JP2008305671A - Gas seal structure, gas seal, and gas sealing method - Google Patents

Gas seal structure, gas seal, and gas sealing method Download PDF

Info

Publication number
JP2008305671A
JP2008305671A JP2007151798A JP2007151798A JP2008305671A JP 2008305671 A JP2008305671 A JP 2008305671A JP 2007151798 A JP2007151798 A JP 2007151798A JP 2007151798 A JP2007151798 A JP 2007151798A JP 2008305671 A JP2008305671 A JP 2008305671A
Authority
JP
Japan
Prior art keywords
gas
recess
gas seal
seal structure
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007151798A
Other languages
Japanese (ja)
Other versions
JP5087322B2 (en
Inventor
Reiichi Chiba
玲一 千葉
Yoshitaka Tabata
嘉隆 田畑
Takeshi Komatsu
武志 小松
Himeko Orui
姫子 大類
Kazuhiko Nozawa
和彦 野沢
Masayasu Arakawa
正泰 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2007151798A priority Critical patent/JP5087322B2/en
Publication of JP2008305671A publication Critical patent/JP2008305671A/en
Application granted granted Critical
Publication of JP5087322B2 publication Critical patent/JP5087322B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas seal structure in which both of an electrical connection and a gas seal can be realized simultaneously in an operation for a long period which includes a thermal cycle such as an operation shutdown and provide a gas seal and a gas sealing method. <P>SOLUTION: The gas seal structure is composed of a seal member 3 which has a closed shape with conductivity is provided with an inner circumferential side engagement portion 19a and an outer circumferential engagement portion 19b and at least a region 3a of which has elasticity, a sealing object 1 in which a closed shape concave portion 4 is formed and another sealing object 2, and a locking portion 7 to be inserted into the concave portion 4. The locking portions 7a, 7b are deformed in the concave portion 4a of the sealing object 1 and in the concave portion 4b of another sealing object 2 and the locking portion 7 and the concave portion 4 are engaged. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、SOFC(Solide Oxide Fuel Cell :固体酸化物燃料電池)用ガスシールに関するものである。   The present invention relates to a gas seal for SOFC (Solid Oxide Fuel Cell).

近年、酸素イオン伝導体を用いたSOFCに関心が高まりつつある。特にエネルギーの有効利用という観点から、固体燃料電池はカルノー効率の制約を受けないため本質的に高いエネルギー変換効率を有し、さらに良好な環境保全が期待されるなどの優れた特長を備えている(非特許文献1)。   In recent years, interest in SOFCs using oxygen ion conductors is increasing. In particular, from the viewpoint of effective use of energy, solid fuel cells are not subject to the restrictions of Carnot efficiency, so they have inherently high energy conversion efficiency and have excellent features such as better environmental conservation. (Non-Patent Document 1).

特に平板型セルは高い出力密度が得られることから、高性能な燃料電池システムの実現が可能と期待されている。   In particular, since a flat cell has a high output density, it is expected that a high-performance fuel cell system can be realized.

この平板型セルを複数枚重ねたスタックを一つの単位として組み立てることが一般的である。このスタックにおいて、セルを電気的に接続し、ガスを各セルにガス供給する方式として、ガス供給部分が電気的接続部分と分離している外部マニホールド型、そして一体化している内部マニホールド型がある。内部マニホールド型スタックは空きスペースを低く抑えることが可能であり、出力密度の高いセルスタックの実現には有利である。非特許文献2には、内部マニホールド型セルスタックのガスシールが開示されている。
田川博明 著 「固体酸化物燃料電池と地球環境」、アグネ承風社 発行、1998年 L.G.J.De Haart and I.C.Vinke, in the proceeding of the Solid Oxide Fuel Cell VII(SOFC VII),(2001),p.111-119. published by The Electrochemical Society Inc.
In general, a stack in which a plurality of flat plate cells are stacked is assembled as one unit. In this stack, as a method of electrically connecting cells and supplying gas to each cell, there are an external manifold type in which the gas supply part is separated from the electrical connection part, and an integrated internal manifold type. . The internal manifold type stack can keep the empty space low, which is advantageous for realizing a cell stack with high power density. Non-Patent Document 2 discloses a gas seal of an internal manifold type cell stack.
Hiroaki Tagawa “Solid Oxide Fuel Cell and Global Environment”, published by Agne Jofusha, 1998 LGJDe Haart and ICVinke, in the proceeding of the Solid Oxide Fuel Cell VII (SOFC VII), (2001), p.111-119.published by The Electrochemical Society Inc.

しかしながら、内部マニホールド型の場合、ガス供給部分と電気接続部分を独立に圧縮することができないため、スタックを接続方向に圧縮して、電気的接続とガスシールの両方を同時に行うことは、極めて高い寸法精度が要求され、実際には非常に困難である。また、セル自体やセルに接触している集電体が長時間、高温に曝されることによって、焼きしまり、これらの部品の寸法がわずかではあるが減少する。このため、長時間にわたって電気的接続とガスシールの両方を同時に行うことは更に困難である。   However, in the case of the internal manifold type, since the gas supply part and the electrical connection part cannot be compressed independently, it is extremely high to compress the stack in the connection direction and perform both the electrical connection and the gas seal at the same time. Dimensional accuracy is required and is actually very difficult. In addition, the cell itself and the current collector in contact with the cell are exposed to a high temperature for a long time, so that they are burned out, and the dimensions of these parts are slightly reduced. For this reason, it is more difficult to perform both electrical connection and gas sealing simultaneously for a long time.

また、燃料電池システムの運転停止による温度変化に伴い、セルを構成しているセラミックスの熱膨張係数の違いから、セルが僅かに変形する。またセラミックスで構成されているセルとそれに隣接する金属インターコネクタとの熱膨張係数の差のためガスシール部分にギャップを生じやすい。このような変形に対応するためガスシールをある程度の柔軟性を持たせる必要がある。これには、ガラスシールを用いる方法もあるが、液体であるガラスは、高温でセラミックスとの反応劣化を起こしやすく、また結晶化が起きて、長期にわたり安定したガスシールを行うことは難しい。   Further, as the temperature changes due to the operation stop of the fuel cell system, the cell is slightly deformed due to the difference in the thermal expansion coefficient of the ceramics constituting the cell. Further, a gap is likely to occur in the gas seal portion due to the difference in thermal expansion coefficient between the cell made of ceramics and the metal interconnector adjacent thereto. In order to cope with such deformation, the gas seal needs to have a certain degree of flexibility. For this, there is a method using a glass seal, but glass which is liquid is liable to cause reaction deterioration with ceramics at a high temperature, and crystallization occurs, making it difficult to perform a stable gas seal over a long period of time.

これを解決するには、ガスシール部分が部品の寸法の減少に伴って変形し且つシール性を保ち続けることが必要である。これによりスタックを圧縮する力は主にセルの電極面に掛かり電気的接続を保ち、且つ弱い圧縮力にもかかわらずガスシール性も保つことができる。   In order to solve this, it is necessary for the gas seal portion to be deformed as the part size is reduced and to keep the sealing performance. Thereby, the force which compresses a stack is mainly applied to the electrode surface of a cell, can maintain an electrical connection, and can maintain gas-sealing property in spite of weak compression force.

一方、外部マニホールド型の場合は、ガス供給部とセル部分は独立に圧縮することが可能であるが、両者はガス配管によりつながっている。このためセル部分の焼きしまり等によるスタック方向における寸法の減少があるためガス配管部分に応力が掛かってしまう。この結果、セルに非対称な応力がかかり電気的接続に支障がでることが懸念される。従って、外部マニホールド型の場合もガスシール部分が部品の寸法の減少に伴って変形することが必要である。   On the other hand, in the case of the external manifold type, the gas supply part and the cell part can be compressed independently, but both are connected by gas piping. For this reason, since there is a reduction in the dimension in the stacking direction due to the burning of the cell portion, stress is applied to the gas piping portion. As a result, there is a concern that an asymmetric stress is applied to the cell and the electrical connection is hindered. Accordingly, even in the case of the external manifold type, it is necessary that the gas seal portion be deformed as the dimensions of the parts are reduced.

