JP2007170234A - Variable wing type wind force converting mechanism - Google Patents

Variable wing type wind force converting mechanism Download PDF

Info

Publication number
JP2007170234A
JP2007170234A JP2005366750A JP2005366750A JP2007170234A JP 2007170234 A JP2007170234 A JP 2007170234A JP 2005366750 A JP2005366750 A JP 2005366750A JP 2005366750 A JP2005366750 A JP 2005366750A JP 2007170234 A JP2007170234 A JP 2007170234A
Authority
JP
Japan
Prior art keywords
variable
wind
variable wing
blade
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005366750A
Other languages
Japanese (ja)
Inventor
Yuichi Onishi
裕一 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005366750A priority Critical patent/JP2007170234A/en
Publication of JP2007170234A publication Critical patent/JP2007170234A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase working efficiency during the normal operation of a windmill. <P>SOLUTION: In this variable wing type wind force converting mechanism A, a pair of holding plates 10a, 10b are vertically installed at the upper and lower parts of a rotating shaft 11x supported vertically. Variable vanes 14 receiving wind force which are installed on the holding plates 10, 10b at predetermined positions in the radial direction and at predetermined angular intervals in the circumferential direction. A weight 18 is fitted to the end of the arm 17 of a connection member extending in the radial direction of the extension 13xe of the support shaft. An elastic member 13b is fitted to one of the support shaft 13x and the connection member and the variable vanes 14 are held in a fully opened state by its elastic force up to a predetermined wind velocity. The variable vanes 14 are formed to be opened and closed so that when the variable vanes are rotating over the predetermined wind velocity, the centrifugal force of the weight 18 overcomes the elastic force of the elastic member 13b, and the variable vanes 14 are closed according to the magnitude of the wind velocity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、微風から強風まで全ての方位に吹く風を電力や回転力などのエネルギに変換する可変翼式風力変換機構に関する。   The present invention relates to a variable wing type wind power conversion mechanism that converts wind blowing in all directions from light wind to strong wind into energy such as electric power and rotational force.

風力を回転力に変換してそのエネルギを電力等のエネルギとして利用する風車の研究が古くから行われている。風力を回転力に変換して電力等のエネルギを取り出す機構としての所謂風車は、大別すると水平軸型及び垂直軸型の2つに分類され、それぞれに長所と短所がある。垂直軸型は、風の吹く方向に対して垂直方向に設置され、水平軸型のように風の吹く方向に平行に風車を回転させる必要がなく、このような回転機構が必要でないという点で全体の機構が簡単となるという利点がある。   Research on wind turbines that convert wind power into rotational force and use the energy as energy such as electric power has been conducted for a long time. The so-called windmills as a mechanism for extracting energy such as electric power by converting wind power into rotational force are roughly classified into two types, a horizontal axis type and a vertical axis type, and each has advantages and disadvantages. The vertical axis type is installed in a direction perpendicular to the wind blowing direction, and it is not necessary to rotate the windmill parallel to the wind blowing direction like the horizontal axis type, and such a rotation mechanism is not necessary. There is an advantage that the whole mechanism becomes simple.

垂直軸型の風車は、周速比(ブレードの周速度/風速)の高いダリウス型と、周速比の低いサポニウス型が知られている。ダリウス型等の風車は、周速比が高く変換効率が高い半面、風切り音が高く、ブレードの高い工作精度を必要とされる。サポニウス型は、風切り音は低いが、周速が低いため風速を回転トルクに変換する高い変換効率が得られない。しかし、他の形式の風車に比べると、設置場所が限定されず、小型でどこにでも風力発電装置として容易に設置することが出来るという利点がある。   As a vertical axis type windmill, a Darrieus type having a high peripheral speed ratio (blade peripheral speed / wind speed) and a Saponius type having a low peripheral speed ratio are known. On the other hand, Darrieus type windmills have a high peripheral speed ratio and high conversion efficiency, while high wind noise and high blade precision are required. The Saponius type has a low wind noise, but since the peripheral speed is low, high conversion efficiency for converting the wind speed into rotational torque cannot be obtained. However, compared to other types of wind turbines, the installation location is not limited, and there is an advantage that it is small and can be easily installed as a wind power generator anywhere.

サポニウス型の風力発電機構の一例として、特許文献1の「サポ二ウス風力発電装置」が知られている。この風力発電装置は、複数のブレードを放射状に固定した鉛直軸に発電機を連接し、複数のブレードは鉛直軸に固定された上下回転板間に固定され、各ブレードに風抜き穴を形成すると共に、上下回転板間の外周に突設羽根を設けたというものである。この発電装置は、サポニウス型の利点に着目し、かつ大きな回転力(回転速度)を得られるように複数のブレード間で圧縮される気流の流れを改善して多くの発電量を得られるようにしたものである。   As an example of a Saponius type wind power generation mechanism, a “Saponius wind power generation device” of Patent Document 1 is known. In this wind turbine generator, a generator is connected to a vertical shaft in which a plurality of blades are radially fixed, and the plurality of blades are fixed between upper and lower rotating plates fixed to the vertical shaft, and an air vent hole is formed in each blade. In addition, projecting blades are provided on the outer periphery between the upper and lower rotary plates. This power generator pays attention to the advantages of the Saponius type and improves the flow of airflow compressed between multiple blades so as to obtain a large rotational force (rotational speed) so that a large amount of power can be obtained. It is a thing.

このため、各ブレードの回転時に互いに対面する複数のブレード間で圧縮される気流を各ブレードに形成した風抜き穴から逃がすことによりブレード面に負荷される空気圧の抵抗を減らして高速に回転を容易とし、かつ上下回転板間の外周に突設羽根を設けることにより、より高速に回転させるようにしている。   For this reason, airflow compressed between multiple blades facing each other during rotation of each blade is released from the vent holes formed in each blade, reducing the resistance of the air pressure applied to the blade surface and facilitating high-speed rotation In addition, by providing projecting blades on the outer periphery between the upper and lower rotary plates, rotation is performed at a higher speed.

他の例として特許文献2の「風力発電用の風車」が公知である。この風車も垂直軸型で、かつ揚力型、抗力型の利点を活かして発生トルクの増強、広範囲の風速域での利用を可能とするため、垂直回転軸の半径方向に延びる翼支持軸の端に設けられたU字型の雨樋状の受風樋と、U字型のほぼ中心付近から風車回転の円周方向に延びた円弧状の主羽根と、U字型の中心線を対称軸に主羽根とほぼ対称に配置した副羽根とを備えたというものである。この装置では、風の流れの中に置かれた回転翼に作用する風力により、受風樋に働く力のうち平行に働く抗力と、主羽根と副羽根に働く力のうち流れに垂直方向に働く揚力とによりトルクが発生する。   As another example, a “wind turbine for wind power generation” in Patent Document 2 is known. This windmill is also a vertical axis type, and the end of the blade support shaft that extends in the radial direction of the vertical rotation axis in order to increase the generated torque by utilizing the advantages of the lift type and drag type, and to enable use in a wide range of wind speeds The U-shaped rain gutter-shaped wind-receiving gutter provided on the arc, the arc-shaped main blade extending in the circumferential direction of the windmill rotation from the vicinity of the center of the U-shape, and the U-shaped center line are symmetrical axes The sub-wings are arranged substantially symmetrically with the main blades. In this device, due to the wind force acting on the rotor blades placed in the wind flow, the drag force acting on the wind-receiving ridge in parallel and the force acting on the main blade and the sub blade in the direction perpendicular to the flow. Torque is generated by the working lift.

