JP2008305720A - Negative electrode for nonaqueous secondary battery and nonaqueous secondary battery using the same - Google Patents

Negative electrode for nonaqueous secondary battery and nonaqueous secondary battery using the same Download PDF

Info

Publication number
JP2008305720A
JP2008305720A JP2007153107A JP2007153107A JP2008305720A JP 2008305720 A JP2008305720 A JP 2008305720A JP 2007153107 A JP2007153107 A JP 2007153107A JP 2007153107 A JP2007153107 A JP 2007153107A JP 2008305720 A JP2008305720 A JP 2008305720A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
active material
electrode active
vanadium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007153107A
Other languages
Japanese (ja)
Other versions
JP5260893B2 (en
Inventor
Hideaki Maeda
英明 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2007153107A priority Critical patent/JP5260893B2/en
Priority to KR1020080044601A priority patent/KR100971746B1/en
Publication of JP2008305720A publication Critical patent/JP2008305720A/en
Application granted granted Critical
Publication of JP5260893B2 publication Critical patent/JP5260893B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To restrain deterioration of conductivity in spite of progress of a charge and discharge cycle by sufficiently securing a conductive route of lithium vanadium oxide, other negative electrode active materials, and/or a conductive material in a negative electrode for a nonaqueous secondary battery using the lithium vanadium oxide and a nonaqueous secondary battery using the same negative electrode. <P>SOLUTION: In the negative electrode for a nonaqueous secondary battery having a first negative electrode active material made of the lithium vanadium oxide and a second negative electrode active material and/or conductive material made of a material different from the lithium vanadium oxide, the first negative electrode active material is spattered on the surface of the second negative electrode active material and/or the conductive material in advance, and such a first negative electrode active material is used for the negative electrode for a nonaqueous secondary battery and the nonaqueous secondary battery using the negative electrode. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオン二次電池等の非水二次電池及びその負極材料に関する。   The present invention relates to a nonaqueous secondary battery such as a lithium ion secondary battery and a negative electrode material thereof.

従来の非水二次電池は特許文献1に開示されている。この非水二次電池は非水系の電解質内にリチウムイオンを吸蔵及び脱離できる正極及び負極が浸漬される。負極材料はリチウムバナジウム酸化物から成っている。このリチウムバナジウム酸化物は水酸化リチウム等のリチウム供給源と三酸化バナジウム等のバナジウム供給源とを固相法により混合し、650℃以上で焼成して形成される。そして、得られたリチウムバナジウム酸化物を黒鉛等の他の負極活物質や導電性材料と混合し、その混合物をバインダーに分散させて金属性の集電体上に塗布することにより非水二次電池の負極を得ていた。   A conventional non-aqueous secondary battery is disclosed in Patent Document 1. In this non-aqueous secondary battery, a positive electrode and a negative electrode capable of inserting and extracting lithium ions are immersed in a non-aqueous electrolyte. The negative electrode material is made of lithium vanadium oxide. The lithium vanadium oxide is formed by mixing a lithium supply source such as lithium hydroxide and a vanadium supply source such as vanadium trioxide by a solid phase method and firing at 650 ° C. or higher. Then, the obtained lithium vanadium oxide is mixed with another negative electrode active material such as graphite or a conductive material, and the mixture is dispersed in a binder and coated on a metallic current collector, thereby providing a non-aqueous secondary. The negative electrode of the battery was obtained.

非水二次電池の充電時には負極が負に帯電し、正極に吸蔵されたリチウムイオンが脱離して負極に吸蔵される。非水二次電池の放電時には負極に吸蔵されたリチウムイオンが脱離して正極に吸蔵される。   When the non-aqueous secondary battery is charged, the negative electrode is negatively charged, and lithium ions stored in the positive electrode are desorbed and stored in the negative electrode. At the time of discharging the non-aqueous secondary battery, lithium ions stored in the negative electrode are desorbed and stored in the positive electrode.

特開2003−68305号公報(第3頁−第11頁、第10図)Japanese Patent Laid-Open No. 2003-68305 (page 3 to page 11, FIG. 10)

従来のリチウムバナジウム酸化物を用いた非水二次電池用負極において、リチウムバナジウム酸化物と他の負極活物質および/または導電性材料との界面にはバインダーが存在したり空隙が形成されるなどして、その界面抵抗が高いため、二次電池の容量の低下の要因となっていた。また、充放電サイクルを繰り返すことにより、各粒子は膨張/収縮を繰り返すため、界面により大きな空隙が形成され、充放電サイクルが進むほど、非水二次電池の容量がさらに低下するという問題があった。   In a conventional negative electrode for a non-aqueous secondary battery using lithium vanadium oxide, a binder is present or a void is formed at the interface between the lithium vanadium oxide and another negative electrode active material and / or conductive material. And since the interface resistance is high, it was a factor of the capacity | capacitance fall of a secondary battery. In addition, since each particle repeats expansion / contraction by repeating the charge / discharge cycle, there is a problem that a large void is formed at the interface, and the capacity of the non-aqueous secondary battery further decreases as the charge / discharge cycle progresses. It was.

本発明は、リチウムバナジウム酸化物を用いた非水二次電池用負極において、リチウムバナジウム酸化物と他の負極活物質および/または導電性材料との導電性経路を十分に確保することによって充放電サイクルが進行しても導電性が低下することを抑制することができる非水二次電池用負極および高い充放電特性を有する非水二次電池を提供することを目的とする。   The present invention relates to a negative electrode for a non-aqueous secondary battery using lithium vanadium oxide, and charging / discharging by sufficiently securing a conductive path between the lithium vanadium oxide and another negative electrode active material and / or a conductive material. It aims at providing the non-aqueous secondary battery which has the negative electrode for non-aqueous secondary batteries which can suppress that electroconductivity falls even if a cycle progresses, and a high charging / discharging characteristic.