また、高温では、弾性変形を伴った応力は、緩和され易いので、弾性に依存した接続やシールは長期の使用により効果が低下してしまう。   In addition, since stress accompanied by elastic deformation is easily relaxed at high temperatures, the effect of connection and sealing depending on elasticity is reduced by long-term use.

そこで本発明は、運転停止などの熱サイクルを含む長時間にわたった運転において、電気的接続とガスシールの両方を同時に実現することができるガスシール構造、ガスシール及びガスシール方法を提供することを目的とする。   Accordingly, the present invention provides a gas seal structure, a gas seal, and a gas seal method capable of simultaneously realizing both electrical connection and gas seal in a long-time operation including a thermal cycle such as operation stop. With the goal.

上記目的を達成するため、本発明のガスシール構造は、固体電解質型燃料電池及び固体電解質型燃料電池へのガスの供給路におけるガスシール構造において、閉じた形状で導電性を有するとともに、複数の噛み合わせ部が形成され、少なくとも噛み合わせ部の間の領域が柔軟性を有するシール部材と、噛み合わせ部に対応する位置に形成された閉じた形状の凹部が形成されたシール対象部品及び他のシール対象部品と、凹部に挿入される係合部とを有し、シール対象部品の凹部が形成された面と、他のシール対象部品の凹部が形成された面とが対向して配置され、これら面の間に配置されたシール部材の各係合部が各凹部に挿入されることで凹部及び係合部のいずれか一方が変形し、凹部と係合部とが噛み合うことを特徴とする。   In order to achieve the above object, the gas seal structure of the present invention is a solid electrolyte fuel cell and a gas seal structure in a gas supply path to the solid oxide fuel cell. A seal member in which a meshing portion is formed, a seal member having at least a region between the meshing portions having flexibility, a recessed portion having a closed shape formed at a position corresponding to the meshing portion, and other parts A part to be sealed and an engaging part to be inserted into the concave part, the surface on which the concave part of the part to be sealed is formed, and the surface on which the concave part of the other part to be sealed are formed are opposed to each other, Each engagement portion of the seal member disposed between these surfaces is inserted into each recess, so that either the recess or the engagement portion is deformed, and the recess and the engagement portion are engaged with each other. .

上記のとおり、本発明のシール部材は導電性を有するとともに、複数の噛み合わせ部が設けられており、噛み合わせ部の間の領域が柔軟性を有する。このため、本発明のシール構造はシール対象部品が変位してもこの変位に追従可能となり、シール特性を維持することができる。   As described above, the seal member of the present invention has conductivity, and a plurality of meshing portions are provided, and a region between the meshing portions has flexibility. For this reason, the seal structure of the present invention can follow the displacement even if the part to be sealed is displaced, and can maintain the seal characteristics.

また、本発明のシール部材とシール対象部品とは、係合部がシール対象部品の凹部に挿入されることで係合部あるいは凹部の一方が変形し、隙間なく噛み合う。このため、本発明のシール構造は確実にシール部材を保持するとともに両者の電気的接続も確保することができる。   Further, the seal member and the seal target component of the present invention are engaged with each other without a gap by the engagement portion being inserted into the recess of the seal target component, whereby one of the engagement portion or the recess is deformed. For this reason, the seal structure of the present invention can securely hold the seal member and ensure electrical connection between the two.

また、本発明のガスシール構造は、係合部が塑性変形し、凹部内の形状が、係合部を凹部内から引き抜く際の抵抗を、係合部を凹部内に挿入する際の抵抗に比べ大きくさせる形状であってもよい。   In the gas seal structure of the present invention, the engaging portion is plastically deformed, and the shape in the concave portion is set to the resistance when the engaging portion is pulled out from the concave portion and the resistance when the engaging portion is inserted into the concave portion. It may be a shape that makes the comparison larger.

また、本発明のガスシール構造は、凹部の断面形状が凹部の入口側から凹部の底部に向けて広がるテーパ形状であってもよい。   In addition, the gas seal structure of the present invention may have a tapered shape in which the cross-sectional shape of the recess extends from the entrance side of the recess toward the bottom of the recess.

また、本発明のガスシール構造は、凹部の底部に、係合部の先端に進入させるエッジが形成されているものであってもよい。   Moreover, the gas seal structure of this invention may be formed with an edge that enters the tip of the engaging portion at the bottom of the recess.

また、本発明のガスシール構造は、係合部を凹部の内壁面に押圧する弾性部材を有するものであってもよい。   Moreover, the gas seal structure of this invention may have an elastic member which presses an engaging part on the inner wall face of a recessed part.

また、本発明のガスシール構造は、係合部の先端にエッジが形成されており、エッジの進入により凹部の底部が塑性変形するものであってもよい。   In the gas seal structure of the present invention, an edge may be formed at the tip of the engaging portion, and the bottom of the recess may be plastically deformed by the entry of the edge.

また、本発明のガスシール構造は、シール部材が円環形状の金属箔であってもよい。   In the gas seal structure of the present invention, the sealing member may be an annular metal foil.

本発明のガスシールは、固体電解質型燃料電池及び固体電解質型燃料電池へのガスの供給路におけるガスシールであって、閉じた形状で導電性を有するとともに、複数の噛み合わせ部が形成され、少なくとも噛み合わせ部の間の領域が柔軟性を有するものである。   The gas seal of the present invention is a gas seal in a solid oxide fuel cell and a gas supply path to the solid oxide fuel cell, and has a closed shape and conductivity, and a plurality of meshing portions are formed. At least the region between the meshing portions has flexibility.

本発明のガスシール方法は、固体電解質型燃料電池及び固体電解質型燃料電池へのガスの供給路におけるガスシール方法において、閉じた形状で導電性を有するとともに、複数の噛み合わせ部が形成され、少なくとも噛み合わせ部の間の領域が柔軟性を有するシール部材と、噛み合わせ部に対応する位置に形成された閉じた形状の凹部が形成されたシール対象部品及び他のシール対象部品と、凹部に挿入される係合部とを用意し、シール対象部品の凹部が形成された面と、他のシール対象部品の凹部が形成された面とを対向して配置して、これら面の間にシール部材を配置し、シール部材の各係合部を各凹部に挿入して凹部及び係合部のいずれか一方を変形させ、凹部と係合部とを噛み合わさせるものである。   The gas sealing method of the present invention is a solid electrolyte fuel cell and a gas sealing method in a gas supply path to the solid oxide fuel cell. In the gas sealing method, the gas sealing method has a closed shape and has conductivity, and a plurality of meshing portions are formed. A seal member having at least a region between the meshing portions having flexibility, a seal target component formed with a recessed portion having a closed shape formed at a position corresponding to the mesh portion, and other seal target components, and a recess An engaging portion to be inserted is prepared, and a surface on which a concave portion of a part to be sealed is formed and a surface on which a concave part of another part to be sealed are formed are opposed to each other, and a seal is provided between these surfaces. A member is disposed, and each engagement portion of the seal member is inserted into each recess to deform one of the recess and the engagement portion, and the recess and the engagement portion are engaged with each other.

本発明のシール構造によれば、シール対象部品が変位してもシール部材がこの変位に追従可能であるため、シール特性を維持することができる。   According to the seal structure of the present invention, since the seal member can follow the displacement even when the seal target component is displaced, the seal characteristics can be maintained.

本発明のシール構造によれば、導電性を有するシール部材とシール対象部品とは、係合部あるいは凹部の一方を変形させて噛み合わせ部が形成される。このため、本発明のシール構造は確実にシール部材を保持するとともに両者の電気的接続も確保することができる。   According to the seal structure of the present invention, the conductive seal member and the part to be sealed are deformed in one of the engaging portion or the recessed portion to form a meshing portion. For this reason, the seal structure of the present invention can securely hold the seal member and ensure electrical connection between the two.

図1に本発明のガスシール構造の模式的な側断面図である。また、図2は本発明のシール部材の模式的な斜視図である。なお、図1は左側がシール部材の内周側に相当する。また、以下の説明では添字aは内周側、添字bは外周側を指すものとする。   FIG. 1 is a schematic sectional side view of the gas seal structure of the present invention. FIG. 2 is a schematic perspective view of the sealing member of the present invention. In FIG. 1, the left side corresponds to the inner peripheral side of the seal member. In the following description, the subscript a indicates the inner peripheral side, and the subscript b indicates the outer peripheral side.

本発明のガスシール構造は、円環形状で導電性を有するとともに、内周部側に内周部側噛み合わせ部19a、外周側に外周側噛み合わせ部19bが形成され、内周部側噛み合わせ部19aと外周側噛み合わせ部19bとの間の領域が柔軟性を有するシール部材3と、シール部材3によってシールされる1組のシール対象部品1、2と、シール対象部品1、2の凹部4に挿入される係合部7とを有する。   The gas seal structure of the present invention has an annular shape and is electrically conductive, and has an inner peripheral side engagement portion 19a on the inner peripheral portion side and an outer peripheral engagement portion 19b on the outer peripheral portion. The seal member 3 having a flexible region between the mating portion 19a and the outer peripheral meshing portion 19b, a set of seal target components 1 and 2 sealed by the seal member 3, and the seal target components 1 and 2 And an engaging portion 7 to be inserted into the recess 4.

シール部材3は上述したように円環形状であり、その内周部には内周側噛み合わせ部19aが設けられ、外周部には外周側噛み合わせ部19bが設けられている。シール部材3は金属箔からなるものであり、その材質としてはCroper22の他、ZMG232などアルミニウムやシリコンを含むクロム系耐熱合金が好ましい。シール部材3は金属箔からなるため導電性を有し、かつ柔軟性を有する。   As described above, the seal member 3 has an annular shape, and an inner peripheral side engagement portion 19a is provided on the inner peripheral portion, and an outer peripheral engagement portion 19b is provided on the outer peripheral portion. The seal member 3 is made of a metal foil. The material of the seal member 3 is preferably a chromium-based heat-resistant alloy containing aluminum or silicon such as ZMG232 in addition to the Croper 22. Since the seal member 3 is made of a metal foil, it has conductivity and flexibility.

係合部7は塑性変形する材質のものが用いられ、例えば、シール部材3と同様にCroper22、ZMG232などアルミニウムやシリコンを含むクロム系耐熱合金が好ましい。係合部7はシール部材3と一体的な構成であってもよい。なお、係合部7の塑性変形を比較的大きくした場合には、係合部7をシール部材3と別体としても良く、この場合、銀やパラジウムなどの貴金属を用いるのが好ましい。また、係合部7はその先端部を、変形しやすいように柔らかい材質で構成してもよい。   The engaging portion 7 is made of a material that is plastically deformed. For example, a chromium-based heat-resistant alloy containing aluminum or silicon, such as Croper 22 and ZMG 232, is preferably used in the same manner as the seal member 3. The engaging portion 7 may be integrated with the seal member 3. When the plastic deformation of the engaging portion 7 is relatively large, the engaging portion 7 may be separated from the seal member 3, and in this case, it is preferable to use a noble metal such as silver or palladium. In addition, the engaging portion 7 may have a distal end portion made of a soft material so as to be easily deformed.

なお、本発明において係合部7とは、シール部材3を凹部4内に押し込むものであり、凹部4あるいは係合部7のいずれか一方が変形することでシール部材3と凹部4とを噛み合わさせる機能を有する。   In the present invention, the engagement portion 7 is a member that pushes the seal member 3 into the recess 4, and the seal member 3 and the recess 4 are engaged with each other when either the recess 4 or the engagement portion 7 is deformed. It has a function to make it.

シール対象部品1の内周側の面9aに凹部4aが形成されている。凹部4aの断面形状は入口5aから底部6aに向けて広がるテーパ形状となっている。また、シール対象部品2の外周側の面9bにも同様の形状の凹部4bが形成されている。   A recess 4a is formed on the inner peripheral surface 9a of the part 1 to be sealed. The cross-sectional shape of the recess 4a is a tapered shape that spreads from the inlet 5a toward the bottom 6a. A concave portion 4b having the same shape is also formed on the outer peripheral surface 9b of the part 2 to be sealed.

次に、本発明のシール方法について図1(a)及び図1(b)を用いて説明する。   Next, the sealing method of the present invention will be described with reference to FIGS. 1 (a) and 1 (b).

まず、シール対象部品1の面9a側と、シール対象部品2の面9b側とを対向して配置する。このように配置することでシール対象部品1の面9aにはシール対象部品2の押圧面10bが対面し、シール対象部品2の面9bにはシール対象部品1の押圧面10aが対面することとなる。シール部材3はこれら面9aと面9bとの間に配置する。係合部7aはシール部材3を挟んで凹部4aに対応する位置に配置され、係合部7bはシール部材3を挟んで凹部4bに対応する位置に配置される。   First, the surface 9a side of the seal target component 1 and the surface 9b side of the seal target component 2 are arranged to face each other. By arranging in this way, the pressing surface 10b of the sealing target component 2 faces the surface 9a of the sealing target component 1, and the pressing surface 10a of the sealing target component 1 faces the surface 9b of the sealing target component 2. Become. The seal member 3 is disposed between these surfaces 9a and 9b. The engaging portion 7a is disposed at a position corresponding to the recessed portion 4a with the seal member 3 interposed therebetween, and the engaging portion 7b is disposed at a position corresponding to the recessed portion 4b with the seal member 3 interposed therebetween.

さらに係合部7aと押圧面10bとの間、及び係合部7bと押圧面10aとの間にはそれぞれスペーサ8が挟み込まれている。このスペーサ8はシール部材3を凹部4に噛み込ませる際にのみ用いるものであり、シールがなされた後には取り除かれる。   Further, spacers 8 are sandwiched between the engaging portion 7a and the pressing surface 10b and between the engaging portion 7b and the pressing surface 10a, respectively. The spacer 8 is used only when the sealing member 3 is engaged with the recess 4 and is removed after the sealing.

以上の状態で図1(a)に示すように、シール対象部品1の背面11側から荷重をかける。これにより、図1(b)に示すように係合部7aは凹部4a内にて押しつぶされ塑性変形する。同様に係合部7bも凹部4b内にて押しつぶされ塑性変形する。このように係合部7が凹部4の内部で押しつぶされ塑性変形することで係合部7は凹部4の内部形状に沿うように変形し、隙間なく噛み合う。つまり、係合部7の断面形状は入口5側から底部6に向けて広がるテーパ形状となる。そうすると、係合部7を凹部4から引き抜こうとしても入口5の部分で引っ掛かるため、引き抜きにくくなる。   In the above state, as shown in FIG. 1A, a load is applied from the back surface 11 side of the part to be sealed 1. Thereby, as shown in FIG.1 (b), the engaging part 7a is crushed and plastically deformed in the recessed part 4a. Similarly, the engaging portion 7b is also crushed and plastically deformed in the recess 4b. Thus, the engaging part 7 is crushed and plastically deformed inside the concave part 4, so that the engaging part 7 is deformed so as to follow the internal shape of the concave part 4 and meshes with no gap. That is, the cross-sectional shape of the engaging portion 7 is a tapered shape that spreads from the inlet 5 side toward the bottom portion 6. If it does so, even if it tries to pull out the engaging part 7 from the recessed part 4, since it will be hooked in the part of the inlet 5, it will become difficult to pull out.

すなわち、本発明のシール構造は、係合部7が塑性変形する前は、係合部7は入口5からなんら抵抗を受けることなく、凹部4内に挿入させることができる一方、係合部7を凹部4内から係合部7を引き抜こうとする際には、塑性変形して広がった係合部7が入口5の抵抗を受けるため、容易に係合が解除されないものとなっている。このため、本発明のシール構造は確実にシール部材3を保持するとともに両者の電気的接続も確保することができる。   That is, according to the seal structure of the present invention, before the engaging portion 7 is plastically deformed, the engaging portion 7 can be inserted into the recess 4 without receiving any resistance from the inlet 5. When the engagement portion 7 is to be pulled out of the recess 4, the engagement portion 7 that has spread due to plastic deformation receives the resistance of the inlet 5, so that the engagement is not easily released. For this reason, the seal structure of the present invention can securely hold the seal member 3 and also ensure electrical connection between them.

また、図1(b)に示すように、シールがなされた後のシール部材3の内周側噛み合わせ部19aと外周側噛み合わせ部19bとの間の領域3aはある程度ゆとりを持たせた状態となっている。本発明のシール部材3は素材自体が柔軟性を有するとともに領域3aにてゆとりを持たせているので、シール対象部品1、2が図中矢印a、b方向に変位したとしてもこの変位に追従可能であり、シール特性を維持することができる。   In addition, as shown in FIG. 1 (b), the region 3a between the inner peripheral side engaging portion 19a and the outer peripheral side engaging portion 19b of the seal member 3 after being sealed is provided with some clearance. It has become. Since the sealing member 3 of the present invention is flexible in the material itself and has a space in the region 3a, even if the parts 1 and 2 to be sealed are displaced in the directions of arrows a and b in the figure, the displacement follows. It is possible to maintain the sealing characteristics.

このような構造であるため、本発明のガスシール構造は、シール対象部品1、2が熱サイクルを含む長時間にわたって運転され、かつ互いの電気的接続が要求されるような部品であってもシール特性を維持しつつ、両者の電気的接続も確保することができる。特に、本発明はSOFC用ガスシールとして用いた場合、セルや集電体の寸法の減少、熱サイクルによる膨張収縮等が起きてもシール特性を維持しつつ、両者の電気的接続も確保することができる点で有利である。   Because of such a structure, the gas seal structure of the present invention is a component in which the parts to be sealed 1 and 2 are operated for a long time including a heat cycle and are required to be electrically connected to each other. Both electrical connections can be ensured while maintaining the sealing characteristics. In particular, when the present invention is used as a gas seal for SOFC, the sealing properties are maintained even when the size of the cell or current collector is reduced, the expansion or contraction due to the thermal cycle occurs, and the electrical connection between the two is ensured. This is advantageous in that

なお、シール部材3の形状は、図2に示すような円環形状のものに限定されるものではない。すなわち、閉じた形状で、中空の部分とその外周部分でガスを分離(シール)する働きを有するものであれば四角、三角等どのような形状であってもよい。   The shape of the seal member 3 is not limited to an annular shape as shown in FIG. That is, any shape such as a square or a triangle may be used as long as it has a closed shape and has a function of separating (sealing) gas between a hollow portion and an outer peripheral portion thereof.

また、図1に示したシール対象部品1、2は凹部4a、4bが内周側と外周側に半径方向に分けて設けられていたが、図3に示すような構成であってもよい。図3のガスシール構造は、同一半径上に凹部4を設け、シール部材3は折り曲げて用いる。この場合、1箇所に加重をかけるだけで係合部4の挿入が完了する。よって、スペーサ8も1枚で済み、シールに要する工程を短縮化することができる。さらに、この構成の場合、シール部材3の占める面積を最小限にできるなどの利点がある。   Moreover, although the sealing target components 1 and 2 shown in FIG. 1 are provided with the recesses 4a and 4b separately on the inner peripheral side and the outer peripheral side in the radial direction, the configuration shown in FIG. The gas seal structure of FIG. 3 is provided with a recess 4 on the same radius, and the seal member 3 is bent and used. In this case, the insertion of the engaging portion 4 is completed only by applying a weight to one place. Therefore, only one spacer 8 is required, and the process required for sealing can be shortened. Further, this configuration has an advantage that the area occupied by the seal member 3 can be minimized.

なお、図3に示す構成において、シール部材3は、図4に示すように係合部7が設けられる部分に係合部7よりも硬く変形しにくい材質からなる台座12を設け、他の部分に柔軟性をもたせるようにしてもよい。台座12を設けることで係合部7に加重が掛かりやすく塑性変形を促進することができる。また、金属箔は、その一部に柔軟性があれば十分であり、特に係合部に近い部分は応力が掛かり破損しやすいので、台座12のような厚い板と組み合わせて用いる方が好ましい。なお、台座12はシール部材3と別体として設けられているものであってもよいし、あるいは一体的なものであってもよい。   In the configuration shown in FIG. 3, the seal member 3 is provided with a base 12 made of a material harder than the engaging portion 7 and hard to be deformed in the portion where the engaging portion 7 is provided as shown in FIG. You may make it give flexibility. By providing the pedestal 12, it is easy to apply a load to the engaging portion 7, and plastic deformation can be promoted. Further, it is sufficient that a part of the metal foil is flexible. Particularly, a portion near the engaging portion is stressed and easily damaged, and therefore it is preferable to use it in combination with a thick plate such as the base 12. The pedestal 12 may be provided separately from the seal member 3 or may be integrated.

また、係合部7は、先端部にのみ塑性変形しやすい金属を用い、スペーサ8で押圧される側を鉄クロム合金などの耐熱性の高い合金を用いるものであってもよい。このような構造とすることで各部の寸法精度を高くする必要がない。   In addition, the engaging portion 7 may be made of a metal that is easily plastically deformed only at the tip portion, and the side pressed by the spacer 8 may be made of an alloy having high heat resistance such as iron-chromium alloy. With such a structure, it is not necessary to increase the dimensional accuracy of each part.

または、図5に示すように、凹部4の底部6にエッジ14を設け、係合部7がこのエッジ14に食い込む構成としてもよい。これにより係合効果を高めることができる。また、このように一部にエッジがあるなど鋭利であれば、角の部分のみに集中応力が働くため、この部分が局所的に変形しシール性が高まり有利である。さらには寸法性を高め噛み合わせのクリアランスを小さくすることでも同様の効果が期待できる。なお、図5の構成において、係合部7はシール部材3と別体として設けられているものであってもよいし、あるいは一体的なものであってもよい。   Alternatively, as shown in FIG. 5, an edge 14 may be provided on the bottom 6 of the recess 4 and the engaging portion 7 may bite into the edge 14. Thereby, the engagement effect can be enhanced. Further, if the edge is sharp such as having a part in this way, the concentrated stress acts only on the corner part, and this part is locally deformed, which advantageously increases the sealing performance. Furthermore, the same effect can be expected by increasing the dimensionality and reducing the meshing clearance. In the configuration of FIG. 5, the engaging portion 7 may be provided separately from the seal member 3 or may be integrated.

また、これとは逆に図6に示すように、係合部7側にエッジ15を設け凹部4の底部6に塑性変形部16を設けるものであってもよい。また、これらエッジ14、15を有する構成においてもエッジ14、15の食い込みを促進させるため、図6に示すように台座17上に係合部7を設けるようにしてもよい。なお、図6の構成において、係合部7及び台座17はシール部材3と別体として設けられているものであってもよいし、あるいは一体的なものであってもよい。   On the contrary, as shown in FIG. 6, an edge 15 may be provided on the engagement portion 7 side and a plastic deformation portion 16 may be provided on the bottom portion 6 of the recess 4. Further, in the configuration having the edges 14 and 15, the engaging portion 7 may be provided on the pedestal 17 as shown in FIG. 6 in order to promote biting of the edges 14 and 15. In the configuration of FIG. 6, the engaging portion 7 and the pedestal 17 may be provided separately from the seal member 3 or may be integrated.

また、本発明のガスシール構造は、図7に示すように弾性部材18と組み合わせることも可能である。図7に示す例では、シール部材3の噛み合わせ部19を凹部4に挿入する際、噛み合わせ部19とともに弾性部材18を凹部4内に挿入する。噛み合わせ部19は入口5を通過する際には塑性変形せずに弾性変形しながら通過する。入口5を通過した後、噛み合わせ部19は弾性部材18の押圧力により凹部4の内壁面に押し付けられ塑性変形する。図7に示す構成の場合、弾性部材18が凹部4内にて塑性変形した噛み合わせ部19を凹部4の内壁面に押圧し続けるため、係合を強固なものとすることができる。   Further, the gas seal structure of the present invention can be combined with the elastic member 18 as shown in FIG. In the example shown in FIG. 7, the elastic member 18 is inserted into the recess 4 together with the engagement portion 19 when the engagement portion 19 of the seal member 3 is inserted into the recess 4. The meshing portion 19 passes through the inlet 5 while elastically deforming without being plastically deformed. After passing through the inlet 5, the meshing portion 19 is pressed against the inner wall surface of the recess 4 by the pressing force of the elastic member 18 and is plastically deformed. In the case of the configuration shown in FIG. 7, since the elastic member 18 continues to press the engagement portion 19 plastically deformed in the recess 4 against the inner wall surface of the recess 4, the engagement can be strengthened.

また、本発明は、シール部材3は塑性変形をせず、挿入時に凹部4が一時的に弾性変形して入口5が少し開きシール部材3が挿入されるガスシール構造としてもよい。挿入後は弾性変形はほとんど無くなるため応力も掛からず、運転時の応力緩和による変形を免れることができる。しかし、係合部分を解離させるような力が(熱サイクルなどで)一時的に生じても応力緩和はほとんど進まない。   Further, the present invention may have a gas seal structure in which the seal member 3 is not plastically deformed, the recess 4 is temporarily elastically deformed during insertion, the inlet 5 is opened slightly, and the seal member 3 is inserted. After insertion, there is almost no elastic deformation, so no stress is applied, and deformation due to stress relaxation during operation can be avoided. However, even if a force that disengages the engagement portion is temporarily generated (due to a thermal cycle or the like), the stress relaxation hardly proceeds.

このほか、本発明は係合部分にガラスシール材を入れることも可能である。   In addition, according to the present invention, a glass sealing material can be put in the engaging portion.

また、本発明は内周側噛み合わせ部19a及び外周側噛み合わせ部19bの2つのシール部を有する構成を一例として例示したがこれに限定されるものではなく、3つ以上シール部を有するものであってもよい。   Moreover, although this invention illustrated as an example the structure which has two seal parts of the inner peripheral side engaging part 19a and the outer peripheral side engaging part 19b, it is not limited to this, It has three or more seal parts It may be.

以下に本発明の実施例を説明する。なお、当然のことであるが本発明は以下の実施例に限定されるものではない。
(実施例1)
多孔質で且つ厚さ1.5mmのNiO−YSZ(0.89ZrO2−0.08Y23)燃料極基板上に、緻密なSc23、Al23添加ジルコニアSASZ(0.89ZrO2−0.10Sc23−0.01Al23)電解質薄膜が設けられ、その上にLNF(LaNi0.6Fe0.43)からなる空気極が設けられている燃料極支持型セル(直径6cm、空気極の直径は5cm)を2枚用意し、これらのセルに燃料ガスおよび空気を供給し且つ電気的に接続するために、耐熱合金の一種である鉄クロム合金(Crofer22)からなる3枚のインターコネクタでサンドイッチされた形で上下に積み上げられている。これをセルスタックと呼ぶ。
Examples of the present invention will be described below. Of course, the present invention is not limited to the following examples.
Example 1
On a porous NiO—YSZ (0.89ZrO 2 -0.08Y 2 O 3 ) fuel electrode substrate having a thickness of 1.5 mm, a dense Sc 2 O 3 , Al 2 O 3 added zirconia SASZ (0.89ZrO 2 -0.10Sc 2 O 3 -0.01Al 2 O 3 ) An electrolyte thin film, on which an air electrode made of LNF (LaNi 0.6 Fe 0.4 O 3 ) is provided (diameter supported) 6 cm, the diameter of the air electrode is 5 cm), and in order to supply and electrically connect fuel gas and air to these cells, it is made of iron-chromium alloy (Crofer 22), which is a kind of heat-resistant alloy. It is stacked up and down in a sandwiched form with a single interconnector. This is called a cell stack.

図8に燃料電池のスタック用インターコネクタの上面透視図を示す。   FIG. 8 is a top perspective view of the fuel cell stack interconnector.

インターコネクタ20は中心部にセル配置部24が設けられ、セル配置部24の周辺に空気供給穴21、燃料ガス供給穴22、及び燃料ガス回収穴23が配置されている。   The interconnector 20 is provided with a cell arrangement portion 24 at the center, and an air supply hole 21, a fuel gas supply hole 22, and a fuel gas recovery hole 23 are arranged around the cell arrangement portion 24.

インターコネクタ20と燃料極の間には、多孔質のニッケルマットをはさみ、空気極とインターコネクタの間は、LNFをペースト状にしたものを塗り乾燥して接合した。   A porous nickel mat was sandwiched between the interconnector 20 and the fuel electrode, and a paste of LNF was applied and dried between the air electrode and the interconnector.

空気はインターコネクタ20に沿った空気供給穴21からに沿って各セルの中心位置まで導かれ中心から放射状に流れるようになっている。燃料ガス供給穴22から供給される燃料ガスは、セル配置部24セルの端部から入り、セル配置部24セル端部から出て燃料ガス回収穴23へと流入する。燃料ガスの導入部は金属板を張り合わせてトンネル構造となっている。   The air is guided from the air supply hole 21 along the interconnector 20 to the center position of each cell and flows radially from the center. The fuel gas supplied from the fuel gas supply hole 22 enters from the end portion of the cell arrangement portion 24 cell, exits from the cell arrangement portion 24 cell end portion, and flows into the fuel gas recovery hole 23. The fuel gas introduction part has a tunnel structure in which metal plates are bonded together.

電気炉に入れられたセルスタックは動作温度である800℃まで昇温され、スタック全体を約20kg重の力で圧縮した状態で、ガスを供給した。本発明のガスシール構造30は空気供給穴21、燃料ガス供給穴22、及び燃料ガス回収穴23のそれぞれの周囲に本発明のガスシール構造30が設けられている。セルの周囲とインターコネクタとの接触部分にはガラスシールが使用されている。   The cell stack placed in the electric furnace was heated to an operating temperature of 800 ° C., and gas was supplied in a state where the entire stack was compressed with a force of about 20 kg. In the gas seal structure 30 of the present invention, the gas seal structure 30 of the present invention is provided around each of the air supply hole 21, the fuel gas supply hole 22, and the fuel gas recovery hole 23. A glass seal is used at a contact portion between the periphery of the cell and the interconnector.

ここで、本発明のガスシール構造30の断面は同心円に配置された二つの噛み合わせ部からなっている。各噛み合わせ部の断面は図1に示すように、シール対象部品1とシール対象部品2の係合部は対称な形となっており、同心円の凹部4である溝は、断面が内部ほど幅が広いオーバーハング状である。凹部4の入口での幅は2mmで底部6での幅は2.4mm、深さは2mmである。係合部7の断面は高さ4mm幅1.9mmの四角で、先端部分が長さ0.7mmにわたって銀でできている。これらの同心円の係合部7は、鉄クロム系耐熱合金インターコネクタ上に、セルの中心位置と同心円状に、外径9cm、内径7cmのトーラス状の厚さ0.04mmのインコネル箔に直径が7.6cm径の位置と、直径8.4cmの位置に配置されている。   Here, the cross section of the gas seal structure 30 of the present invention is composed of two meshing portions arranged concentrically. As shown in FIG. 1, the cross-section of each meshing portion is such that the engagement portions of the sealing target component 1 and the sealing target component 2 are symmetrical, and the groove that is a concentric recess 4 is as wide as the cross-section is. Is a wide overhang. The width of the recess 4 at the entrance is 2 mm, the width at the bottom 6 is 2.4 mm, and the depth is 2 mm. The cross section of the engaging portion 7 is a square having a height of 4 mm and a width of 1.9 mm, and the tip portion is made of silver over a length of 0.7 mm. These concentric engagement portions 7 are formed on an iron-chromium heat-resistant alloy interconnector concentrically with the center position of the cell, on a torus-shaped inconel foil having an outer diameter of 9 cm and an inner diameter of 7 cm, and a thickness of 0.04 mm. It is arranged at a position of 7.6 cm diameter and a position of diameter 8.4 cm.

室温でセルスタックを組み立てる時に、係合部7を挿入するが、この時に先端の銀の部分が潰れて溝内部を埋め係合部7が解離し難くなる。ここで、仮のスペーサ8を使用して、内周側噛み合わせ部19aを押して係合部7を凹部4内に挿入し、次に外周側噛み合わせ部19b外周部のシールを挿入した。   When assembling the cell stack at room temperature, the engaging portion 7 is inserted. At this time, the silver portion at the tip is crushed to fill the groove, and the engaging portion 7 is difficult to dissociate. Here, the temporary spacer 8 was used to push the inner peripheral meshing portion 19a to insert the engaging portion 7 into the recess 4 and then insert the outer peripheral seal of the outer peripheral meshing portion 19b.

図8に示す様に、セルを納める部分の他にも、空気と燃料を流すガスシールを必要とする箇所が3カ所ある。ここでは、これらの小径のシール部にはパイレックスガラスリングを挟んで溶融させシールとしている。   As shown in FIG. 8, there are three places where a gas seal for flowing air and fuel is required in addition to the part for storing the cells. Here, these small-diameter seal portions are fused with a Pyrex glass ring sandwiched therebetween.

燃料には、室温加湿の水素を用いた。2枚のセルのスタックでトータルの開放電圧は約2.0Vと高くガスシールが機能していることがわかった。電流を2アンペア流したところ、電圧は、1.7Vであり電気的接合も十分であることがわかった。この状態で、運転、100時間ごとに運転を停止し室温まで降温した後、再度昇温し、同じ運転を行う熱サイクル試験を行った。最終的に1000時間の運転を行ったところ、電圧および開放電圧に変化は見られなかったが、スタック全体が0.2mmほど圧縮された。   The fuel used was room temperature humidified hydrogen. The total open-circuit voltage of the stack of two cells was as high as about 2.0 V, and it was found that the gas seal was functioning. When a current of 2 amperes was passed, it was found that the voltage was 1.7 V and the electrical junction was sufficient. In this state, the operation was stopped every 100 hours, the temperature was lowered to room temperature, the temperature was raised again, and a heat cycle test was performed in which the same operation was performed. When the operation for 1000 hours was finally performed, the voltage and the open voltage were not changed, but the entire stack was compressed by about 0.2 mm.

以上の様に、セル自体が長期の運転により圧縮されてもシール部分がそれに対応して変形するためガスシール性および電気的接続特性が保たれることが実証された。
(実施例2)
実施例1において、ガスシール構造を図5に示したものとした。すなわち、係合部7の先端部をパラジウムとし、凹部4の底部6に断面三角形のエッジ14を設けてある。凹部4の深さ、幅は2mmで、エッジ14は高さ0.8mmで底辺の幅が0.4mmとした。これに厚さ0.1mmのトーラス状のインコネル箔塗を銀ろう付けしてある。スタック組み上げ時に係合部分を挿入し、実施例1と同様の試験を行った。
As described above, even when the cell itself is compressed by a long-term operation, it has been proved that the gas sealability and the electrical connection characteristic are maintained because the seal portion is deformed correspondingly.
(Example 2)
In Example 1, the gas seal structure was as shown in FIG. That is, the tip of the engaging portion 7 is palladium, and the edge 14 having a triangular cross section is provided on the bottom 6 of the recess 4. The depth and width of the recess 4 were 2 mm, the edge 14 was 0.8 mm in height, and the bottom width was 0.4 mm. A torus-like Inconel foil coating having a thickness of 0.1 mm is brazed with silver. The engaging portion was inserted when the stack was assembled, and the same test as in Example 1 was performed.

このセルスタックの開放電圧は2.0Vであり、電流が2Aでの、電圧は、1.8Vと良好であった。また、実施例1と同様の熱サイクル試験を行い、計1000時間の運転後は、スタック全体がやはり0.2mmほど圧縮された。しかし電圧および開放電圧に変化は見られなかった。
(実施例3)
実施例3において、ガスシール構造を図6に示したものとした。すなわち、鉄クロム系耐熱合金製の係合部7の先端部に実施例2と同じ三角のエッジ15を設け、凹部4の底面に塑性変形部16としてPdのシートが銀ろう付けされている。スタック組み上げ時に係合部分を挿入し、実施例1と同様の試験を行った。
The open voltage of this cell stack was 2.0V, and the voltage at a current of 2A was as good as 1.8V. Further, the same thermal cycle test as in Example 1 was performed, and after a total of 1000 hours of operation, the entire stack was also compressed by about 0.2 mm. However, there was no change in voltage and open circuit voltage.
(Example 3)
In Example 3, the gas seal structure was as shown in FIG. That is, the same triangular edge 15 as that of the second embodiment is provided at the tip of the engaging portion 7 made of iron-chromium heat-resistant alloy, and a Pd sheet is silver brazed to the bottom surface of the recess 4 as the plastic deformation portion 16. The engaging portion was inserted when the stack was assembled, and the same test as in Example 1 was performed.

このセルスタックの開放電圧は2.0Vであり、電流が2Aでの、電圧は、1.8Vと良好であった。また、1000時間動作後は、スタック全体がやはり0.2mmほど圧縮された。しかし電圧および開放電圧に変化は見られなかった。
(実施例4)
実施例1において、ガスシール構造を図3に示したものとした。すなわち、2カ所あるシール部分を直径7.5cmの同一周上に配置し、スタック組み上げ時に仮のスペーサを用い上下の係合部を同時に挿入した。また、図8の小径のガスシール部にもこれと同じ形状のシールを使用した。即ち、直径1cmのガス路の外周に、内径1.5cm、外径2.0cmの折り曲げたトーラス状(上記の金属箔)の金属箔と係合部を奥部に挿入厚着し、先端部分を変形させた。その後、実施例1と同様の試験を行った。
The open voltage of this cell stack was 2.0V, and the voltage at a current of 2A was as good as 1.8V. Also, after 1000 hours of operation, the entire stack was still compressed by about 0.2 mm. However, there was no change in voltage and open circuit voltage.
Example 4
In Example 1, the gas seal structure was as shown in FIG. That is, two seal portions were arranged on the same circumference having a diameter of 7.5 cm, and upper and lower engaging portions were simultaneously inserted using a temporary spacer when the stack was assembled. Further, a seal having the same shape was used for the small-diameter gas seal portion of FIG. That is, on the outer periphery of a gas path having a diameter of 1 cm, a bent torus-shaped metal foil (above-mentioned metal foil) having an inner diameter of 1.5 cm and an outer diameter of 2.0 cm and an engaging part are inserted and attached to the inner part, and the tip is attached. Deformed. Thereafter, the same test as in Example 1 was performed.

このセルスタックの開放電圧は2.1Vであり、電流が2Aでの、電圧は、1.9Vと良好であった。また、1000時間動作後は、スタック全体がやはり0.2mmほど圧縮された。しかし電圧および開放電圧に変化は見られなかった。
(実施例5)
実施例4において、ガスシール構造を図4に示したものとした。すなわち、係合部分に近い金属箔の面積を減らし、係合部を延長した形とした。延長部分は鉄クロム系耐熱合金製で厚さが0.5mmと厚い。実施例4と同様の方法で組み立て、その後、実施例4と同様の試験を行った。
The open voltage of this cell stack was 2.1V, and the voltage was as good as 1.9V when the current was 2A. Also, after 1000 hours of operation, the entire stack was still compressed by about 0.2 mm. However, there was no change in voltage and open circuit voltage.
(Example 5)
In Example 4, the gas seal structure was as shown in FIG. That is, the area of the metal foil near the engaging portion was reduced and the engaging portion was extended. The extension is made of an iron-chromium heat-resistant alloy and is as thick as 0.5 mm. The assembly was performed in the same manner as in Example 4, and then the same test as in Example 4 was performed.

このセルスタックの開放電圧は2.2Vであり、電流が2Aでの、電圧は、2.0Vと良好であった。また、1000時間動作後は、スタック全体がやはり0.2mmほど圧縮された。しかし電圧および開放電圧に変化は見られなかった。
(実施例6)
実施例1において、ガスシール構造を図7に示したものとした。すなわち、シール部材3はほとんど塑性変形をせず、挿入時に凹部4が一時的に弾性変形して入口5が少し開きシール部材3が挿入される。挿入後は弾性変形はほとんど無くなるため応力も掛からず、運転時の応力緩和による変形を免れることができる。係合する部分は、線径が4mm、内径が7cmのオーリングとなっている。金属箔は、厚さ0.02mmの金箔を用いている。この場合は、挿入時に金属箔が塑性変形を伴っている。実施例と同様に仮のスペーサを用いて係合部分を挿入し、実施例1と同様の試験を行った。
The open voltage of this cell stack was 2.2 V, and the voltage at a current of 2 A was as good as 2.0 V. Also, after 1000 hours of operation, the entire stack was still compressed by about 0.2 mm. However, there was no change in voltage and open circuit voltage.
(Example 6)
In Example 1, the gas seal structure was as shown in FIG. That is, the seal member 3 hardly undergoes plastic deformation, and the concave portion 4 is temporarily elastically deformed when inserted, and the inlet 5 is slightly opened to insert the seal member 3. After insertion, there is almost no elastic deformation, so no stress is applied, and deformation due to stress relaxation during operation can be avoided. The engaged portion is an O-ring with a wire diameter of 4 mm and an inner diameter of 7 cm. As the metal foil, a gold foil having a thickness of 0.02 mm is used. In this case, the metal foil is accompanied by plastic deformation at the time of insertion. Similar to the example, the engagement portion was inserted using a temporary spacer, and the same test as in Example 1 was performed.

このセルスタックの開放電圧は2.0Vであり、電流が2Aでの、電圧は、1.9Vと良好であった。また、1000時間動作後は、スタック全体がやはり0.2mmほど圧縮された。しかし電圧および開放電圧に変化は見られなかった。   The open voltage of this cell stack was 2.0V, and the voltage was as good as 1.9V when the current was 2A. Also, after 1000 hours of operation, the entire stack was still compressed by about 0.2 mm. However, there was no change in voltage and open circuit voltage.

以上説明したように、本発明では塑性変形を伴うなど長期間高温に曝されていても、シール性を失わない噛み合わせ構造を2カ所有し、それを柔軟性のある金属箔で接続した構造とした。   As described above, in the present invention, there are two interlocking structures that do not lose the sealing property even when exposed to high temperatures for a long time such as with plastic deformation, and these are connected by a flexible metal foil. It was.

これにより、熱サイクルや長期の運転によりシール部分のギャップ長が変化した場合でも、それに追従してガスシール性を保持することができ、また、シール部材が柔軟性を有するので、マニホールドを圧縮する加重は、主にセルの電極部分にかかるため電気的接続が保持できる。   As a result, even when the gap length of the seal portion changes due to a heat cycle or a long-term operation, the gas sealability can be maintained following the change, and the seal member has flexibility, so the manifold is compressed. Since the weight is mainly applied to the electrode portion of the cell, the electrical connection can be maintained.

これにより信頼性の高い固体電解質型燃料電池用のシールを得ることに成功した。本発明はSOFCの高信頼性に大きな貢献をなすものである。   This succeeded in obtaining a highly reliable solid oxide fuel cell seal. The present invention greatly contributes to the high reliability of SOFC.

本発明のガスシール構造の模式的な側断面図である。It is a typical sectional side view of the gas seal structure of this invention. 本発明のシール部材の模式的な斜視図である。It is a typical perspective view of the sealing member of the present invention. 本発明のガスシール構造であり、凹部が同一半径状に形成されている構成の模式的な側断面図である。FIG. 3 is a schematic side sectional view of a configuration of the gas seal structure of the present invention, in which recesses are formed in the same radius. 本発明のガスシール構造であり、凹部が同一半径状に形成され、かつシール部材が台座を有する構成の模式的な側断面図である。FIG. 3 is a schematic side sectional view of a gas seal structure of the present invention, in which recesses are formed in the same radius, and the seal member has a pedestal. 本発明のガスシール構造であり、凹部の底部にエッジが設けられた構成の模式的な側断面図である。FIG. 3 is a schematic side sectional view of a configuration in which the edge is provided at the bottom of the recess, which is the gas seal structure of the present invention. 本発明のガスシール構造であり、係合部の先端部分にエッジが設けられた構成の模式的な側断面図である。It is a gas seal structure of the present invention, and is a typical sectional side view of the composition provided with the edge at the tip part of the engaging part. 本発明のガスシール構造であり、凹部の入口を一時的に弾性変形させて係合部を挿入する構成の模式的な側断面図である。FIG. 5 is a schematic side cross-sectional view of the structure of the gas seal structure of the present invention in which the engaging portion is inserted by temporarily elastically deforming the inlet of the recess. 燃料電池のスタック用インターコネクタの上面透視図である。FIG. 4 is a top perspective view of a fuel cell stack interconnector.

符号の説明Explanation of symbols

1、2 シール対象部品
3 シール部材
3a 領域
4 凹部
5 入口
6 底部
7 係合部
8 スペーサ
9a、9b 面
10a、10b 押圧面
11 背面
12 台座
14 エッジ
15 エッジ
16 塑性変形部
17 台座
18 弾性部材
19a 内周側噛み合わせ部
19b 外周側噛み合わせ部
20 インターコネクタ
21 空気供給穴
22 燃料ガス供給穴
23 燃料ガス回収穴
24 セル配置部
30 ガスシール構造
DESCRIPTION OF SYMBOLS 1, 2 Parts to be sealed 3 Seal member 3a Area | region 4 Recessed part 5 Inlet 6 Bottom part 7 Engagement part 8 Spacer 9a, 9b Surface 10a, 10b Press surface 11 Back surface 12 Base 14 Edge 15 Edge 16 Plastic deformation part 17 Base 18 Elastic member 19a Inner peripheral side engagement part 19b Outer peripheral side engagement part 20 Interconnector 21 Air supply hole 22 Fuel gas supply hole 23 Fuel gas recovery hole 24 Cell arrangement part 30 Gas seal structure

Claims (9)

固体電解質型燃料電池及び前記固体電解質型燃料電池へのガスの供給路におけるガスシール構造において、
閉じた形状で導電性を有するとともに、複数の噛み合わせ部が形成され、前記噛み合わせ部の間の領域が柔軟性を有するシール部材と、
前記噛み合わせ部に対応する位置に形成された閉じた形状の凹部が形成されたシール対象部品及び他の前記シール対象部品と、
前記凹部に挿入される係合部とを有し、
前記シール対象部品の前記凹部が形成された面と、他の前記シール対象部品の前記凹部が形成された面とが対向して配置され、これら前記面の間に配置された前記シール部材の前記各係合部が前記各凹部に挿入されることで前記凹部及び前記係合部のいずれか一方が変形し、前記凹部と前記係合部とが噛み合うことを特徴とするガスシール構造。
In a gas seal structure in a solid oxide fuel cell and a gas supply path to the solid oxide fuel cell,
A closed member having conductivity in a closed shape, a plurality of meshing portions are formed, and a region between the meshing portions is flexible,
A sealing target component in which a closed concave portion formed at a position corresponding to the engagement portion is formed, and the other sealing target component;
An engaging portion inserted into the recess,
The surface of the sealing target component on which the concave portion is formed and the surface of the other sealing target component on which the concave portion is formed are disposed to face each other, and the sealing member disposed between these surfaces A gas seal structure, wherein each engagement portion is inserted into each recess to deform one of the recess and the engagement portion, and the recess and the engagement portion are engaged with each other.
前記係合部が塑性変形し、前記凹部内の形状が、前記係合部を前記凹部内から引き抜く際の前記抵抗を、前記係合部を前記凹部内に挿入する際の抵抗に比べ大きくさせる形状である請求項1に記載のガスシール構造。   The engagement portion is plastically deformed, and the shape in the recess makes the resistance when the engagement portion is pulled out from the recess larger than the resistance when the engagement portion is inserted into the recess. The gas seal structure according to claim 1, which has a shape. 前記凹部の断面形状が前記凹部の入口側から前記凹部の底部に向けて広がるテーパ形状である請求項2に記載のガスシール構造。   The gas seal structure according to claim 2, wherein a cross-sectional shape of the concave portion is a tapered shape that spreads from an inlet side of the concave portion toward a bottom portion of the concave portion. 前記凹部の底部に、前記係合部の先端に進入させるエッジが形成されている請求項2または3に記載のガスシール構造。   4. The gas seal structure according to claim 2, wherein an edge for entering the tip of the engaging portion is formed at a bottom portion of the concave portion. 前記係合部を前記凹部の内壁面に押圧する弾性部材を有する請求項1または3に記載のガスシール構造。   The gas seal structure according to claim 1, further comprising an elastic member that presses the engaging portion against an inner wall surface of the recess. 前記係合部の先端にエッジが形成されており、前記エッジの進入により前記凹部の底部が塑性変形する請求項1に記載のガスシール構造。   The gas seal structure according to claim 1, wherein an edge is formed at a tip of the engagement portion, and a bottom portion of the recess is plastically deformed by the entry of the edge. 前記シール部材は円環形状の金属箔である、請求項1ないし6のいずれか1項に記載のガスシール構造。   The gas seal structure according to any one of claims 1 to 6, wherein the seal member is an annular metal foil. 固体電解質型燃料電池及び前記固体電解質型燃料電池へのガスの供給路におけるガスシールであって、
閉じた形状で導電性を有するとともに、複数の噛み合わせ部が形成され、少なくとも前記噛み合わせ部の間の領域が柔軟性を有するガスシール。
A gas seal in a solid oxide fuel cell and a gas supply path to the solid oxide fuel cell,
A gas seal having a closed shape and conductivity, a plurality of meshing portions formed, and at least a region between the meshing portions having flexibility.
固体電解質型燃料電池及び前記固体電解質型燃料電池へのガスの供給路におけるガスシール方法において、
閉じた形状で導電性を有するとともに、複数の噛み合わせ部が形成され、少なくとも前記噛み合わせ部の間の領域が柔軟性を有するシール部材と、前記噛み合わせ部に対応する位置に形成された閉じた形状の凹部が形成されたシール対象部品及び他の前記シール対象部品と、前記凹部に挿入される係合部とを用意し、
前記シール対象部品の前記凹部が形成された面と、他の前記シール対象部品の前記凹部が形成された面とを対向して配置して、これら前記面の間に前記シール部材を配置し、
前記シール部材の前記各係合部を前記各凹部に挿入して前記凹部及び前記係合部のいずれか一方を変形させ、前記凹部と前記係合部とを噛み合わさせるガスシール方法。
In a solid oxide fuel cell and a gas sealing method in a gas supply path to the solid oxide fuel cell,
A closed shape that is electrically conductive and has a plurality of meshing portions, and at least a region between the meshing portions is a flexible seal member and a closure formed at a position corresponding to the meshing portion. A sealing target part in which a concave part having a different shape is formed and another sealing target part, and an engaging part to be inserted into the concave part,
The surface of the part to be sealed in which the concave part is formed and the surface of the other part to be sealed in which the concave part is formed are opposed to each other, and the sealing member is disposed between the surfaces.
A gas sealing method in which each of the engaging portions of the seal member is inserted into each of the recessed portions, and either one of the recessed portion or the engaging portion is deformed to engage the recessed portion and the engaging portion.
JP2007151798A 2007-06-07 2007-06-07 Gas seal structure, gas seal and gas seal method Expired - Fee Related JP5087322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007151798A JP5087322B2 (en) 2007-06-07 2007-06-07 Gas seal structure, gas seal and gas seal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151798A JP5087322B2 (en) 2007-06-07 2007-06-07 Gas seal structure, gas seal and gas seal method

Publications (2)

Publication Number Publication Date
JP2008305671A true JP2008305671A (en) 2008-12-18
JP5087322B2 JP5087322B2 (en) 2012-12-05

Family

ID=40234205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151798A Expired - Fee Related JP5087322B2 (en) 2007-06-07 2007-06-07 Gas seal structure, gas seal and gas seal method

Country Status (1)

Country Link
JP (1) JP5087322B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109225A (en) * 2013-12-05 2015-06-11 株式会社日本自動車部品総合研究所 Sealing structure for fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260192A (en) * 1993-03-04 1994-09-16 Toshiba Corp Fuel cell
JP2004303723A (en) * 2003-03-14 2004-10-28 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2005005191A (en) * 2003-06-13 2005-01-06 Fuji Electric Holdings Co Ltd Gasket for fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260192A (en) * 1993-03-04 1994-09-16 Toshiba Corp Fuel cell
JP2004303723A (en) * 2003-03-14 2004-10-28 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2005005191A (en) * 2003-06-13 2005-01-06 Fuji Electric Holdings Co Ltd Gasket for fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109225A (en) * 2013-12-05 2015-06-11 株式会社日本自動車部品総合研究所 Sealing structure for fuel cell

Also Published As

Publication number Publication date
JP5087322B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
EP3016192B1 (en) Fuel cell and method for manufacturing same
US11735758B2 (en) Solid oxide fuel cell stack
CA2391487C (en) Planar solid oxide fuel cell stack with metallic foil interconnect
JP5161572B2 (en) Solid oxide fuel cell system
JP2005518645A (en) Fuel cell stacking and sealing
JP2008510288A (en) SOFC stack concept
CA2880153C (en) Fuel cell and fuel cell stack with maintained electrical connection
JP6054912B2 (en) Fuel cell and manufacturing method thereof
JP4573526B2 (en) Solid oxide fuel cell
JP2015153672A (en) fuel cell stack
JP4291299B2 (en) Flat type solid oxide fuel cell
JP5113350B2 (en) Gas sealing method and structure for SOFC
JP2000048831A (en) Solid electrolyte fuel cell
CA2899685C (en) Fuel cell and fuel cell stack with maintained electrical connection
JP6118230B2 (en) Fuel cell stack
JP2017517837A (en) Electrically insulating three-layer gasket for SFOC unit
JP5087322B2 (en) Gas seal structure, gas seal and gas seal method
JP2007053043A (en) Manifold structure of fuel cell and method of manufacturing same
JP2002270200A (en) Gas separator for solid electrolyte type fuel cell, members thereof, and stack unit using the same, and solid electrolyte type fuel cell stack
JP6286222B2 (en) Fuel cell stack
JP5727429B2 (en) Fuel cell with separator and fuel cell
JP3157678B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

R150 Certificate of patent or registration of utility model

Ref document number: 5087322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees