JP2008304341A - Apparatus for measuring particle adhesion - Google Patents

Apparatus for measuring particle adhesion Download PDF

Info

Publication number
JP2008304341A
JP2008304341A JP2007152234A JP2007152234A JP2008304341A JP 2008304341 A JP2008304341 A JP 2008304341A JP 2007152234 A JP2007152234 A JP 2007152234A JP 2007152234 A JP2007152234 A JP 2007152234A JP 2008304341 A JP2008304341 A JP 2008304341A
Authority
JP
Japan
Prior art keywords
particles
tip
particle
measuring
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007152234A
Other languages
Japanese (ja)
Inventor
Katsuhiro Ota
勝啓 太田
Yoichi Takahara
洋一 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007152234A priority Critical patent/JP2008304341A/en
Publication of JP2008304341A publication Critical patent/JP2008304341A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method for measuring a particle adhesion, which can solve the problem that measuring the adhesion of a fine particle whose particle size is 5 μm or less can not be performed by conventional methods, and can measure the adhesion of the fine particle easily. <P>SOLUTION: The apparatus includes a means for measuring the adhesion of the particle on a substrate positioned inside a focused ion beam system. More specifically, in the focused ion beam system, the adhesion of the fine particle can be measured by a contact needle, a means for immobilizing the fine particle and a measurement of an amount of variation in a leaf spring moving along with the contact needle. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は粒子の付着力を測定する粒子付着力測定装置に係る。   The present invention relates to a particle adhesion measuring device for measuring particle adhesion.

従来、微小粒子の付着力を測定する方法としては遠心法、光学顕微鏡法などが用いられていた。   Conventionally, centrifugation, optical microscopy, and the like have been used as methods for measuring the adhesion of fine particles.

例えば、遠心法は、特開2006−220472号公報に開示されている。   For example, the centrifugation method is disclosed in Japanese Patent Application Laid-Open No. 2006-220472.

粒子が付着した試料基板を回転させ、粒子が前記試料基板から脱離したときの粒子の粒径、比重及び前記試料基板からの分離時のロータの回転数を用いて粉体の付着力を算出することが開示されている。   Rotate the sample substrate with the particles attached, and calculate the adhesion force of the powder using the particle size, specific gravity of the particles when the particles are detached from the sample substrate, and the number of rotations of the rotor during separation from the sample substrate. Is disclosed.

また、光学顕微鏡法は、特開2003−294608号公報に開示されている。光学顕微鏡での観察下で、基板上の粒子に接触針を接着剤で接着し、接触針を移動して、基板から粒子が離れたときの接触針の変位から付着力を測定することが開示されている。   Optical microscopy is disclosed in Japanese Patent Application Laid-Open No. 2003-294608. Disclosure of measuring the adhesive force from the displacement of the contact needle when the particle moves away from the substrate while the contact needle is adhered to the particle on the substrate with an adhesive and the contact needle is moved under observation with an optical microscope Has been.

特開2006−220472号公報JP 2006-220472 A 特開2003−294608号公報JP 2003-294608 A

前記特開2006−220472号公報に開示されている粒子の付着力を測定する装置は、遠心力を利用しているため、粒子か小さくなるほど、前記粒子にかかる遠心力が小さくなるため、約5um以下の粒子の付着力の測定ができない。   Since the apparatus for measuring the adhesion force of particles disclosed in Japanese Patent Application Laid-Open No. 2006-220472 uses centrifugal force, the centrifugal force applied to the particles becomes smaller as the particles become smaller. The following particle adhesion cannot be measured.

また、前記特開2003−294608号公報に開示されている粒子の付着力を測定する装置は、粒子と接触針を接着剤で接着する際、光学顕微鏡で観察しながら測定対象の粒子と接触針の位置合わせするため、径が10um程度以下の微小粒子の観察が困難なことから径が10um程度以上の粒子しか計測ができない。また、粒子に接触針を接着剤で接着するため、粒径が小さくなるほど粒子と接触針以外の領域に接着剤を付けずに行うことが困難である。また、接着の状態に個人差も生じる。   Further, the apparatus for measuring the adhesion force of particles disclosed in Japanese Patent Application Laid-Open No. 2003-294608 is a method for measuring particles and contact needles to be measured while observing them with an optical microscope when bonding the particles and contact needles with an adhesive. Therefore, since it is difficult to observe fine particles having a diameter of about 10 μm or less, only particles having a diameter of about 10 μm or more can be measured. In addition, since the contact needle is adhered to the particle with an adhesive, it is difficult to perform without attaching the adhesive to the region other than the particle and the contact needle as the particle size decreases. In addition, individual differences occur in the state of adhesion.

