wings. By closing 14a, 14b, and 14c, it is possible to protect against such a dangerous state.

上記実施形態では、可変翼14、弾性部材13b、支持軸13x、錘18については、図示の例以外にも形状の異なる種々のものがありうるが、上記構成、機能がこの発明の趣旨の範囲内であれば全てこの発明の範囲に含まれる。   In the above embodiment, the variable wing 14, the elastic member 13b, the support shaft 13x, and the weight 18 may have various shapes other than the illustrated example. However, the configuration and function are within the scope of the present invention. Anything within the scope is included in the scope of the present invention.

この発明の可変翼式風力変換機構は、サポニウス型の風車機構の翼を可変翼とし、大き過ぎる風速のため危険な状態のときは、錘の遠心力で全閉状とすることが出来るようにしたものであり、高効率でかつ強風時には可変翼式風力変換機構の全体の倒壊を防止することが出来るから、風力発電装置の風車機構として広く利用できる。   The variable wing type wind power conversion mechanism of the present invention uses the wing of the Saponius type windmill mechanism as a variable wing so that it can be fully closed by the centrifugal force of the weight when it is in a dangerous state due to excessive wind speed. Since it is highly efficient and can prevent the entire variable wing type wind power conversion mechanism from collapsing during strong winds, it can be widely used as a wind turbine mechanism of a wind power generator.

実施形態の可変翼式風力変換機の外観斜視図External perspective view of variable wing type wind power converter of embodiment 同上機の平面図Top view of the machine 同上機の可変翼を閉じた状態の外観斜視図External perspective view with variable wings closed 同上機の主縦断面図Main longitudinal section of the same machine 同上機の作用の説明図Explanatory drawing of the function of the machine

符号の説明Explanation of symbols

10a、10b 保持アーム
11x 垂直軸
11xe 延長軸
12 基礎台板
12L 支持脚部
13x 支持軸
13a 軸受
13b 弾性部材
13xe 延長軸
14 可変翼
15 回転停止手段
17 アーム
18 錘
19 入力軸
20 蓋板
20B 下底板
A 可変翼式風力変換機
10a, 10b Holding arm 11x Vertical shaft 11xe Extension shaft 12 Base base plate 12L Support leg 13x Support shaft 13a Bearing 13b Elastic member 13xe Extension shaft 14 Variable blade 15 Rotation stop means 17 Arm 18 Weight 19 Input shaft 20 Cover plate 20B Lower bottom plate A Variable wing wind power converter

Claims (2)

垂直方向に回転自在に支持される回転軸11xの上下に複数の三叉形状の保持アーム10a、10b、10cを設け、一対の保持アーム10a、10bの半径方向所定位置に回転自在に設けた垂直な支持軸13xにそれぞれ風を受ける複数の可変翼14を取り付け、可変翼14は平面視断面が略円弧状で垂直な支持軸方向に上下の保持アーム10a、10b間に対応する長さとし、支持軸13xに対して連結したリンク機構のアーム17、17の端に錘18を取り付け、上記錘18と他の保持アーム10c間に弾性部材13bを取り付けてその弾性力で所定風速までは可変翼14を全開状に保持し、所定以上の風速による回転では錘18の遠心力が弾性部材13bの弾性力に打ち勝って可変翼14をその風速の大きさに応じて閉じるように可変翼14を開閉自在に設けた可変翼式風力変換機構。   A plurality of trident-shaped holding arms 10a, 10b, and 10c are provided above and below a rotating shaft 11x that is rotatably supported in the vertical direction, and is vertically provided at a predetermined radial position of the pair of holding arms 10a and 10b. A plurality of variable blades 14 each receiving wind are attached to the support shaft 13x, and the variable blade 14 has a substantially arc-shaped cross section in plan view and has a length corresponding to the vertical support shaft direction between the upper and lower holding arms 10a and 10b. A weight 18 is attached to the ends of the arms 17 and 17 of the link mechanism connected to 13x, and an elastic member 13b is attached between the weight 18 and the other holding arm 10c. It is possible to hold the variable wing 14 in accordance with the magnitude of the wind speed by holding it fully open and rotating the centrifugal force of the weight 18 over the elastic force of the elastic member 13b when rotating at a wind speed above a predetermined level. Variable vane wind conversion mechanism provided with wings 14 openably. 前記可変翼14を錘18の遠心力で全閉状態に閉じたとき、可変翼14の外周が保持板10a,10bの外周と重なり、かつ可変翼14の外周が互いに連続した全閉状となる形状としたことを特徴とする請求項1に記載の可変翼式風力変換機構。   When the variable blade 14 is closed in a fully closed state by the centrifugal force of the weight 18, the outer periphery of the variable blade 14 overlaps with the outer periphery of the holding plates 10a and 10b, and the outer periphery of the variable blade 14 is a fully closed shape that is continuous with each other. 2. The variable wing wind power conversion mechanism according to claim 1, wherein
JP2007160182A 2007-06-18 2007-06-18 Variable blade type wind power conversion mechanism Pending JP2008309132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007160182A JP2008309132A (en) 2007-06-18 2007-06-18 Variable blade type wind power conversion mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007160182A JP2008309132A (en) 2007-06-18 2007-06-18 Variable blade type wind power conversion mechanism

Publications (1)

Publication Number Publication Date
JP2008309132A true JP2008309132A (en) 2008-12-25

Family

ID=40236940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007160182A Pending JP2008309132A (en) 2007-06-18 2007-06-18 Variable blade type wind power conversion mechanism

Country Status (1)

Country Link
JP (1) JP2008309132A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085182A (en) * 2005-09-20 2007-04-05 Univ Of Tokushima Vertical shaft type straight wing windmill having aerodynamic governor mechanism
CN102367784A (en) * 2011-09-26 2012-03-07 上海庆华蜂巢建材有限公司 Method for controlling blade automatically-opening/closing device of vertical-axis wind-driven generator wind wheel
JP2012082729A (en) * 2010-10-08 2012-04-26 Sunao Ishimine Windmill unit and wind power generator
WO2012060570A2 (en) * 2010-11-05 2012-05-10 Kang Ok Rye Vertical-axis wind turbine of a type with wind-direction-adjustable blades, and a swing-motion device for the same
KR20140116170A (en) 2011-12-30 2014-10-01 시바타 덴키 고교 가부시키가이샤 Method for manufacturing fluid-using rotation body, and rotation body
US9677539B2 (en) 2013-05-25 2017-06-13 Yoshiji Tamatsu Vertical axis water/wind turbine motor using flight feather opening/closing wing system
KR101898248B1 (en) * 2018-04-19 2018-09-12 홍쿠이 진 Wind turbine and aerogenerator having the same
CN111852756A (en) * 2019-04-29 2020-10-30 太阳&风能源股份有限公司 Wind power generation device capable of improving power generation efficiency
CN114198260A (en) * 2021-12-14 2022-03-18 西南石油大学 Efficient vertical axis switch reluctance breeze generator
WO2023220330A1 (en) * 2022-05-12 2023-11-16 Lahey Daniel Vertical axis turbines and blades for vertical axis turbines

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085182A (en) * 2005-09-20 2007-04-05 Univ Of Tokushima Vertical shaft type straight wing windmill having aerodynamic governor mechanism
JP2012082729A (en) * 2010-10-08 2012-04-26 Sunao Ishimine Windmill unit and wind power generator
CN103415698A (en) * 2010-11-05 2013-11-27 姜玊礼 Wind Direction Adjustable Blade Type Vertical Axis Wind Turbine
WO2012060570A2 (en) * 2010-11-05 2012-05-10 Kang Ok Rye Vertical-axis wind turbine of a type with wind-direction-adjustable blades, and a swing-motion device for the same
WO2012060570A3 (en) * 2010-11-05 2012-09-13 Kang Ok Rye Vertical-axis wind turbine of a type with wind-direction-adjustable blades, and a swing-motion device for the same
KR101217314B1 (en) * 2010-11-05 2012-12-31 강옥례 Windmill of vertical axis with wind direction control blade
JP2013545019A (en) * 2010-11-05 2013-12-19 リェ カン,オク Wind direction adjusting blade type vertical axis windmill
CN102367784A (en) * 2011-09-26 2012-03-07 上海庆华蜂巢建材有限公司 Method for controlling blade automatically-opening/closing device of vertical-axis wind-driven generator wind wheel
KR20140116170A (en) 2011-12-30 2014-10-01 시바타 덴키 고교 가부시키가이샤 Method for manufacturing fluid-using rotation body, and rotation body
US9677539B2 (en) 2013-05-25 2017-06-13 Yoshiji Tamatsu Vertical axis water/wind turbine motor using flight feather opening/closing wing system
KR101898248B1 (en) * 2018-04-19 2018-09-12 홍쿠이 진 Wind turbine and aerogenerator having the same
CN111852756A (en) * 2019-04-29 2020-10-30 太阳&风能源股份有限公司 Wind power generation device capable of improving power generation efficiency
CN114198260A (en) * 2021-12-14 2022-03-18 西南石油大学 Efficient vertical axis switch reluctance breeze generator
CN114198260B (en) * 2021-12-14 2024-01-16 西南石油大学 High-efficiency vertical axis switch reluctance breeze generator
WO2023220330A1 (en) * 2022-05-12 2023-11-16 Lahey Daniel Vertical axis turbines and blades for vertical axis turbines

Similar Documents

Publication Publication Date Title
JP2007170234A (en) Variable wing type wind force converting mechanism
JP2008309132A (en) Variable blade type wind power conversion mechanism
US8232664B2 (en) Vertical axis wind turbine
KR100720287B1 (en) Wind power generator
US8063502B1 (en) Shrouded wind turbine with dual coaxial airflow passageways
US8480363B2 (en) Self-starting turbine with dual position vanes
US10495063B2 (en) Wind turbine
US8109732B2 (en) Horizontal-axis wind generator
JP2013534592A (en) Vertical axis windmill
JP4740382B2 (en) Windmill
JP4128146B2 (en) Wind turbine generator with integrated roof
US20120091715A1 (en) Vertical axis wind turbine with speed regulation and storm protection system
EP3597900B1 (en) Wind turbine
JP2005090332A (en) Darrieus wind turbine
JP5346000B2 (en) Windmill
JP2006266236A (en) Wind load-reducing device and wind power generation system
JP2005054641A (en) Wind power generating device
JP2001165034A (en) Movable blade windmill with safety valve
JP2015166562A (en) Vertical axis drag type wind turbine capable of preventing its overspeed under strong wind and wind power generator
ES2912095T3 (en) Installation of wind turbines with tower bracket
KR101503358B1 (en) Horizontal wind power generator
KR101125952B1 (en) Wind turbine
US20140175801A1 (en) Wind turbine power generator
TWI273165B (en) A vertical axial wind engine
JP3885151B2 (en) Wind turbine for wind power generation