ところで、上記一般的な従来のダリウス型、サポニウス型の風車、あるいは特許文献1,2の風車のいずれも、所定の風速状態で風車の回転速度、回転力を大きくし、最も効率の良い状態で運転できることを前提として説明されている。しかし、実際に風が吹く状態は、風の向きが常に変動し、かつ風速も常に変化する。特に、台風や低気圧が近づくと風速は大きく変動し、25〜35m/sのような強い風速で風車の翼(風受け板)を全開状態のままにして置くと、設置されている風車自体が倒壊する危険性がある。しかし、従来の風車では、通常運転時の作動効率を向上させることに重点があり、上記のような強風時に風車の安全をどのように守るかについてまで検討した例はない。   By the way, the general conventional Darrieus-type and Saponius-type windmills and the windmills of Patent Documents 1 and 2 increase the rotational speed and rotational force of the windmill at a predetermined wind speed, and are in the most efficient state. It is explained on the assumption that it can be driven. However, when the wind actually blows, the direction of the wind always changes and the wind speed always changes. In particular, when the typhoon or low pressure approaches, the wind speed fluctuates greatly, and if the wind turbine blade (wind receiving plate) is left fully open at a strong wind speed of 25 to 35 m / s, the installed wind turbine itself There is a risk of collapse. However, in the conventional windmill, there is an emphasis on improving the operation efficiency at the time of normal operation, and there is no example which examined how to protect the safety of a windmill at the time of the above strong wind.

強風時に風車の翼(風受け板)を全開状態に固定して設置すると、強風が増大するその大きさに対応して翼の受ける風速、風力による風車の回転速度はますます大きくなるが、上記強風状態を超えると、風車自体を保持することが困難となり、結局そのような危険状態を予測すると風車を設置することが出来ず、その普及が阻害される要因となる。   If the wind turbine blades (wind receiving plates) are installed in a fully open state during strong winds, the wind speed received by the blades and the rotation speed of the wind turbines due to the wind force will increase according to the magnitude of the strong wind. If it exceeds the strong wind condition, it will be difficult to hold the windmill itself, and if such a dangerous state is predicted, the windmill cannot be installed and this will be a factor that hinders its spread.

この発明は、上記の問題に留意して、風車の通常運転時の作動効率を向上させると共に、強風時に風車の翼(風受け板)を全開状態に固定して設置すると、強風時に風車自体が倒壊する危険性が高くなるため、強風が増大するとその大きさに対応して翼の受ける風速、風力による風車の受風状態を減少させるように変化させ得る風車翼を備えた可変翼式風力変換機構を提供することを課題とする。   In consideration of the above problems, the present invention improves the operating efficiency during normal operation of the wind turbine, and when the wind turbine blade (wind receiving plate) is fixed in a fully open state during strong winds, Variable wing wind power conversion with wind turbine blades that can be changed to reduce the wind speed received by the blade and the wind receiving state of the wind turbine by the wind force according to the size of the strong wind as the risk of collapse increases. It is an object to provide a mechanism.

この発明は、上記の課題を解決する手段として、垂直方向に支持される回転軸の上下に一対の保持板を設け、保持板の半径方向所定位置に、周方向の所定角度間隔で複数個所保持板に対して回転自在に設けた垂直な支持軸にそれぞれ風を受ける可変翼を取り付け、支持軸の延長軸に対してその半径方向に延びる連結部材の端に錘を取り付け、上記支持軸又は連結部材のいずれかに弾性部材を取り付けてその弾性力で所定風速までは可変翼を全開状に保持し、所定以上の風速による回転では錘の遠心力が弾性部材の弾性力に打ち勝って可変翼をその風速の大きさに応じて閉じるように可変翼を開閉自在に設けた可変翼式風力変換機構の構成としたのである。   As a means for solving the above-mentioned problems, the present invention provides a pair of holding plates above and below a rotating shaft supported in the vertical direction, and holds a plurality of positions at predetermined angular intervals in the circumferential direction at predetermined positions in the radial direction of the holding plates. A variable wing for receiving wind is attached to each of vertical support shafts provided so as to be rotatable with respect to the plate, and a weight is attached to an end of a connecting member extending in the radial direction with respect to an extension shaft of the support shaft. An elastic member is attached to one of the members, and the variable wing is held in the fully open state by the elastic force up to a predetermined wind speed, and the centrifugal force of the weight overcomes the elastic force of the elastic member when rotating at a wind speed higher than a predetermined value. The variable wing wind power conversion mechanism is configured so that the variable wings can be freely opened and closed so as to close in accordance with the magnitude of the wind speed.

上記の構成としたこの発明の可変翼式風力変換機構は、保持板の半径方向所定位置に、周方向の所定角度間隔で複数個所保持板に対して回転自在に設けた垂直な支持軸にそれぞれ風を受ける複数の可変翼を取り付けたから、可変翼を全開状態に設定することにより通常時には高効率で全体が回転する。この場合、通常のサポニウス型の風車の翼は2枚であるが、この発明の可変翼式風力変換機構では通常以上の枚数、例えば3枚とすることにより、より多くの風を受ける状態を発生させ、高効率の受風状態を生じさせる。   The variable wing type wind power conversion mechanism of the present invention configured as described above is provided on vertical support shafts that are provided at predetermined positions in the radial direction of the holding plate and rotatably with respect to the holding plate at predetermined angular intervals in the circumferential direction. Since a plurality of variable blades that receive wind are attached, the variable blades are set to a fully open state so that the entire device rotates with high efficiency during normal times. In this case, the number of blades of a normal Saponius type windmill is two, but in the variable blade type wind power conversion mechanism of the present invention, a state where more winds are received is generated by using a larger number, for example, three. To produce a highly efficient wind receiving state.

この場合、可変翼をその翼先端が略半径方向へ開いた状態で、弾性部材による開放を阻止する回転停止手段を設け、この状態を全開状態として設定する。これは、弾性部材を収縮状又は引張り状態に設定し、これにより蓄積される弾性力が可変翼を開放する方向に付勢して可変翼を全開状に設定するようにした場合、その開放力で可変翼を所定の全開状態に停止させるためである。可変翼は、平面視断面が略円弧状で垂直な支持軸方向に上下の保持板間に対応する長さに設け、その翼外面に作用する抗力と揚力を回転力に変換して高回転数、高回転力の回転を回転軸に伝達する。   In this case, rotation stop means for preventing the variable blade from being opened by the elastic member in a state where the blade tip is opened in the substantially radial direction is provided, and this state is set as a fully open state. This is because when the elastic member is set in a contracted state or in a tension state, and the elastic force accumulated thereby biases the variable wing in the direction to open the variable wing, the opening force of the variable wing is set. This is because the variable blade is stopped in a predetermined fully open state. The variable wing is provided with a length corresponding to the space between the upper and lower holding plates in the direction of the vertical support axis in the shape of a substantially circular arc in plan view, and converts the drag and lift acting on the outer surface of the wing to rotational force to increase the rotational speed. The rotation of high rotational force is transmitted to the rotating shaft.

上記構成の可変翼式風力変換機構では、所定以上の風速の風が吹き始めると、可変翼は全開状態から閉じる方向に操作される。これは、支持軸の延長軸に対してその半径方向に延びる連結部材の端に錘を取り付け、上記支持軸又は連結部材のいずれかに弾性部材を取り付けてその弾性力で所定風速までは可変翼を全開状に保持し、所定以上の風速による回転では錘の遠心力が弾性部材の弾性力に打ち勝って可変翼をその風速の大きさに応じて閉じるように可変翼を開閉自在に設けたからであり、風速の大きさに応じて可変翼の開き状態が変化する。そして、例えば、風速35m/s以上の風が吹く時には可変翼を全閉状態として可変翼が吹き飛ばされるのを防止し、可変翼式風力変換機構の全体が強風で倒壊する危険性を防止する。   In the variable wing type wind power conversion mechanism having the above-described configuration, when the wind of a predetermined speed or higher starts to blow, the variable wing is operated from the fully open state to the closing direction. This is because the weight is attached to the end of the connecting member extending in the radial direction with respect to the extension shaft of the support shaft, and the elastic member is attached to either the support shaft or the connecting member, and the variable blades up to a predetermined wind speed by the elastic force. Since the variable wings are openable and closable so that the centrifugal force of the weight overcomes the elastic force of the elastic member and the variable wings close according to the wind speed when rotating at a wind speed above a predetermined level. Yes, the open state of the variable wing changes according to the wind speed. For example, when the wind speed of 35 m / s or more is blown, the variable blade is prevented from being blown off with the variable blade fully closed, and the risk of the entire variable blade-type wind power conversion mechanism collapsing with a strong wind is prevented.

この発明の可変翼式風力変換機構は、垂直方向に支持される回転軸に保持板を設け、保持板の半径方向所定位置に複数個所保持板に対して回転自在に設けた垂直な支持軸に風を受ける可変翼を取り付け、支持軸の延長軸に対して錘を取り付け、上記支持軸に弾性部材を取り付けてその弾性力で所定風速までは可変翼を開放状に保持し、所定以上の風速による回転では錘の遠心力が弾性部材の弾性力に打ち勝って可変翼をその風速の大きさに応じて閉じるように可変翼を開閉自在としたから、20m/s以下の通常の風では可変翼が全開状態で作用し、25m/s以上の強風時には可変翼をその風速に応じて閉じるように錘の遠心力で回転するように操作し、35m/s以上の強風時には可変翼を全閉とすることにより可変翼式風力変換機構の全体が倒壊する危険性を防止することが出来るという利点が得られる。   The variable wing type wind power conversion mechanism according to the present invention is provided with a holding plate on a rotating shaft supported in a vertical direction, and a vertical supporting shaft provided at a predetermined position in the radial direction of the holding plate so as to be rotatable with respect to the holding plate at a plurality of positions. A variable wing that receives wind is attached, a weight is attached to the extension shaft of the support shaft, an elastic member is attached to the support shaft, and the elastic blade is used to hold the variable wing open to a predetermined wind speed. Because the centrifugal force of the weight overcomes the elastic force of the elastic member and the variable wing can be opened and closed so that the variable wing can be closed according to the wind speed, the variable wing can be used in normal winds of 20 m / s or less. Operates in the fully open state, and when the wind is 25m / s or more, the variable blade is operated to rotate by the centrifugal force of the weight so that it closes according to the wind speed. When the wind is 35m / s or more, the variable blade is fully closed. The entire variable wing wind power conversion mechanism The advantage that it is possible to prevent the risk of collapse is obtained.

以下、この発明の実施形態について、図面を参照して説明する。図1は、第1実施形態の可変翼式風力変換機構の外観斜視図である。図示のように、この可変翼式風力変換機Aは、上下に所定間隔に設けた保持板10a、10bの中心を貫通して設けた垂直軸11xの下方に延長した延長軸11xeを支持板12で回転自在に支持し、上記保持板10a、10bの間に垂直軸11xに対して半径方向の所定距離位置で、かつその周方向に所定の角度間隔で複数個所に可変翼14(図示の例では3箇所、14a、14b、14c)を設けている。支持板12は、支持基部のケースCの頂部に回転自在に取り付けられている。12fはフライホイールであり、支持板12とは別途に、かつ一体に連結して設けている(両部材を一体に設けても良い)。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of the variable wing wind power conversion mechanism of the first embodiment. As shown in the figure, the variable wing wind power converter A has an extension shaft 11xe extending below a vertical shaft 11x provided through the centers of holding plates 10a and 10b provided at predetermined intervals in the vertical direction. The variable wings 14 (example shown in the figure) are provided at a plurality of positions at predetermined angular positions in the radial direction with respect to the vertical axis 11x and at predetermined angular intervals in the circumferential direction between the holding plates 10a and 10b. Then, three locations, 14a, 14b, and 14c) are provided. The support plate 12 is rotatably attached to the top of the case C of the support base. Reference numeral 12f denotes a flywheel, which is provided separately and integrally with the support plate 12 (both members may be provided integrally).

上記可変翼14は、保持板10a、10bの間でその半径方向の所定距離位置に垂直方向に取り付けた支持軸13xに対して固定され、支持軸13xの回転と共に回転する。支持軸13xは、保持板10a、10bに対して軸受け13aにより回転自在に支持され、かつその下方への延長軸を支持板12に対し軸受け13aにより回転自在に取り付けている。可変翼14は、平面視断面が略半円弧状であり、かつ垂直方向に半円筒状に延びる翼部材に対しその長さ方向の複数段(図示の例では3段)にブラケット14sを設けて形成されている。   The variable wing 14 is fixed to a support shaft 13x vertically attached to a predetermined distance position in the radial direction between the holding plates 10a and 10b, and rotates with the rotation of the support shaft 13x. The support shaft 13x is rotatably supported by a bearing 13a with respect to the holding plates 10a and 10b, and an extension shaft below the support shaft 13x is rotatably attached to the support plate 12 by the bearing 13a. The variable wing 14 has a substantially semicircular arc in cross section in plan view and is provided with brackets 14s in a plurality of stages (three stages in the illustrated example) in the length direction of a wing member extending in a semicylindrical shape in the vertical direction. Is formed.