上記目的を達成するため、本発明の発明者らは鋭意検討の結果、リチウムバナジウム酸化物と導電性材料またはリチウムバナジウム酸化物以外の負極活物質を単純に混合した場合には、導電性経路が不十分であり充放電の繰り返しにより結晶構造が崩壊し、さらなる導電性経路消滅につながり特性が劣化するものと考え、本発明に至った。   In order to achieve the above object, the inventors of the present invention have conducted intensive studies, and as a result, when a lithium vanadium oxide and a negative electrode active material other than a conductive material or lithium vanadium oxide are simply mixed, the conductive path is It was considered that the crystal structure collapsed due to repeated charging and discharging, leading to further disappearance of the conductive path, and the characteristics were deteriorated, leading to the present invention.

本発明の非水二次電池用負極は、リチウムバナジウム酸化物からなる第1の負極活物質と、前記リチウムバナジウム酸化物とは異なる物質からなる第2の負極活物質および/または導電性材料とを備える非水二次電池用負極において、前記第1の負極活物質は、前記第2の負極活物質および/または前記導電性材料の表面に予め点在されたものであることを特徴としている。   The negative electrode for a non-aqueous secondary battery of the present invention includes a first negative electrode active material made of lithium vanadium oxide, and a second negative electrode active material and / or a conductive material made of a material different from the lithium vanadium oxide. In the negative electrode for a non-aqueous secondary battery, the first negative electrode active material is preliminarily scattered on the surface of the second negative electrode active material and / or the conductive material. .

また本発明の非水二次電池用負極は、前記第1の負極活物質と前記第2の負極活物質との重量割合、(前記第2の負極活物質の重量)/(前記第1の負極活物質の重量)が20/80から95/5であることを特徴としている。   Further, the negative electrode for a non-aqueous secondary battery according to the present invention includes a weight ratio of the first negative electrode active material and the second negative electrode active material, (weight of the second negative electrode active material) / (the first negative electrode active material). The weight of the negative electrode active material is 20/80 to 95/5.

また本発明の非水二次電池用負極は、前記第1の負極活物質と前記第2の負極活物質の粒子径比、(第2の負極活物質の一次粒子)/(第1の負極活物質の一次粒子)は1から100であることを特徴としている。ここで記載の一次粒子は、走査型電子顕微鏡にて粒子を直接観察した際の大きさである。   The negative electrode for a non-aqueous secondary battery according to the present invention includes a particle diameter ratio of the first negative electrode active material and the second negative electrode active material, (primary particles of the second negative electrode active material) / (first negative electrode). The primary particles) of the active material are 1 to 100. The primary particle described here is the size when the particle is directly observed with a scanning electron microscope.

また本発明の非水二次電池用負極は、前記第1の負極活物質が、前記第2の負極活物質および/または前記導電性材料に第1の負極活物質を含む前駆体を混合または表面コーティングし、不活性ガス雰囲気中で焼成することにより点在されたものであることを特徴としている。この構成においては、リチウムバナジウム酸化物以外の負極活物質は、黒鉛、ハードカーボン、金属系合金などリチウムイオンの脱挿入可能な材料であり、導電性材料は伝導性の高いアセチレンブラック、金属粉などである。   In the negative electrode for a non-aqueous secondary battery of the present invention, the first negative electrode active material is a mixture of the second negative electrode active material and / or a precursor containing the first negative electrode active material in the conductive material. It is characterized by being interspersed by surface coating and firing in an inert gas atmosphere. In this configuration, the negative electrode active material other than lithium vanadium oxide is a material capable of removing and inserting lithium ions, such as graphite, hard carbon, and metal alloy, and the conductive material is highly conductive acetylene black, metal powder, etc. It is.

また本発明の非水二次電池は、上記各構成の非水二次電池用負極と、正極と、電解質とから成ることを特徴としている。   The non-aqueous secondary battery of the present invention is characterized by comprising the above-configured negative electrode for non-aqueous secondary battery, a positive electrode, and an electrolyte.

本発明によると、非水二次電池用負極材料を形成するリチウムバナジウム酸化物が他の負極活物質および/または導電性材料の表面に予め点在しているため、予め高い導電性経路が確保されるだけでなく、充放電に伴う負極中の材料の膨張/収縮が発生したとしても各材質間の導電性が消失しないことから、非水二次電池の充放電特性を向上させることが出来る。   According to the present invention, the lithium vanadium oxide forming the negative electrode material for non-aqueous secondary batteries is preliminarily scattered on the surface of other negative electrode active materials and / or conductive materials, so that a high conductive path is secured in advance. In addition, even if expansion / contraction of the material in the negative electrode accompanying charging / discharging occurs, the conductivity between the materials does not disappear, so the charge / discharge characteristics of the non-aqueous secondary battery can be improved. .

以下に本発明の実施形態を図面を参照して説明する。図1は一実施形態の非水二次電池を示す縦断面図である。非水二次電池1はスパイラル式円筒型のリチウム二次電池から成る。非水二次電池1にはセンターピン6が設けられ、正極3と負極4との間にセパレータ5が挟まれて成る積層体10がセンターピン6に多重に巻かれている。これにより、積層体10は円筒状構造を成している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a nonaqueous secondary battery according to an embodiment. The non-aqueous secondary battery 1 is composed of a spiral cylindrical lithium secondary battery. The non-aqueous secondary battery 1 is provided with a center pin 6, and a laminate 10 in which a separator 5 is sandwiched between a positive electrode 3 and a negative electrode 4 is wound around the center pin 6 in a multiple manner. Thereby, the laminated body 10 has comprised the cylindrical structure.

正極3は正極活物質を含む正極合材3aにより正極集電体3bの表面及び裏面の2層を挟んで形成される。負極4は負極活物質を含む負極合材4aにより負極集電体4bの表面及び裏面の2層を挟んで形成される。円筒状の積層体10は中空円柱状のケース2内に収納され、電解質(不図示)に浸漬されている。ケース2によって正極3が接続されるとともに下端が突出した正極端子7が形成されている。   The positive electrode 3 is formed by sandwiching two layers of the front surface and the back surface of the positive electrode current collector 3b with a positive electrode mixture 3a containing a positive electrode active material. The negative electrode 4 is formed by sandwiching two layers of the front surface and the back surface of the negative electrode current collector 4b with a negative electrode mixture 4a containing a negative electrode active material. The cylindrical laminate 10 is housed in a hollow columnar case 2 and is immersed in an electrolyte (not shown). The positive electrode 3 is connected by the case 2 and a positive electrode terminal 7 having a lower end protruding is formed.

積層体10の上下にはそれぞれ絶縁板9b、9aが設けられる。正極集電体3bは、絶縁板9aを貫通して正極リード11により正極端子7に接続されている。ケース2の開口側の絶縁板9b上には、絶縁板9b方向に凸形状を有する安全弁13が設けられる。安全弁13の上方には、安全弁13とは反対方向に凸形状を有するキャップ状の負極端子8が形成されている。負極集電体4bは絶縁板9bを貫通して負極リード12により負極端子8に接続されている。また、安全弁13及び負極端子8の縁面はガスケット14によりシールされ、正極端子7から離間している。   Insulating plates 9b and 9a are provided above and below the laminate 10, respectively. The positive electrode current collector 3 b passes through the insulating plate 9 a and is connected to the positive electrode terminal 7 by the positive electrode lead 11. On the insulating plate 9b on the opening side of the case 2, a safety valve 13 having a convex shape in the direction of the insulating plate 9b is provided. A cap-like negative electrode terminal 8 having a convex shape in the opposite direction to the safety valve 13 is formed above the safety valve 13. The negative electrode current collector 4 b passes through the insulating plate 9 b and is connected to the negative electrode terminal 8 by the negative electrode lead 12. Further, the edge surfaces of the safety valve 13 and the negative electrode terminal 8 are sealed by the gasket 14 and are separated from the positive electrode terminal 7.

正極活物質及び電解質には非水二次電池の正極活物質及び電解質として公知の材料が用いられる。例えば、正極活物質にはコバルト酸リチウム等のリチウム遷移金属酸化物が用いられる。また、電解質には炭酸エチレンや炭酸ジエチル等の溶媒に、LiPF、LiSiF、LiTiF、LiBF等のリチウム塩から成る溶質を含有したものが用いられる。 As the positive electrode active material and the electrolyte, known materials are used as the positive electrode active material and the electrolyte of the non-aqueous secondary battery. For example, a lithium transition metal oxide such as lithium cobalt oxide is used for the positive electrode active material. As the electrolyte, a solvent such as ethylene carbonate or diethyl carbonate containing a solute composed of a lithium salt such as LiPF 6 , Li 2 SiF 6 , Li 2 TiF 6 , or LiBF 4 is used.

負極4は負極活物質としてリチウムバナジウム酸化物以外の負極活物質または導電性材料の表面にLiで表わされるリチウムバナジウム酸化物が点在していることを有している。ここで、Mは遷移金属、アルカリ金属、アルカリ土類金属の中から選ばれる少なくとも一種或いは複数の元素であり、a,b,c,dは任意の数値である。そして、例えば、該負極活物質96%、アセチレンブラック2%、バインダー2%を混合して銅から成る負極集電体3b上に塗布し、1.8g/cmとなるようにプレス加工して形成されている。 Anode 4 has that lithium vanadium oxide represented by Li a V b M c O d on the surface of the negative electrode active material or a conductive material other than the lithium vanadium oxide is scattered as an anode active material . Here, M is at least one or more elements selected from transition metals, alkali metals, and alkaline earth metals, and a, b, c, and d are arbitrary numerical values. Then, for example, 96% of the negative electrode active material, 2% of acetylene black, and 2% of the binder are mixed and applied onto the negative electrode current collector 3b made of copper, and pressed to 1.8 g / cm 3. Is formed.

この負極活物質は、リチウム化合物、バナジウム化合物、還元剤から成る前駆体をリチウムバナジウム酸化物以外の負極材料または導電性材料の表面に表面コーティングを行い、窒素雰囲気等の不活性ガス雰囲気中で1100℃で焼成して形成される。具体的には、例えば、リチウム化合物として炭酸リチウム(LiCO)、バナジウム化合物として五酸化バナジウム(V)、還元剤とシュウ酸を混合して水溶液中において反応させた後、蒸発乾固して得られた溶液を、カーボン材料に転動流動コーティング装置で表面コーティングを行い、焼成して得られる。 In this negative electrode active material, a precursor composed of a lithium compound, a vanadium compound, and a reducing agent is coated on the surface of a negative electrode material or a conductive material other than lithium vanadium oxide, and 1100 in an inert gas atmosphere such as a nitrogen atmosphere. It is formed by firing at 0 ° C. Specifically, for example, lithium carbonate (Li 2 CO 3 ) as a lithium compound, vanadium pentoxide (V 2 O 5 ) as a vanadium compound, a reducing agent and oxalic acid are mixed and reacted in an aqueous solution, and then evaporated. The solution obtained by drying is obtained by subjecting a carbon material to surface coating with a tumbling fluidized coating apparatus and baking.

尚、炭酸リチウム、五酸化バナジウム及びシュウ酸を用いた場合には、特に安価で容易に上記有機酸塩を得ることができる。リチウム化合物として、水酸化リチウム、蓚酸リチウムなどを用いてもよい。還元剤として、有機酸、カーボン材料、過酸化水素などを用いてもよい。
また、不活性ガスは窒素の他に窒素と水素の混合ガス、またはアルゴンガスであってもよい。
また、リチウムバナジウム酸化物を点在させる方法は、メカニカルミリング法など機械的加工法を用いても構わない。
In addition, when lithium carbonate, vanadium pentoxide, and oxalic acid are used, the organic acid salt can be easily obtained at a particularly low cost. As the lithium compound, lithium hydroxide, lithium oxalate, or the like may be used. As the reducing agent, an organic acid, a carbon material, hydrogen peroxide, or the like may be used.
In addition to nitrogen, the inert gas may be a mixed gas of nitrogen and hydrogen, or argon gas.
Further, as a method of interspersing lithium vanadium oxide, a mechanical processing method such as a mechanical milling method may be used.

この製法によれば、リチウムバナジウム酸化物はリチウムバナジウム酸化物以外の負極材料または導電性材料との伝導経路は確保しやすい負極材料を形成しやすい。従って、伝導性の良好なリチウムバナジウム酸化物を含有する負極を得ることができる。   According to this production method, lithium vanadium oxide can easily form a negative electrode material other than lithium vanadium oxide or a negative electrode material that can easily secure a conduction path with a conductive material. Therefore, a negative electrode containing lithium vanadium oxide with good conductivity can be obtained.

図2は、走査型電子顕微鏡による観察像であり、図2(a)は本発明の実施例に使用した黒鉛粒子の像、図2(b)は黒鉛粒子の表面に前駆体をコーティングをしたものの像、図2(c)は前駆体を表面コーティングされた黒鉛粒子を焼成したものの像、図2(d)は図2(c)の拡大像である。   FIG. 2 is an image observed by a scanning electron microscope, FIG. 2 (a) is an image of graphite particles used in the examples of the present invention, and FIG. 2 (b) is a graphitic particle surface coated with a precursor. FIG. 2C is an image of a fired graphite particle whose surface is coated with a precursor, and FIG. 2D is an enlarged image of FIG. 2C.

図2(b)によると、リチウムとバナジウムを含む前駆体が、黒鉛粒子に均一にコーティングされていることがわかる。また、図2(c)によると、焼成後に黒鉛粒子表面にリチウムバナジウム酸化物粒子が点在していることがわかり、黒鉛粒子とリチウムバナジウム酸化物との導電経路を確保しやすい状態をとっていることがわかる。これにより、充放電反応にともなう導電性低下、電池内部の抵抗上昇が抑制され高効率充放電特性の非水二次電池を得ることができる。   According to FIG. 2B, it can be seen that the precursor containing lithium and vanadium is uniformly coated on the graphite particles. In addition, according to FIG. 2 (c), it can be seen that the lithium vanadium oxide particles are scattered on the surface of the graphite particles after firing, and it is easy to secure a conductive path between the graphite particles and the lithium vanadium oxide. I understand that. Thereby, the electrical conductivity fall accompanying charging / discharging reaction and the resistance rise inside a battery are suppressed, and the non-aqueous secondary battery of a highly efficient charging / discharging characteristic can be obtained.

次に、本発明の実施例を示し、本発明の実施の形態についてさらに詳細に説明する。   Next, examples of the present invention will be shown, and the embodiments of the present invention will be described in more detail.

(実施例1)
炭酸リチウム208g、五酸化バナジウム425gとシュウ酸1218gをイオン交換水5Lに所定の割合添加し、60℃の条件化で溶解させた。この溶液を前駆体溶液とし、パウレック製転動流動コーティング装置を用いて、黒鉛粒子中にコーティングを行った。このときの黒鉛粒子の大きさは、平均粒子サイズが10μm程度の材料を使用し、焼成後に黒鉛粒子とリチウムバナジウム酸化物が重量割合で90/10になるように処理を行った。また、黒鉛材料にリチウムバナジウム酸化物前駆体をコーティングした後、950℃で窒素雰囲気中で焼成を行うことで黒鉛材料表面にリチウムバナジウム酸化物が点在した負極材料を得ることができた。このようにして得られた負極材料は、走査型電子顕微鏡で粒子を観察したところ、黒鉛粒子の一次粒子/リチウムバナジウム酸化物の一次粒子の粒子径比が5程度であった。得られた負極材料とアセチレンブラック、ポリフッ化ビニリデン(pvdf)とを96:2:2の重量割合で混合しN−メチル−2−ピロリドンを添加してスラリーを作製した。作製したスラリーを銅箔に塗布し、乾燥後、電極密度を1.8g/cmとして負極電極とした。正極電極は、コバルト酸リチウムを、電解液には、エチルカーボネート(EC):ジエチルカーボネート(DEC)=3:7の溶媒に1.4MのLiPFを溶解させたものを用いて非水二次電池を作製した。
Example 1
A predetermined amount of lithium carbonate (208 g), vanadium pentoxide (425 g) and oxalic acid (1218 g) was added to 5 L of ion-exchanged water and dissolved under conditions of 60 ° C. Using this solution as a precursor solution, the graphite particles were coated using a tumbling fluidized coating apparatus manufactured by Paulek. At this time, the graphite particles were processed using a material having an average particle size of about 10 μm so that the graphite particles and the lithium vanadium oxide were 90/10 by weight after firing. Moreover, after coating the lithium vanadium oxide precursor on the graphite material, the negative electrode material in which lithium vanadium oxide was scattered on the surface of the graphite material could be obtained by firing in a nitrogen atmosphere at 950 ° C. When the particles of the negative electrode material thus obtained were observed with a scanning electron microscope, the particle size ratio of primary particles of graphite particles / primary particles of lithium vanadium oxide was about 5. The obtained negative electrode material, acetylene black, and polyvinylidene fluoride (pvdf) were mixed at a weight ratio of 96: 2: 2, and N-methyl-2-pyrrolidone was added to prepare a slurry. The prepared slurry was applied to a copper foil, and after drying, the electrode density was 1.8 g / cm 3 to obtain a negative electrode. The positive electrode is lithium cobaltate, and the electrolyte is non-aqueous secondary using 1.4M LiPF 6 dissolved in a solvent of ethyl carbonate (EC): diethyl carbonate (DEC) = 3: 7. A battery was produced.

