JP2008307526A - 光触媒塗装体およびそのための光触媒コーティング液 - Google Patents

光触媒塗装体およびそのための光触媒コーティング液 Download PDF

Info

Publication number
JP2008307526A
JP2008307526A JP2008088790A JP2008088790A JP2008307526A JP 2008307526 A JP2008307526 A JP 2008307526A JP 2008088790 A JP2008088790 A JP 2008088790A JP 2008088790 A JP2008088790 A JP 2008088790A JP 2008307526 A JP2008307526 A JP 2008307526A
Authority
JP
Japan
Prior art keywords
photocatalyst
mass
parts
inorganic oxide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008088790A
Other languages
English (en)
Other versions
JP2008307526A5 (ja
Inventor
Satoshi Kitazaki
聡 北崎
Junji Kameshima
順次 亀島
Koji Hyofu
浩二 表敷
Yoji Takagi
洋二 高木
Yukiko Kodama
佑希子 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2008088790A priority Critical patent/JP2008307526A/ja
Publication of JP2008307526A publication Critical patent/JP2008307526A/ja
Publication of JP2008307526A5 publication Critical patent/JP2008307526A5/ja
Pending legal-status Critical Current

Links

Abstract

【課題】基材に対する浸食を防止しながら、優れた耐候性、有害ガス分解性、カビや藻の繁殖抑制ならびにその他の所望の特性(紫外線吸収性、透明性、膜強度等)を発揮する光触媒塗装体および光触媒コーティング液を提供する。
【解決手段】基材と、該基材上に設けられる光触媒層とを備えてなる光触媒塗装体であって、光触媒層が、1質量部以上20質量部未満の光触媒粒子と、70質量部を超え99質量部以下の無機酸化物粒子と、銅元素と、銀元素と、任意成分としての0質量部以上10質量部未満の加水分解性シリコーンとを、光触媒粒子、無機酸化物粒子、および加水分解性シリコーンの合計量が100質量部となるように含んでなる光触媒塗装体。
【選択図】なし

Description

本発明は、建築物等の外装材の用途に特に適した、耐候性、有害ガス分解性、カビや藻の繁殖抑制および各種被膜特性に優れた光触媒塗装体およびそのための光触媒コーティング液に関する。
酸化チタンなどの光触媒が、建築物の外装材など多くの用途において近年利用されている。光触媒の利用により、光エネルギーを利用して種々の有害物質を分解したり、あるいは、光触媒が塗布された基材表面を親水化して表面に付着した汚れを容易に水で洗い流すことが可能となる。このような光触媒を塗布した光触媒塗装体を得る技術としては、以下のものが知られている。
光触媒性金属酸化物粒子と、コロイダルシリカと、界面活性剤とを含有する水性分散液を用いて、合成樹脂等の表面に親水性を付与する技術が知られている(特許文献1(特開平11−140432号公報)参照)。この技術にあっては、界面活性剤を10〜25重量%と多量に含有させることにより親水性を強化している。また、膜厚を0.4μm以下とすることで光の乱反射による白濁を防止している。
バインダー成分としてのシリカゾルと光触媒性二酸化チタンとを含有する塗膜を基体に形成して光触媒体を得る技術も知られている(特許文献2(特開平11−169727号公報)参照)。この技術にあっては、シリカゾルの添加量がSiO基準で二酸化チタンに対して20〜200重量部であるとされており、二酸化チタンの含有比率が高い。また、シリカゾルの粒径も0.1〜10nmと小さい。
光触媒塗料を用いて波長500nmの光を50%以上透過させ、かつ、320nmの光を80%以上遮断すること光触媒塗膜を形成する技術も知られている(特許文献3(特開2004−359902号公報)参照)。この技術にあっては、光触媒塗料のバインダーとしてオルガノシロキサン部分加水分解物が用いられており、その配合量は塗料組成物全体の5〜40重量%が好ましいとされている。
光触媒層に金属銀および金属銅またはそれらのイオンを添加し消臭、抗菌、防カビ機能を付与する技術が知られている(特許文献4(特許第3559892号公報)参照)。
光触媒層に銀、銅、亜鉛、白金などを添加し光触媒活性を高める技術が知られている(特許文献5(特開平11−169726号公報)参照)、(特許文献6(国際公開第00/06300号パンフレット)参照)。
ところで、光触媒層の基材を有機材料で構成すると、光触媒の光触媒活性により有機材料が分解あるいは劣化されるという問題が従来から知られている。この問題に対処するため、光触媒層と担体との間にシリコン変性樹脂等の接着層を設けることで、下地の担体を光触媒作用による劣化から保護する技術が知られている(特許文献7(国際公開第97/00134号パンフレット)参照)。
特開平11−140432号公報 特開平11−169727号公報 特開2004−359902号公報 特許第3559892号公報 特開平11−169726号公報 国際公開第00/06300号パンフレット 国際公開第97/00134号パンフレット
本発明者らは、今般、光触媒粒子と無機酸化物粒子とを特定の質量比率で含み、さらに銅元素および銀元素を含み、なおかつ加水分解性シリコーンおよび界面活性剤を含まないか又は極力少量に抑えた特定の組成で光触媒層を構成することにより、基材(特に有機基材)への浸食を抑制しながら、耐候性、有害ガス分解性、カビや藻の繁殖抑制および所望の各種被膜特性(紫外線吸収性、透明性、膜強度等)に優れた光触媒塗装体が得られるとの知見を得た。
したがって、本発明の目的は、基材(特に有機基材)に対する浸食を防止しながら、耐候性、有害ガス分解性、カビや藻の繁殖抑制および所望の各種被膜特性(紫外線吸収性、透明性、膜強度等)に優れた光触媒塗装体およびそのための光触媒コーティング液を提供することにある。
すなわち、本発明による光触媒塗装体は、
基材と、該基材上に設けられる光触媒層とを備えた、光触媒塗装体であって、
前記光触媒層が、
1質量部以上20質量部未満の光触媒粒子と、
70質量部を超え99質量部以下の無機酸化物粒子と、
0質量部以上10質量部未満の加水分解性シリコーンと、
を、前記光触媒粒子、前記無機酸化物粒子および前記加水分解性シリコーンの合計量が100質量部となるように含み、さらに銅元素および銀元素を含んでなるものである。
また、本発明による光触媒コーティング液は、上記光触媒塗装体の製造に用いられる光触媒コーティング液であって、溶媒中に、
1質量部以上20質量部未満の光触媒粒子と、
70質量部を超え99質量部以下の無機酸化物粒子と、
0質量部以上10質量部未満の加水分解性シリコーンと、
を、前記光触媒粒子、前記無機酸化物粒子および前記加水分解性シリコーンの合計量が100質量部となるように含み、さらに銅元素および銀元素を含んでなるものである。
光触媒塗装体
本発明による光触媒塗装体は、基材と、この基材上に設けられる光触媒層とを備えてなる。光触媒層は、1質量部以上20質量部未満の光触媒粒子と、70質量部を超え質量部以下の無機酸化物粒子と、銅元素と、銀元素と、任意成分としての0質量部以上10質量部未満の加水分解性シリコーンとを含んでなる。
すなわち、本発明による光触媒層は、1質量部以上20質量部未満の光触媒粒子と、70質量部を超え99質量部以下の無機酸化物粒子とから基本的に構成され、さらに銅元素および銀元素を含んでなる。この構成により、基材(特に有機基材)に対する浸食を防止しながら、耐候性、有害ガス分解性、カビや藻の繁殖抑制および所望の各種被膜特性(紫外線吸収性、透明性、膜強度等)に優れた光触媒塗装体を得ることが可能となる。これらの幾つもの優れた効果が同時に実現される理由は定かではないが、以下のようなものではないかと考えられる。ただし、以下の説明はあくまで仮説にすぎず、本発明は何ら以下の仮説によって限定されるものではない。まず、光触媒層は、光触媒粒子および無機酸化物粒子の二種類の粒子から基本的に構成されるため、粒子間の隙間が豊富に存在する。光触媒層のバインダーとして広く用いられる加水分解性シリコーンを多量に使用した場合にはそのような粒子間の隙間を緻密に埋めてしまうため、ガスの拡散を妨げるものと考えられる。しかし、本発明の光触媒層は加水分解性シリコーンを含まないか、含むとしても光触媒粒子、無機酸化物粒子、および加水分解性シリコーンの合計量100質量部に対して10質量部未満としているため、粒子間の隙間を十分に確保することができると考えられる。そして、そのような隙間によってNOxやSOx等の有害ガスが光触媒層中に拡散しやすい構造が実現され、その結果、有害ガスが光触媒粒子と効率良く接触して光触媒活性により分解されるのでないかと考えられる。
銅元素および銀元素は、金属および/または金属化合物として存在する。銅元素に対する銀元素の割合は、各々AgO、およびCuOに換算して、AgO/CuOとして質量比で0/100<[AgO/CuO]≦60/40が好ましく、より好ましくは10/90以上60/40以下であり、さらに好ましくは10/90以上55/45以下である。また、銅元素および銀元素は、AgOおよびCuOに換算した合計量が光触媒粒子に対して0.5〜5質量%添加されたものが好ましい。銅元素に対する銀元素の割合がこのような範囲であると、銅元素や銀元素をそれぞれ単独で添加した光触媒層に比べて、紫外線などの光触媒を励起可能な光の照射下で、抗カビ性や防藻性が極めて良好な光触媒層を得ることができる。
光触媒と銅化合物と銀化合物が共存した状況で適当量の紫外線が照射された場合、抗カビ性に直接作用するのは光触媒と銅化合物であると考えられる。銀化合物は光触媒によって発生した電子によって還元され、電荷分離効率の向上に寄与すると考えられる。光触媒層中のAgO/CuO比率に最適値があるのは、比率が小さすぎる場合、銀化合物の共存による特異的な効果も小さくなるため、逆に大きすぎる場合は、光触媒層中の銅化合物の相対的な濃度が小さくなり、抗カビ性が小さくなること、さらには、銀による着色の影響が無視できなくなるためであると考えられる。
同時に、光触媒粒子の配合割合が無機酸化物粒子よりもかなり少ないことで、光触媒粒子の基材との直接的な接触を最小限に抑えることができ、それにより基材(特に有機基材)を浸食しにくくなるものと考えられる。また、光触媒自体による紫外線吸収によって基材に到達する紫外線量を低減して紫外線による基材の損傷も低減できると考えられる。その結果、本発明の光触媒層は少なくともその表面が有機材料で形成された基材に対しても、基材保護のための中間層を介在させることなく、直接塗布して形成することができる。したがって、中間層の形成が不要となる分、光触媒塗装体の製造に要する時間やコストを削減できる。また、本発明の光触媒層は界面活性剤を含まないで構成されてよいが、それを含む場合であっても光触媒粒子、無機酸化物粒子、および加水分解性シリコーンの合計量100質量部に対して10質量部未満とすることで、界面活性剤を多量に含むことによる膜強度や有害ガス分解性の機能低下が防止されるものと考えられる。そして、上記したような種々の現象が同時に起こることで、基材(特に有機基材)に対する浸食を防止しながら、耐候性、有害ガス分解性、および所望の各種被膜特性(紫外線吸収性、透明性、膜強度等)に優れた光触媒塗装体が実現されるものと考えられる。
基材
本発明に用いる基材は、その上に光触媒層を形成可能な材料であれば無機材料、有機材料を問わず種々の材料であってよく、その形状も限定されない。材料の観点からみた基材の好ましい例としては、金属、セラミック、ガラス、プラスチック、ゴム、石、セメント、コンクリ−ト、繊維、布帛、木、紙、それらの組合せ、それらの積層体、それらの表面に少なくとも一層の被膜を有するものが挙げられる。用途の観点からみた基材の好ましい例としては、建材、建物外装、窓枠、窓ガラス、構造部材、乗物の外装及び塗装、機械装置や物品の外装、防塵カバー及び塗装、交通標識、各種表示装置、広告塔、道路用遮音壁、鉄道用遮音壁、橋梁、ガードレ−ルの外装及び塗装、トンネル内装及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー、ビニールハウス、車両用照明灯のカバー、屋外用照明器具、台及び上記物品表面に貼着させるためのフィルム、シート、シール等といった外装材全般が挙げられる。
本発明の好ましい態様によれば、基材として、少なくともその表面が有機材料で形成された基材を用いることができ、基材全体が有機材料で構成されているもの、無機材料で構成された基材の表面が有機材料で被覆されたもの(例えば化粧板)のいずれをも包含する。本発明の光触媒層によれば、光触媒活性により損傷を受けやすい有機材料に対しても浸食しにくいことから、中間層を介在させることなく、光触媒層という一つの層で優れた機能を有する光触媒塗装体を製造することができる。その結果、中間層の形成が不要となる分、光触媒塗装体の製造に要する時間やコストを削減できる。
光触媒層およびそのための光触媒コーティング液
本発明の光触媒層は、1質量部以上20質量部未満の光触媒粒子と、70質量部を超え99質量部以下の無機酸化物粒子と、銅元素と、銀元素と、0質量部以上10質量部未満の加水分解性シリコーンとを、光触媒粒子、無機酸化物粒子、および加水分解性シリコーンの合計量が100質量部となるように含んでなる。そして、この光触媒層は上記構成成分を上記質量比率で含んでなる溶質が溶媒中に分散されてなる光触媒コーティング液を基材上に塗布することによって形成されることができる。
本発明の好ましい態様によれば、光触媒層は0.5μm以上3.0μm以下の膜厚を有するのが好ましく、より好ましくは1.0μm以上2.0μm以下である。このような範囲内であると、光触媒層と基材の界面に到達する紫外線が充分に減衰されるので耐候性が向上する。また、無機酸化物粒子よりも含有比率が低い光触媒粒子を膜厚方向に増加させることができるので、有害ガス分解性も向上する。さらには、紫外線吸収性、透明性、膜強度においても優れた特性が得られる。
本発明に用いる光触媒粒子は、光触媒活性を有する粒子であれば特に限定されず、あらゆる種類の光触媒の粒子が使用可能である。光触媒粒子の例としては、酸化チタン(TiO)、ZnO、SnO、SrTiO、WO、Bi、Feのような金属酸化物の粒子が挙げられ、好ましくは酸化チタン粒子、より好ましくはアナターゼ型酸化チタン粒子である。酸化チタンは、無害で、化学的にも安定で、かつ、安価に入手可能である。また、酸化チタンはバンドギャップエネルギーが高く、従って、光励起には紫外線を必要とし、光励起の過程で可視光を吸収しないので、補色成分による発色が起こらない。酸化チタンは、粉末状、ゾル状、溶液状など様々な形態で入手可能であるが、光触媒活性を示すものであれば、いずれの形態でも使用可能である。
本発明の好ましい態様によれば、光触媒粒子が10nm以上100nm以下の平均粒径を有するのが好ましく、より好ましくは10nm以上60nm以下である。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。粒子の形状としては真球が最も好ましいが、略円形や楕円形でも好ましく、その場合の粒子の長さは((長径+短径)/2)として略算出される。この範囲内であると、耐候性、有害ガス分解性、および所望の各種被膜特性(紫外線吸収性、透明性、膜強度等)が効率良く発揮される。
本発明の光触媒層およびコーティング液における光触媒粒子の含有量は、光触媒粒子、無機酸化物粒子、および加水分解性シリコーンの合計量100質量部に対して、1質量部以上20質量部未満とし、好ましくは5質量部以上15質量部以下であり、より好ましくは5質量部以上10質量部以下である。このように光触媒粒子の配合割合を少なくすることで、光触媒粒子の基材との直接的な接触をできるだけ少なくして、基材(特に有機材料)に対する浸食を防止することができ、耐候性も向上すると考えられる。それにもかかわらず、有害ガス分解性や紫外線吸収性といった光触媒活性に起因する機能も十分に発揮させることができる。
本発明の光触媒層およびコーティング液は、高い光触媒能を発現するために、銅元素および銀元素を含んでなる。これらは、金属および/またはその金属からなる金属化合物を光触媒層および光触媒コーティング液に添加することができる。この添加は、前記金属または金属化合物を光触媒コーティング液に混合する方法、光触媒粒子または光触媒層に金属化合物を担持する方法のいずれの方法によっても行うことができる。
本発明に用いる無機酸化物粒子は、光触媒粒子と共に層を形成可能な無機酸化物の粒子であれば特に限定されず、あらゆる種類の無機酸化物の粒子が使用可能である。そのような無機酸化物粒子の例としては、シリカ、アルミナ、ジルコニア、セリア、イットリア、ボロニア、マグネシア、カルシア、フェライト、無定型チタニア、ハフニア等の単一酸化物の粒子;およびチタン酸バリウム、ケイ酸カルシウム等の複合酸化物の粒子が挙げられ、より好ましくはシリカ粒子である。これら無機酸化物粒子は、水を分散媒とした水性コロイド;またはエチルアルコール、イソプロピルアルコール、もしくはエチレングリコールなどの親水性溶媒にコロイド状に分散させたオルガノゾルの形態であるのが好ましく、特に好ましくはコロイダルシリカである。
本発明の好ましい態様によれば、前記無機酸化物粒子が5nmを超え40nm未満、より好ましくは5nmを超え30nm以下の平均粒径を有し、さらに好ましくは10nm以上30nm以下である。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。粒子の形状としては真球が最も好ましいが、略円形や楕円形でも好ましく、その場合の粒子の長さは((長径+短径)/2)として略算出される。この範囲内であると、耐候性、有害ガス分解性、および所望の各種被膜特性(紫外線吸収性、透明性、膜強度等)が効率良く発揮される。また、透明で密着性が良好な光触媒層を得ることができる。
本発明の光触媒層およびコーティング液における無機酸化物粒子の含有量は、光触媒粒子、無機酸化物粒子、および加水分解性シリコーンの合計量100質量部に対して、70質量部を超え99質量部以下であり、好ましくは80質量部以上95質量部以下であり、より好ましくは85質量部以上95質量部以下、さらに好ましくは90質量部以上95質量部以下である。
本発明の光触媒層は加水分解性シリコーンを実質的に含まないのが好ましく、より好ましくは全く含まない。加水分解性シリコーンとは、アルコキシ基を有するオルガノシロキサンおよび/またはその部分加水分解縮合物の総称である。しかしながら、本発明の有害ガス分解性を確保できる程度であれば加水分解性シリコーンを任意成分として含有することは許容される。したがって、加水分解性シリコーンの含有量は、シリカ(SiO)換算で、光触媒粒子、無機酸化物粒子、および加水分解性シリコーンの合計量100質量部に対して、0質量部以上10質量部未満であり、好ましくは5質量部以下、最も好ましくは0質量部である。加水分解性シリコーンとしては、4官能シリコーン化合物がよく使用され、例えば、エチルシリケート40(オリゴマー、Rがエチル基)、エチルシリケート48(オリゴマー、Rがエチル基)メチルシリケート51(オリゴマー、Rがメチル基)(いずれもコルコート社製)の形で市販されている。
光触媒コーティング液には任意成分として界面活性剤を含んでよい。本発明に用いる界面活性剤は、任意成分として、光触媒粒子、無機酸化物粒子、および加水分解性シリコーンの合計量100質量部に対して、0質量部以上10質量部未満光触媒層に含有されていてもよく、好ましくは0質量部以上8質量部以下であり、より好ましくは0以上6質量部以下である。界面活性剤の効果の1つとして基材へのレベリング性があり、コーティング液と基材との組合せによって界面活性剤の量を適宜決めれば良く、その際の下限値は0.1質量部とされてよい。この界面活性剤は光触媒コーティング液の濡れ性を改善するために有効な成分であるが、塗布後に形成される光触媒層にあってはもはや本発明の光触媒塗装体の効果には寄与しない不可避不純物に相当する。したがって、光触媒コーティング液に要求される濡れ性に応じて使用されてよく、濡れ性を問題にしないのであれば界面活性剤は実質的にあるいは一切含まなくてよい。使用すべき界面活性剤は、光触媒や無機酸化物粒子の分散安定性、中間層上に塗布した際の濡れ性を勘案し適宜選択されることができるが、非イオン性界面活性剤が好ましく、より好ましくは、エーテル型非イオン性界面活性剤、エステル型非イオン性界面活性剤、ポリアルキレングリコール非イオン性界面活性剤、フッ素系非イオン性界面活性剤、シリコン系非イオン性界面活性剤が挙げられる。
本発明の光触媒コーティング液は、光触媒粒子、無機酸化物粒子、銅元素、銀元素、および所望により加水分解性シリコーンおよび界面活性剤を上記特定の配合比率で溶媒中に分散させることにより得ることができる。溶媒としては、上記構成成分を適切に分散可能なあらゆる溶媒が使用可能であり、水および/または有機溶媒であってよい。また、本発明の光触媒コーティング液の固形分濃度は特に限定されないが、1〜10質量%とするのが塗布し易い点で好ましい。なお、光触媒コーティング組成物中の構成成分の分析は、コーティング液を限外ろ過によって粒子成分と濾液に分離し、それぞれを赤外分光分析、ゲルパーミエーションクロマトグラフィー、蛍光X線分光分析などで分析し、スペクトルを解析することによって評価することができる。
製造方法
本発明の光触媒塗装体は、本発明の光触媒コーティング液を基材上に塗布することにより簡単に製造することができる。光触媒層の塗装方法は、前記液剤を刷毛塗り、ローラー、スプレー、ロールコーター、フローコーター、ディップコート、流し塗り、スクリーン印刷、電着、蒸着等、一般に広く行われている方法を利用できる。コーティング液の基材への塗布後は、常温乾燥させればよく、あるいは必要に応じて加熱乾燥してもよいが、焼結が進むまで加熱すると粒子間の空隙が減少し十分な光触媒活性を得ることができなくなる。本発明において、乾燥温度は10℃以上500℃以下であり、基材の種類に応じて上限値は適宜設定されて良い。基材の少なくとも一部に樹脂が含まれる場合、樹脂の耐熱温度等を考慮して好ましい乾燥温度は10℃以上200℃以下である。このように本発明の光触媒塗装体は、本発明の光触媒層によれば、光触媒活性により損傷を受けやすい有機材料に対しても浸食しにくいことから、中間層を介在させることなく、光触媒層という一つの層で優れた機能を有する光触媒塗装体を製造することができる。その結果、中間層の形成が不要となる分、光触媒塗装体の製造に要する時間やコストを削減できる。
本発明を以下の例に基づいて具体的に説明するが、本発明はこれらの例に限定されるものではない。
なお、以下の例において光触媒コーティング液の作製に使用した原料は以下の通りである。
光触媒粒子
・チタニア水分散体(平均粒径:42nm、塩基性)(例1〜11、例14〜28、例34で使用)
・Ag・Cu含有チタニア水分散体:銀化合物および銅化合物を、AgOおよびCuOに換算した合計量がチタニアに対して下記質量%で添加された光触媒性チタニア水分散体(平均粒径:48nm、塩基性、)
・0.5質量%(例29〜33、例35で使用)
・3質量%(例12〜13、例36、例38、39で使用)
・5質量%(例37で使用)
無機酸化物粒子
・水分散型コロイダルシリカ(平均粒径:26nm、塩基性)(例1〜21、例23、例25〜39で使用)
・水分散型コロイダルシリカ(平均粒径:14nm、塩基性)(例22で使用)
・水分散型コロイダルシリカ(平均粒径:5nm、塩基性)(例24で使用)
加水分解性シリコーン
・テトラメトキシシランの重縮合物(多摩化学工業 社製、商品名:Mシリケート51)
界面活性剤
・ポリエーテル変性シリコーン系界面活性剤(信越化学工業 社製、商品名:シリコーン変性ポリエーテル(KF−643))
例1〜7:耐候性の評価(参考)
光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材として着色有機塗装体を用意した。この着色有機塗装体は、フロート板ガラス上にカーボンブラック粉末を添加した汎用アクリルシリコーンを塗布して、十分に乾燥および硬化させたものである。一方、光触媒としてのチタニア水分散体と、無機酸化物としての水分散型コロイダルシリカと、溶媒として水と、ポリエーテル変性シリコーン系界面活性剤とを表1に示される配合比で混合して、光触媒コーティング液を得た。なお、この光触媒コーティング液は加水分解性シリコーンを含まない。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。
得られた光触媒コーティング液をあらかじめ50℃に加熱した上記着色有機塗装体上にスプレー塗布し、120℃で5分乾燥した。こうして、光触媒層を形成させて、光触媒塗装体を得た。走査型電子顕微鏡観察により光触媒層の膜厚を測定したところ、例1〜7のいずれの例においても約0.5μmであった。
こうして得られた50×100mmの大きさの光触媒塗装体について、以下の通り耐候性試験を行った。光触媒塗装体をJIS B7753に規定されるサンシャインウエザオメーター(スガ試験機製、S−300C)に投入した。300hr経過後に試験片を取り出し、日本電色製の測色差計ZE2000にて、促進試験前後で色差を測定し、そのΔb値を比較することで変色の度合いを評価した。
得られた結果は表1に示される通りであった。ここで、表中のGはほとんど変色しなかったことを、NGはΔb値がプラス側(黄変側)に推移したことを表す。表1に示されるように、光触媒層中の光触媒の含有量を20質量部未満にすることによって、有機基材上に光触媒層を塗装しても充分な耐候性を有することが分かった。
Figure 2008307526
例8〜11:有害ガス分解性の評価(参考)
光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材として着色有機塗装体を用意した。この着色有機塗装体は、フロート板ガラス上にカーボンブラック粉末を添加した汎用アクリルシリコーンを塗布して、十分に乾燥および硬化させたものである。一方、光触媒としてのチタニア水分散体と、無機酸化物としての水分散型コロイダルシリカと、溶媒として水と、ポリエーテル変性シリコーン系界面活性剤と、加水分解性シリコーンとしてのテトラメトキシシランの重縮合物とを表2に示される配合比で混合して、光触媒コーティング液を得た。なお、例8および例10の光触媒コーティング液は加水分解性シリコーンを含まない。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。
得られた光触媒コーティング液をあらかじめ50℃に加熱した上記着色有機塗装体上にスプレー塗布し、120℃で5分乾燥した。こうして、光触媒層を形成させて、光触媒塗装体を得た。走査型電子顕微鏡観察により光触媒層の膜厚(μm)を測定したところ、いずれの例においても約1μmであった。
こうして得られた50×100mmの大きさの光触媒塗装体について、以下の通りガス分解性試験を行った。光触媒塗装体に前処理として1mW/cmのBLB光で12hr以上照射した。JIS R1701に記載の反応容器内に塗装体サンプルを1枚セットした。25℃、50%RHに調整した空気に約1000ppbになるようにNOガスを混合し、遮光した反応容器内に20分導入した。その後ガスを導入したままで3mW/cmに調整したBLB光を20分間照射した。その後ガスを導入した状態で再度反応容器を遮光した。NOx除去量は、BLB光照射前後でのNO、NO濃度から下記の式に従って計算した。
NOx除去量=[NO(照射後)−NO(照射時)]−[NO(照射時)−NO(照射後)]
得られた結果は表2に示される通りであった。ここで、表中のGはNOx除去量が400ppb以上、NGはNOx除去量が10ppb以下を表す。表2に示されるように、光触媒層を光触媒粒子と無機酸化物から構成し、実質的に加水分解性シリコーンを含まないことにより、良好なNOx分解性を示した。一方、加水分解性シリコーンが10質量部入ったものはNOx分解性が喪失していることが分かった。
Figure 2008307526
例12〜21:直線透過率および紫外線遮蔽率の測定
光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材として550nmの波長の透過率が94%のフロート板ガラスを用意した。一方、光触媒としてのチタニア水分散体と、無機酸化物としての水分散型コロイダルシリカと、溶媒として水と、光触媒粒子および無機酸化物粒子の合計量100質量部に対して6質量部のポリエーテル変性シリコーン系界面活性剤とを表3に示される配合比で混合して、光触媒コーティング液を得た。この光触媒コーティング液は加水分解性シリコーンを含まない。なお、光触媒は例12、13においてはAg・Cu含有チタニア水分散体を、例14〜21においては銀化合物および銅化合物を含まないチタニア水分散体を使用した。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。
得られた光触媒コーティング液をあらかじめ50℃に加熱した上記フロート板ガラス上にスプレー塗布し、120℃で5分乾燥した。こうして、光触媒層を形成させて、光触媒塗装体を得た。走査型電子顕微鏡観察により光触媒層の膜厚(μm)を測定したところ、表3に示される値であった。
こうして得られた50×100mmの大きさの光触媒塗装体について、以下の通り直線(550nm)透過率および紫外線(300nm)遮蔽率の測定を紫外・可視・近赤外分光光度計(島津製作所製 UV−3150)を用いて行った。
得られた結果は表3に示される通りであった。ここで、直線透過率および紫外線遮蔽率の評価基準は以下の通りとした。
<直線透過率>
A:直線(550nm)透過率が97%以上
B:直線(550nm)透過率が95%以上97%未満
<紫外線遮蔽率>
a:紫外線(300nm)遮蔽率が80%以上
b:紫外線(300nm)遮蔽率が30%以上80%未満
c:紫外線(300nm)遮蔽率が30%未満
表3に示されるように、光触媒層中の光触媒の含有量が5質量部〜15質量部では膜厚を3μm以下にすることで光触媒にAg・Cu含有チタニア水分散体を使用しても、有機物の劣化に起因する紫外線を十分に遮蔽し、かつ透明性も確保できることが分かった。
Figure 2008307526
例22〜24:ヘイズの測定(参考
光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材として550nmの波長の透過率が94%のフロート板ガラスを用いた。一方、光触媒としてのチタニア水分散体と、表4に示される各種平均粒径の無機酸化物としての水分散型コロイダルシリカと、溶媒として水と、ポリエーテル変性シリコーン系界面活性剤とを表4に示される配合比で混合して、光触媒コーティング液を得た。したがって、この光触媒コーティング液は加水分解性シリコーンを含まない。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。
得られた光触媒コーティング液を先述の基材上に1000rpmで10秒間スピンコートし、120℃で5分乾燥し光触媒層を得た。こうして得られた50×100mmの大きさの光触媒塗装体のヘイズをヘイズ計(Gardner製 haze−gard plus)を用いて測定した。
得られた結果は表4に示される通りであった。表4に示されるように、例22、23の光触媒塗装体は、ヘイズ値を1%未満に抑えることができ透明性が確保できることが分かった。
Figure 2008307526
例25〜28:界面活性剤の添加による影響の評価(参考)
光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材として着色有機塗装体を用意した。この着色有機塗装体は、フロート板ガラス上にカーボンブラック粉末を添加した汎用アクリルシリコーンを塗布して、十分に乾燥および硬化させたものである。一方、光触媒としてのチタニア水分散体と、無機酸化物としての水分散型コロイダルシリカと、溶媒として水と、ポリエーテル変性シリコーン系界面活性剤とを表5に示される配合比で混合して、光触媒コーティング液を得た。なお、この光触媒コーティング液は加水分解性シリコーンを含まない。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。
得られた光触媒コーティング液をあらかじめ50〜60℃に加熱した上記着色有機塗装体上にスプレー塗布し、120℃で5分乾燥した。こうして、光触媒層を形成させて、光触媒塗装体を得た。走査型電子顕微鏡観察により光触媒層の膜厚(μm)を測定したところ、例25〜28のいずれの例においても約1μmであった。
こうして得られた50×100mmの大きさの光触媒塗装体について、以下の通りガス分解性試験を行った。光触媒体に前処理として1mW/cmのBLB光で12hr以上照射した。JIS R1701に記載の反応容器内に塗装体サンプルを1枚セットした。25℃、50%RHに調整した空気に約1000ppbになるようにNOガスを混合し、遮光した反応容器内に20分導入した。その後ガスを導入したままで3mW/cmに調整したBLB光を20分間照射した。その後ガスを導入した状態で再度反応容器を遮光した。NOx除去量は、BLB光照射前後でのNO、NO濃度から下記の式に従って計算した。
NOx除去量=[NO(照射後)−NO(照射時)]−[NO(照射時)−NO(照射後)]
得られた結果は表5に示される通りであった。ここで、表中のNOx除去率とは例26の除去量を100として相対的に示している。表5に示されるように、界面活性剤の添加量を多くすることで除去率が低下することが分かった。
Figure 2008307526
例29〜34:銀化合物および銅化合物による抗カビ性の評価−1
光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材として着色有機塗装体を用意した。この着色有機塗装体は、フロート板ガラス上に白色顔料を添加した汎用アクリルシリコーンを塗布して、十分に乾燥および硬化させたものである。一方、光触媒としてのAg・Cu含有チタニア水分散体と、平均粒径26nmの無機酸化物としての水分散型コロイダルシリカと、溶媒として水と、光触媒粒子および無機酸化物粒子の合計量100質量部に対して6質量部のポリエーテル変性シリコーン系界面活性剤とを表6に示される配合比で混合して、光触媒コーティング液を得た。この光触媒コーティング液は加水分解性シリコーンを含まない。なお、例29〜33においては、銀化合物と銅化合物の配合比を調整(例32は全て銅化合物、例33は全て銀化合物)したAg・Cu含有チタニア水分散体を使用した。また、例34においては銀化合物および銅化合物を含まないチタニア水分散体を使用した。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。
得られた光触媒コーティング液をあらかじめ50℃に加熱した上記着色有機塗装体上にスプレー塗布し、120℃で5分乾燥した。こうして、光触媒層を形成させて、光触媒塗装体を得た。走査型電子顕微鏡観察により光触媒層の膜厚(μm)を測定したところ、例29〜34のいずれの例においても約1μmであった。これら光触媒塗装体の前処理として1mW/cmのBLB光を24時間照射したのち、下記した抗カビ性試験を行った。
こうして得られた50×50mmの大きさの光触媒塗装体について、以下の通り抗カビ性の評価を行った。試験菌としてポテトデキストロース寒天培地で、25℃で7〜14日前培養したAspergillus niger(NBRC6341)を用い、これを0.005重量%のスルホコハク酸ジオクチルナトリウムを含む生理食塩水中に分散させ胞子懸濁液を作成した。
上記方法にて得られた光触媒塗装体に、前記胞子懸濁液を、試験片1枚あたり4〜6×10個/mLになるよう滴下し、抗カビ試験片とした。この試験片に、JIS R1702(2006)に記載のフィルム密着法に準じ、密着フィルムをかぶせ、保湿可能なシャーレ内に設置し、保湿ガラスを載せて試験に用いた。
前記試験片をシャーレごとBLB光照射下に設置し、光触媒塗装体面で0.4mW/cmになるようBLB光を24時間照射した。
24時間照射後、胞子懸濁液を回収し、ポテトデキストロース寒天培地で培養し、生残菌数を計測した。抗カビ性は、例29〜34によって得られた生残菌数の対数値と光触媒未加工の試験体の生残菌数の対数値の差を求めることによって得た。
試験結果を表6に示した。ここで、表中の抗カビ活性値とは例29〜34によって得られた生残菌数の対数値と光触媒未加工の試験体の生残菌数の対数値との差の値であり、数値が大きいほど抗カビ性が高いことを示している。抗カビ活性値が、Ag・Cu含有チタニア水分散体を用いて作製した例において、銀化合物のみや銅化合物のみを添加した例に比べて高い値となっており、銀化合物と銅化合物とを混合することで高い抗カビ性能を得ることが確認できた。
Figure 2008307526
例35〜37:銀化合物および銅化合物による抗カビ性の評価−2
光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材として着色有機塗装体を用意した。この着色有機塗装体は、フロート板ガラス上に白色顔料を添加した汎用アクリルシリコーンを塗布して、十分に乾燥および硬化させたものである。一方、光触媒としてのAg・Cu含有チタニア水分散体と、平均粒径26nmの無機酸化物としての水分散型コロイダルシリカと、溶媒として水と、光触媒粒子および無機酸化物粒子の合計量100質量部に対して6質量部のポリエーテル変性シリコーン系界面活性剤とを表7に示される配合比で混合して、光触媒コーティング液を得た。この光触媒コーティング液は加水分解性シリコーンを含まない。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。
得られた光触媒コーティング液をあらかじめ50℃に加熱した上記着色有機塗装体上にスプレー塗布し、120℃で5分乾燥した。こうして、光触媒層を形成させて、光触媒塗装体を得た。走査型電子顕微鏡観察により光触媒層の膜厚(μm)を測定したところ、例35〜37のいずれの例においても約1μmであった。これら光触媒塗装体の前処理として1mW/cmのBLB光を24時間照射したのち、下記した抗カビ性試験を行った。
こうして得られた50×50mmの大きさの光触媒塗装体について、例29〜34と同様の方法にて抗カビ性の評価を行った。
24時間照射後、胞子懸濁液を回収し、ポテトデキストロース寒天培地で培養し、生残菌数を計測した。抗カビ性は、例35〜37によって得られた生残菌数の対数値と光触媒未加工の試験体の生残菌数の対数値の差を求めることによって得た。
試験結果を表7に示した。ここで、表中の抗カビ活性値とは例35〜37によって得られた生残菌数の対数値と光触媒未加工の試験体の生残菌数の対数値との差の値であり、数値が大きいほど抗カビ性が高いことを示している。酸化チタン粒子に対して[AgO+CuO]量が0.5質量%、3質量%および5質量%のいずれにおいても、高い抗カビ性能を得ることが確認できた。
Figure 2008307526
例38:有害ガス分解性の評価
光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材として着色有機塗装体を用意した。この着色有機塗装体は、フロート板ガラス上にカーボンブラック粉末を添加した汎用アクリルシリコーンを塗布して、十分に乾燥および硬化させたものである。一方、光触媒としてのAg・Cu含有チタニア水分散体と、平均粒径26nmの無機酸化物としての水分散型コロイダルシリカと、溶媒として水と、光触媒粒子および無機酸化物粒子の合計量100質量部に対して6質量部のポリエーテル変性シリコーン系界面活性剤とを表8に示される配合比で混合して、光触媒コーティング液を得た。この光触媒コーティング液は加水分解性シリコーンを含まない。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。
得られた光触媒コーティング液をあらかじめ50℃に加熱した上記着色有機塗装体上にスプレー塗布し、120℃で5分乾燥した。こうして、光触媒層を形成させて、光触媒塗装体を得た。走査型電子顕微鏡観察により光触媒層の膜厚(μm)を測定したところ、約1μmであった。
こうして得られた50×100mmの大きさの光触媒塗装体について、例8〜11と同様の方法にてガス分解性試験を行った。なお、例8の試料も比較として同様の測定を行った。
得られた結果は表8に示される通りであった。ここで、表中のNOx除去率とは例8の除去量を100として相対的に示している。表8に示されるように、光触媒としてのAg・Cu含有チタニア水分散体を用いても十分な除去率が得られることが分かった。
Figure 2008307526
例39:耐候性の評価
光触媒層を備えた光触媒塗装体を以下の通り製造した。まず、基材として着色有機塗装体を用意した。この着色有機塗装体は、フロート板ガラス上にカーボンブラック粉末を添加した汎用アクリルシリコーンを塗布して、十分に乾燥および硬化させたものである。一方、光触媒としてのAg・Cu含有チタニア水分散体と、平均粒径26nmの無機酸化物としての水分散型コロイダルシリカと、溶媒として水と、光触媒粒子および無機酸化物粒子の合計量100質量部に対して6質量部のポリエーテル変性シリコーン系界面活性剤とを表9に示される配合比で混合して、光触媒コーティング液を得た。この光触媒コーティング液は加水分解性シリコーンを含まない。光触媒コーティング液中の光触媒および無機酸化物の合計の固形分濃度は5.5質量%とした。
得られた光触媒コーティング液をあらかじめ50℃に加熱した上記着色有機塗装体上にスプレー塗布し、120℃で5分乾燥した。こうして、光触媒層を形成させて、光触媒塗装体を得た。走査型電子顕微鏡観察により光触媒層の膜厚を測定したところ、約0.5μmであった。
こうして得られた50×100mmの大きさの光触媒塗装体について、例1〜7と同様の方法にて耐候性試験を行った。
得られた結果は表9に示される通りであった。ここで、表中のGはほとんど変色しなかったことを表す。表9に示されるように、光触媒としてのAg・Cu含有チタニア水分散体を用いても、有機基材上に光触媒層を塗装しても充分な耐候性を有することが分かった。
Figure 2008307526
例40:塗膜密着性の評価
光触媒層を備えた光触媒塗装体を例38と同様にして製造した。走査型電子顕微鏡観察により光触媒層の膜厚を測定したところ、約0.5μmであった。
こうして得られた50×100mmの大きさの光触媒塗装体について、以下の通り塗膜密着性の評価を行った。光触媒塗装体を20±5℃の水酸化カルシウム飽和溶液中に浸漬した。7日間経過後に取り出し、室内で表面を乾燥させた後、表面にセロハンテープを貼付け、上から擦りつける様に押さえて完全に密着させた。テープの一方の端を持って、表面に対して垂直方向に瞬間的に引き剥がした後、塗膜の表面をデジタルマイクロスコープで観察した結果、剥離が見られず充分な密着性を有することが分かった。

Claims (19)

  1. 基材と、該基材上に設けられる光触媒層とを備えた、光触媒塗装体であって、
    前記光触媒層が、
    1質量部以上20質量部未満の光触媒粒子と、
    70質量部を超え99質量部以下の無機酸化物粒子と、
    0質量部以上10質量部未満の加水分解性シリコーンと
    を、前記光触媒粒子、前記無機酸化物粒子および前記加水分解性シリコーンの合計量が100質量部となるように含み、さらに銅元素および銀元素を含んでなる、光触媒塗装体。
  2. 前記光触媒層が0.5μm以上3.0μm以下の膜厚を有する、請求項1に記載の光触媒塗装体。
  3. 前記光触媒粒子、前記無機酸化物粒子および前記加水分解性シリコーンの合計量100質量部に対して、界面活性剤を0質量部以上10質量部未満含有する、請求項1または2に記載の光触媒塗装体。
  4. 前記光触媒層が、前記光触媒粒子を5質量部以上15質量部以下含有する、請求項1〜3のいずれか一項に記載の光触媒塗装体。
  5. 前記光触媒粒子が酸化チタン粒子である、請求項1〜4のいずれか一項に記載の光触媒塗装体。
  6. 前記無機酸化物粒子が、シリカ粒子である、請求項1〜5のいずれか一項に記載の光触媒塗装体。
  7. 前記無機酸化物が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、5nmを超え40nm未満の個数平均粒径を有する、請求項1〜6のいずれか一項に記載の光触媒塗装体。
  8. 前記基材が、少なくともその表面が有機材料で形成された基材である、請求項1〜7のいずれか一項に記載の光触媒塗装体。
  9. 前記光触媒層が前記基材上に直接塗布されてなる、請求項8に記載の光触媒塗装体。
  10. 外装材として用いられる、請求項1〜9のいずれか一項に記載の光触媒塗装体。
  11. 請求項1〜10のいずれか一項に記載の光触媒塗装体の製造に用いられる光触媒コーティング液であって、溶媒中に、
    1質量部以上20質量部未満の光触媒粒子と、
    70質量部を超え99質量部以下の無機酸化物粒子と、
    0質量部以上10質量部未満の加水分解性シリコーンと、
    を、前記光触媒粒子、前記無機酸化物粒子および前記加水分解性シリコーンの合計量が100質量部となるように含み、さらに銅元素および銀元素を含んでなる、光触媒コーティング液。
  12. 前記光触媒粒子、前記無機酸化物粒子および前記加水分解性シリコーンの合計量100質量部に対して、界面活性剤を0質量部以上10質量部未満含有する、請求項11に記載の光触媒コーティング液。
  13. 前記光触媒層が、前記光触媒粒子を5質量部以上15質量部以下含有する、請求項11または12に記載の光触媒コーティング液。
  14. 前記光触媒粒子が酸化チタン粒子である、請求項11〜13のいずれか一項に記載の光触媒コーティング液。
  15. 前記無機酸化物粒子が、シリカ粒子である、請求項11〜14のいずれか一項に記載の光触媒コーティング液。
  16. 前記無機酸化物が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、5nmを超え40nm未満の個数平均粒径を有する、請求項11〜15のいずれか一項に記載の光触媒コーティング液。
  17. 少なくともその表面が有機材料で形成された基材へのコーティングに用いられる、請求項11〜16のいずれか一項に記載の光触媒コーティング液。
  18. 前記基材上に直接塗布されるための、請求項17に記載の光触媒コーティング液。
  19. 外装材用のコーティングのための、請求項11〜18のいずれか一項に記載の光触媒コーティング液。
JP2008088790A 2007-03-30 2008-03-28 光触媒塗装体およびそのための光触媒コーティング液 Pending JP2008307526A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088790A JP2008307526A (ja) 2007-03-30 2008-03-28 光触媒塗装体およびそのための光触媒コーティング液

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007095464 2007-03-30
JP2007128519 2007-05-14
JP2008088790A JP2008307526A (ja) 2007-03-30 2008-03-28 光触媒塗装体およびそのための光触媒コーティング液

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008323083A Division JP2009119462A (ja) 2007-03-30 2008-12-19 光触媒塗装体およびそのための光触媒コーティング液

Publications (2)

Publication Number Publication Date
JP2008307526A true JP2008307526A (ja) 2008-12-25
JP2008307526A5 JP2008307526A5 (ja) 2009-02-12

Family

ID=40235625

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008088790A Pending JP2008307526A (ja) 2007-03-30 2008-03-28 光触媒塗装体およびそのための光触媒コーティング液
JP2008323083A Pending JP2009119462A (ja) 2007-03-30 2008-12-19 光触媒塗装体およびそのための光触媒コーティング液

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008323083A Pending JP2009119462A (ja) 2007-03-30 2008-12-19 光触媒塗装体およびそのための光触媒コーティング液

Country Status (1)

Country Link
JP (2) JP2008307526A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184958A (ja) * 2009-02-10 2010-08-26 Fukuokaken Sukoyaka Kenko Jigyodan 被膜組成物
JPWO2016047568A1 (ja) * 2014-09-22 2017-05-25 富士フイルム株式会社 抗菌シート、抗菌コート、積層体、抗菌液

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2793773A1 (en) * 2010-03-19 2011-09-22 Evonik Roehm Gmbh Coated sheet-like plastic material with reduced tendency to colonization by algae, process for the in-line production thereof and use
CN102600821A (zh) * 2012-03-14 2012-07-25 淮阴工学院 二氧化钛/凹凸棒石粘土光催化剂的制备方法及负载光催化剂的涂料
JP2016107263A (ja) * 2014-11-28 2016-06-20 有限会社 セイケン九州 防水材

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138015A (ja) * 1997-11-10 1999-05-25 Toto Ltd 光触媒性親水性組成物
JPH11140432A (ja) * 1997-11-10 1999-05-25 Toto Ltd 光触媒性親水性組成物
JPH11169726A (ja) * 1997-08-28 1999-06-29 Toto Ltd 光触媒作用を有する機能材及び複合機能材とそれらの製造方法
WO2000006300A1 (en) * 1998-07-30 2000-02-10 Toto Ltd. Method for producing high-performance material having photocatalytic function and device therefor
JP2000051708A (ja) * 1998-08-10 2000-02-22 Showa Alum Corp 光触媒皮膜およびその形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169726A (ja) * 1997-08-28 1999-06-29 Toto Ltd 光触媒作用を有する機能材及び複合機能材とそれらの製造方法
JPH11138015A (ja) * 1997-11-10 1999-05-25 Toto Ltd 光触媒性親水性組成物
JPH11140432A (ja) * 1997-11-10 1999-05-25 Toto Ltd 光触媒性親水性組成物
WO2000006300A1 (en) * 1998-07-30 2000-02-10 Toto Ltd. Method for producing high-performance material having photocatalytic function and device therefor
JP2000051708A (ja) * 1998-08-10 2000-02-22 Showa Alum Corp 光触媒皮膜およびその形成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184958A (ja) * 2009-02-10 2010-08-26 Fukuokaken Sukoyaka Kenko Jigyodan 被膜組成物
JPWO2016047568A1 (ja) * 2014-09-22 2017-05-25 富士フイルム株式会社 抗菌シート、抗菌コート、積層体、抗菌液

Also Published As

Publication number Publication date
JP2009119462A (ja) 2009-06-04

Similar Documents

Publication Publication Date Title
JP4092714B1 (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP4092434B1 (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP4933568B2 (ja) 光触媒塗装体およびそのための光触媒コーティング液
WO2009145209A1 (ja) 光触媒塗装体
JP2012250134A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2010099647A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2010042414A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2008307526A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2009263651A (ja) 光触媒コーティング組成物
JP2010005611A (ja) 光触媒塗装体
JP2010149005A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2010150767A (ja) 建材
JP2010150768A (ja) 建材
JP2009286838A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP4897781B2 (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2009255571A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2010149321A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2010149099A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2010149004A (ja) 光触媒塗装体およびそのための光触媒コーティング液
WO2012011415A1 (ja) 光触媒層を備えてなる複合材の使用
JP2009262139A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2009285534A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2010099645A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2009285535A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2009285882A (ja) 光触媒塗装体およびそのための光触媒コーティング液

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111031