支持軸13xは、その下方の延長軸部にアーム17が取り付けられ、このアーム17の先端には錘18が取り付けられている。支持軸13xは、この例では中空軸が用いられ、その内部にコイルばねを用いた弾性部材13bが挿入されている。コイルばねの一端は支持板12に固定され、他端は支持軸13xの上端に固定され、この弾性部材13bにより、通常は可変翼14が最も半径方向に開いた状態でアーム17と錘18が保持板10a、10bの接線方向と略平行な方向に向けて設定している。弾性部材13bのコイルばねは、図2に示す可変翼14が最も開放された位置に設定されるに十分な弾性力で自然巻き状態より収縮状に取り付けられ、この収縮状態から開放する反時計方向への回転力により可変翼14を開放する方向の力が作用している。   The support shaft 13x has an arm 17 attached to an extension shaft portion below the support shaft 13x, and a weight 18 attached to the tip of the arm 17. In this example, a hollow shaft is used as the support shaft 13x, and an elastic member 13b using a coil spring is inserted therein. One end of the coil spring is fixed to the support plate 12, and the other end is fixed to the upper end of the support shaft 13x. The elastic member 13b allows the arm 17 and the weight 18 to be moved with the variable wing 14 normally opened in the most radial direction. It is set in a direction substantially parallel to the tangential direction of the holding plates 10a and 10b. The coil spring of the elastic member 13b is attached in a contracted state from the naturally wound state with an elastic force sufficient to set the variable wing 14 shown in FIG. 2 to the most opened position, and is counterclockwise to release from the contracted state. A force in a direction to open the variable blade 14 is applied by the rotational force to the.

そして、下方の保持板10b上に設けた凸部材15aに対し、支持軸13xに設けたピン15bが図示の位置で当接して可変翼14が支持軸13xを中心として反時計方向に回転する力を阻止する回転停止手段15を備え、この手段により可変翼14を最も開放した位置に保持している。なお、図示の例では、可変翼14の回転方向は、可変翼式風力変換機Aの全体が反時計方向に回転するように設定されていることが前提である。ただし、支持軸13xを中実軸とし、その外周に弾性部材13bのコイルばねを巻き付けるように設けてもよい。また、弾性部材13bは、そのコイルばねの線径や材質を適切に設定することにより弾性係数kを所定の状態に設定するものとする。   Then, the pin 15b provided on the support shaft 13x abuts the convex member 15a provided on the lower holding plate 10b at the position shown in the figure, and the variable blade 14 rotates counterclockwise about the support shaft 13x. Rotation stop means 15 for preventing the rotation is provided, and the variable blade 14 is held in the most open position by this means. In the illustrated example, it is assumed that the rotation direction of the variable wing 14 is set so that the entire variable wing wind power converter A rotates counterclockwise. However, the support shaft 13x may be a solid shaft, and the coil spring of the elastic member 13b may be wound around the outer periphery thereof. Moreover, the elastic member 13b shall set the elastic coefficient k to a predetermined state by setting appropriately the wire diameter and material of the coil spring.

弾性係数kを所定の状態に設定するとは、風速が、例えば25m/sを超えた風速で高速回転するとその風速による回転数の増大する割合に応じて増大する遠心力が弾性部材13bのコイルばねの弾性に打ち勝って錘18とアーム17とが外方向へ振られ、これにより可変翼14が閉じる方向に回転を始め、風速が30m/sで可変翼14は80%閉じ、さらにそれを超えると完全に閉じるのに対応する弾性係数の値に設定することを意味する。このように弾性係数を設定すると共に上記所定以上の風速の風ではその風力で可変翼式風力変換機A自体が倒壊する危険性が生じるため、このような風力で倒壊しない構造を前提としている。   When the elastic coefficient k is set to a predetermined state, when the wind speed is rotated at a high speed, for example, at a wind speed exceeding 25 m / s, the centrifugal force that increases according to the rate of increase in the rotational speed due to the wind speed is a coil spring of the elastic member 13b. When the weight 18 and the arm 17 are swung outward by overcoming the elasticity of the blade, the variable blade 14 begins to rotate in the closing direction, and when the wind speed is 30 m / s, the variable blade 14 is closed 80% and further exceeds that. It means setting to the value of the elastic modulus corresponding to complete closing. Since the elastic coefficient is set as described above and the wind with a wind speed higher than the predetermined speed has a risk that the variable wing type wind power converter A itself may collapse due to the wind force, such a structure that does not collapse with the wind force is assumed.

支持板12は、上述したように、支持基部のケースCの頂部に回転自在に取り付けられているが、この場合支持板12は垂直軸11xに対しても軸受け11aにより回転自在に支持され、かつ図示していないが、支持板12とケースCとの間にスラスト軸受けが設けられており、風力で垂直軸11xが倒れる方向の力に対しても保持できるようにしている。また、垂直軸11xの延長軸11xeは、発電機Gの入力軸19に軸継ぎ手16を介して接続されている。Cbは、出力線である。図2に上記可変翼式風力変換機Aの平面図、図3にこの可変翼式風力変換機Aの可変翼14を完全に閉じた状態の外観斜視図を示す。   As described above, the support plate 12 is rotatably attached to the top portion of the case C of the support base. In this case, the support plate 12 is also supported rotatably by the bearing 11a with respect to the vertical shaft 11x, and Although not shown, a thrust bearing is provided between the support plate 12 and the case C so that it can be held against a force in a direction in which the vertical shaft 11x is tilted by wind force. Further, the extension shaft 11xe of the vertical shaft 11x is connected to the input shaft 19 of the generator G via the shaft joint 16. Cb is an output line. FIG. 2 is a plan view of the variable wing wind power converter A, and FIG. 3 is an external perspective view of the variable wing wind power converter A with the variable wing 14 completely closed.

上記の構成としたこの実施形態の可変翼式風力変換機Aは、所謂サポニウス型の風車であり、通常のサポニウス型の風車が2枚翼であるのに対して3枚翼とし、かつ各翼は可変翼14として通常の状態では最も高効率で、かつ強風時には可変翼14を閉じてその風力で可変翼式風力変換機Aが倒壊する危険性が生じるのを防止している。可変翼式風力変換機Aが作動を開始すると、風速3m/s程度の微風から25m/sの強風の直前までは通常の状態として可変翼14が半径方向に最も開放された開放状態で図1に示す反時計方向に回転し、その回転力は可変翼14から垂直軸11xへと伝達され、その回転が発電機Gに伝達されてそれぞれの風を受ける状態での風速に応じた回転速度で回転する。   The variable wing type wind power converter A of this embodiment having the above-described configuration is a so-called Saponius type windmill, which has three blades compared to a normal Saponius type windmill having two blades, and each blade. The variable wing 14 has the highest efficiency in a normal state and closes the variable wing 14 in a strong wind to prevent the risk of the variable wing wind power converter A collapsing with the wind force. When the variable wing type wind power converter A starts operating, the variable wing 14 is in the open state in which the variable wing 14 is opened most in the radial direction as a normal state from the light wind of about 3 m / s to just before the strong wind of 25 m / s. The rotational force is transmitted from the variable wing 14 to the vertical shaft 11x, and the rotation is transmitted to the generator G at a rotational speed corresponding to the wind speed in the state of receiving each wind. Rotate.

この通常状態では、支持軸13x内に設けられた弾性部材13bのコイルばねの弾性力により可変翼14が図4の(a)に示す最も開放された状態に設定されている。そして、図2に示すように、設置された可変翼式風力変換機Aに対して、東西南北いずれの方向から風が吹いても、風車部はその風力、風速に対応して回転する。この場合、例えば図2の右下、即ち略南東から北西の方向に向けて風が吹いたとすると、この方向の風による回転力は、3枚の可変翼14a、14b、14cのうち可変翼14aには翼の表側(円弧表面側)と裏側に沿って流れる風の流速に速度差が生じ、この速度差に基づいて可変翼14aを反時計方向に向かわせる揚力が回転力に変換される。   In this normal state, the variable blade 14 is set in the most open state shown in FIG. 4A by the elastic force of the coil spring of the elastic member 13b provided in the support shaft 13x. And as shown in FIG. 2, even if a wind blows from any direction of the east, west, north, and south with respect to the installed variable wing type wind power converter A, a windmill part rotates according to the wind force and wind speed. In this case, for example, if the wind blows in the lower right direction of FIG. 2, that is, in the direction from approximately southeast to northwest, the rotational force caused by the wind in this direction is the variable wing 14a out of the three variable wings 14a, 14b, 14c. , A speed difference occurs in the flow velocity of the wind flowing along the front side (arc surface side) and the back side of the blade, and based on this speed difference, the lift force that turns the variable blade 14a counterclockwise is converted into a rotational force.

2つ目の可変翼14bは、その翼内側に直接作用する風力に抗して押される抗力が回転力となり、この回転力により風車部が回転する。3つ目の可変翼14cは、翼表面に風力を受け、反時計方向の回転に対して回転を阻止する方向に作用する。しかし、その風の流れは翼表面に沿って流れて大きな反力とはならず、2つの可変翼14a、14bによる回転力が大きいため結局上記抗力と揚力により風車部が回転する。上記説明では南東から北西の方向への風による作用として説明したが、3つの可変翼14a、14b、14cを設けることにより風が吹く方向は東西南北いずれの方向からであっても同じように作用し、回転する。   In the second variable blade 14b, a drag force that is pushed against the wind force directly acting on the inside of the blade becomes a rotational force, and the windmill portion is rotated by this rotational force. The third variable wing 14c receives wind force on the wing surface and acts in a direction that prevents rotation against counterclockwise rotation. However, the flow of the wind flows along the blade surface and does not generate a large reaction force, and the rotational force of the two variable blades 14a and 14b is large, so that the wind turbine unit is rotated by the drag and lift. In the above description, the action from the southeast to the northwest has been described. However, by providing the three variable wings 14a, 14b, and 14c, the wind blows from the east, west, north, and south directions in the same way. And rotate.

以上は、風速が上述した強風25m/sまでの通常の風による作用であり、上記強風域を超えた場合は、次の通りに作用する。25m/s以上の強風域を超えると可変翼14(14a、14b、14c)による回転速度が大きくなり、支持軸13xの下方に延長された延長軸13xe上に連結されているアーム17の先端の錘18の遠心力が大きくなる。従って、弾性部材13bのコイルばねの弾性により可変翼14a、14b、14cを最大の開放状に保持している開放力より遠心力の方が大きくなり、このため図4の(b)図に示すように、錘18が通常状態より外方へ振り出される。錘18が外方へ振り出されることにより可変翼14a、14b、14cは、支持軸13xを中心にしてその翼部分を閉じる方向に回転する。   The above is an effect | action by the normal wind to the above-mentioned strong wind 25m / s, and when the wind speed exceeds the said strong wind area, it acts as follows. When the wind velocity exceeds 25 m / s, the rotational speed of the variable wing 14 (14a, 14b, 14c) increases, and the tip of the arm 17 connected to the extension shaft 13xe extended below the support shaft 13x. The centrifugal force of the weight 18 is increased. Therefore, due to the elasticity of the coil spring of the elastic member 13b, the centrifugal force becomes larger than the opening force that holds the variable wings 14a, 14b, 14c in the maximum open state. As described above, the weight 18 is swung outward from the normal state. By swinging the weight 18 outward, the variable wings 14a, 14b, and 14c rotate around the support shaft 13x in a direction to close the wing portion.

可変翼14a、14b、14cの開放状態が縮小するとその受風面積が減少するが、風速の増大が受風面積の減少より大きくなるため益々回転速度が増大し、風速35m/sに近くなると可変翼14a、14b、14cはその開放状態が80%閉じた状態となり、さらにこの風速以上になると、図4の(c)図に示すように、完全に閉じるように作動する。このため、従来の風力発電装置では、台風や低気圧の接近により風速が増大してそのままでは倒壊する危険性があるような場合でも、この実施形態の可変翼式風力変換機Aは、可変翼14a、14b、14cを閉じることにより、このような危険な状態から保護することが出来る。   When the open state of the variable blades 14a, 14b, and 14c is reduced, the wind receiving area is reduced. However, since the increase in the wind speed is larger than the decrease in the wind receiving area, the rotation speed is increased more and the wind speed is close to 35 m / s. The blades 14a, 14b, and 14c are in an open state of 80% closing, and when the wind speed is higher than this, the blades 14a, 14b, and 14c operate so as to be completely closed as shown in FIG. 4 (c). For this reason, in the conventional wind power generator, even when the wind speed increases due to the approach of a typhoon or low atmospheric pressure and there is a risk of collapsing as it is, the variable wing type wind power converter A of this embodiment has the variable wings. By closing 14a, 14b, and 14c, it is possible to protect against such a dangerous state.

次に、図5、図6に第2実施形態の可変翼式風力変換機A’の側面図、平面図を示す。この実施形態では、可変翼14の構成及び可変翼14の開閉方法が第1実施形態と異なる。以下では主として異なる構成について説明し、同じ構成部材については第1実施形態の符号と同じ符号を付すことにより説明を省略する。可変翼14は、支持軸13xから少し中心側の位置で内端が終わり、固定翼14kがその内端に続くように上下の保持板10a、10bに固定して設けられている。アーム17、錘18も第1実施形態と同様に備えているが、この実施形態では錘18の遠心力による開閉力が不足の場合に、補助的に作用する補助手段として液圧シリンダー21とワイヤー23とから成る第2開閉手段20を備えている。   Next, FIGS. 5 and 6 are a side view and a plan view of the variable wing wind turbine A ′ according to the second embodiment. In this embodiment, the configuration of the variable wing 14 and the opening / closing method of the variable wing 14 are different from those of the first embodiment. Hereinafter, different configurations will be mainly described, and the same components are denoted by the same reference numerals as those of the first embodiment, and the description thereof will be omitted. The variable blade 14 is fixed to the upper and lower holding plates 10a and 10b so that the inner end ends slightly at the center side from the support shaft 13x and the fixed blade 14k continues to the inner end. The arm 17 and the weight 18 are also provided in the same manner as in the first embodiment. However, in this embodiment, when the opening / closing force due to the centrifugal force of the weight 18 is insufficient, the hydraulic cylinder 21 and the wire are used as auxiliary means that act supplementarily. The second opening / closing means 20 is provided.

この第2開閉手段20は、下方の保持板10bに設けられている。但し、上方の保持板10aに同じ手段を一対となるように設けてもよい。この第2開閉手段20の液圧シリンダー21へは、液圧配管22から液圧が送られ、この液圧は垂直軸11xの中心を通りその下部に延びる延長軸上の軸継ぎ手16の上方にケースC内でその頂板に固定して設けた液圧ポンプ24から垂直軸11xの中心を通る液圧配管22が、図示していない回転式の液圧継ぎ手により連結されている。そして、この液圧配管が上方に延びて液圧シリンダー21に配設されている。   The second opening / closing means 20 is provided on the lower holding plate 10b. However, the same means may be provided in a pair on the upper holding plate 10a. The hydraulic pressure is sent from the hydraulic pipe 22 to the hydraulic cylinder 21 of the second opening / closing means 20, and this hydraulic pressure passes above the shaft joint 16 on the extension shaft extending through the center of the vertical shaft 11x and extending downward. A hydraulic pipe 22 passing through the center of the vertical shaft 11x from a hydraulic pump 24 fixed to the top plate in the case C is connected by a rotary hydraulic joint (not shown). The hydraulic pipe extends upward and is disposed in the hydraulic cylinder 21.

ワイヤー23は、先端が弾性部材13bのコイルばねにより通常は全開状態の可変翼14の外端に連結され、途中に滑車を介して反転するように導かれ、移動滑車を経て他端が下方の保持板10bに固定され、移動滑車を液圧シリンダー21のピストンロッドの先端に連結し、移動滑車を液圧シリンダー21により駆動して可変翼14を開閉自在としている。なお、可変翼14を閉じる時は、図6に点線で示すように、その外面が保持板10a、10bの外周に一致する位置に閉じられるものとする。   The tip of the wire 23 is connected to the outer end of the variable wing 14 which is normally fully open by a coil spring of the elastic member 13b, and is guided to be reversed through a pulley in the middle, and the other end of the wire 23 is placed downward. The movable pulley is fixed to the holding plate 10b, the movable pulley is connected to the tip of the piston rod of the hydraulic cylinder 21, and the movable pulley 14 is driven by the hydraulic cylinder 21 so that the variable blade 14 can be opened and closed. When the variable blade 14 is closed, as shown by a dotted line in FIG. 6, the outer surface thereof is closed at a position that coincides with the outer periphery of the holding plates 10a and 10b.

上記の構成としたこの実施形態の可変翼式風力変換機A’は、その基本的な作用においては第1実施形態の可変翼式風力変換機Aと同じであり、風速25m/sまでは可変翼14が全開状で回転し、それ以上の風速では錘18の遠心力で可変翼14が閉じる方向に回転する。しかし、錘18の遠心力だけでは、実際に強風が吹くときの風速変動に対応できない場合に第2開閉手段20の液圧シリンダー21を作動させて、遠心力により可変翼14を閉鎖する動作を補助する。   The variable-wing wind power converter A ′ of this embodiment having the above-described configuration is the same as the variable-wing wind power converter A of the first embodiment in its basic operation, and is variable up to a wind speed of 25 m / s. The blade 14 rotates in a fully open state, and at higher wind speeds, the variable blade 14 rotates in the closing direction by the centrifugal force of the weight 18. However, when only the centrifugal force of the weight 18 cannot cope with the wind speed fluctuation when the strong wind actually blows, the hydraulic cylinder 21 of the second opening / closing means 20 is operated to close the variable blade 14 by the centrifugal force. Assist.

風速25m/s以上の強風時には、支持軸13xの回転が所定以上の回転数となり、このような回転が行われると、その回転力により液圧ポンプ24が所定以上の液圧を発生し、その所定以上の液圧により液圧シリンダー21が作動してワイヤー23を引き込み、これにより可変翼14が閉鎖する方向に操作される。そして、風速が35m/sに近づくと80%閉鎖する方向に駆動され、可変翼14を確実に閉鎖できることとなる。   When the wind speed is 25 m / s or higher, the support shaft 13x rotates at a predetermined speed or more. When such rotation is performed, the hydraulic pump 24 generates a hydraulic pressure at a predetermined level or higher by the rotational force. The hydraulic cylinder 21 is actuated by a hydraulic pressure higher than a predetermined value, and the wire 23 is pulled in, so that the variable blade 14 is operated in the closing direction. And if a wind speed approaches 35 m / s, it will drive in the direction which closes 80%, and the variable wing | blade 14 can be closed reliably.

なお、可変翼14の閉鎖状態を図6の点線状態としたのは、強風時には隣接する可変翼14と可変翼14との間に吹き抜けできる空間を設けておくほうが、前閉するより風に対して抵抗が少なくなることを考慮したからである。又、図6の可変翼14(14a、14b、14c)に対して、一点鎖線で示すように、円弧状の翼表面と反対側の面に下面板14sa、14sb、14scを設けて平面視断面が完全に閉じた翼断面として形成することも出来る。閉じた断面の可変翼14は、より揚力が大きくなり、回転力が大きくなるからである。   The closed state of the variable wing 14 is changed to the dotted line state of FIG. 6 because, in the case of a strong wind, it is better to provide a space that can be blown between the adjacent variable wing 14 and the variable wing 14 against the wind than when the front is closed. This is because the resistance is reduced. Further, as shown by the alternate long and short dash line, the variable blades 14 (14a, 14b, 14c) in FIG. Can be formed as a completely closed blade profile. This is because the variable wing 14 having a closed cross section has a higher lift and a higher rotational force.

この発明の可変翼式風力変換機構は、サポニウス型の風車機構の翼を可変翼とし、大き過ぎる風速のため危険な状態のときは、錘の遠心力で全閉状とすることが出来るようにしたものであり、高効率でかつ強風時には可変翼式風力変換機構の全体の倒壊を防止することが出来るから、風力発電装置の風車機構として広く利用できる。   The variable wing type wind power conversion mechanism of the present invention uses the wing of the Saponius type windmill mechanism as a variable wing so that it can be fully closed by the centrifugal force of the weight when it is in a dangerous state due to excessive wind speed. Since it is highly efficient and can prevent the entire variable wing type wind power conversion mechanism from collapsing during strong winds, it can be widely used as a wind turbine mechanism of a wind power generator.

第1実施形態の可変翼式風力変換機の外観斜視図1 is an external perspective view of a variable wing wind turbine according to a first embodiment. 同上機の平面図Top view of the machine 同上機の可変翼を閉じた状態の外観斜視図External perspective view with variable wings closed 同上機の作用の説明図Explanatory drawing of the function 第2実施形態の可変翼式風力変換機の側面図Side view of the variable wing wind power converter of the second embodiment 同上機の平面図Top view of the machine

符号の説明Explanation of symbols

10a、10b 保持板
11x 垂直軸
11xe 延長軸
12 支持板
13x 支持軸
13a 軸受け
13b 弾性部材
13xe 延長軸
14 可変翼
16 軸継ぎ手
17 アーム
18 錘
19 入力軸
A 可変翼式風力変換機
10a, 10b Holding plate 11x Vertical shaft 11xe Extension shaft 12 Support plate 13x Support shaft 13a Bearing 13b Elastic member 13xe Extension shaft 14 Variable vane 16 Shaft joint 17 Arm 18 Weight 19 Input shaft A Variable vane wind power converter

Claims (5)

垂直方向に支持される回転軸11xの上下に一対の保持板10a、10bを設け、支持板10a、10bの半径方向所定位置に、周方向の所定角度間隔で複数個所保持板10a、10bに対して回転自在に設けた垂直な支持軸13xにそれぞれ風を受ける可変翼14を取り付け、支持軸13xの延長軸13xeに対してその半径方向に延びる連結部材の端に錘18を取り付け、上記支持軸13x又は連結部材のいずれかに弾性部材13bを取り付けてその弾性力で所定風速までは可変翼14を全開状に保持し、所定以上の風速による回転では錘18の遠心力が弾性部材13bの弾性力に打ち勝って可変翼14をその風速の大きさに応じて閉じるように可変翼14を開閉自在に設けた可変翼式風力変換機構。   A pair of holding plates 10a and 10b are provided above and below the rotating shaft 11x supported in the vertical direction, and are arranged at predetermined positions in the radial direction of the supporting plates 10a and 10b with respect to the plurality of holding plates 10a and 10b at predetermined angular intervals in the circumferential direction. The variable wings 14 for receiving wind are respectively attached to the vertical support shafts 13x that are rotatably provided, and the weight 18 is attached to the end of the connecting member extending in the radial direction with respect to the extension shaft 13xe of the support shaft 13x. The elastic member 13b is attached to either 13x or the connecting member, and the variable wing 14 is held in the fully open state by the elastic force up to a predetermined wind speed, and the centrifugal force of the weight 18 causes the elasticity of the elastic member 13b to rotate at a predetermined wind speed or higher. A variable wing type wind power conversion mechanism in which the variable wing 14 is provided so as to be openable and closable so as to overcome the force and close the variable wing 14 according to the magnitude of the wind speed. 前記可変翼14を平面視断面が略円弧状で垂直な支持軸方向に上下の保持板10a、10b間に対応する長さに設けたことを特徴とする請求項1に記載の可変翼式風力変換機構。   2. The variable wing wind turbine according to claim 1, wherein the variable wing is provided with a length corresponding to a space between the upper and lower holding plates in a vertical support shaft direction in a substantially arcuate cross section in plan view. Conversion mechanism. 前記弾性部材13bを収縮状又は引張り状態に設定し、これにより蓄積される弾性力が可変翼14を開放する方向に付勢して可変翼14を全開状に設定するようにしたことを特徴とする請求項1又は2に記載の可変翼式風力変換機構。   The elastic member 13b is set in a contracted state or a tensioned state, and the elastic force accumulated thereby biases the variable blade 14 in the opening direction to set the variable blade 14 in a fully open state. The variable wing type wind power conversion mechanism according to claim 1 or 2. 前記可変翼14をその翼先端が略半径方向へ開いた状態で、弾性部材13bによる開放を阻止する回転停止手段15を設け、この状態を全開状態として設定したことを特徴とする請求項1乃至3のいずれかに記載の可変翼式風力変換機構。   The rotation stop means (15) for preventing the variable blade (14) from being opened by the elastic member (13b) is provided in a state in which the blade tip is opened in a substantially radial direction, and this state is set as a fully open state. The variable wing type wind power conversion mechanism according to any one of claims 3 to 4. 前記可変翼14を錘18の遠心力で全閉状態に閉じたとき、可変翼14の外周が保持板10a,10bの外周と重なり、かつ可変翼14の外周が互いに連続した全閉状となる形状としたことを特徴とする請求項1乃至4のいずれかに記載の可変翼式風力変換機構。   When the variable blade 14 is closed in a fully closed state by the centrifugal force of the weight 18, the outer periphery of the variable blade 14 overlaps with the outer periphery of the holding plates 10a and 10b, and the outer periphery of the variable blade 14 is a fully closed shape that is continuous with each other. The variable wing type wind power conversion mechanism according to any one of claims 1 to 4, wherein
JP2005366750A 2005-12-20 2005-12-20 Variable wing type wind force converting mechanism Pending JP2007170234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366750A JP2007170234A (en) 2005-12-20 2005-12-20 Variable wing type wind force converting mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005366750A JP2007170234A (en) 2005-12-20 2005-12-20 Variable wing type wind force converting mechanism

Publications (1)

Publication Number Publication Date
JP2007170234A true JP2007170234A (en) 2007-07-05

Family

ID=38297112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366750A Pending JP2007170234A (en) 2005-12-20 2005-12-20 Variable wing type wind force converting mechanism

Country Status (1)