(実施例2)
黒鉛とリチウムバナジウム酸化物の重量割合を75/25とした以外、実施例1と同様な方法で負極材料の合成を行ない、非水二次電池を作製した。
(Example 2)
A negative electrode material was synthesized in the same manner as in Example 1 except that the weight ratio of graphite and lithium vanadium oxide was 75/25, and a nonaqueous secondary battery was produced.

(実施例3)
黒鉛とリチウムバナジウム酸化物の重量割合を50/50とした以外、実施例1と同様な方法で負極材料の合成を行ない、非水二次電池を作製した。
(Example 3)
A negative electrode material was synthesized in the same manner as in Example 1 except that the weight ratio of graphite and lithium vanadium oxide was 50/50, and a non-aqueous secondary battery was produced.

(実施例4)
黒鉛とリチウムバナジウム酸化物の重量割合を25/75とした以外、実施例1と同様な方法で負極材料の合成を行ない、非水二次電池を作製した。
Example 4
A negative electrode material was synthesized in the same manner as in Example 1 except that the weight ratio of graphite and lithium vanadium oxide was 25/75, and a nonaqueous secondary battery was produced.

(実施例5)
黒鉛とリチウムバナジウム酸化物の重量割合を10/90とした以外、実施例1と同様な方法で負極材料の合成を行ない、非水二次電池を作製した。
(Example 5)
A negative electrode material was synthesized in the same manner as in Example 1 except that the weight ratio of graphite and lithium vanadium oxide was 10/90, and a nonaqueous secondary battery was produced.

(実施例6)
黒鉛とリチウムバナジウム酸化物の重量割合を50/50とし、焼成時の温度を850℃として黒鉛粒子の一次粒子/リチウムバナジウム酸化物の一次粒子の粒子径比を50程度とした以外、実施例1と同様な方法で負極材料の合成を行ない、非水二次電池を作製した。
(Example 6)
Example 1 except that the weight ratio of graphite and lithium vanadium oxide was 50/50, the firing temperature was 850 ° C., and the particle size ratio of primary particles of graphite particles / primary particles of lithium vanadium oxide was about 50. The negative electrode material was synthesized in the same manner as described above to produce a non-aqueous secondary battery.

(実施例7)
黒鉛とリチウムバナジウム酸化物の重量割合を50/50とし、黒鉛粒子の粒子サイズを20μmの材料を使用して黒鉛粒子の一次粒子/リチウムバナジウム酸化物の一次粒子の粒子径比を10程度とした以外、実施例1と同様な方法で負極材料の合成を行ない、非水二次電池を作製した。
(Example 7)
The weight ratio of graphite to lithium vanadium oxide was 50/50, and the particle size ratio of primary particles of graphite particles / primary particles of lithium vanadium oxide was set to about 10 by using a material having a particle size of graphite particles of 20 μm. A negative electrode material was synthesized in the same manner as in Example 1 except that a non-aqueous secondary battery was produced.

(実施例8)
黒鉛とリチウムバナジウム酸化物の重量割合を50/50とし、黒鉛粒子の粒子サイズを20μmの材料を使用し、さらに焼成温度を850℃として黒鉛粒子の一次粒子/リチウムバナジウム酸化物の一次粒子の粒子径比を70程度にした以外、実施例1と同様な方法で負極材料の合成を行ない、非水二次電池を作製した。
(Example 8)
Using graphite / lithium vanadium oxide weight ratio of 50/50, graphite particle size of 20 μm, and firing temperature of 850 ° C., graphite particle primary particles / lithium vanadium oxide primary particles A negative electrode material was synthesized in the same manner as in Example 1 except that the diameter ratio was about 70, and a nonaqueous secondary battery was produced.

(実施例9)
実施例9では、負極活物質となる黒鉛ではなく、導電性材料となる2μm程度の導電性黒鉛の表面にリチウムバナジウム酸化物を点在させたものである。炭酸リチウム208g、五酸化バナジウム425gとシュウ酸1218gをイオン交換水5Lに所定の割合添加し、60℃の条件化で溶解させた。この溶液を前駆体溶液とし、パウレック製転動流動コーティング装置を用いて、導電性黒鉛粒子にコーティングを行った。焼成後に導電性黒鉛粒子とリチウムバナジウム酸化物が重量割合で50/50になるように処理を行った。また、導電性黒鉛材料にリチウムバナジウム酸化物前駆体をコーティングした後、950℃で窒素雰囲気中で焼成を行うことで導電性黒鉛材料表面にリチウムバナジウム酸化物が点在した負極材料を得ることができた。得られた負極材料と、pvdfとを96:4の重量割合で混合しN−メチル−2−ピロリドンを添加してスラリーを作製した。作製したスラリーを銅箔に塗布し、乾燥後、電極密度を1.8g/cmとして負極電極とした。正極電極は、コバルト酸リチウムを、電解液には、エチルカーボネート(EC):ジエチルカーボネート(DEC)=3:7の溶媒に1.4MのLiPFを溶解させたものを用いて非水二次電池を作製した。
リチウムバナジウム酸化物の重量割合を50/50とした。焼成温度を850℃で合成を行い、導電性黒鉛/リチウムバナジウム酸化物の粒子径比が1程度であった。
Example 9
In Example 9, lithium vanadium oxide was interspersed on the surface of conductive graphite of about 2 μm serving as a conductive material, not graphite serving as a negative electrode active material. A predetermined amount of lithium carbonate (208 g), vanadium pentoxide (425 g) and oxalic acid (1218 g) was added to 5 L of ion-exchanged water and dissolved under conditions of 60 ° C. Using this solution as a precursor solution, the conductive graphite particles were coated using a tumbling fluidized coating apparatus manufactured by Paulek. After firing, the conductive graphite particles and the lithium vanadium oxide were treated so as to have a weight ratio of 50/50. In addition, after coating a conductive graphite material with a lithium vanadium oxide precursor, a negative electrode material in which lithium vanadium oxide is scattered on the surface of the conductive graphite material can be obtained by firing in a nitrogen atmosphere at 950 ° C. did it. The obtained negative electrode material and pvdf were mixed at a weight ratio of 96: 4, and N-methyl-2-pyrrolidone was added to prepare a slurry. The prepared slurry was applied to a copper foil, and after drying, the electrode density was 1.8 g / cm 3 to obtain a negative electrode. The positive electrode is lithium cobaltate, and the electrolyte is non-aqueous secondary using 1.4M LiPF 6 dissolved in a solvent of ethyl carbonate (EC): diethyl carbonate (DEC) = 3: 7. A battery was produced.
The weight ratio of lithium vanadium oxide was 50/50. The synthesis was performed at a firing temperature of 850 ° C., and the particle size ratio of conductive graphite / lithium vanadium oxide was about 1.

続いて、比較例1から4の製造方法について説明する。
(比較例1)
炭酸リチウム208gと五酸化バナジウム425gとシュウ酸1218gを添加した溶液を130℃の定置乾燥機で乾燥させ、その後窒素雰囲気で950℃で焼成を行った。得られたリチウムバナジウム酸化物と一次粒子径が10μmの黒鉛粒子を重量割合で10/90となるように混合し負極材料とし、負極材料とアセチレンブラック、pvdfとを96:2:2の重量割合で混合しN−メチル−2−ピロリドンを添加してスラリーを作製した。このときの黒鉛粒子の一次粒子/リチウムバナジウム酸化物の一次粒子の粒子径比が5程度であった。
また、作製したスラリーを銅箔に塗布し、乾燥後、電極密度を1.8g/cmとして負極電極とした。正極電極は、コバルト酸リチウムを、電解液には、エチルカーボネート(EC):ジエチルカーボネート(DEC)=3:7の溶媒に1.4MのLiPFを溶解させたものを用いて非水二次電池を作製した。
Subsequently, the manufacturing methods of Comparative Examples 1 to 4 will be described.
(Comparative Example 1)
A solution to which 208 g of lithium carbonate, 425 g of vanadium pentoxide and 1218 g of oxalic acid were added was dried with a stationary dryer at 130 ° C., and then fired at 950 ° C. in a nitrogen atmosphere. The obtained lithium vanadium oxide and graphite particles having a primary particle diameter of 10 μm are mixed so as to have a weight ratio of 10/90 to obtain a negative electrode material, and the negative electrode material, acetylene black, and pvdf are in a weight ratio of 96: 2: 2. And N-methyl-2-pyrrolidone was added to prepare a slurry. At this time, the particle size ratio of primary particles of graphite particles / primary particles of lithium vanadium oxide was about 5.
Moreover, the produced slurry was apply | coated to copper foil, and after drying, the electrode density was set to 1.8 g / cm < 3 > and it was set as the negative electrode. The positive electrode is lithium cobaltate, and the electrolyte is non-aqueous secondary using 1.4M LiPF 6 dissolved in a solvent of ethyl carbonate (EC): diethyl carbonate (DEC) = 3: 7. A battery was produced.

(比較例2)
リチウムバナジウム酸化物と黒鉛を重量割合で50/50とした以外、比較例1と同様に負極材料の合成を行い、非水二次電池を作製した。
(比較例3)
焼成温度を1100℃とした以外、比較例1と同様に負極材料の合成を行い、非水二次電池を作製した。
(比較例4)
焼成温度を1100℃とし、得られたリチウムバナジウム酸化物と黒鉛との重量割合を90/10とした以外、比較例1と同様に負極材料の合成を行い、非水二次電池を作製した。
(Comparative Example 2)
A non-aqueous secondary battery was fabricated by synthesizing a negative electrode material in the same manner as in Comparative Example 1 except that the lithium vanadium oxide and graphite were 50/50 by weight.
(Comparative Example 3)
A non-aqueous secondary battery was produced by synthesizing a negative electrode material in the same manner as in Comparative Example 1 except that the firing temperature was 1100 ° C.
(Comparative Example 4)
A non-aqueous secondary battery was produced by synthesizing a negative electrode material in the same manner as in Comparative Example 1 except that the firing temperature was 1100 ° C. and the weight ratio of the obtained lithium vanadium oxide and graphite was 90/10.

次に、このようにして得られたリチウム二次電池の評価結果について説明する。
表1は、実施例1から9と比較例1から4の評価結果を示す。
Next, the evaluation results of the lithium secondary battery thus obtained will be described.
Table 1 shows the evaluation results of Examples 1 to 9 and Comparative Examples 1 to 4.

Figure 2008305720
評価項目として、1サイクル目の容量を100とした場合の、200サイクル後の容量維持率(%)を採用した。ここでは、容量維持率(%)は、80%以上であれば良好といえる。
実施例1〜9では、黒鉛の重量割合、粒子径比を変更させた場合でも、200サイクル後の容量維持率が80%以上であることが確認できる。
一方、比較例1〜4では、200サイクル後の容量維持率は、比較例1で34%、比較例2で27%、比較例3で21%、比較例4で23%であり、単純に混合しただけでは、黒鉛とリチウムバナジウム酸化物とが、単独で存在するに過ぎず、接触抵抗が増加し容量維持率が低下したものと推察される。
Figure 2008305720
As an evaluation item, the capacity retention rate (%) after 200 cycles when the capacity at the first cycle was set to 100 was adopted. Here, it can be said that the capacity retention rate (%) is good if it is 80% or more.
In Examples 1 to 9, it can be confirmed that the capacity retention after 200 cycles is 80% or more even when the weight ratio of graphite and the particle diameter ratio are changed.
On the other hand, in Comparative Examples 1 to 4, the capacity retention rate after 200 cycles was 34% in Comparative Example 1, 27% in Comparative Example 2, 21% in Comparative Example 3, and 23% in Comparative Example 4, and simply It is presumed that graphite and lithium vanadium oxide existed alone by mixing, and that the contact resistance increased and the capacity retention rate decreased.

このように、本発明によると、非水二次電池用負極材料を形成するリチウムバナジウム酸化物が他の負極活物質および/または導電性材料の表面に予め点在しているため、予め高い導電性経路が確保されるだけでなく、充放電に伴う負極中の材料の膨張/収縮が発生したとしても各材質間の導電性が消失しないことから、非水二次電池の充放電特性を向上させることが出来る。
また、リチウムバナジウム酸化物粒子のサイズを小さくすることもできるため、充放電に伴うリチウムバナジウム酸化物粒子の膨張/収縮が発生してもリチウムバナジウム酸化物粒子の崩壊を抑制することができ、非水二次電池の充放電特性をさらに向上することができる。
Thus, according to the present invention, since the lithium vanadium oxide forming the negative electrode material for non-aqueous secondary batteries is preliminarily scattered on the surface of other negative electrode active materials and / or conductive materials, In addition to securing a conductive path, even if the material in the negative electrode expands or contracts due to charge / discharge, the conductivity between the materials does not disappear, improving the charge / discharge characteristics of the non-aqueous secondary battery It can be made.
In addition, since the size of the lithium vanadium oxide particles can be reduced, the lithium vanadium oxide particles can be prevented from collapsing even when expansion / contraction of the lithium vanadium oxide particles due to charge / discharge occurs. The charge / discharge characteristics of the water secondary battery can be further improved.

以上、実施例を参照しつつ、本発明の実施形態について説明したが、本発明はこれらの実施例に限定されるのもではない。
例えば、本実施形態の負極活物質を用いるリチウム二次電池は、スパイラル式円筒形のリチウム二次電池に限らず、コイン形のリチウム二次電池や、角形のリチウム二次電池においても本発明の特徴を有する限り同様の効果が得られる。
本実施形態の負極活物質の組成や、それに含まれるMe元素の種類、各構成部材の材質、形状、製造工程、製造条件、リチウム二次電池の形状等の構成に関して、本発明の特徴を有する限り、本発明の範囲に包含される。
As mentioned above, although embodiment of this invention was described referring an Example, this invention is not limited to these Examples.
For example, the lithium secondary battery using the negative electrode active material of the present embodiment is not limited to a spiral cylindrical lithium secondary battery, but also in a coin-type lithium secondary battery or a square lithium secondary battery. The same effect can be obtained as long as it has characteristics.
The composition of the negative electrode active material of the present embodiment, the type of Me element contained therein, the material, shape, manufacturing process, manufacturing conditions of each component, the configuration of the lithium secondary battery, etc. have the features of the present invention. As long as it is within the scope of the present invention.

本実施形態の非水二次電池を示す縦断面図である。It is a longitudinal cross-sectional view which shows the non-aqueous secondary battery of this embodiment. (a)は本発明の実施例に使用した黒鉛粒子の像、(b)は黒鉛粒子の表面に前駆体をコーティングをしたものの像、(c)は前駆体を表面コーティングされた黒鉛粒子を焼成したものの像、(d)は(c)の拡大像である。(A) is an image of graphite particles used in the examples of the present invention, (b) is an image of a graphite particle surface coated with a precursor, and (c) is a calcined graphite particle surface-coated with a precursor. (D) is an enlarged image of (c).

符号の説明Explanation of symbols

1 非水二次電池
2 ケース
3 正極
4 負極
5 セパレータ
6 センターピン
7 正極端子
8 負極端子
10 積層体
DESCRIPTION OF SYMBOLS 1 Nonaqueous secondary battery 2 Case 3 Positive electrode 4 Negative electrode 5 Separator 6 Center pin 7 Positive electrode terminal 8 Negative electrode terminal 10 Laminated body

Claims (5)

リチウムバナジウム酸化物からなる第1の負極活物質と、前記リチウムバナジウム酸化物とは異なる物質からなる第2の負極活物質および/または導電性材料とを備える非水二次電池用負極において、
前記第1の負極活物質は、前記第2の負極活物質および/または前記導電性材料の表面に予め点在されたものであることを特徴とする非水二次電池用負極。
In a negative electrode for a non-aqueous secondary battery, comprising: a first negative electrode active material made of lithium vanadium oxide; and a second negative electrode active material and / or a conductive material made of a material different from the lithium vanadium oxide.
The negative electrode for a non-aqueous secondary battery, wherein the first negative electrode active material is preliminarily scattered on the surface of the second negative electrode active material and / or the conductive material.
前記第1の負極活物質と前記第2の負極活物質との重量割合、(前記第2の負極活物質の重量)/(前記第1の負極活物質の重量)が20/80から95/5であることを特徴とする請求項1に記載の非水二次電池負極。   The weight ratio between the first negative electrode active material and the second negative electrode active material, (weight of the second negative electrode active material) / (weight of the first negative electrode active material) is 20/80 to 95 / The non-aqueous secondary battery negative electrode according to claim 1, wherein the negative electrode is 5. 前記第1の負極活物質と前記第2の負極活物質の粒子径比、(第2の負極活物質の一次粒子)/(第1の負極活物質の一次粒子)は1から100であることを特徴とする請求項1または請求項2非水二次電池用負極   The particle diameter ratio between the first negative electrode active material and the second negative electrode active material, (primary particles of the second negative electrode active material) / (primary particles of the first negative electrode active material) is 1 to 100 A negative electrode for a non-aqueous secondary battery according to claim 1 or claim 2 前記第1の負極活物質は、前記第2の負極活物質および/または前記導電性材料に第1の負極活物質を含む前駆体を混合または表面コーティングし、不活性ガス雰囲気中で焼成することにより点在されたものであることを特徴とする請求項1乃至請求項3のいずれかに記載の非水二次電池用負極。   The first negative electrode active material is obtained by mixing or surface-coating a precursor containing the first negative electrode active material with the second negative electrode active material and / or the conductive material, and firing in an inert gas atmosphere. 4. The negative electrode for a non-aqueous secondary battery according to claim 1, wherein the negative electrode is dotted with 請求項1乃至4のいずれかに記載のリチウム二次電池用負極を用いたことを特徴とする非水二次電池。   A non-aqueous secondary battery using the negative electrode for a lithium secondary battery according to claim 1.
JP2007153107A 2007-06-08 2007-06-08 Non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same Expired - Fee Related JP5260893B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007153107A JP5260893B2 (en) 2007-06-08 2007-06-08 Non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
KR1020080044601A KR100971746B1 (en) 2007-06-08 2008-05-14 Negative electrode for non-aqueous secondary battery, and non-aqueous electrolyte secondary battery including same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153107A JP5260893B2 (en) 2007-06-08 2007-06-08 Non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2008305720A true JP2008305720A (en) 2008-12-18
JP5260893B2 JP5260893B2 (en) 2013-08-14

Family

ID=40234249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153107A Expired - Fee Related JP5260893B2 (en) 2007-06-08 2007-06-08 Non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same

Country Status (2)

Country Link
JP (1) JP5260893B2 (en)
KR (1) KR100971746B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089519A (en) * 2011-10-20 2013-05-13 Fuji Heavy Ind Ltd Lithium ion secondary battery
JP2016081707A (en) * 2014-10-16 2016-05-16 Tdk株式会社 Negative electrode and lithium ion secondary battery using the same
JP2016081706A (en) * 2014-10-16 2016-05-16 Tdk株式会社 Negative electrode and lithium ion secondary battery arranged by use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582968B (en) * 2011-06-03 2016-05-11 株式会社半导体能源研究所 The manufacture method of electrode
KR102364480B1 (en) 2018-05-15 2022-02-18 주식회사 엘지에너지솔루션 Negative electrode active material, negative electrode comprising the negative electrode active material, and lithium secondarty battery comprising the negative electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213053A (en) * 1994-12-02 1996-08-20 Canon Inc Lithium secondary battery
WO2002021617A1 (en) * 2000-09-06 2002-03-14 Hitachi Maxell, Ltd. Electrode material for electrochemical element and method for production thereof, and electrochemical element
JP2003217583A (en) * 2002-01-18 2003-07-31 Hitachi Maxell Ltd Composite electrode and electrochemical element using the same
JP2003331842A (en) * 2002-05-15 2003-11-21 Hitachi Maxell Ltd Electrode material and electrode using it

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241118A (en) 2001-02-13 2002-08-28 Osaka Gas Co Ltd Modified graphite based carbon material
KR100570648B1 (en) * 2004-01-26 2006-04-12 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
KR100728783B1 (en) 2005-11-02 2007-06-19 삼성에스디아이 주식회사 Negatvie active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery compring same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213053A (en) * 1994-12-02 1996-08-20 Canon Inc Lithium secondary battery
WO2002021617A1 (en) * 2000-09-06 2002-03-14 Hitachi Maxell, Ltd. Electrode material for electrochemical element and method for production thereof, and electrochemical element
JP2003217583A (en) * 2002-01-18 2003-07-31 Hitachi Maxell Ltd Composite electrode and electrochemical element using the same
JP2003331842A (en) * 2002-05-15 2003-11-21 Hitachi Maxell Ltd Electrode material and electrode using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089519A (en) * 2011-10-20 2013-05-13 Fuji Heavy Ind Ltd Lithium ion secondary battery
JP2016081707A (en) * 2014-10-16 2016-05-16 Tdk株式会社 Negative electrode and lithium ion secondary battery using the same
JP2016081706A (en) * 2014-10-16 2016-05-16 Tdk株式会社 Negative electrode and lithium ion secondary battery arranged by use thereof

Also Published As

Publication number Publication date
KR20080107997A (en) 2008-12-11
JP5260893B2 (en) 2013-08-14
KR100971746B1 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP6665060B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and non-aqueous electrolyte secondary battery
Fang et al. Graphene-oxide-coated LiNi 0.5 Mn 1.5 O 4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life
JP4725594B2 (en) Method for manufacturing lithium secondary battery
JP5344452B2 (en) Positive electrode active material, method for producing the same, and nonaqueous electrolyte battery having a positive electrode containing the positive electrode active material
JP5208768B2 (en) Manganese lithium secondary battery
JP6257066B2 (en) Lithium manganese oxide positive electrode active material for lithium ion secondary battery and lithium ion secondary battery including the same
JP2009099462A (en) Coated positive active material, positive electrode for nonaqueous secondary battery, nonaqueous secondary battery, and manufacturing methods thereof
US9512523B2 (en) Porous electrode active material and secondary battery including the same
JP2009038016A (en) Electrode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2010267540A (en) Nonaqueous electrolyte secondary battery
US11276877B2 (en) Stabilized birnessite cathode for high power and high energy density applications
EP3086389B1 (en) Non-aqueous, high capacity cathode material for lithium secondary battery, and method for preparing same
WO2015182116A1 (en) Nano-silicon material, method for producing same and negative electrode of secondary battery
US9742027B2 (en) Anode for sodium-ion and potassium-ion batteries
JP2017139168A (en) Positive electrode for nonaqueous electrolyte secondary battery
JP5260893B2 (en) Non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
JP5401296B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2017047030A1 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery
JP2023015188A (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery
WO2016157745A1 (en) Cathode material, non-aqueous electrolyte secondary battery cathode, and non-aqueous electrolyte secondary battery
JP2017059532A (en) Electrolyte for secondary battery, and secondary battery including the same
JP2010086657A (en) Nonaqueous electrolyte secondary battery
JP2017174649A (en) Iron oxide powder for lithium ion secondary battery negative electrode, method for producing the same, and lithium ion secondary battery
JP2010238603A (en) Lithium iron fluorophosphate solid solution positive electrode active material powder, manufacturing method therefor, and lithium ion secondary battery
KR101722960B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees