JP2008307609A - Polishing method - Google Patents

Polishing method Download PDF

Info

Publication number
JP2008307609A
JP2008307609A JP2007154735A JP2007154735A JP2008307609A JP 2008307609 A JP2008307609 A JP 2008307609A JP 2007154735 A JP2007154735 A JP 2007154735A JP 2007154735 A JP2007154735 A JP 2007154735A JP 2008307609 A JP2008307609 A JP 2008307609A
Authority
JP
Japan
Prior art keywords
polishing
polished
semiconductor wafer
film
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007154735A
Other languages
Japanese (ja)
Inventor
Susumu Hoshino
進 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007154735A priority Critical patent/JP2008307609A/en
Publication of JP2008307609A publication Critical patent/JP2008307609A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing method which determines polishing conditions through simple work procedures, uniformly levels a polished surface of a polishing object, and efficiently finishes the polished surface to a desired face shape. <P>SOLUTION: The polishing method is composed of the following steps. In the first step, the polished surface of a semiconductor wafer 2b on which an SiO<SB>2</SB>film is formed, is abutted on a polishing pad 15, and the former and the latter in an abutting state are relatively moved, followed by acquiring a polishing rate (a change of a polished and removed amount) during polishing of the polished surface of the semiconductor wafer 2b. In the following step, the polishing conditions on which a glass sheet 2a made of SiO<SB>2</SB>is polished are obtained from the acquired polishing rate (the change of the polished and removed amount). In the last step, the glass sheet 2a is polished based on the obtained polishing conditions. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体ウェハやガラス板等の研磨対象物の表面を研磨する研磨方法に関する。   The present invention relates to a polishing method for polishing a surface of an object to be polished such as a semiconductor wafer or a glass plate.

半導体ウェハやガラス板等の研磨対象物の研磨技術として、大きなエリアの効率的な平坦化技術として注目を集めているのが、化学的機械的研磨である。これは、CMP(Chemical Mechanical Polishing)と呼ばれる研磨工程である。このCMPは、物理的研磨に化学的な作用を併用して、研磨対象物の表面を研磨していく工程で、グローバル平坦化のための重要な技術である。具体的には、酸、アルカリ、酸化剤などの研磨物の可溶性溶媒中に、研磨粒(シリカ、アルミナ、酸化セリウムなどが一般的)を分散させたスラリーと呼ばれる研磨剤を用い、更に、研磨パッドで研磨対象物の表面を加圧し、相対運動で摩擦することにより研磨を進行させる。   Chemical mechanical polishing is attracting attention as an efficient flattening technique for large areas as a polishing technique for polishing objects such as semiconductor wafers and glass plates. This is a polishing process called CMP (Chemical Mechanical Polishing). This CMP is an important technique for global planarization in a process of polishing the surface of an object to be polished by using a chemical action in combination with physical polishing. Specifically, an abrasive called slurry in which abrasive grains (silica, alumina, cerium oxide, etc. are commonly used) are dispersed in a soluble solvent of an abrasive such as acid, alkali, or oxidizer, and further polished. Polishing is advanced by pressurizing the surface of the object to be polished with a pad and rubbing with relative motion.

従来、CMPを行う研磨装置において、研磨対象物よりかなり大きい径を持つ研磨パッドを用いる大径パッド方式では、研磨対象物が研磨パッドよりも小さく、研磨対象物の全面が常に研磨パッドに接触しているため、研磨対象物の一部の領域を他の領域に対して優先的に研磨することが極めて困難であり、研磨対象物の表面を均一に平坦化することが非常に困難であった。そこで最近では、研磨対象物と略同じかそれより小さい径を持つ研磨パッドを用いる小径パッド方式の研磨装置が開発され使用されている。小径パッド方式では、研磨対象物の表面上の各部分における研磨パッドの存在確率を変えることにより、自在に研磨プロファイルを変えることが可能である。よって、研磨対象物の表面を均一に平坦化することができる(特許文献1を参照)。   Conventionally, in a polishing apparatus that performs CMP, in a large-diameter pad method that uses a polishing pad having a considerably larger diameter than the polishing object, the polishing object is smaller than the polishing pad, and the entire surface of the polishing object always contacts the polishing pad. Therefore, it is extremely difficult to preferentially polish some areas of the object to be polished with respect to other areas, and it is very difficult to uniformly flatten the surface of the object to be polished. . Therefore, recently, a small-diameter pad type polishing apparatus using a polishing pad having a diameter substantially equal to or smaller than that of an object to be polished has been developed and used. In the small-diameter pad method, it is possible to freely change the polishing profile by changing the existence probability of the polishing pad in each part on the surface of the object to be polished. Therefore, the surface of the polishing object can be uniformly flattened (see Patent Document 1).

国際公開第04/075276号パンフレットInternational Publication No. 04/075276 Pamphlet

しかしながら、小径パッドを用いた研磨において自在に研磨プロファイルを変えることが可能であるということは、研磨条件をより細かく決定しなければならないことを意味する。すなわち、研磨対象物の表面上おける研磨パッドの存在確率を変えるために、研磨パッドの往復動及び接触圧を変化させる制御を行うなど、研磨条件の種類が増えると同時に複雑化し、研磨条件の決定回数が増えるとともに一つの研磨条件を決定するためにより多くの時間を有することになる。   However, the fact that the polishing profile can be freely changed in polishing using a small-diameter pad means that the polishing conditions must be determined more finely. In other words, in order to change the existence probability of the polishing pad on the surface of the object to be polished, control is performed to change the reciprocating motion of the polishing pad and the contact pressure. As the number of times increases, more time is required to determine one polishing condition.

本発明は、このような問題に鑑みてなされたものであり、単純な作業手順で研磨条件を決定し、研磨対象物の被研磨面を均一に平坦化することができるとともに、効率よく被研磨面を所望の面形状に仕上げることができる研磨方法を提供することを目的とする。   The present invention has been made in view of such problems, and it is possible to determine polishing conditions with a simple work procedure, to uniformly flatten a surface to be polished of an object to be polished, and to efficiently polish the object to be polished. An object is to provide a polishing method capable of finishing a surface into a desired surface shape.

上記課題を解決して目的を達成するため、本発明に係る研磨方法は、所定の材料からなる研磨対象物と研磨パッドとを当接させた状態で両者を相対移動させて前記研磨対象物を研磨する研磨方法であって、前記材料からなる膜が形成された研磨除去量測定用部材の被研磨面と前記研磨パッドとを当接させた状態で両者を相対移動させ、前記被研磨面を研磨した時の研磨除去量の変化を求めるステップと、前記求められた研磨除去量の変化から前記研磨対象物を研磨する時の研磨条件を求めるステップと、前記求められた研磨条件に基づいて前記研磨対象物の研磨を行うステップとを備える。   In order to solve the above problems and achieve the object, a polishing method according to the present invention is configured to move the polishing object relative to each other while the polishing object made of a predetermined material and the polishing pad are in contact with each other. A polishing method for polishing, wherein a surface to be polished of a polishing removal amount measuring member on which a film made of the material is formed and the polishing pad are brought into contact with each other to move the surface to be polished. Based on the determined polishing conditions, a step of determining a change in polishing removal amount when polishing, a step of determining a polishing condition when polishing the object to be polished from the change in the determined polishing removal amount, and And polishing a polishing object.

上記研磨方法において、前記研磨除去量の変化を求めるステップは、前記被研磨面を前記研磨パッドを用いて研磨するとともに前記膜の厚さを測定し、前記測定された膜の厚さから前記研磨除去量の変化を求めることが好ましい。   In the polishing method, the step of determining a change in the amount of polishing removal includes polishing the surface to be polished using the polishing pad and measuring the thickness of the film, and measuring the thickness of the film from the measured film thickness. It is preferable to obtain a change in the removal amount.

上記研磨方法において、前記研磨対象物は、SiO2からなる矩形状ガラス板であり、前記研磨除去量測定用部材は、前記被研磨面にSiO2膜が形成された半導体ウェハであることが好ましい。 In the polishing method, it is preferable that the object to be polished is a rectangular glass plate made of SiO 2 , and the polishing removal amount measuring member is a semiconductor wafer in which a SiO 2 film is formed on the surface to be polished. .

本発明に係る研磨方法によれば、所定材料からなる膜が形成された研磨量測定用部材の被研磨面を研磨した時の研磨除去量の変化を求め、この研磨除去量の変化から該所定材料からなる研磨対象物を研磨する時の研磨条件が求められるので、この研磨条件に基づいて研磨対象物の被研磨面の研磨を行い、被研磨面を均一に平坦化することができるとともに、効率よく被研磨面を所望の面形状に仕上げることができる。   According to the polishing method of the present invention, a change in the amount of polishing removal when the surface to be polished of the polishing amount measuring member on which a film made of a predetermined material is polished is obtained, and the predetermined amount is determined from the change in the polishing removal amount. Since polishing conditions for polishing a polishing object made of a material are required, the surface to be polished of the polishing object can be polished based on the polishing conditions, and the surface to be polished can be uniformly flattened, The surface to be polished can be efficiently finished into a desired surface shape.

以下、図面を参照して本発明の好ましい実施形態について説明する。図1は本発明に係る研磨装置の代表例であるCMP装置1の概略構成を示している。このCMP装置1は、研磨対象物2の表面研磨を行う研磨装置10と、研磨対象物2の被研磨面が研磨装置10と対向するように研磨対象物2を保持する対象物保持装置20とを備えて構成されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a schematic configuration of a CMP apparatus 1 which is a typical example of a polishing apparatus according to the present invention. The CMP apparatus 1 includes a polishing apparatus 10 that performs surface polishing of a polishing object 2, and an object holding apparatus 20 that holds the polishing object 2 so that a surface to be polished of the polishing object 2 faces the polishing apparatus 10. It is configured with.

これら研磨装置10及び対象物保持装置20は支持フレーム30に支持されている。支持フレーム30は、水平な基台31と、この基台31上にY方向(紙面に垂直な方向でこれを前後方向とする)に延びて設けられたレール(図示せず)上をY方向に移動自在に設けられた第1ステージ32と、この第1ステージ32から垂直(Z方向;紙面における上下方向)に延びるように設けられた垂直フレーム33と、この垂直フレーム33上をZ方向に移動自在に設けられた第2ステージ34と、この第2ステージ34から水平(X方向;紙面における左右方向)に延びるように設けられた水平フレーム35と、この水平フレーム35上をX方向に移動自在に設けられた第3ステージ36とを有して構成されている。   The polishing apparatus 10 and the object holding apparatus 20 are supported by a support frame 30. The support frame 30 includes a horizontal base 31 and a rail (not shown) provided on the base 31 so as to extend in the Y direction (the direction perpendicular to the paper surface is the front-rear direction). A first stage 32 that is movably provided, a vertical frame 33 that extends vertically from the first stage 32 (Z direction; vertical direction in the drawing), and a vertical frame 33 that extends in the Z direction. A second stage 34 provided movably, a horizontal frame 35 provided horizontally extending from the second stage 34 (X direction; left and right direction in the drawing), and moved on the horizontal frame 35 in the X direction. The third stage 36 is freely provided.

第1ステージ32内には電動モータ等を駆動源とする第1駆動機構D1が設けられており、この第1駆動機構D1により第1ステージ32を上記レールに沿ってY方向に移動させることができる。また、第2ステージ34内には第2駆動機構D2が設けられており、この第2駆動機構D2により第2ステージ34を垂直フレーム33に沿ってZ方向に移動させることができる。さらに、第3ステージ36内には第3駆動機構D3が設けられており、この第3駆動機構により第3ステージ36を水平フレーム35に沿ってX方向に移動させることができる。このため、駆動機構D1,D3の駆動制御を行ってそれぞれの動作を組み合わせることにより、第3ステージ36を対象物保持装置20上方の任意のXY位置(水平位置)に移動させることが可能である。また、第2駆動機構D2の駆動制御を行うことにより、第3ステージ36を任意のZ位置(対象物保持装置20の上方の高さ位置)に移動させることが可能である。なお、駆動機構D2,D3は、第1駆動機構D1と同様に電動モータ等を駆動源として構成される。   A first drive mechanism D1 using an electric motor or the like as a drive source is provided in the first stage 32, and the first stage 32 can be moved in the Y direction along the rail by the first drive mechanism D1. it can. A second drive mechanism D2 is provided in the second stage 34, and the second stage 34 can be moved in the Z direction along the vertical frame 33 by the second drive mechanism D2. Further, a third drive mechanism D3 is provided in the third stage 36, and the third stage 36 can be moved in the X direction along the horizontal frame 35 by the third drive mechanism. For this reason, it is possible to move the third stage 36 to an arbitrary XY position (horizontal position) above the object holding device 20 by performing drive control of the drive mechanisms D1 and D3 and combining the respective operations. . In addition, the third stage 36 can be moved to an arbitrary Z position (a height position above the object holding device 20) by performing drive control of the second drive mechanism D2. The drive mechanisms D2 and D3 are configured using an electric motor or the like as a drive source, similarly to the first drive mechanism D1.

研磨装置10は、第3ステージ36から下方に延びて設けられた研磨ヘッド回転軸11と、この研磨ヘッド回転軸11の下端部に取り付けられた研磨ヘッド12とから構成されている。この研磨ヘッド12の下面には、両面接着テープ等を用いて研磨パッド15が下面に貼り付けられた円盤状の支持プレート13が真空吸着されて取り付けられている。このため、真空吸着を解除して、研磨パッド15を支持プレート13とともに研磨ヘッド12から取り外して交換可能になっている。   The polishing apparatus 10 includes a polishing head rotating shaft 11 provided so as to extend downward from the third stage 36, and a polishing head 12 attached to a lower end portion of the polishing head rotating shaft 11. On the lower surface of the polishing head 12, a disk-like support plate 13 having a polishing pad 15 attached to the lower surface using a double-sided adhesive tape or the like is attached by vacuum suction. For this reason, the vacuum suction is released, and the polishing pad 15 can be removed from the polishing head 12 together with the support plate 13 and replaced.

研磨パッド15は、発泡性のポリウレタン等の発泡体樹脂材料を用いて支持プレート13とほぼ同じ外径を有する円盤状、もしくは中央に穴の開いた薄厚のドーナツ型等に形成されている。本実施形態では研磨パッド15は薄厚のドーナツ型である。研磨パッド15の研磨面には、格子状の溝が縦横にほぼ等間隔で形成されており、研磨加工の際に研磨剤(スラリー)の拡散が促進されるようになっている。   The polishing pad 15 is formed in a disk shape having substantially the same outer diameter as the support plate 13 using a foam resin material such as foaming polyurethane, or a thin donut shape having a hole in the center. In this embodiment, the polishing pad 15 is a thin donut shape. On the polishing surface of the polishing pad 15, lattice-like grooves are formed at substantially equal intervals in the vertical and horizontal directions, and the diffusion of the abrasive (slurry) is promoted during the polishing process.

研磨ヘッド回転軸11は、第3ステージ36内に設けられた電動モータ等を駆動源とする第4駆動機構D4によって回転し、これにより研磨ヘッド12を回転させて研磨パッド15の研磨面をXY面(水平面)内で回転させることができる。また、第3ステージ36には、エアシリンダ(図示せず)が内蔵されており、このエアシリンダにより研磨ヘッド回転軸11を介して研磨ヘッド12を上下動させて研磨パッド15の研磨面を研磨対象物2の被研磨面に所定の接触圧で押圧させることができる。   The polishing head rotating shaft 11 is rotated by a fourth drive mechanism D4 using an electric motor or the like provided in the third stage 36 as a drive source, and thereby the polishing head 12 is rotated so that the polishing surface of the polishing pad 15 is XY. It can be rotated in a plane (horizontal plane). Further, the third stage 36 includes an air cylinder (not shown), and the polishing head 12 is moved up and down via the polishing head rotating shaft 11 by this air cylinder to polish the polishing surface of the polishing pad 15. The surface to be polished of the object 2 can be pressed with a predetermined contact pressure.

対象物保持装置20は、基台31上に設けられた回転台支持部21と、回転台支持部21から上方に垂直に延びて設けられたチャック回転軸22と、チャック回転軸22の上端部に水平に取り付けられたチャック回転台23と、チャック回転台23上に設けられてガラス板2を上面側に保持する真空チャック24とを備えて構成されている。   The object holding device 20 includes a turntable support portion 21 provided on a base 31, a chuck rotation shaft 22 provided vertically extending from the turntable support portion 21, and an upper end portion of the chuck rotation shaft 22. The chuck turntable 23 is mounted horizontally, and the vacuum chuck 24 is provided on the chuck turntable 23 and holds the glass plate 2 on the upper surface side.

真空チャック24内には図示しない真空吸着チャック機構が設けられており、この真空吸着チャック機構により研磨対象物2を着脱自在に吸着保持するようになっている。回転台支持部21内には電動モータ等を駆動源とする第5駆動機構D5が設けられており、回転台支持部21から延びて設けられたチャック回転軸22は、この第5駆動機構D5によって回転し、これによりチャック回転台23を回転させることができる。   A vacuum suction chuck mechanism (not shown) is provided in the vacuum chuck 24, and the polishing object 2 is detachably sucked and held by this vacuum suction chuck mechanism. A fifth drive mechanism D5 using an electric motor or the like as a drive source is provided in the turntable support portion 21, and a chuck rotation shaft 22 provided extending from the turntable support portion 21 is provided with the fifth drive mechanism D5. Thus, the chuck turntable 23 can be rotated.

次に、以上のように構成されたCMP装置1(研磨装置10)において、研磨対象となるSiO2からなる矩形状のガラス板2aの表面を研磨する研磨方法についてフローチャートを参照して説明する。 Next, a polishing method for polishing the surface of the rectangular glass plate 2a made of SiO 2 to be polished in the CMP apparatus 1 (polishing apparatus 10) configured as described above will be described with reference to a flowchart.

研磨装置10を用いてガラス板2aの表面を研磨する研磨方法を図2のフローチャートに示しており、ここでは、まずステップS1において、研磨装置10を用いて研磨除去量測定用部材である半導体ウェハ2bのSiO2膜の研磨を行う。なお、半導体ウェハ2bは被研磨面にSiO2からなる酸化膜が形成されており、このSiO2膜はガラス板2aと物性的に同様の組成であり、CMPに対しても同様の研磨特性を示す。 A polishing method for polishing the surface of the glass plate 2a using the polishing apparatus 10 is shown in the flow chart of FIG. 2. Here, first, in step S1, a semiconductor wafer which is a member for measuring polishing removal amount using the polishing apparatus 10 is shown. Polish the 2b SiO 2 film. The semiconductor wafer 2b has a SiO 2 oxide film formed on the surface to be polished. This SiO 2 film has the same physical composition as the glass plate 2a, and has the same polishing characteristics for CMP. Show.

具体的には、対象物保持装置20における真空チャック24の上面に半導体ウェハ2bを吸着して取り付ける。そして、第5駆動機構D5によりチャック回転軸22を介してチャック回転台23を回転させる。すなわち、第5駆動機構D5によりチャック回転台23を回転させ、チャック回転台23上に設けられた真空チャック24及び真空チャック24に吸着保持された半導体ウェハ2bを回転させる。   Specifically, the semiconductor wafer 2b is sucked and attached to the upper surface of the vacuum chuck 24 in the object holding device 20. Then, the chuck rotating base 23 is rotated via the chuck rotating shaft 22 by the fifth drive mechanism D5. That is, the chuck rotating base 23 is rotated by the fifth drive mechanism D5, and the vacuum chuck 24 provided on the chuck rotating base 23 and the semiconductor wafer 2b sucked and held by the vacuum chuck 24 are rotated.

次に、駆動機構D1,D3により第3ステージ36を移動させて研磨ヘッド12を半導体ウェハ2bの上方に位置させ、第4駆動機構D4により研磨ヘッド回転軸11を介して研磨ヘッド12を回転させる。そして、第2駆動機構D2により第2ステージ34をZ方向に移動させて研磨パッド15の研磨面を半導体ウェハ2bのSiO2膜(被研磨面)と近接するように位置させ、第3ステージ36に内蔵されたエアシリンダ(図示せず)を用いて研磨ヘッド12を降下させ、研磨パッド15の研磨面を半導体ウェハ2bのSiO2膜に所定の接触圧で押圧させる。その後、第3駆動機構D3により第3ステージ36を水平フレーム35に沿って往復動させる。すなわち研磨ヘッド12(研磨パッド15の研磨面)をX方向に往復動させる。このとき、図示しない研磨剤供給装置から研磨剤を圧送し、研磨パッド15の研磨面の下面側に研磨剤を供給させる。これにより、半導体ウェハ2bのSiO2膜は、研磨剤の供給を受けつつ半導体ウェハ2b自体の回転運動と研磨ヘッド12(研磨パッド15)の回転及び往復動とにより研磨される。 Next, the third stage 36 is moved by the driving mechanisms D1 and D3 so that the polishing head 12 is positioned above the semiconductor wafer 2b, and the polishing head 12 is rotated via the polishing head rotating shaft 11 by the fourth driving mechanism D4. . Then, the second stage 34 is moved in the Z direction by the second drive mechanism D2 so that the polishing surface of the polishing pad 15 is positioned close to the SiO 2 film (surface to be polished) of the semiconductor wafer 2b, and the third stage 36 is placed. The polishing head 12 is lowered using an air cylinder (not shown) built into the semiconductor wafer 2 to press the polishing surface of the polishing pad 15 against the SiO 2 film of the semiconductor wafer 2b with a predetermined contact pressure. Thereafter, the third stage 36 is reciprocated along the horizontal frame 35 by the third drive mechanism D3. That is, the polishing head 12 (the polishing surface of the polishing pad 15) is reciprocated in the X direction. At this time, the polishing agent is pumped from a polishing agent supply device (not shown) to supply the polishing agent to the lower surface side of the polishing surface of the polishing pad 15. Thereby, the SiO 2 film of the semiconductor wafer 2b is polished by the rotational movement of the semiconductor wafer 2b itself and the rotation and reciprocation of the polishing head 12 (polishing pad 15) while being supplied with the abrasive.

ステップS1において所定時間毎に半導体ウェハ2bのSiO2膜の研磨を中止して、半導体ウェハ2bの被研磨面でのSiO2膜の膜厚を測定する(ステップS2)。具体的には、光学的測定器(干渉型の膜厚測定器)を半導体ウェハ2bの被研磨面で走査させながら、SiO2膜に光を照射し、SiO2膜の上下面(SiO2膜の表面及び基板表面)で反射した反射光量を測定する。この反射光は、SiO2膜による干渉効果によりSiO2膜の膜厚に依存して強度が変わる。このため、反射光の強度を測定することで半導体ウェハ2bのSiO2膜の膜厚の測定をすることができる。例えば、前記特許文献1に記載されるように、研磨装置10を構成する研磨ヘッド回転軸11、研磨ヘッド12、支持プレート13及び研磨パッド15の中心部に空洞を形成し、この空洞に光学的測定器につながった光ファイバーを設ける。駆動機構D1,D3により研磨装置10を半導体ウェハ2bの上方においてXY面内で移動させることにより、光学的測定器で半導体ウェハ2bのSiO2膜上を走査し、半導体ウェハ2bのSiO2膜の膜厚を測定することができる。なお、光学的測定器は研磨装置10と別に設けても構わない。 In step S1, the polishing of the SiO 2 film on the semiconductor wafer 2b is stopped every predetermined time, and the thickness of the SiO 2 film on the polished surface of the semiconductor wafer 2b is measured (step S2). Specifically, while scanning an optical measuring device (interference type film thickness measuring instrument) at a surface to be polished of the semiconductor wafer 2b, irradiating light to the SiO 2 film, the upper and lower surfaces of the SiO 2 film (SiO 2 film The amount of reflected light reflected on the surface and the substrate surface) is measured. The intensity of the reflected light changes depending on the thickness of the SiO 2 film due to the interference effect of the SiO 2 film. For this reason, the film thickness of the SiO 2 film of the semiconductor wafer 2b can be measured by measuring the intensity of the reflected light. For example, as described in Patent Document 1, a cavity is formed in the center of a polishing head rotating shaft 11, a polishing head 12, a support plate 13, and a polishing pad 15 constituting the polishing apparatus 10, and the cavity is optically formed. Provide an optical fiber connected to the measuring instrument. By moving in the XY plane of the polishing apparatus 10 above the semiconductor wafer 2b by a drive mechanism D1, D3, scanning the SiO 2 Makujo semiconductor wafer 2b with an optical measuring instrument, the SiO 2 film of a semiconductor wafer 2b The film thickness can be measured. The optical measuring device may be provided separately from the polishing apparatus 10.

ステップS2において所定時間毎の半導体ウェハ2bのSiO2膜の膜厚の測定が終了するとステップS3に進み、得られた測定データから半導体ウェハ2bのSiO2膜での研磨レート(研磨除去量の変化)を算出する。半導体ウェハ2bのSiO2膜での研磨レートは、時間経過に対して測定された半導体ウェハ2bのSiO2膜の膜厚から算出することができ、この研磨レートを時間積分することで研磨除去量が算出される。また、半導体ウェハ2bの被研磨面上の各点で測定された膜厚を比較することによって被研磨面の平坦度を知ることができる。 When the measurement of the film thickness of the SiO 2 film of the semiconductor wafer 2b at every predetermined time is completed in step S2, the process proceeds to step S3, and the polishing rate (change in polishing removal amount) of the SiO 2 film of the semiconductor wafer 2b is obtained from the obtained measurement data. ) Is calculated. The polishing rate of the SiO 2 film of the semiconductor wafer 2b can be calculated from the film thickness of the SiO 2 film of the semiconductor wafer 2b measured over time. The polishing removal amount is obtained by integrating the polishing rate over time. Is calculated. Further, the flatness of the surface to be polished can be known by comparing the film thickness measured at each point on the surface to be polished of the semiconductor wafer 2b.

ステップS3における半導体ウェハ2bのSiO2膜での研磨レートが算出されるとステップS4に進み、算出された半導体ウェハ2bのSiO2膜での研磨レートからガラス板2aの被研磨面を研磨するときの研磨条件を得る。上述したようにSiO2膜はガラス板2aと物性的に同様の組成であり、CMPに対しても同様の研磨特性を示すので、上記半導体ウェハ2bと同様の研磨条件(接触圧、研磨パッド15と被研磨面との相対速度など)におけるガラス板2aの被研磨面での研磨レートと半導体ウェハ2bのSiO2膜での研磨レートとはほぼ等しいとみなすことができる。 When the polishing rate of the SiO 2 film of the semiconductor wafer 2b in step S3 is calculated, the process proceeds to step S4, and the surface to be polished of the glass plate 2a is polished from the calculated polishing rate of the SiO 2 film of the semiconductor wafer 2b. The polishing conditions are obtained. As described above, since the SiO 2 film has the same composition as the glass plate 2a and exhibits similar polishing characteristics to CMP, the same polishing conditions (contact pressure, polishing pad 15) as those of the semiconductor wafer 2b are described. It can be considered that the polishing rate on the surface to be polished of the glass plate 2a and the polishing rate on the SiO 2 film of the semiconductor wafer 2b in the relative speed between the surface and the surface to be polished are substantially equal.

次に、ステップS5において、半導体ウェハ2bと同様に、対象物保持装置20における真空チャック24の上面にガラス板2aを吸着して取り付け,ステップS4で得られた研磨条件(研磨レート)に基づいてガラス板2aの表面研磨を行う。このようにして、半導体ウェハ2bのSiO2膜での研磨レートからガラス板2aの被研磨面を研磨するときの研磨条件、すなわちガラス板2aの被研磨面での研磨レートを得ることができ、この研磨条件に基づいてガラス板2aの被研磨面を研磨するので、被研磨面を均一に平坦化することができるとともに、効率よく被研磨面を所望の面形状に仕上げることができる。 Next, in step S5, similarly to the semiconductor wafer 2b, the glass plate 2a is sucked and attached to the upper surface of the vacuum chuck 24 in the object holding device 20, and based on the polishing conditions (polishing rate) obtained in step S4. Surface polishing of the glass plate 2a is performed. Thus, it is possible to obtain the polishing conditions for polishing the surface to be polished of the glass plate 2a from the polishing rate at the SiO 2 film of the semiconductor wafer 2b, that is, the polishing rate at the surface to be polished of the glass plate 2a, Since the surface to be polished of the glass plate 2a is polished based on this polishing condition, the surface to be polished can be uniformly flattened and the surface to be polished can be efficiently finished into a desired surface shape.

なお、ステップS1において、所定時間毎に半導体ウェハ2bのSiO2膜の研磨を中止して、半導体ウェハ2bの被研磨面でのSiO2膜の膜厚を測定しているが、半導体ウェハ2bのSiO2膜の研磨と同時にSiO2膜の膜厚を測定しても構わない。ただし、この場合は、測定時刻にタイムラグが生じないように、すなわち同一時刻で被研磨面の膜厚が測定できるように光学的測定器を設ける必要がある。 In step S1, the polishing of the SiO 2 film of the semiconductor wafer 2b is stopped every predetermined time and the thickness of the SiO 2 film on the surface to be polished of the semiconductor wafer 2b is measured. it may be measured the thickness of the SiO 2 film at the same time as the polishing of the SiO 2 film. However, in this case, it is necessary to provide an optical measuring device so that a time lag does not occur at the measurement time, that is, the film thickness of the surface to be polished can be measured at the same time.

図3は、研磨装置10を用いて半導体ウェハ2bのSiO2膜を研磨したときの、半導体ウェハ2bの半径方向の研磨レートを示す実験データであり、横軸に半導体ウェハ2bの中心を0とする半導体ウェハ2b(SiO2膜)上の半径方向の位置、縦軸に研磨レートをとり、半導体ウェハ2b上の半径方向の位置毎の研磨レートをプロットしたグラフである。 FIG. 3 is experimental data showing the polishing rate in the radial direction of the semiconductor wafer 2b when the polishing apparatus 10 is used to polish the SiO 2 film of the semiconductor wafer 2b. The horizontal axis indicates 0 as the center of the semiconductor wafer 2b. 5 is a graph in which the polishing rate is plotted for each position on the semiconductor wafer 2b in the radial direction, with the position on the semiconductor wafer 2b (SiO 2 film) in the radial direction and the vertical axis representing the polishing rate.

なお、図3では直径200mmで、厚み0.725mmのSi基板の表面に厚み1umのSiO2膜が形成された半導体ウェハ2bの研磨を行った。研磨パッド15は、直径が170mmで中心部に直径54mmの穴の開いたドーナツ型パッドを使用し、研磨パッド15の研磨面を半導体ウェハ2bのSiO2膜に0.25psiの接触圧で押圧させた。また、図3(a)では半導体ウェハ2bの回転数は251rpm、研磨パッド15の回転数は51rpmで半導体ウェハ2bと研磨パッド15とは同じ方向に回転し、研磨パッド15の往復動速度は60mm/sec、往復動範囲は半導体ウェハ2bの中心から25〜40mmの範囲とした。図3(b)では半導体ウェハ2bの回転数は100rpm、研磨パッド15の回転数は101rpmで半導体ウェハ2bと研磨パッド15とは逆方向に回転し、研磨パッド15の往復動速度は60mm/sec、往復動範囲は半導体ウェハ2bの中心から28〜50mmの範囲とした。 Incidentally, was carried out in FIG. 3, a diameter of 200 mm, the polishing of the semiconductor wafer 2b of SiO 2 film having a thickness of 1um is formed on the Si surface of the substrate having a thickness of 0.725 mm. As the polishing pad 15, a donut-shaped pad having a diameter of 170 mm and a hole having a diameter of 54 mm was used, and the polishing surface of the polishing pad 15 was pressed against the SiO 2 film of the semiconductor wafer 2b with a contact pressure of 0.25 psi. . 3A, the rotation speed of the semiconductor wafer 2b is 251 rpm, the rotation speed of the polishing pad 15 is 51 rpm, the semiconductor wafer 2b and the polishing pad 15 rotate in the same direction, and the reciprocating speed of the polishing pad 15 is 60 mm. / sec, the reciprocation range was 25 to 40 mm from the center of the semiconductor wafer 2b. In FIG. 3B, the rotational speed of the semiconductor wafer 2b is 100 rpm, the rotational speed of the polishing pad 15 is 101 rpm, the semiconductor wafer 2b and the polishing pad 15 rotate in the opposite direction, and the reciprocating speed of the polishing pad 15 is 60 mm / sec. The reciprocating range was 28 to 50 mm from the center of the semiconductor wafer 2b.

この実験データによると、図3(a)では、半導体ウェハ2bの中心近傍の研磨レートが大きく、半導体ウェハ2bの端部(エッジ)に向かって徐々に研磨レートが小さくなっていることが分かる。これは半導体ウェハ2bと研磨パッド15とが同じ方向に回転して研磨を行ったことによるものである。また、図3(b)では、半導体ウェハ2bの中心近傍の研磨レートが小さく、半導体ウェハ2bの端部(エッジ)に向かって徐々に研磨レートが大きくなっているのが分かる。これは半導体ウェハ2bと研磨パッド15とが逆方向に回転して研磨を行ったことによるものである。すなわち、半導体ウェハ2bと研磨パッド15とを同じ方向に回転させて研磨を行うと、半導体ウェハ2bの端部よりも中心近傍の積極的な研磨(センターファスト研磨)が行われる。逆に、半導体ウェハ2bと研磨パッド15とを逆方向に回転させて研磨を行うと、半導体ウェハ2bの中心近傍よりも端部の積極的な研磨(エッジファスト研磨)が行われる。   According to this experimental data, in FIG. 3A, it can be seen that the polishing rate near the center of the semiconductor wafer 2b is large, and the polishing rate gradually decreases toward the end (edge) of the semiconductor wafer 2b. This is because the semiconductor wafer 2b and the polishing pad 15 are rotated in the same direction for polishing. Further, in FIG. 3B, it can be seen that the polishing rate near the center of the semiconductor wafer 2b is small, and the polishing rate gradually increases toward the end (edge) of the semiconductor wafer 2b. This is because the semiconductor wafer 2b and the polishing pad 15 are rotated in the opposite directions to perform polishing. That is, when polishing is performed by rotating the semiconductor wafer 2b and the polishing pad 15 in the same direction, positive polishing (center fast polishing) near the center is performed rather than the end of the semiconductor wafer 2b. Conversely, when polishing is performed by rotating the semiconductor wafer 2b and the polishing pad 15 in the opposite directions, the edge of the semiconductor wafer 2b is more actively polished (edge fast polishing) than the vicinity of the center.

図4は、上記と同じ条件で、研磨装置10を用いて152mm×152mmの正方形状に形成されたガラス板2aの被研磨面(被研磨面の外周部5mmを除く)を5min間研磨したときの、ガラス板2aの対角線方向の形状相対変化を示す実験データであり、横軸にガラス板2aの一方の頂点を0とするガラス板2a上の対角線方向の位置、縦軸に研磨前後の形状相対変化量をとり、ガラス板2a上の対角線方向の位置毎の形状相対変化量をプロットしたグラフである。なお、形状相対変化量は、研磨前後にガラス板2aの被研磨面までの距離測定を行い、得られた距離データから基準平面(形状相対変化量が0の位置)に対する偏差量として求めたものである。   FIG. 4 shows a polished surface of a glass plate 2a formed in a 152 mm × 152 mm square shape (excluding the outer peripheral portion of 5 mm) for 5 minutes under the same conditions as above. Is the experimental data showing the relative change of the shape of the glass plate 2a in the diagonal direction, the horizontal axis is the position in the diagonal direction on the glass plate 2a where one vertex of the glass plate 2a is 0, and the vertical axis is the shape before and after polishing. It is the graph which took the relative change amount and plotted the shape relative change amount for every position of the diagonal direction on the glass plate 2a. The relative shape change amount is obtained by measuring the distance to the surface to be polished of the glass plate 2a before and after polishing, and obtaining the deviation from the obtained distance data with respect to the reference plane (the position where the relative shape change amount is 0). It is.

この実験データによると、図4(a)では、ガラス板2aの中心近傍の相対形状変化量が大きく、ガラス板2aの端部(エッジ)に向かって徐々に相対形状変化量が小さくなっていることが分かる。また、図4(b)では、ガラス板2aの中心近傍の相対形状変化量が小さく、ガラス板2aの端部(エッジ)に向かって徐々に相対形状変化が大きくなっているのが分かる。すなわち、ガラス板2aと研磨パッド15とを同じ方向に回転させて研磨を行うと、ガラス板2aの端部よりも中心近傍の積極的な研磨(センターファスト研磨)が行われる。逆に、ガラス板2aと研磨パッド15とを逆方向に回転させて研磨を行うと、半導体ウェハ2bの中心近傍よりも端部の積極的な研磨(エッジファスト研磨)が行われる。したがって、図3と図4を比較することにより、ガラス板2aを研磨する際、研磨前後の形状相対変化は、半導体ウェハ2bの研磨レート(研磨除去量の変化)の傾向と近いことが分かる。   According to this experimental data, in FIG. 4A, the relative shape change amount near the center of the glass plate 2a is large, and the relative shape change amount gradually decreases toward the end (edge) of the glass plate 2a. I understand that. In FIG. 4B, it can be seen that the relative shape change amount near the center of the glass plate 2a is small, and the relative shape change gradually increases toward the end (edge) of the glass plate 2a. That is, when polishing is performed by rotating the glass plate 2a and the polishing pad 15 in the same direction, aggressive polishing near the center (center fast polishing) is performed rather than the end of the glass plate 2a. Conversely, when polishing is performed by rotating the glass plate 2a and the polishing pad 15 in the opposite directions, the edge of the semiconductor wafer 2b is more actively polished (edge-fast polishing) than the vicinity of the center. Therefore, comparing FIG. 3 and FIG. 4, it can be seen that when the glass plate 2a is polished, the relative change in shape before and after polishing is close to the tendency of the polishing rate (change in polishing removal amount) of the semiconductor wafer 2b.

以上のようにして、研磨装置10を用いて半導体ウェハ2bのSiO2膜を研磨するとともに所定時間毎にSiO2膜の膜厚を測定し、この測定データから半導体ウェハ2bのSiO2膜での研磨レート(研磨除去量の変化)が算出される。そして、半導体ウェハ2bのSiO2膜とガラス板2aとが同様の研磨特性を示すことにより、算出されたSiO2膜での研磨レートからガラス板2aを研磨するときの研磨条件を得ることができ、この研磨条件に基づいてガラス板2aの被研磨面を研磨するので、被研磨面を均一に平坦化することができるとともに、効率よく被研磨面を所望の面形状に仕上げることができる。 As described above, the SiO 2 film of the semiconductor wafer 2b is polished using the polishing apparatus 10 and the thickness of the SiO 2 film is measured every predetermined time. From this measurement data, the SiO 2 film of the semiconductor wafer 2b is measured. A polishing rate (change in polishing removal amount) is calculated. Then, since the SiO 2 film of the semiconductor wafer 2b and the glass plate 2a show similar polishing characteristics, the polishing conditions for polishing the glass plate 2a from the calculated polishing rate of the SiO 2 film can be obtained. Since the surface to be polished of the glass plate 2a is polished based on this polishing condition, the surface to be polished can be uniformly flattened and the surface to be polished can be efficiently finished into a desired surface shape.

なお、本発明は上記の実施形態に限定されるものではなく、その要旨の範囲内において種々の変形が可能である。例えば、研磨対象物及び研磨量測定用部材に形成される膜はSiO2によって形成されるとは限らなく、両者が同様の研磨特性を示す材料によって形成されていれば良い。 In addition, this invention is not limited to said embodiment, A various deformation | transformation is possible within the range of the summary. For example, the film formed on the object to be polished and the member for measuring the polishing amount is not necessarily formed of SiO 2 , and it is only necessary that both are formed of materials exhibiting similar polishing characteristics.

本発明に係る研磨装置の一例であるCMP装置を示す正面図である。It is a front view which shows the CMP apparatus which is an example of the grinding | polishing apparatus which concerns on this invention. 上記CMP装置を用いてガラス板を研磨する研磨方法を説明するフローチャートである。It is a flowchart explaining the grinding | polishing method which grind | polishes a glass plate using the said CMP apparatus. 上記CMP装置を用いて半導体ウェハのSiO2膜を研磨したときの半導体ウェハ上の半径方向の位置毎の研磨レートをプロットした実験データを示す図である。It is a diagram showing experimental data obtained by plotting the polishing rate of the radial for each position on the semiconductor wafer when polishing the SiO 2 film of a semiconductor wafer using the CMP apparatus. 上記CMP装置を用いてガラス板の被研磨面を研磨したときのガラス板上の対角線方向の位置毎の形状相対変化量をプロットした実験データを示す図である。It is a figure which shows the experimental data which plotted the shape relative variation | change_quantity for every position of the diagonal direction on a glass plate when the to-be-polished surface of a glass plate is grind | polished using the said CMP apparatus.

符号の説明Explanation of symbols

1 CMP装置
2a ガラス板(研磨対象物)
2b 半導体ウェハ(研磨除去量測定用部材)
10 研磨装置
15 研磨パッド(研磨パッド)
1 CMP apparatus 2a glass plate (object to be polished)
2b Semiconductor wafer (member for polishing removal measurement)
10 Polishing device 15 Polishing pad (polishing pad)

Claims (3)

所定の材料からなる研磨対象物と研磨パッドとを当接させた状態で両者を相対移動させて前記研磨対象物を研磨する研磨方法であって、
前記材料からなる膜が形成された研磨除去量測定用部材の被研磨面と前記研磨パッドとを当接させた状態で両者を相対移動させ、前記被研磨面を研磨した時の研磨除去量の変化を求めるステップと、
前記求められた研磨除去量の変化から前記研磨対象物を研磨する時の研磨条件を求めるステップと、
前記求められた研磨条件に基づいて前記研磨対象物の研磨を行うステップとを備えることを特徴とする研磨方法。
A polishing method for polishing the polishing object by relatively moving both of the polishing object and a polishing pad made of a predetermined material in contact with each other,
The amount of polishing removal when the surface to be polished is polished while the surface to be polished and the polishing pad are in contact with each other, with the film made of the material being formed in contact with the polishing pad. A step for change,
Obtaining polishing conditions for polishing the object to be polished from a change in the determined polishing removal amount;
Polishing the object to be polished based on the determined polishing conditions.
前記研磨除去量の変化を求めるステップは、前記被研磨面を前記研磨パッドを用いて研磨するとともに前記膜の厚さを測定し、前記測定された膜の厚さから前記研磨除去量の変化を求めることを特徴とする請求項1に記載の研磨方法。   The step of obtaining a change in the polishing removal amount comprises polishing the surface to be polished using the polishing pad and measuring the thickness of the film, and determining the change in the polishing removal amount from the measured film thickness. The polishing method according to claim 1, wherein the polishing method is obtained. 前記研磨対象物は、SiO2からなる矩形状ガラス板であり、前記研磨除去量測定用部材は、前記被研磨面にSiO2膜が形成された半導体ウェハであることを特徴とする請求項1もしくは請求項2に記載の研磨方法。 2. The polishing object is a rectangular glass plate made of SiO 2 , and the polishing removal amount measuring member is a semiconductor wafer having a SiO 2 film formed on the surface to be polished. Alternatively, the polishing method according to claim 2.
JP2007154735A 2007-06-12 2007-06-12 Polishing method Pending JP2008307609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007154735A JP2008307609A (en) 2007-06-12 2007-06-12 Polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007154735A JP2008307609A (en) 2007-06-12 2007-06-12 Polishing method

Publications (1)

Publication Number Publication Date
JP2008307609A true JP2008307609A (en) 2008-12-25

Family

ID=40235690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154735A Pending JP2008307609A (en) 2007-06-12 2007-06-12 Polishing method

Country Status (1)

Country Link
JP (1) JP2008307609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183010A (en) * 2019-05-08 2020-11-12 オリンパス株式会社 Polishing method and manufacturing method for optical element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112449A (en) * 1996-10-07 1998-04-28 Hitachi Ltd Polishing method and polishing device
JP2003188132A (en) * 2001-12-17 2003-07-04 Matsushita Electric Ind Co Ltd Polishing recipe determining method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112449A (en) * 1996-10-07 1998-04-28 Hitachi Ltd Polishing method and polishing device
JP2003188132A (en) * 2001-12-17 2003-07-04 Matsushita Electric Ind Co Ltd Polishing recipe determining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183010A (en) * 2019-05-08 2020-11-12 オリンパス株式会社 Polishing method and manufacturing method for optical element

Similar Documents

Publication Publication Date Title
KR101704811B1 (en) Method of processing synthetic quartz glass substrate for semiconductor
JP4838614B2 (en) Semiconductor substrate planarization apparatus and planarization method
JPH09270401A (en) Polishing method of semiconductor wafer
JP2011224680A (en) Polishing method and device
JP5311190B2 (en) Adsorber manufacturing method and polishing apparatus
JPWO2005055302A1 (en) Manufacturing method for single-sided mirror wafer
JP2003048148A (en) Square substrate grinding method
US7137866B2 (en) Polishing apparatus and method for producing semiconductors using the apparatus
JPH10315131A (en) Polishing method of semiconductor wafer and device therefor
JP5093650B2 (en) Polishing apparatus and polishing method
JP2008307609A (en) Polishing method
JP2005205543A (en) Wafer grinding method and wafer
JP5169321B2 (en) Work polishing method
JPH1126404A (en) Polishing apparatus
JPH1126405A (en) Polishing device
US7166013B2 (en) Polishing apparatus and method for producing semiconductors using the apparatus
JP4998824B2 (en) Polishing pad size setting method
JP2003165048A (en) Polishing tool shaping method and polishing device
JP7217409B2 (en) Crack growth device and crack growth method
JP7203542B2 (en) Machining system and method
JPH1199470A (en) Polishing device
JP2006250677A (en) Sample manufacturing method
JP2020040160A (en) Processing system and method
JP2020174198A (en) Grinder and grinding method
JP2002246350A (en) Surface-polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121005