Country Link
JP (1) JP2007170234A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543982A (en) * 2006-07-14 2009-12-10 ブツコフ ニコライ Wind power generator
KR100942513B1 (en) 2009-06-18 2010-02-16 하모니테크주식회사 Vertical axis wind turbine
KR100958670B1 (en) * 2009-08-12 2010-05-20 풍력가로등(주) Wind power system for using in road lamp
WO2011086606A1 (en) * 2010-01-18 2011-07-21 株式会社おうめラボ Blade wheel
KR101175771B1 (en) * 2010-05-26 2012-08-21 주식회사 지앤지엠씨 storage device having wind power generator
KR101177538B1 (en) 2010-05-26 2012-08-27 주식회사 지앤지엠씨 Overload prevention for wing device
KR101191861B1 (en) * 2012-02-07 2012-10-16 장탁균 A wind power apparatus
KR101192810B1 (en) 2010-05-26 2012-10-18 주식회사 지앤지엠씨 Air compressor for wind power generator with vertical axis type
WO2012144879A1 (en) * 2011-04-22 2012-10-26 Buktukov Nikolay Wind-operated power plant
JP2012530202A (en) * 2009-06-13 2012-11-29 デ ジュウ,ヨン Wind energy converter
KR101227888B1 (en) 2010-10-28 2013-01-30 주식회사 앤에스티 Rotation apparatus for wind power generator having wing body structure activated by the eccentric center of gravity
KR101287007B1 (en) 2011-07-06 2013-07-17 허정 rotator of hydraulic generator or aerogenerator
JP2014510236A (en) * 2011-04-28 2014-04-24 ミョンスン ベ Multipurpose rotating device and power generation system equipped with the same
KR101401685B1 (en) * 2013-01-29 2014-06-02 김형모 Street light electric generator
WO2014083407A1 (en) * 2012-11-27 2014-06-05 Oztren Industries Pty.Ltd Wind turbine
JP2014518358A (en) * 2011-07-14 2014-07-28 ファーブ,ダニエル Vertical shaft turbine with variable diameter and angle
JP2014145293A (en) * 2013-01-29 2014-08-14 Akira Yoyogi Wind turbine
CN106401868A (en) * 2016-10-21 2017-02-15 徐州工程学院 Support type vertical-axis variable-angle wind power generation system and operating method thereof
TWI628356B (en) * 2015-07-27 2018-07-01 聖約翰科技大學 Wind power generation device with self-adjusting mechanism
CN110439745A (en) * 2019-09-24 2019-11-12 河南理工大学 A kind of wind wheel of vertical axis aerogenerator
RU2722982C1 (en) * 2019-07-19 2020-06-05 Евгений Николаевич Рудомин Rotary windmill
CN112922780A (en) * 2021-01-25 2021-06-08 叶兰芳 Use protection device for environment-friendly wind driven generator
CN114810477A (en) * 2022-05-16 2022-07-29 重庆交通大学 Protection type wind power generation equipment of anti-typhoon anti-sandstorm
KR102448563B1 (en) * 2022-03-30 2022-09-29 주식회사 엘씨엠에너지솔루션 Rotating body for small wind power generation

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009543982A (en) * 2006-07-14 2009-12-10 ブツコフ ニコライ Wind power generator
JP2012530202A (en) * 2009-06-13 2012-11-29 デ ジュウ,ヨン Wind energy converter
KR100942513B1 (en) 2009-06-18 2010-02-16 하모니테크주식회사 Vertical axis wind turbine
WO2010147301A2 (en) * 2009-06-18 2010-12-23 하모니테크주식회사 Vertical-axis wind turbine
WO2010147301A3 (en) * 2009-06-18 2011-02-17 하모니테크주식회사 Vertical-axis wind turbine
KR100958670B1 (en) * 2009-08-12 2010-05-20 풍력가로등(주) Wind power system for using in road lamp
WO2011086606A1 (en) * 2010-01-18 2011-07-21 株式会社おうめラボ Blade wheel
KR101175771B1 (en) * 2010-05-26 2012-08-21 주식회사 지앤지엠씨 storage device having wind power generator
KR101192810B1 (en) 2010-05-26 2012-10-18 주식회사 지앤지엠씨 Air compressor for wind power generator with vertical axis type
KR101177538B1 (en) 2010-05-26 2012-08-27 주식회사 지앤지엠씨 Overload prevention for wing device
KR101227888B1 (en) 2010-10-28 2013-01-30 주식회사 앤에스티 Rotation apparatus for wind power generator having wing body structure activated by the eccentric center of gravity
WO2012144879A1 (en) * 2011-04-22 2012-10-26 Buktukov Nikolay Wind-operated power plant
JP2014510236A (en) * 2011-04-28 2014-04-24 ミョンスン ベ Multipurpose rotating device and power generation system equipped with the same
KR101287007B1 (en) 2011-07-06 2013-07-17 허정 rotator of hydraulic generator or aerogenerator
JP2014518358A (en) * 2011-07-14 2014-07-28 ファーブ,ダニエル Vertical shaft turbine with variable diameter and angle
WO2013119041A1 (en) * 2012-02-07 2013-08-15 Jang Tak Gyun Wind power device
KR101191861B1 (en) * 2012-02-07 2012-10-16 장탁균 A wind power apparatus
WO2014083407A1 (en) * 2012-11-27 2014-06-05 Oztren Industries Pty.Ltd Wind turbine
KR101401685B1 (en) * 2013-01-29 2014-06-02 김형모 Street light electric generator
JP2014145293A (en) * 2013-01-29 2014-08-14 Akira Yoyogi Wind turbine
TWI628356B (en) * 2015-07-27 2018-07-01 聖約翰科技大學 Wind power generation device with self-adjusting mechanism
CN106401868A (en) * 2016-10-21 2017-02-15 徐州工程学院 Support type vertical-axis variable-angle wind power generation system and operating method thereof
RU2722982C1 (en) * 2019-07-19 2020-06-05 Евгений Николаевич Рудомин Rotary windmill
CN110439745A (en) * 2019-09-24 2019-11-12 河南理工大学 A kind of wind wheel of vertical axis aerogenerator
CN112922780A (en) * 2021-01-25 2021-06-08 叶兰芳 Use protection device for environment-friendly wind driven generator
KR102448563B1 (en) * 2022-03-30 2022-09-29 주식회사 엘씨엠에너지솔루션 Rotating body for small wind power generation
CN114810477A (en) * 2022-05-16 2022-07-29 重庆交通大学 Protection type wind power generation equipment of anti-typhoon anti-sandstorm
CN114810477B (en) * 2022-05-16 2024-05-10 重庆交通大学 Typhoon-resistant wind-sand-resistant protective wind power generation equipment

Similar Documents

Publication Publication Date Title
JP2007170234A (en) Variable wing type wind force converting mechanism
JP2008309132A (en) Variable blade type wind power conversion mechanism
US8232664B2 (en) Vertical axis wind turbine
US5553996A (en) Wind powered turbine
US4142822A (en) Panemone windmill
KR100720287B1 (en) Wind power generator
WO2006119648A1 (en) Helical wind turbine
JP2005516159A5 (en)
JP2010522847A (en) Multistage wind turbine with variable blade displacement
US8480363B2 (en) Self-starting turbine with dual position vanes
US8063502B1 (en) Shrouded wind turbine with dual coaxial airflow passageways
WO2006123951A1 (en) A wind turbine
JP2013534592A (en) Vertical axis windmill
US11156204B2 (en) Wind turbine
WO2010116983A1 (en) Wind wheel
TW201016960A (en) Wind energy system
JP2007100583A (en) Hybrid wind power generation system
KR20090080416A (en) Vertical Shaft Type Windmill with Rotatable Wings
AU2008235238B2 (en) Wind wheel
JP2008196464A (en) Air brake structure for windmill
JP2005054641A (en) Wind power generating device
CN101048591B (en) Cross flow wind turbine
JP4457203B2 (en) Windshield
JP2015166562A (en) Vertical axis drag type wind turbine capable of preventing its overspeed under strong wind and wind power generator
JP2007315182A (en) Wind-collecting magnus type windmill