本発明はこのような従来の問題点に鑑みてなされたものであり、上述した従来技術の欠点、すなわち、これまで測定が不可能とされた粒径が5um以下の微粒子の付着力の測定という問題を解決し、容易に微粒子の付着力の測定できる粒子付着力測定装置及び方法を提供することを目的とした。   The present invention has been made in view of such conventional problems, and is a drawback of the above-described prior art, that is, measurement of the adhesion force of fine particles having a particle size of 5 μm or less that could not be measured so far. An object of the present invention is to provide a particle adhesion measuring apparatus and method that can solve the problem and easily measure the adhesion of fine particles.

図1に本発明の基本概念図である本発明の粒子付着力測定装置の断面を示す。この図にしたがって、本発明の概要を説明する。   FIG. 1 shows a cross section of the particle adhesion measuring device of the present invention which is a basic conceptual diagram of the present invention. The outline of the present invention will be described with reference to FIG.

本発明の粒子付着力測定装置は、上記課題を解決するために粒子1が付着した基板2を固定する試料台3と一端を固定して立設される板バネ4と、前記板バネの先端に固定した接触針5と、前記接触針の先端に前記粒子を固定する手段を備え、前記接触子を進退して接触及び離間させる駆動手段6と、前記板バネの変位を測定する測定手段7を備えたことを特徴とする粒子付着力測定装置である。   In order to solve the above problems, the particle adhesion measuring apparatus of the present invention includes a sample stage 3 for fixing a substrate 2 to which particles 1 are adhered, a plate spring 4 that is fixed with one end fixed, and a tip of the plate spring. A contact needle 5 fixed to the contact needle, a means for fixing the particles to the tip of the contact needle, a drive means 6 for moving the contact element forward and backward to contact and separate, and a measurement means 7 for measuring the displacement of the leaf spring. A particle adhesion force measuring apparatus comprising:

前記接触針の先端に前記粒子の固定と、前記接触子を進退して接触及び離間させる状態を、集束イオンビーム装置8から照射される集束イオンビーム9を走査することにより発生した二次電子を荷電粒子検出器10で検出して観察することが可能である。   Secondary electrons generated by scanning the focused ion beam 9 irradiated from the focused ion beam device 8 are fixed to the tip of the contact needle and the state in which the contact is moved forward and backward is brought into contact and separated. It is possible to detect and observe with the charged particle detector 10.

ここで、前記接触針の先端に前記粒子を固定する手段が、デポジション装置11によるデポジション加工で行うことを特徴とする。ここで、デポジションする材料12は、デポジションができれば特に限定はない。これを図2に示す。前記接触針の先端と前記粒子のみを固定することが目的のため、他の領域にデポジションしないようにデポジションの領域を制御しやすい材料が望ましい。デポジションの領域の径10nm程度の制御が可能なデポジション材料が望ましい。例えば、ダイヤモンドライクカーボンでデポジションを行う。   Here, the means for fixing the particles to the tip of the contact needle is performed by a deposition process by the deposition apparatus 11. Here, the material 12 to be deposited is not particularly limited as long as it can be deposited. This is shown in FIG. For the purpose of fixing only the tip of the contact needle and the particles, a material that can easily control the deposition region so as not to deposit in another region is desirable. A deposition material capable of controlling the deposition area with a diameter of about 10 nm is desirable. For example, deposition is performed with diamond-like carbon.

前記板バネの先端に前記粒子を固定するその他の手段が、マニュピレータで行う方法である。図3(a)に示す前記マニュピレータ13の先端に電荷を与える。例えば、電荷を与えてマニュピレータの先端をプラスに帯電14させると、静電気反発力でマニュピレータの先端が開く。マニュピレータで粒子を挟んだ後、電荷を除くことにより、マニュピレータの先端が閉じ、前記マニュピレータの先端に前記粒子を固定することができる。ここで、マニュピレータの先端をプラスにチャージしたが、マイナスにチャージしても同様にマニュピレータの先端の開閉操作が可能であり、前記マニュピレータの先端に前記粒子を固定することができる。   Another means for fixing the particles to the tip of the leaf spring is a method performed by a manipulator. Charge is applied to the tip of the manipulator 13 shown in FIG. For example, when an electric charge is applied to positively charge the tip of the manipulator 14, the tip of the manipulator opens due to electrostatic repulsion. After the particles are sandwiched by the manipulator, the charge is removed to close the tip of the manipulator, and the particle can be fixed to the tip of the manipulator. Here, the tip of the manipulator is charged positively, but even if charged negatively, the manipulator tip can be opened and closed in the same manner, and the particles can be fixed to the tip of the manipulator.

以上のように前記接触針の先端に固定した前記粒子や前記マニュピレータの先端に固定した前記粒子を引っ張る力を、前記板バネの変位量に基づいて測定することにより基板と粒子間の付着力を測定することができる。ここで、引っ張る方向は、基板に対して垂直でも平行でも、特に引っ張る方向に制限はない。   As described above, the force for pulling the particles fixed to the tip of the contact needle or the particle fixed to the tip of the manipulator is measured based on the displacement amount of the leaf spring to thereby determine the adhesion force between the substrate and the particles. Can be measured. Here, the pulling direction may be perpendicular or parallel to the substrate, and there is no particular limitation on the pulling direction.

前記変化量の測定手段は、レーザ光を照射するレーザ変位計の変位の測定や圧電素子による電圧の変位の測定であり、前記変化量により前記粒子を引っ張る力を測定することができる。   The change amount measuring means is measurement of displacement of a laser displacement meter that irradiates laser light or measurement of voltage displacement by a piezoelectric element, and can measure a force of pulling the particles by the change amount.

また、本発明の粒子付着力測定装置では、粒子と基板間の付着力の他に、基板と基板間や粒子と粒子間の付着力の測定も可能である。   In addition, the particle adhesion measuring apparatus of the present invention can measure the adhesion between the substrate and the substrate and between the particle and the particle, in addition to the adhesion between the particle and the substrate.

本発明の粒子付着力測定装置では、前記デポジションにより前記接触針に粒子を固定して引っ張ったり、前記マニュピレータで粒子を挟んで引っ張ることにより基板上の粒子を取り除くことも可能である。   In the particle adhesion measuring apparatus of the present invention, the particles on the substrate can be removed by fixing and pulling the particles on the contact needle by the deposition, or by pulling the particles with the manipulator.

また、本発明は、本発明の粒子付着力測定装置を用いて基板上の粒子除去を行うことにより製造されることを特徴とするデバイス製造方法でもある。   The present invention is also a device manufacturing method characterized by being manufactured by removing particles on a substrate using the particle adhesion measuring device of the present invention.

具体的には、図1に本発明の基本概念図である本発明の粒子付着力測定装置の断面を示す。この図にしたがって、本発明の概要を説明する。ただし、粒子の除去には、接触針に連動する板バネ4と前記板バネの変位を測定する測定手段7は、粒子の付着力を測定する手段のため、粒子の除去には不要である。ただし、接触針に連動する板バネ4と前記板バネの変位を測定する測定手段7が、特に問題はない。   Specifically, FIG. 1 shows a cross section of the particle adhesion measuring apparatus of the present invention which is a basic conceptual diagram of the present invention. The outline of the present invention will be described with reference to FIG. However, for removing the particles, the leaf spring 4 interlocked with the contact needle and the measuring means 7 for measuring the displacement of the leaf spring are means for measuring the adhesion force of the particles, and thus are not necessary for removing the particles. However, the leaf spring 4 interlocked with the contact needle and the measuring means 7 for measuring the displacement of the leaf spring are not particularly problematic.

本発明の粒子付着力測定装置は、上記課題を解決するために粒子1が付着した基板2を固定する試料台3と、前記板バネの先端に固定した接触針5と、前記接触針の先端に前記粒子を固定する手段を備え、前記接触子を進退して接触及び離間させる駆動手段6を備えたことを特徴とする装置である。   In order to solve the above problems, the particle adhesion measuring apparatus of the present invention includes a sample stage 3 for fixing a substrate 2 to which particles 1 are adhered, a contact needle 5 fixed to the tip of the leaf spring, and a tip of the contact needle. And a driving means 6 for advancing and retracting the contact to contact and separate the particles.

前記接触針の先端に前記粒子の固定と、前記接触子を進退して接触及び離間させる状態を、集束イオンビーム装置8から照射される集束イオンビーム9を走査することにより発生した二次電子を荷電粒子検出器10で検出して観察することが可能である。   Secondary electrons generated by scanning the focused ion beam 9 irradiated from the focused ion beam device 8 are fixed to the tip of the contact needle and the state in which the contact is moved forward and backward is brought into contact and separated. It is possible to detect and observe with the charged particle detector 10.

ここで、前記接触針の先端に前記粒子を固定する手段が、デポジション装置11によるデポジション加工で行うことを特徴とする。ここで、デポジションする材料12は、デポジションができれば特に限定はない。これを図2に示す。前記接触針の先端と前記粒子のみを固定することが目的のため、他の領域にデポジションしないようにデポジションの領域を制御しやすい材料が望ましい。デポジションの領域の径10nm程度の制御が可能なデポジション材料が望ましい。例えば、ダイヤモンドライクカーボンでデポジションを行う。   Here, the means for fixing the particles to the tip of the contact needle is performed by a deposition process by the deposition apparatus 11. Here, the material 12 to be deposited is not particularly limited as long as it can be deposited. This is shown in FIG. For the purpose of fixing only the tip of the contact needle and the particles, a material that can easily control the deposition region so as not to deposit in another region is desirable. A deposition material capable of controlling the deposition area with a diameter of about 10 nm is desirable. For example, deposition is performed with diamond-like carbon.

前記板バネの先端に前記粒子を固定するその他の手段が、マニュピレータで行う方法である。図3(a)に示す前記マニュピレータ13の先端に電荷を与える。例えば、電荷を与えてマニュピレータの先端をプラスに帯電14させると、静電気反発力でマニュピレータの先端が開く。マニュピレータで粒子を挟んだ後、電荷を除くことにより、マニュピレータの先端が閉じ、前記マニュピレータの先端に前記粒子を固定することができる。ここで、マニュピレータの先端をプラスにチャージしたが、マイナスにチャージしても同様にマニュピレータの先端の開閉操作が可能であり、前記マニュピレータの先端に前記粒子を固定することができる。   Another means for fixing the particles to the tip of the leaf spring is a method performed by a manipulator. Charge is applied to the tip of the manipulator 13 shown in FIG. For example, when an electric charge is applied to positively charge the tip of the manipulator 14, the tip of the manipulator opens due to electrostatic repulsion. After the particles are sandwiched by the manipulator, the charge is removed to close the tip of the manipulator, and the particle can be fixed to the tip of the manipulator. Here, the tip of the manipulator is charged positively, but even if charged negatively, the manipulator tip can be opened and closed in the same manner, and the particles can be fixed to the tip of the manipulator.

以上のように前記接触針の先端に固定した前記粒子や前記マニュピレータの先端に固定した前記粒子を引っ張ることにより基板から粒子を除去する。ここで、引っ張る方向は、基板に対して垂直でも平行でも、特に引っ張る方向に制限はない。   As described above, the particles are removed from the substrate by pulling the particles fixed to the tip of the contact needle or the particles fixed to the tip of the manipulator. Here, the pulling direction may be perpendicular or parallel to the substrate, and there is no particular limitation on the pulling direction.

また、本発明の装置では、基板からの粒子の除去の他に、基板同士や粒子同士の除去も可能である。   In addition to the removal of particles from the substrate, the apparatus of the present invention can also remove substrates and particles.

本発明によれば、基板上の微小粒子の付着力を容易に測定するという問題を解決することが可能になる。付着力の正確な値が分かることにより、基板上の粒子の除去に必要な洗浄手段を検討する指針となり、高清浄度がますます要求される磁気ディスク装置等、電子デバイスの清浄度管理がしやすくなり、高歩留まりに製造することが出来る。   According to the present invention, it is possible to solve the problem of easily measuring the adhesion force of fine particles on a substrate. Knowing the exact value of the adhesive force will guide the study of cleaning methods necessary to remove particles on the substrate, and will manage the cleanliness of electronic devices such as magnetic disk drives that require increasingly high cleanliness. It becomes easy and can be manufactured at a high yield.

以下、本発明の実施例を、図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の粒子付着力測定装置を用いてSi基板上に付着した径0.2um〜19umのポリスチレン粒子の付着力を測定した。   The adhesion force of polystyrene particles having a diameter of 0.2 μm to 19 μm adhered on the Si substrate was measured using the particle adhesion force measuring device of the present invention.

本実施例で用いた粒子付着力測定装置は、ポリスチレン粒子が付着したSi基板を固定する試料台と一端を固定して立設される板バネと、前記板バネの先端に固定した接触針と、前記接触針の先端に前記粒子を固定する手段を備え、前記接触子を進退して接触及び離間させる駆動手段と、前記板バネの変位を測定する測定手段を備えたことを特徴とする粒子付着力測定装置である。   The particle adhesion measuring apparatus used in this example includes a sample stage for fixing a Si substrate to which polystyrene particles are attached, a plate spring that is fixed with one end fixed, and a contact needle that is fixed to the tip of the plate spring. Particles comprising: means for fixing the particles to the tip of the contact needle; and drive means for moving the contact element back and forth to contact and separate; and measurement means for measuring the displacement of the leaf spring It is an adhesive force measuring device.

また、前記接触針の先端に前記粒子の固定を行った。そして、前記接触子を進退して接触及び離間させる状態を集束イオンビーム装置から照射される集束イオンビームを走査することにより発生した二次電子を荷電粒子検出器で検出して観察した。   Further, the particles were fixed to the tip of the contact needle. Then, the secondary electrons generated by scanning the focused ion beam irradiated from the focused ion beam device were detected by a charged particle detector and observed in a state in which the contact was moved forward and backward.

ここで、前記接触針の先端への前記粒子の固定をダイヤモンドライクカーボンによるデポジションで行った。   Here, the particles were fixed to the tip of the contact needle by deposition using diamond-like carbon.

以上のように前記接触針の先端に固定した前記粒子を引っ張る力を、前記板バネの変位量に基づいて測定することにより基板と粒子間の付着力を測定した。ここで、引っ張る方向は、基板に対して垂直で行った。前記変化量の測定手段は、圧電素子による電圧の変位の測定により行った。以上の方法で測定した結果を図4に示す。   As described above, the adhesion force between the substrate and the particles was measured by measuring the pulling force of the particles fixed to the tip of the contact needle based on the displacement amount of the leaf spring. Here, the pulling direction was perpendicular to the substrate. The change amount measuring means was performed by measuring a displacement of a voltage by a piezoelectric element. The result measured by the above method is shown in FIG.

実施例1の場合と同様に本発明の粒子付着力測定装置を用いてSi基板上に付着した径0.02um〜1umのポリスチレン粒子の付着力を測定した。   As in Example 1, the adhesion force of polystyrene particles having a diameter of 0.02 μm to 1 μm adhered on the Si substrate was measured using the particle adhesion force measuring device of the present invention.

本実施例では、板バネの先端に前記粒子を固定する手段が、マニュピレータで行う方法である。図3(a)に示す前記マニュピレータの先端に電荷を与える。本実施例では、電荷を与えてマニュピレータの先端をプラスに帯電させ、静電気反発力でマニュピレータの先端が開き、粒子を挟んだ後、電荷を除くことにより、マニュピレータの先端が閉じ、前記マニュピレータの先端に前記粒子を固定した。   In this embodiment, the means for fixing the particles to the tip of the leaf spring is a method performed by a manipulator. Charge is applied to the tip of the manipulator shown in FIG. In this embodiment, the tip of the manipulator is positively charged by applying an electric charge, the tip of the manipulator is opened by electrostatic repulsion, and after sandwiching the particles, the tip of the manipulator is closed by removing the charge, and the tip of the manipulator The particles were fixed to

以上のように前記マニュピレータの先端に固定した前記粒子を引っ張る力を、前記板バネの変位量に基づいて測定することにより基板と粒子間の付着力を測定した。ここで、引っ張る方向は、基板に対して垂直に行った。   As described above, the adhesion force between the substrate and the particles was measured by measuring the pulling force of the particles fixed to the tip of the manipulator based on the displacement amount of the leaf spring. Here, the pulling direction was perpendicular to the substrate.

前記変化量の測定は、レーザ光を照射するレーザ変位計の変位の測定により行う。   The amount of change is measured by measuring the displacement of a laser displacement meter that emits laser light.

以上の方法で測定した結果を図5に示す。   The results measured by the above method are shown in FIG.

実施例2の場合と同様の本発明の粒子付着力測定装置を用いてSi基板上に付着した異物の除去を行った。   The foreign matter adhering to the Si substrate was removed using the particle adhesion measuring device of the present invention similar to the case of Example 2.

本実施例で用いた装置は、異物が付着したSi基板を固定する試料台と一端を固定して立設される板バネと、前記板バネの先端に固定した接触針と、前記接触針の先端に前記粒子を固定する手段を備え、前記接触子を進退して接触及び離間させる駆動手段を備えたことを特徴とする装置である。   The apparatus used in this example includes a sample stage for fixing a Si substrate to which foreign matter is attached, a plate spring that is fixed with one end fixed, a contact needle that is fixed to the tip of the plate spring, An apparatus comprising: means for fixing the particles at a tip; and drive means for moving the contact forward and backward to contact and separate.

また、前記接触針の先端に前記粒子の固定を行った。そして、前記接触子を進退して接触及び離間させる状態を集束イオンビーム装置から照射される集束イオンビームを走査することにより発生した二次電子を荷電粒子検出器で検出して観察した。   Further, the particles were fixed to the tip of the contact needle. Then, the secondary electrons generated by scanning the focused ion beam irradiated from the focused ion beam device were detected by a charged particle detector and observed in a state in which the contact was moved forward and backward.

ここで、前記接触針の先端への前記粒子の固定をダイヤモンドライクカーボンによるデポジションで行った。   Here, the particles were fixed to the tip of the contact needle by deposition using diamond-like carbon.

以上のように前記接触針の先端に固定した前記粒子を引っ張ることによりSi基板から異物の除去を行った。ここで、引っ張る方向は、基板に対して平行にした。   As described above, the foreign matter was removed from the Si substrate by pulling the particles fixed to the tip of the contact needle. Here, the pulling direction was parallel to the substrate.

以上の方法で異物の除去を行い、Si基板上の異物を低減することができ、高歩留りに半導体装置を製造することができた。   The foreign matter was removed by the above method, the foreign matter on the Si substrate could be reduced, and the semiconductor device could be manufactured with a high yield.

本発明は、基板上の粒子の除去に必要な洗浄手段を検討する際の指針となり、高清浄度がますます要求される磁気ディスク装置等、電子デバイスの清浄度管理がしやすくなり、高歩留まりに製造することが出来る。   The present invention serves as a guideline for examining the cleaning means necessary for removing particles on the substrate, and makes it easier to manage the cleanliness of electronic devices such as magnetic disk devices that require higher cleanliness, resulting in higher yields. Can be manufactured.

実施例1を説明するための本発明の粒子付着力測定装置の概念図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual diagram of a particle adhesion measuring device of the present invention for explaining Example 1; 本発明の粒子付着力測定装置に構成されている接触針と粒子を固定する方法を説明するための図である。It is a figure for demonstrating the method to fix a contact needle and particle | grains comprised in the particle | grain adhesion force measuring apparatus of this invention. 本発明の粒子付着力測定装置に構成されているマニュピレータと粒子を固定する方法を説明するための図である。It is a figure for demonstrating the method to fix a manipulator and particle | grains comprised in the particle | grain adhesion force measuring apparatus of this invention. 本発明の粒子付着力測定装置による測定結果を説明するための図である。It is a figure for demonstrating the measurement result by the particle | grain adhesion force measuring apparatus of this invention. 本発明の粒子付着力測定装置による測定結果を説明するための図である。It is a figure for demonstrating the measurement result by the particle | grain adhesion force measuring apparatus of this invention.

符号の説明Explanation of symbols

1…粒子、2…基板、3…試料台、4…板バネ、5…接触針、6…駆動手段、7…板バネの変位を測定する測定手段、8…集束イオンビーム装置、9…集束イオンビーム、10…荷電粒子検出器、11…デポジション装置、12…デポジションの領域、13…プラスチャージ。   DESCRIPTION OF SYMBOLS 1 ... Particle, 2 ... Substrate, 3 ... Sample stand, 4 ... Leaf spring, 5 ... Contact needle, 6 ... Driving means, 7 ... Measuring means for measuring displacement of leaf spring, 8 ... Focused ion beam device, 9 ... Focusing Ion beam, 10 ... charged particle detector, 11 ... deposition device, 12 ... deposition region, 13 ... plus charge.

Claims (8)

粒子が付着した基板を固定する試料台と一端を固定して立設される板バネと、前記板バネの先端に固定した接触針と、前記接触針の先端に前記粒子を固定する手段を備え、前記接触子を進退して接触及び離間させる駆動手段と、前記板バネの先端の変位を測定する測定手段とを備えたことを特徴とする粒子付着力測定装置。   A sample stage for fixing a substrate to which particles are attached; a plate spring that is fixed with one end fixed; a contact needle that is fixed to the tip of the plate spring; and means for fixing the particles to the tip of the contact needle A particle adhesion force measuring apparatus comprising: drive means for moving the contact element back and forth to contact and separate; and measuring means for measuring the displacement of the tip of the leaf spring. 前記接触針の先端に前記粒子の固定と、前記接触子を進退して接触及び離間させる状態を、集束イオンビームを走査することにより発生した二次電子を検出して観察することが可能であることを特徴とする請求項1に記載の粒子付着力測定装置。   It is possible to detect and observe secondary electrons generated by scanning a focused ion beam to fix the particles to the tip of the contact needle and to make the contact move forward and backward. The particle adhesion measuring apparatus according to claim 1. 前記接触針の先端に前記粒子を固定する手段が、デポジション加工するであることを特徴とする請求項1及び請求項2に記載の粒子付着力測定装置。   3. The particle adhesion measuring apparatus according to claim 1, wherein the means for fixing the particles to the tip of the contact needle is a deposition process. 前記接触針の先端に前記粒子を固定する手段が、マニュピレータを前記粒子で挟むことで行い、前記マニュピレータの挟む操作が静電気で行うことを特徴とする請求項1から請求項3に記載の粒子付着力測定装置。   The means for fixing the particles to the tip of the contact needle is performed by sandwiching a manipulator between the particles, and the operation of sandwiching the manipulator is performed by static electricity. Wear force measuring device. 前記接触針の先端に固定した前記粒子を引っ張る力を前記板バネの変位量に基づいて測定する測定手段とを備えたことを特徴とする請求項1から請求項3に記載の粒子付着力測定装置。   The particle adhesion force measurement according to any one of claims 1 to 3, further comprising measurement means for measuring a force for pulling the particle fixed to the tip of the contact needle based on a displacement amount of the leaf spring. apparatus. 前記変化量の測定手段は、レーザ光を照射するレーザ変位計による変化の測定や圧電素子による電圧の変位の測定であり、前記変化量により前記粒子を引っ張る力を測定することを特徴とする請求項5に記載の粒子付着力測定装置。   The change amount measuring means is a measurement of a change by a laser displacement meter that irradiates a laser beam or a measurement of a displacement of a voltage by a piezoelectric element, and measures the pulling force of the particles by the change amount. Item 6. The particle adhesion measuring apparatus according to Item 5. 前記接触針の先端に固定した前記粒子を引っ張って粒子を取り除く手段を備えたことを特徴とする請求項1から請求項4に記載の粒子除去装置。   5. The particle removing apparatus according to claim 1, further comprising means for removing the particles by pulling the particles fixed to the tip of the contact needle. 請求項1から請求項5記載の粒子付着力測定装置または請求項7記載の粒子除去装置により製造されることを特徴とするデバイス製造方法。   A device manufacturing method manufactured by the particle adhesion measuring apparatus according to claim 1 or the particle removing apparatus according to claim 7.
JP2007152234A 2007-06-08 2007-06-08 Apparatus for measuring particle adhesion Pending JP2008304341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152234A JP2008304341A (en) 2007-06-08 2007-06-08 Apparatus for measuring particle adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152234A JP2008304341A (en) 2007-06-08 2007-06-08 Apparatus for measuring particle adhesion

Publications (1)

Publication Number Publication Date
JP2008304341A true JP2008304341A (en) 2008-12-18

Family

ID=40233196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152234A Pending JP2008304341A (en) 2007-06-08 2007-06-08 Apparatus for measuring particle adhesion

Country Status (1)

Country Link
JP (1) JP2008304341A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019714A (en) * 2011-07-08 2013-01-31 Ricoh Co Ltd Adhesion measurement method and adhesion measurement device
CN103163069A (en) * 2013-02-21 2013-06-19 中南大学 Method and system for measuring solid material surface adhesion force
JP2014119305A (en) * 2012-12-14 2014-06-30 Ricoh Co Ltd Adhesion measuring device and adhesion measuring method
JP2016173311A (en) * 2015-03-17 2016-09-29 株式会社リコー Device and method for measuring characteristics of minute object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019714A (en) * 2011-07-08 2013-01-31 Ricoh Co Ltd Adhesion measurement method and adhesion measurement device
JP2014119305A (en) * 2012-12-14 2014-06-30 Ricoh Co Ltd Adhesion measuring device and adhesion measuring method
CN103163069A (en) * 2013-02-21 2013-06-19 中南大学 Method and system for measuring solid material surface adhesion force
JP2016173311A (en) * 2015-03-17 2016-09-29 株式会社リコー Device and method for measuring characteristics of minute object

Similar Documents

Publication Publication Date Title
JP6162770B2 (en) Micro electromechanical heater
WO1999005506A1 (en) Method and apparatus for preparing samples
JP4185604B2 (en) Sample analysis method, sample preparation method and apparatus therefor
TWI642081B (en) Charged particle beam device
JP4054815B2 (en) Member adhesion evaluation method and adhesion evaluation apparatus
JP2008304341A (en) Apparatus for measuring particle adhesion
JP2013512545A5 (en)
JP4812019B2 (en) Sample handling device
JP4427824B2 (en) Probe manufacturing method, probe, and scanning probe microscope
US7926328B2 (en) Sample manipulating apparatus
US9857216B2 (en) Minute object characteristics measuring apparatus
JP2008111735A (en) Sample operation apparatus
JP4714877B2 (en) Minute substance fixing device and minute substance fixing method
JP6766351B2 (en) Micro object characteristic measuring device
Koo et al. Design and application of a novel in situ nano-manipulation stage for transmission electron microscopy
JP2009198202A (en) Foreign matter removing device and foreign matter removing method
KR20110070031A (en) Nanoneedle tip for atomic force microscope and method for fabricating the same
JP2006215004A (en) Near-field optical microscope and method for measuring sample by using near-field light
TW200940194A (en) Electrostatic surface cleaning
JP5152111B2 (en) Probe for focused ion beam processing apparatus, probe apparatus, and probe manufacturing method
JP2011133493A (en) Sample processing apparatus
JP2002279925A (en) High-resolution compound microscope
JPH0933424A (en) Device for measuring adhesion of very small object
Yamaguchi Measurement system for adhesion force on single particles with microelectromechanical-based actuated tweezers
JP2010127775A (en) Sampling probe