JP2008303108A - Graphite material - Google Patents

Graphite material Download PDF

Info

Publication number
JP2008303108A
JP2008303108A JP2007151661A JP2007151661A JP2008303108A JP 2008303108 A JP2008303108 A JP 2008303108A JP 2007151661 A JP2007151661 A JP 2007151661A JP 2007151661 A JP2007151661 A JP 2007151661A JP 2008303108 A JP2008303108 A JP 2008303108A
Authority
JP
Japan
Prior art keywords
graphite material
pores
cross
graphite
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007151661A
Other languages
Japanese (ja)
Other versions
JP5277483B2 (en
Inventor
Toshiyuki Nishiwaki
利幸 西脇
Masahiro Yasuda
正弘 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2007151661A priority Critical patent/JP5277483B2/en
Priority to TW97119480A priority patent/TWI399354B/en
Priority to US12/132,057 priority patent/US8048515B2/en
Priority to KR1020080053163A priority patent/KR100990574B1/en
Priority to EP20080010260 priority patent/EP2017241B1/en
Priority to CN2008101089252A priority patent/CN101381232B/en
Publication of JP2008303108A publication Critical patent/JP2008303108A/en
Priority to US13/242,968 priority patent/US8367196B2/en
Application granted granted Critical
Publication of JP5277483B2 publication Critical patent/JP5277483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a graphite material having high strength and high density, and further having excellent workability, and to provide a method of producing the graphite material. <P>SOLUTION: Disclosed is a graphite material having a fine structure composed of many graphite grains and pores. When the cross-section is observed with a scanning electron microscope, the number of the pores appearing in the cross-section is ≥250 pieces /per 6,000 μm<SP>2</SP>, the average area of the pores appearing in the cross-section is ≤5 μm<SP>2</SP>, and the average flattening ratio of the pores appearing in the cross-section is ≤0.55. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、黒鉛材料及びその製造方法に関し、特に放電加工用電極や電子部品用治具等の精密に加工される部材に適した黒鉛材料に関する。   The present invention relates to a graphite material and a method for producing the same, and more particularly to a graphite material suitable for a precisely machined member such as an electrode for electric discharge machining and a jig for electronic parts.

黒鉛材料は、化学的安定性、耐熱性、加工性等に優れていることから、放電加工用電極、電子部品のガラス封着やロウ付け用の治具等、多くの分野にわたって使用されている。近年、家電製品や自動車部品の小型化に伴い、そのダイキャスト成形やプラスチック成形に使用される金型に薄いリブや溝、細ピン、細穴等の精密加工を施すことが行われている。こうした精密な金型を作製するために、精密な加工ができる黒鉛材料からなる放電加工用電極が要求されるようになってきている。   Graphite material has excellent chemical stability, heat resistance, workability, etc., so it is used in many fields such as electrodes for electric discharge machining, jigs for glass sealing of electronic parts and brazing. . In recent years, along with miniaturization of home appliances and automobile parts, precision processing such as thin ribs, grooves, thin pins, and fine holes has been performed on dies used for die casting and plastic molding. In order to produce such a precise mold, an electric discharge machining electrode made of a graphite material capable of precise machining has been required.

放電加工用電極として黒鉛材料を使用して、電極を破損することなく薄いリブ等の精密な形状に放電加工をするためには、黒鉛材料がある程度の強度を持っていることが必要である。また、加工される金型の寸法精度を高めるため、黒鉛材料が放電加工による熱、外力により変形しないことが重要である。   In order to use a graphite material as an electrode for electric discharge machining and to perform electric discharge machining into a precise shape such as a thin rib without damaging the electrode, the graphite material needs to have a certain level of strength. Further, in order to increase the dimensional accuracy of the mold to be processed, it is important that the graphite material is not deformed by heat and external force due to electric discharge machining.

このような用途に適した高強度かつ高密度の黒鉛材料としては、原料としてメソカーボンマイクロビーズを使用することが知られている(例えば、特許文献1参照。)。また、高密度かつ高強度の黒鉛材料を製造する別の方法として、原料に特定のβレジン成分量、灰分、水分、揮発分、固定炭素、及び平均粒子直径を持つメソカーボンマイクロビーズを用いて、冷間プレスにて成形し、所定の温度で焼成及び黒鉛化処理をすることが開示されている(例えば、特許文献2参照。)。特許文献1及び2に記載の製造方法により得られる黒鉛材料は、高強度かつ高密度であるため、薄いリブ等の形状に加工しても折損しにくいという利点がある。
特開平1−97523号公報 特開平4−240022号公報
As a high-strength and high-density graphite material suitable for such applications, it is known to use mesocarbon microbeads as a raw material (see, for example, Patent Document 1). In addition, as another method for producing a high-density and high-strength graphite material, using mesocarbon microbeads having a specific β-resin component amount, ash content, moisture content, volatile content, fixed carbon, and average particle diameter as raw materials It is disclosed that it is molded by a cold press and fired and graphitized at a predetermined temperature (for example, see Patent Document 2). Since the graphite material obtained by the manufacturing methods described in Patent Documents 1 and 2 has high strength and high density, there is an advantage that even if processed into a shape such as a thin rib, it is difficult to break.
JP-A-1-97523 JP-A-4-240022

しかしながら、上記特許文献1及び2のような従来の黒鉛材料は、高強度かつ高密度であるため、加工時の刃物の切削抵抗が大きく、チッピングが発生しやすいという問題がある。また、刃物の切削抵抗が高いために、薄いリブ、細ピンの加工を行う場合は、反力によって黒鉛材料に反りが発生して厚み、太さの精度が低下する。さらには、エンドミルやドリルを使用してコーナーRの小さな枠の内面や底面、細い溝、深い細穴等を加工する場合も、エンドミルやドリルが反り、精度の高い加工ができないばかりか、刃物の折損の原因となっている。   However, since the conventional graphite materials such as Patent Documents 1 and 2 have high strength and high density, there is a problem that the cutting resistance of the blade during processing is large and chipping is likely to occur. Further, since the cutting resistance of the blade is high, when processing thin ribs and thin pins, the graphite material is warped by the reaction force, and the accuracy of thickness and thickness is lowered. Furthermore, when machining the inner and bottom surfaces of a frame with a small corner R, a narrow groove, a deep narrow hole, etc. using an end mill or drill, the end mill or drill is warped, and high precision machining is not possible. It is a cause of breakage.

これらの問題を防止するためには、刃物による1回の切り込み量を小さくすることで原理的には可能であるが、このためには刃物の送り速度を小さくしたり、刃物の回転数を大きくするといった対策をとる必要がある。このような方法では高速回転しても芯ブレの発生しない剛性の高い高性能の加工機、刃物を用いる必要があり、加工に時間をかかる。   In order to prevent these problems, it is possible in principle to reduce the amount of cutting once by the blade, but for this purpose, the blade feed speed is reduced or the blade rotation speed is increased. It is necessary to take measures such as In such a method, it is necessary to use a high-performance processing machine or blade having high rigidity that does not cause core blur even when rotating at high speed, and processing takes time.

さらに、従来の黒鉛材料を仕上げ加工用の放電加工用電極に用いる場合、一般に黒鉛材料はショア硬度が大きくなるにつれて電極消耗が小さくなる関係があるため、黒鉛化の温度が低いショア硬度の高い黒鉛材料が好まれていたが、ショア硬度が高い黒鉛材の場合、切削抵抗が高く、刃物の消耗も早いといった問題があった。   Furthermore, when conventional graphite materials are used for electrodes for electrical discharge machining for finishing, graphite materials generally have a relationship in which electrode consumption decreases as the Shore hardness increases, so graphite with a low graphitization temperature and high Shore hardness Materials were preferred, but graphite materials with high Shore hardness had problems such as high cutting resistance and fast blade consumption.

本発明は、上記課題に鑑みなされたものであって、高強度かつ高弾性率であるとともに、加工性に優れた黒鉛材料を提供すること、及びこのような黒鉛材料の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a graphite material having high strength and high elastic modulus and excellent workability, and a method for producing such a graphite material. With the goal.

本発明者は、上記課題を鑑みて鋭意検討した結果、特定の組織をもった黒鉛材が、薄いリブ、細ピン、狭い溝、細穴等の精密な加工において、刃物を折損させることなくかつ精度良く加工できることを見出した。すなわち、上記課題の解決手段は以下のとおりである。   As a result of intensive studies in view of the above problems, the present inventor has found that a graphite material having a specific structure is capable of breaking a cutter in precise processing such as thin ribs, thin pins, narrow grooves, and narrow holes, and the like. We found that it can be processed with high accuracy. That is, the means for solving the above problems are as follows.

(1)多数の黒鉛粒子と気孔とからなる微細構造を有する黒鉛材料であって、断面を走査型電子顕微鏡で観察したときに、断面に現れる気孔が6000μmあたり250個以上、断面に現れる気孔の平均面積が5μm2以下、断面に現れる気孔の平均扁平率が0.55以下であることを特徴とする黒鉛材料。
(2)かさ密度が1.78〜1.86g/cmであることを特徴とする上記(1)に記載の黒鉛材料。
(3)放電加工用である上記(1)又は(2)に記載の黒鉛材料。
(1) A graphite material having a fine structure composed of a large number of graphite particles and pores, and when the cross section is observed with a scanning electron microscope, 250 or more pores appearing in the cross section per 6000 μm 2. The graphite material is characterized in that the average area is 5 μm 2 or less, and the average flatness of pores appearing in the cross section is 0.55 or less.
(2) The graphite material as described in (1) above, having a bulk density of 1.78 to 1.86 g / cm 3 .
(3) The graphite material according to (1) or (2), which is for electric discharge machining.

本発明に係る黒鉛材料は、断面に現れる気孔が6000μmあたり250個以上、断面に現れる気孔の平均面積が5μm2以下、断面に現れる気孔の平均扁平率が0.55以下であり、微細な黒鉛粒子及び気孔が均一に分布した微細構造を有しているので、高強度かつ高弾性率であるとともに、加工性に優れている。従って、本発明に係る黒鉛材料を放電加工用電極として薄いリブ等の精密加工する際にも、黒鉛材料や刃物を破損することなく精度良く加工できる。また、本発明に係る黒鉛材料は、微細な加工が可能な上に放電加工時の消耗が小さいため、微細なパターンを持った金型を容易に作成することができ、仕上げ加工における放電加工用電極としても有利である。 Graphite material according to the present invention, pores appearing in cross section 6000 .mu.m 2 per 250 or more, the average area of appearing pore 5 [mu] m 2 or less in cross section, and the average aspect ratio of the pores appearing in section 0.55 below, fine Since it has a fine structure in which graphite particles and pores are uniformly distributed, it has high strength and high elastic modulus and excellent workability. Therefore, even when the graphite material according to the present invention is used for precision machining of a thin rib or the like using the electrode for electric discharge machining, the graphite material or the blade can be machined with high accuracy without being damaged. In addition, the graphite material according to the present invention can be finely processed and has low consumption during electric discharge machining, so that a mold having a fine pattern can be easily created, and for electric discharge machining in finishing. It is also advantageous as an electrode.

以下、本発明に係る黒鉛材料の実施形態について詳細に説明する。
本発明に係る黒鉛材料は、多数の黒鉛粒子と気孔とからなる微細構造を有している。この黒鉛材料の断面を走査型顕微鏡で観察したとき、断面に現れる気孔は、6000μmあたり250個以上、断面に現れる気孔の平均面積が5μm2以下である。つまり、黒鉛材料の中に分布する気孔が十分に小さく、かつ、黒鉛材料の単位体積あたりに存在する気孔数が充分に多い。このため、切削時に大きな粒子単位で脱落することなく、平滑な加工面が得られる。また、黒鉛材に施される通常の加工の形状に対して気孔が非常に小さいため、粒子の脱落に起因する細ピン加工における折れ、薄いリブの切削加工における割れや穴あき等の発生を低減することができる。
Hereinafter, embodiments of the graphite material according to the present invention will be described in detail.
The graphite material according to the present invention has a fine structure composed of a large number of graphite particles and pores. When the cross section of the graphite material was observed with a scanning microscope, pores appearing in cross-section, 6000 .mu.m 2 per 250 or more, the average area of pores appearing on the cross-section is 5 [mu] m 2 or less. In other words, the pores distributed in the graphite material are sufficiently small, and the number of pores present per unit volume of the graphite material is sufficiently large. For this reason, a smooth machined surface is obtained without dropping off in units of large particles during cutting. In addition, since the pores are very small compared to the normal processing shape applied to graphite material, the occurrence of breakage in fine pin processing due to dropout of particles, cracking and perforation in thin rib cutting processing is reduced. can do.

また、本発明に係る黒鉛材料は、断面を走査型顕微鏡で観察したとき、断面に現れる気孔の平均扁平率が0.55以下である。断面に現れる気孔の平均扁平率を0.55以下とすることにより、加工時における刃物による圧縮強度に対して黒鉛材料の弾性率が大きくなり、加工時に生じる切削屑を小さくすることができる。すなわち、刃物の切削抵抗が小さく、加工がしやすい。   Moreover, when the cross section of the graphite material according to the present invention is observed with a scanning microscope, the average flatness of pores appearing in the cross section is 0.55 or less. By setting the average flatness of the pores appearing in the cross section to 0.55 or less, the elastic modulus of the graphite material increases with respect to the compressive strength by the blade during processing, and the cutting waste generated during processing can be reduced. That is, the cutting resistance of the cutter is small and easy to process.

上記のような黒鉛材料の気孔の形状とその加工性との関係は以下のメカニズムによるものと推察される。
黒鉛材料は、切削される際に、刃物の進行方向に圧縮力が働く。この時、刃物の進行に伴って蓄えられた歪みエネルギーが、破壊に必要なエネルギーを超えたときに切削される。平滑な加工面を得るためには、細かな切削粉を出しながら加工することが必要であり、大きな歪みエネルギーを蓄える前に破壊が起こることが重要である。
大きな歪みエネルギーを蓄えないためには、圧縮強度が小さく、弾性率が大きいことが重要であり、つまり、切削される粒子の直径は、圧縮強度/弾性率と正の相関があると言える。以上より、切削される粒子の直径が小さい(きめの細かい)加工面を得るためには、所定の圧縮強度のもとでは、より弾性率が大きい黒鉛材料が有利であることがわかる。
The relationship between the pore shape of the graphite material as described above and its workability is presumed to be due to the following mechanism.
When the graphite material is cut, a compressive force acts in the traveling direction of the blade. At this time, cutting is performed when the strain energy stored as the blade advances exceeds the energy required for destruction. In order to obtain a smooth machined surface, it is necessary to work while producing fine cutting powder, and it is important that destruction occurs before storing large strain energy.
In order not to store large strain energy, it is important that the compressive strength is small and the elastic modulus is large, that is, the diameter of the particles to be cut has a positive correlation with the compressive strength / elastic modulus. From the above, it can be seen that a graphite material having a higher elastic modulus is advantageous under a predetermined compressive strength in order to obtain a machined surface with a small diameter of the particles to be cut (finely detailed).

次に、黒鉛材料の弾性率と気孔の形状との関係について説明すると、一般に黒鉛材料の弾性率は以下のKnudsenの経験式で示される。
E(P)=E(0)exp(−bP)
(E(P):弾性率、P:気孔率、b:経験定数)
経験定数bは気孔の形状に強く依存しており、気孔の形状が球形の場合には、その値が小さく、扁平回転楕円体から亀裂状の気孔形状になるに従って急激にその値が大きくなることが知られている(「新・炭素材料入門」、炭素材料学会編)。従って、弾性率を大きくするためには、その形状が丸い(扁平率が小さい)黒鉛材料が有利であることがわかる。
以上より、黒鉛材料の気孔の形状とその加工性との関係が導かれると考えられる。すなわち、気孔の形状が丸い(すなわち、観察断面に現れる気孔の平均扁平率が0.55以下となる)ことにより、黒鉛材料の弾性率を大きくすることができるので、きめ細かな加工面を得ることができ、加工性に優れた黒鉛材料が得られる。
Next, the relationship between the elastic modulus of the graphite material and the shape of the pores will be explained. Generally, the elastic modulus of the graphite material is expressed by the following Knudsen's empirical formula.
E (P) = E (0) exp (-bP)
(E (P): elastic modulus, P: porosity, b: empirical constant)
The empirical constant b strongly depends on the shape of the pores, and when the shape of the pores is spherical, the value is small, and the value rapidly increases as the flat spheroid changes to a cracked pore shape. Is known (“Introduction to New Carbon Materials”, edited by the Carbon Materials Society of Japan). Therefore, it can be seen that a graphite material having a round shape (small flatness) is advantageous for increasing the elastic modulus.
From the above, it is considered that the relationship between the pore shape of the graphite material and its workability is derived. That is, since the pore shape is round (that is, the average flatness of pores appearing in the observation cross section is 0.55 or less), the elastic modulus of the graphite material can be increased, so that a finely machined surface can be obtained. And a graphite material excellent in workability can be obtained.

次に、圧縮強度に関しては、気孔が扁平回転楕円体や、亀裂状の気孔であっても、圧縮荷重がかかることによって気孔は潰れるように作用するため、気孔の形状は大きな影響を与えない。圧縮強度に対しては気孔率の影響の方が大きいことがわかる。
気孔率が小さいと、圧縮強度が高くなりすぎ切削されにくくなり、加工面の凹凸が大きくなる。気孔率が大きいと、圧縮強度を小さくできるものの、軟らかい黒鉛材料となるため、微細な加工を施しても、折れたり割れやすくなる。また放電加工においても消耗しやすくなる。
Next, regarding the compressive strength, even if the pores are flat spheroids or cracked pores, the pores are crushed by applying a compressive load, so the shape of the pores does not have a great influence. It can be seen that the effect of porosity is greater on the compressive strength.
When the porosity is small, the compressive strength becomes too high to be cut, and the unevenness of the processed surface becomes large. When the porosity is high, the compressive strength can be reduced, but the graphite material becomes soft, and therefore, even if it is subjected to fine processing, it tends to be broken or broken. Moreover, it becomes easy to wear even in electric discharge machining.

黒鉛材料の気孔率と、かさ密度とは相関が高く、同一の原材料を使用し、同一の黒鉛化処理を施した場合、同一の気孔率であれば、ほぼ同一のかさ密度となる。
本発明では、主にピッチを出発原料として、ピッチコークスを経る成分や、直接炭素化、黒鉛化される成分があるものの、出発原料と黒鉛化処理温度は限られた範囲内で行われているため、本発明に係る黒鉛材料のかさ密度は、好ましい範囲が存在しその値は1.78〜1.86g/cmである。なお、本発明におけるかさ密度は、体積、質量を測定することにより得られる。
There is a high correlation between the porosity and the bulk density of the graphite material. When the same raw material is used and the same graphitization treatment is performed, the same porosity density is obtained with the same porosity.
In the present invention, the starting material and the graphitization temperature are performed within a limited range, although there are components that mainly undergo pitch coke, and components that are directly carbonized and graphitized, starting from pitch. Therefore, the bulk density of the graphite material according to the present invention has a preferable range, and its value is 1.78 to 1.86 g / cm 3 . In addition, the bulk density in this invention is obtained by measuring a volume and mass.

本発明において、断面に現れる気孔の個数、平均面積及び平均扁平率は、黒鉛材料を電子顕微鏡等で観察することにより算出することができる。具体的には、まず黒鉛材料の切断面をCP(クロスセクションポリッシャ)法により加工する。作製した断面にフラットミリング処理(45°、3分)を施した後、FE−SEMにて観察することにより得られる。
また、撮影した画像の解析は、画像解析ソフト(Image J 1.37)を用いて2値化した後、個々の空隙(断面に現れる気孔)の面積を算出する。個々の空隙について楕円フィットを行い、その長軸、短軸の値から扁平率を算出する。
尚、扁平率とは、空隙(断面に現れる気孔)にフィットされた楕円の(長軸−短軸)/長軸のことである。
In the present invention, the number of pores appearing in the cross section, the average area, and the average flatness can be calculated by observing the graphite material with an electron microscope or the like. Specifically, first, the cut surface of the graphite material is processed by a CP (cross section polisher) method. It is obtained by observing with a FE-SEM after performing a flat milling process (45 °, 3 minutes) on the prepared cross section.
The analysis of the photographed image is binarized using image analysis software (Image J 1.37), and then the area of each void (pore appearing in the cross section) is calculated. Ellipse fitting is performed for each gap, and the flatness is calculated from the values of the major axis and minor axis.
The flatness is an ellipse (major axis-minor axis) / major axis fitted to a void (a pore appearing in a cross section).

なお、断面に現れる気孔の個数、平均面積及び平均扁平率の測定には、上記のようにSEMを使用することが望ましい。ミクロンオーダーの気孔の形状を判別するのに充分な解像度が得られる上、粒子部分は単一の濃度の灰色、気孔部分は気孔の深さに応じて深い気孔の場合は黒色、浅い気孔の場合は白色に表示され、明確に気孔と粒子を区別することができるからである。   In addition, it is desirable to use SEM as described above for the measurement of the number of pores appearing in the cross section, the average area, and the average flatness. Sufficient resolution is obtained to determine the shape of micron-order pores, and the particle part is gray at a single concentration, the pore part is black for deep pores depending on the depth of the pores, and for shallow pores Is displayed in white so that pores and particles can be clearly distinguished.

断面に現れる気孔の個数、平均面積及び平均扁平率の測定は、樹脂埋めされていない黒鉛材料を用いることが好ましい。黒鉛材料を樹脂埋めすると、黒鉛材料内部に存在する開気孔に樹脂が封止されて、正しい気孔の個数及び形状を判別することができないからである。   For the measurement of the number of pores appearing in the cross section, the average area, and the average flatness, it is preferable to use a graphite material not filled with resin. This is because if the graphite material is filled with resin, the resin is sealed in the open pores present in the graphite material, and the correct number and shape of the pores cannot be determined.

最大気孔直径(長軸)は、20μm以下であることが好ましい。最大気孔直径が20μm以下であることにより、切削時に気孔に沿ってクラックが進展するため、細ピンでは折れ、薄いリブの切削加工においては割れ、穴あきの原因となる。
最大気孔直径も前記と同様にSEMで観察した断面から測定することができる。なお、SEMの断面観察から得られた気孔の直径は、水銀圧入式ポロシメータ等で得られる気孔及び黒鉛粒子の直径とは異なる。前者は、実際の大きさが計測されるのに対し、後者は連続気孔の入口部分の直径が計測される。
The maximum pore diameter (major axis) is preferably 20 μm or less. When the maximum pore diameter is 20 μm or less, cracks develop along the pores at the time of cutting. Therefore, the fine pins break, and thin ribs cause cracks and holes.
The maximum pore diameter can also be measured from the cross section observed with the SEM as described above. The diameter of the pores obtained from the cross-sectional observation of the SEM is different from the diameters of the pores and graphite particles obtained with a mercury intrusion porosimeter or the like. The former measures the actual size, while the latter measures the diameter of the inlet portion of the continuous pores.

本発明に係る黒鉛材料のショア硬度は、55〜80の範囲であることが好ましい。ショア硬度が55を下回ると、放電加工時に粒子の脱落が大きくなり、電極消耗がはげしくなるため放電加工用電極には適していない。ショア硬度が80を超えると、電極の切削加工時、刃物の切削抵抗が大きくなるため、刃物の消耗が早い上に、加工時に材料が折損したりかけたりしやすくなるからである。
ショア硬度は、JIS Z2246により、測定することができる。
The Shore hardness of the graphite material according to the present invention is preferably in the range of 55-80. When the Shore hardness is less than 55, particle dropout during electric discharge machining increases and electrode consumption increases, which is not suitable for an electric discharge machining electrode. If the Shore hardness exceeds 80, the cutting resistance of the blade increases during the cutting of the electrode, so that the blade is consumed quickly and the material is easily broken or applied during the processing.
Shore hardness can be measured according to JIS Z2246.

本発明に係る黒鉛材料の固有抵抗値は、1000〜2300μΩcmであることが好ましい。固有抵抗は黒鉛材料のショア硬度と相関し、固有抵抗が低くなると黒鉛材料が軟らかくなる。1000μΩcm以下の場合、ショア硬度が55を下回り、電極消耗が著しくなる。この場合、細かなパターンを加工して電極として使用しても、電極の消耗がはげしくなるため、その加工精度を金型に転写することができない。固有抵抗が2300μΩcm以上の場合、放電加工用電極として使用した場合、異常放電等が発生し、被加工物の加工面に凹凸が発生しやすくなることがある。
固有抵抗値は、JIS R7222 電圧降下法により、測定することができる。
The specific resistance value of the graphite material according to the present invention is preferably 1000 to 2300 μΩcm. The specific resistance correlates with the Shore hardness of the graphite material. When the specific resistance decreases, the graphite material becomes soft. When it is 1000 μΩcm or less, the Shore hardness is less than 55, and the electrode wear becomes significant. In this case, even if a fine pattern is processed and used as an electrode, the electrode is consumed rapidly, and the processing accuracy cannot be transferred to the mold. When the specific resistance is 2300 μΩcm or more, when used as an electrode for electric discharge machining, abnormal discharge or the like may occur, and unevenness may easily occur on the processed surface of the workpiece.
The specific resistance value can be measured by the JIS R7222 voltage drop method.

本発明の黒鉛材料は、特に仕上げ加工用放電加工電極に好適に使用することができる。粗加工は、金型を大雑把に加工するものであり、特に細かな加工が施されることはない。本発明の黒鉛材料は、最終の仕上げ加工において必要とされる細かな精度の高いパターンの加工を施すことができる。   The graphite material of the present invention can be suitably used particularly for an electric discharge machining electrode for finishing. Rough machining is a rough machining of a mold, and no particularly fine machining is performed. The graphite material of the present invention can be subjected to fine pattern processing with high precision required in final finishing.

次に、本発明に係る黒鉛材料の製造方法について説明する。本発明に係る黒鉛材料は、ピッチに炭素質微粉を添加し混練した後、熱処理を加えて400〜500℃で熱処理をしながら揮発分調整を行い、二次原料を得る。次に得られた二次原料を、粒径の細かい微粉を除去する機能を備えた粉砕機で過粉砕しないよう粒度調整をしながら粉砕し、二次原料粉を得る。次に、冷間等方圧成形(CIP成形)により直方体に成形し、焼結炉にて約1000℃で焼成し、さらに黒鉛化炉にて約2500℃で黒鉛化処理を行い、本発明の黒鉛材料が得られる。   Next, a method for producing a graphite material according to the present invention will be described. The graphite material according to the present invention is obtained by adding a carbonaceous fine powder to pitch and kneading, and then adjusting the volatile content while performing heat treatment at 400 to 500 ° C. to obtain a secondary raw material. Next, the obtained secondary raw material is pulverized while adjusting the particle size so as not to be excessively pulverized by a pulverizer having a function of removing fine powder having a small particle size, thereby obtaining secondary raw material powder. Next, it is molded into a rectangular parallelepiped by cold isostatic pressing (CIP molding), fired at about 1000 ° C. in a sintering furnace, and further graphitized at about 2500 ° C. in a graphitization furnace. A graphite material is obtained.

本発明に使用するピッチとは、石炭系や石油系のピッチのことであり、これらの混合物であってもよい。これらの原材料のうち、石炭系のピッチを使用するのが望ましい。石炭系のピッチの場合は、光学的異方性が発達しにくく、(結晶が針状に発達しにくく)高強度で、高弾性の黒鉛材料を得ることができる。   The pitch used in the present invention is a coal-based or petroleum-based pitch, and may be a mixture thereof. Of these raw materials, it is desirable to use a coal-based pitch. In the case of a coal-based pitch, optical anisotropy hardly develops (a crystal does not easily develop in a needle shape), and a high-strength and highly elastic graphite material can be obtained.

本発明に使用するピッチの軟化点は、50℃以下であることが望ましい。50℃以上であると、混練時の粘度が上昇し製造が非常に困難となる。
本発明に使用する炭素質微粉は、メソフェースの発達する際の核となるものであり、カーボンブラック、黒鉛微粉、生ピッチコークス微粉、仮焼ピッチコークス微粉等の炭素質のものを使用することができる。微粉のサイズとしては、5μm以下のものが望ましい。5μm以上の微粉を使用すると混練して得られた二次原料を粉砕する際の粒度分布の制御が困難となり、粒度分布の粗い側が増えるからである。ピッチへの添加量としては、3〜10%重量であることが望ましい。10重量%を超えて添加するとピッチの粘度が上昇し、製造が非常に困難となる。3重量%以下の場合にはコークスのモザイク組織が十分に発達できない。
The softening point of the pitch used in the present invention is desirably 50 ° C. or lower. When the temperature is 50 ° C. or higher, the viscosity at the time of kneading increases and the production becomes very difficult.
The carbonaceous fine powder used in the present invention is a core when the mesophase develops, and it is possible to use a carbonaceous powder such as carbon black, graphite fine powder, raw pitch coke fine powder, calcined pitch coke fine powder or the like. it can. The size of the fine powder is preferably 5 μm or less. This is because if a fine powder of 5 μm or more is used, it is difficult to control the particle size distribution when the secondary material obtained by kneading is pulverized, and the coarser side of the particle size distribution increases. The addition amount to the pitch is desirably 3 to 10% by weight. If the amount exceeds 10% by weight, the viscosity of the pitch will increase, making the production very difficult. When the amount is 3% by weight or less, the mosaic structure of coke cannot be sufficiently developed.

上記原材料の熱処理は、JIS8812で測定される揮発分が6〜12%になるよう温度、時間を調整され二次原料が得られる。揮発分が6%未満の場合には、粒子間の接着が十分に得られないため、密度の低い黒鉛材料しか得ることができない。12%以上の場合には、焼成時に内部から発生する炭化水素ガスの量が多く、割れやすい上、蓄積したガスが大きな気孔を形成する。   In the heat treatment of the raw material, the temperature and time are adjusted so that the volatile content measured by JIS8812 is 6 to 12%, and a secondary raw material is obtained. When the volatile content is less than 6%, sufficient adhesion between the particles cannot be obtained, so that only a low-density graphite material can be obtained. In the case of 12% or more, the amount of hydrocarbon gas generated from the inside during firing is large, and it is easy to break, and the accumulated gas forms large pores.

上記原材料を熱処理し得られた二次原料は、粒度を制御しながら粉砕され、得られた二次原料粉からは、微粉末は取り除かれている。粉砕の方法は、内部分級機を備えた粉砕機を用いる方法や、粉砕機と精密気流分級機とを備えた粉砕プラントを用いる方法、粉砕機で粉砕された原材料を精密気流分級機で別個に粒度調整する方法等がある。
微粉末が含まれる二次原料粉を用いた黒鉛材料は、焼成時に発生するガスが放出されにくくなり、割れやすくなる。さらには、素材内にガスが蓄積し、大きな気孔を形成する。
The secondary raw material obtained by heat-treating the raw material is pulverized while controlling the particle size, and fine powder is removed from the obtained secondary raw material powder. The method of pulverization includes a method using a pulverizer equipped with an internal partial classifier, a method using a pulverizer plant equipped with a pulverizer and a precision airflow classifier, and a raw material crushed by the pulverizer separately with a precision airflow classifier. There is a method of adjusting the particle size.
The graphite material using the secondary raw material powder containing the fine powder is less likely to release the gas generated during firing and easily breaks. Furthermore, gas accumulates in the material and forms large pores.

二次原料粉は、レーザー回折式粒度測定器で測定されるメジアン径(DP−50:50%積算直径)が5〜10μmであるが好ましい。通常粒子間に存在する気孔はシャープなエッジを持った扁平率の大きな気孔である場合が多く、粒子の大きさが大きい場合、気孔のサイズと形状とが相乗効果を示し、弾性率の低下が大きくなる。メジアン径が10μm以上である場合、弾性率が低下し本発明の黒鉛材料を得ることができない。また、メジアン径が5μm以下である場合、焼成時に二次原料粉の成形体から発生する揮発分を速やかに素材の外部に排出することができず、割れやすくなる。さらには、素材内にガスが蓄積し、大きな気孔を形成する。   The secondary raw material powder preferably has a median diameter (DP-50: 50% integrated diameter) of 5 to 10 μm as measured with a laser diffraction particle size measuring instrument. The pores that normally exist between particles are often pores with sharp edges and large flatness, and when the size of the particles is large, the size and shape of the pores have a synergistic effect and the elastic modulus decreases. growing. When the median diameter is 10 μm or more, the elastic modulus decreases and the graphite material of the present invention cannot be obtained. Further, when the median diameter is 5 μm or less, the volatile matter generated from the compact of the secondary raw material powder during firing cannot be quickly discharged out of the raw material, and is easily broken. Furthermore, gas accumulates in the material and forms large pores.

また二次原料粉は、レーザー回折式粒度測定器で測定される粒度分布の範囲が1μm〜80μmであることが好ましい。1μm以下の原材料が含まれると、焼成時に二次原料粉の成形体から発生する揮発分を速やかに素材の外部に排出することができず、割れやすくなる。さらには、素材内にガスが蓄積し、大きな気孔を形成する。80μm以上の粒子が含まれると、大きな粒子の外周部や大きな粒子どうしの界面近傍に扁平な気孔ができやすくなる上、気孔の数も少なくなり、平均断面積も低下する。
レーザー回折式粒度測定器としては、例えば、堀場製作所製LA−750を使用することができる。
Moreover, it is preferable that the secondary raw material powder has a particle size distribution range of 1 μm to 80 μm as measured with a laser diffraction particle size analyzer. If a raw material of 1 μm or less is included, the volatile matter generated from the molded body of the secondary raw material powder at the time of firing cannot be quickly discharged out of the raw material and is easily broken. Furthermore, gas accumulates in the material and forms large pores. When particles of 80 μm or more are contained, flat pores are easily formed near the outer periphery of the large particles and the interface between the large particles, the number of pores is reduced, and the average cross-sectional area is also reduced.
For example, LA-750 manufactured by HORIBA, Ltd. can be used as the laser diffraction particle size measuring instrument.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to the following Example.

1.黒鉛材料の製造
(実施例1〜2)
軟化点40℃の石炭系ピッチ95重量部にたいし、平均2μmに粉砕した仮焼コークス5重量部を添加し混練した後、熱処理を加えて415℃で熱処理しながら揮発分調整を行い、二次原料を得た。次に内部分級機を備えた粉砕機で過粉砕しないよう粉砕し、二次原料粉を得た。次に等方性静水圧プレスにて100MPaの圧力にて加圧した後、1000℃まで約5℃/時間の昇温速度にて焼成し、2500℃で黒鉛化処理を実施した。
尚、製造の途中で得られた二次原料粉には、レーザー回折式粒度分布計で計測される粒度分布に1μm以下及び80μm以上の粉は含まれていなかった。
表1に使用した原材料の特性値を示し、表2、3に得られた黒鉛材料の特性値を示す。
1. Production of graphite material (Examples 1-2)
After adding 5 parts by weight of calcined coke pulverized to an average of 2 μm to 95 parts by weight of a coal-based pitch with a softening point of 40 ° C., kneading, adjusting the volatile content while applying heat treatment at 415 ° C. The next raw material was obtained. Next, the mixture was pulverized by a pulverizer equipped with an inner classifier so as not to be excessively pulverized to obtain a secondary raw material powder. Next, after pressurizing at a pressure of 100 MPa with an isotropic isostatic press, firing was performed at a rate of temperature increase of about 5 ° C./hour up to 1000 ° C., and graphitization was performed at 2500 ° C.
Note that the secondary raw material powder obtained during the production did not contain powders of 1 μm or less and 80 μm or more in the particle size distribution measured with a laser diffraction particle size distribution meter.
Table 1 shows the characteristic values of the raw materials used, and Tables 2 and 3 show the characteristic values of the obtained graphite materials.

(比較例1)
内部分級機を持たない粉砕機で粉砕したこと以外は実施例1〜2と同様の方法で黒鉛材料を製造した。尚、製造の途中で得られた二次原料粉は、精密気流分級等の操作を行っておらず、レーザー回折式粒度分布計で計測される粒度分布に80μm以上の粉は含まれていなかったが、1μm以下の粉が9.3%含まれていた。
表1に使用した原材料の特性値を示し、表2、3に得られた黒鉛材料の特性値を示す。
(Comparative Example 1)
A graphite material was produced in the same manner as in Examples 1 and 2 except that it was pulverized by a pulverizer having no inner partial classifier. In addition, the secondary raw material powder obtained during the production was not subjected to operations such as precision airflow classification, and the particle size distribution measured by a laser diffraction particle size distribution meter did not include powder of 80 μm or more. However, it contained 9.3% of powder of 1 μm or less.
Table 1 shows the characteristic values of the raw materials used, and Tables 2 and 3 show the characteristic values of the obtained graphite materials.

(比較例2)
軟化点80℃の石炭系ピッチ35重量部にたいし、平均14μmに粉砕した仮焼コークス65重量部を添加し混練した後、熱処理を加えて250℃で熱処理しながら揮発分調整を行い、二次原料を得た。次に粉砕機と精密気流分級機とを備えた粉砕プラントで過粉砕しないよう粉砕し、二次原料粉を得た。次に等方性静水圧プレスにて100MPaの圧力にて加圧した後、1000℃まで約5℃/時間の昇温速度にて焼成し、2500℃で黒鉛化処理を実施した。
尚、製造の途中で得られた二次原料粉には、レーザー回折式粒度分布計で計測される粒度分布に1μm以下の粉は含まれていなかったが、80μm以上の粉が約3%含まれていた。
表1に使用した原材料の特性値を示し、表2、3に得られた黒鉛材料の特性値を示す。
(Comparative Example 2)
After adding 65 parts by weight of calcined coke pulverized to an average of 14 μm to 35 parts by weight of a coal-based pitch having a softening point of 80 ° C., kneading, adjusting the volatile content while performing heat treatment at 250 ° C. The next raw material was obtained. Next, it was pulverized in a pulverization plant equipped with a pulverizer and a precision airflow classifier so as not to be excessively pulverized to obtain a secondary raw material powder. Next, after pressurizing at a pressure of 100 MPa with an isotropic isostatic press, firing was performed at a rate of temperature increase of about 5 ° C./hour up to 1000 ° C., and graphitization was performed at 2500 ° C.
In addition, the secondary raw material powder obtained in the middle of the production did not contain a powder of 1 μm or less in the particle size distribution measured with a laser diffraction particle size distribution meter, but contained about 3% of a powder of 80 μm or more. It was.
Table 1 shows the characteristic values of the raw materials used, and Tables 2 and 3 show the characteristic values of the obtained graphite materials.

2. 特性評価
以下の項目を測定し、上記で得られた黒鉛材料の特性評価を行った。
(かさ密度・ショア硬度・固有抵抗値)
上記で作製した黒鉛材料からφ8×60mmテストピースを抜き、かさ密度、ショア硬度、固有抵抗を前記方法にて測定、算出した。
2. Characteristic evaluation The following items were measured, and the characteristics of the graphite material obtained above were evaluated.
(Bulk density, shore hardness, specific resistance)
A φ8 × 60 mm test piece was extracted from the graphite material produced above, and the bulk density, Shore hardness, and specific resistance were measured and calculated by the above methods.

(断面に現れる気孔の個数・平均面積・平均扁平率)
以下の手順で、断面に現れる気孔の個数、平均面積・平均扁平率を算出した。
(a)試料荒研磨
上記で作製したテストピースを約5mm厚の円柱状に切断し、両面をGATAN社製治具MODEL623及びSiC性耐水研磨紙#2400を用いて試料両面の整面処理を実施した。次に真鍮性の試料台に固定した。
(b)CP加工
JEOL製SM09010を使用し、加速電圧6kVでCP加工を行った。
(c)ミリング
日立ハイテク社製フラットミリング装置E−3200を使用し、加速電圧5kV、0.5mA、試料傾斜角45°、ミリング時間3分で、Arミリング処理を行った。
(d)FE−SEM観察
上記により作製した試料を日立ハイテク社製超高分解能電界放出形走査電子顕微鏡 S−4800を使用し加速電圧2kVで観察した。
(e)画像解析
アメリカ国立衛生研究所製解析ソフトImageJ1.37を使用し、上記で得られたSEM画像を解析した。このときの観察倍率は2000倍で、ノイズ低減処理を施した後、平面部/空隙(気孔)部の2値化処理を実施した。尚、空隙(気孔)の解析対象は、空隙(気孔)か否かの判断が可能な0.2μmを超えるものとした。
画像解析ソフト(ImageJ)で2値化することにより得られた空隙(気孔)部に対して、面積計測、最適楕円フィッティングを実施すると共に個数をカウントし、上記処理より得られた値から断面に現れる気孔の個数、平均面積、平均扁平率を算出した。
(Number of pores appearing in the cross section, average area, average flatness)
The number of pores appearing in the cross section, the average area, and the average flatness were calculated according to the following procedure.
(A) Sample rough polishing The test piece prepared above was cut into a cylindrical shape having a thickness of about 5 mm, and both surfaces of the sample were subjected to leveling treatment on both sides of the sample using a GATAN jig MODEL 623 and SiC water resistant abrasive paper # 2400. did. Next, it was fixed to a brass sample stage.
(B) CP processing
CP machining was performed at an acceleration voltage of 6 kV using SM09010 manufactured by JEOL.
(C) Milling Ar milling treatment was performed using a flat milling device E-3200 manufactured by Hitachi High-Tech Co., Ltd. at an acceleration voltage of 5 kV, 0.5 mA, a sample inclination angle of 45 °, and a milling time of 3 minutes.
(D) FE-SEM Observation The sample prepared as described above was observed at an acceleration voltage of 2 kV using an ultra-high resolution field emission scanning electron microscope S-4800 manufactured by Hitachi High-Tech.
(E) Image Analysis Using the analysis software ImageJ1.37 manufactured by the National Institutes of Health, the SEM image obtained above was analyzed. The observation magnification at this time was 2000 times, and after performing the noise reduction processing, the binarization processing of the plane portion / void (pore) portion was performed. It should be noted that the analysis target of voids (pores) exceeds 0.2 μm, from which it can be determined whether or not the voids (pores).
Area measurement and optimal ellipse fitting are performed on the void (pore) part obtained by binarization with image analysis software (ImageJ) and the number is counted, and the cross section is obtained from the value obtained by the above processing. The number of appearing pores, average area, and average flatness were calculated.

(圧縮強度)
JIS R7222に準じて測定を実施した。
(Compressive strength)
Measurements were performed according to JIS R7222.

(弾性率)
JIS R7222に準じて測定を実施した。
(Elastic modulus)
Measurements were performed according to JIS R7222.

3.性能評価試験
実施例及び比較例により得られた黒鉛材料をφ70×100mm程度の丸棒に加工した。加工は、切込深さ1mm、送り速度1mm/回転にて旋盤で行った。旋盤の回転数は120rpmとした。刃物は京セラ製TNGG160408R-A3を使用した。
こうして得られた切削屑を集め、多段の振動篩にかけ、メジアン径(DP−50:50%積算直径)を測定した。なお、多段の振動篩では、測定に使用できる篩の数が有限であるため、正確なメジアン径の数値を得ることは困難であるが、50重量%の通過した最下段の篩の目開きに対する通過量と、50重量%の通過できなかった最上段の篩の目開きに対する通過量から補間してメジアン径の値を得た。得られたDP−50の値より黒鉛材料の加工性を評価した。その値の小さい方が加工性に優れており、カケ、チッピングが少ないと判断される。実施例及び比較例の加工性の評価結果を表2に示す。
3. Performance evaluation test The graphite material obtained by the Example and the comparative example was processed into a round bar of about φ70 × 100 mm. Processing was performed on a lathe with a depth of cut of 1 mm and a feed rate of 1 mm / rotation. The number of rotations of the lathe was 120 rpm. As the blade, TNGG160408R-A3 manufactured by Kyocera was used.
The cutting scraps thus obtained were collected, passed through a multistage vibrating sieve, and the median diameter (DP-50: 50% integrated diameter) was measured. In the case of a multistage vibrating sieve, the number of sieves that can be used for measurement is finite, so it is difficult to obtain an accurate median diameter value. A median diameter value was obtained by interpolating from the passing amount and the passing amount with respect to the opening of the uppermost sieve that could not pass 50% by weight. The workability of the graphite material was evaluated from the obtained DP-50 value. The smaller the value is, the better the workability is, and it is judged that there is little chipping and chipping. Table 2 shows the processability evaluation results of the examples and comparative examples.

表2に示すように、本発明に範囲に含まれる実施例1及び2の黒鉛材料は、比較例1及び2と比較して切削屑が小さいので、より精密な加工が可能であり、加工性に優れていることがわかる。
また、図5a〜c及び図6a〜cに示す断面写真から、本発明に係る黒鉛材料は比較的サイズが小さい丸い形状の気孔が均一に多数分布しているのがわかる。これに対し、図7a〜c及び図8a〜cに示す比較例の黒鉛材料は、気孔が丸いものが少なく、比較的大きなものが多く存在していることがわかる。
As shown in Table 2, the graphite materials of Examples 1 and 2 included in the scope of the present invention are smaller in cutting waste than Comparative Examples 1 and 2, and therefore can be processed more precisely, and workability is improved. It turns out that it is excellent in.
Moreover, it can be seen from the cross-sectional photographs shown in FIGS. 5a to 5c and FIGS. 6a to 6c that the graphite material according to the present invention has a large number of uniformly distributed round pores having a relatively small size. On the other hand, it can be seen that the graphite materials of the comparative examples shown in FIGS. 7a to 7c and FIGS. 8a to 8c have few round pores and many relatively large ones.

本発明は、微細な加工を施してもカケ、チッピング等を起こしにくく、微細なパターン、細穴、ピン、リブ等を持った放電加工用電極や、電子部品用治具等に利用することができる。   The present invention is less likely to cause chipping or chipping even when subjected to fine processing, and can be used for electric discharge machining electrodes having fine patterns, fine holes, pins, ribs, etc., jigs for electronic parts, etc. it can.

実施例1において使用した2次原料粉の粒度分布のグラフである。2 is a graph of particle size distribution of secondary raw material powder used in Example 1. FIG. 実施例1において使用した2次原料粉の粒度分布の数値である。It is a numerical value of the particle size distribution of the secondary raw material powder used in Example 1. 実施例2において使用した2次原料粉の粒度分布のグラフである。3 is a graph of particle size distribution of secondary raw material powder used in Example 2. FIG. 実施例2において使用した2次原料粉の粒度分布の数値である。3 is a numerical value of particle size distribution of secondary raw material powder used in Example 2. FIG. 比較例1において使用した2次原料粉の粒度分布のグラフである。4 is a graph of particle size distribution of secondary raw material powder used in Comparative Example 1. 比較例1において使用した2次原料粉の粒度分布の数値である。It is a numerical value of the particle size distribution of the secondary raw material powder used in Comparative Example 1. 比較例2において使用した2次原料粉の粒度分布のグラフである。4 is a graph of particle size distribution of secondary raw material powder used in Comparative Example 2. 比較例2において使用した2次原料粉の粒度分布の数値である。It is a numerical value of the particle size distribution of the secondary raw material powder used in Comparative Example 2. 実施例1で作製した黒鉛材料の断面SEM写真である。2 is a cross-sectional SEM photograph of the graphite material produced in Example 1. 実施例1で作製した黒鉛材料の断面SEM写真を画像処理した2値化像である。2 is a binarized image obtained by subjecting a cross-sectional SEM photograph of the graphite material produced in Example 1 to image processing. 実施例1で作製した黒鉛材料の断面SEM写真を画像処理した2値化像の楕円フィット図である。3 is an elliptical fit diagram of a binarized image obtained by image processing of a cross-sectional SEM photograph of the graphite material produced in Example 1. FIG. 実施例2で作製した黒鉛材料の断面SEM写真である。3 is a cross-sectional SEM photograph of the graphite material produced in Example 2. 実施例2で作製した黒鉛材料の断面SEM写真を画像処理した2値化像である。4 is a binarized image obtained by image processing of a cross-sectional SEM photograph of the graphite material produced in Example 2. FIG. 実施例2で作製した黒鉛材料の断面SEM写真を画像処理した2値化像の楕円フィット図である。4 is an elliptical fit diagram of a binarized image obtained by image processing of a cross-sectional SEM photograph of the graphite material produced in Example 2. FIG. 比較例1で作製した黒鉛材料の断面SEM写真である。3 is a cross-sectional SEM photograph of the graphite material produced in Comparative Example 1. 比較例1で作製した黒鉛材料の断面SEM写真を画像処理した2値化像である。2 is a binarized image obtained by subjecting a cross-sectional SEM photograph of the graphite material produced in Comparative Example 1 to image processing. 比較例1で作製した黒鉛材料の断面SEM写真を画像処理した2値化像の楕円フィット図である。4 is an elliptical fit diagram of a binarized image obtained by image processing of a cross-sectional SEM photograph of the graphite material produced in Comparative Example 1. FIG. 比較例2で作製した黒鉛材料の断面SEM写真である。3 is a cross-sectional SEM photograph of the graphite material produced in Comparative Example 2. 比較例2で作製した黒鉛材料の断面SEM写真を画像処理した2値化像である。4 is a binarized image obtained by subjecting a cross-sectional SEM photograph of the graphite material produced in Comparative Example 2 to image processing. 比較例2で作製した黒鉛材料の断面SEM写真を画像処理した2値化像の楕円フィット図である。6 is an elliptical fit diagram of a binarized image obtained by image processing of a cross-sectional SEM photograph of the graphite material produced in Comparative Example 2. FIG.

Claims (3)

多数の黒鉛粒子と気孔とからなる微細構造を有する黒鉛材料であって、断面を走査型電子顕微鏡で観察したときに、断面に現れる気孔が6000μmあたり250個以上、断面に現れる気孔の平均面積が5μm2以下、断面に現れる気孔の平均扁平率が0.55以下であることを特徴とする黒鉛材料。 A graphite material having a fine structure composed of a large number of graphite particles and pores. When the cross section is observed with a scanning electron microscope, 250 or more pores appearing in the cross section per 6000 μm 2 , and the average area of the pores appearing in the cross section graphite material but to 5 [mu] m 2 or less, an average aspect ratio of the pores appearing in cross section, characterized in that 0.55 or less. かさ密度が1.78〜1.86g/cmであることを特徴とする請求項1に記載の黒鉛材料。 The graphite material according to claim 1, wherein the bulk density is 1.78 to 1.86 g / cm 3 . 放電加工用である請求項1又は2に記載の黒鉛材料。   The graphite material according to claim 1 or 2, which is used for electric discharge machining.
JP2007151661A 2007-06-07 2007-06-07 Graphite material Active JP5277483B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007151661A JP5277483B2 (en) 2007-06-07 2007-06-07 Graphite material
TW97119480A TWI399354B (en) 2007-06-07 2008-05-27 Graphite material and a method of producing graphite material
US12/132,057 US8048515B2 (en) 2007-06-07 2008-06-03 Graphite material and a method of producing graphite material
EP20080010260 EP2017241B1 (en) 2007-06-07 2008-06-05 Graphite material and a method of producing graphite material
KR1020080053163A KR100990574B1 (en) 2007-06-07 2008-06-05 Graphite material and a method of producing graphite material
CN2008101089252A CN101381232B (en) 2007-06-07 2008-06-06 Graphite material and a method of producing graphite material
US13/242,968 US8367196B2 (en) 2007-06-07 2011-09-23 Graphite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151661A JP5277483B2 (en) 2007-06-07 2007-06-07 Graphite material

Publications (2)

Publication Number Publication Date
JP2008303108A true JP2008303108A (en) 2008-12-18
JP5277483B2 JP5277483B2 (en) 2013-08-28

Family

ID=40232150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151661A Active JP5277483B2 (en) 2007-06-07 2007-06-07 Graphite material

Country Status (2)

Country Link
JP (1) JP5277483B2 (en)
CN (1) CN101381232B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242196A (en) * 2008-03-31 2009-10-22 Ibiden Co Ltd Graphite elastic body and its manufacturing method
WO2011046146A1 (en) 2009-10-13 2011-04-21 東洋炭素株式会社 Carbon material and process for production thereof
JP2013001631A (en) * 2011-06-21 2013-01-07 Taiheiyo Cement Corp Tool made of carbon
WO2014162692A1 (en) * 2013-04-01 2014-10-09 東洋炭素株式会社 Carbon material for bearings and sliding member formed of carbon material for bearings

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9140320B2 (en) 2010-03-15 2015-09-22 Aktiebolaget Skf Device for braking and/or blocking a shaft of a vehicle transmission and method for manufacturing such a device
CN102312949A (en) * 2011-10-13 2012-01-11 浙江大学台州研究院 Manufacturing method of spiral spring used for elastic hinge of glasses
JP6822372B2 (en) * 2017-10-12 2021-01-27 トヨタ自動車株式会社 Negative electrode plate and non-aqueous electrolyte secondary battery
CN109336373A (en) * 2018-12-14 2019-02-15 东莞市凯迪碳素有限公司 A kind of 3D glass bending graphite jig
CN112296472B (en) * 2020-11-02 2022-03-25 湘潭大学 Brazing method of graphite material
CN112707732A (en) * 2021-01-21 2021-04-27 江苏嘉明碳素新材料有限公司 Production process of ultra-long regenerated graphite electrode for smelting quartz

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182213A (en) * 1983-03-31 1984-10-17 Toyo Tanso Kk Isotropic carbon material
JPS6172610A (en) * 1984-09-14 1986-04-14 Hitachi Chem Co Ltd Production of high-density graphite material
JPH04119910A (en) * 1990-09-12 1992-04-21 Nippon Steel Corp Production of carbon material with micropore
JPH0732216A (en) * 1993-07-15 1995-02-03 Toyo Tanso Kk Graphite material for electrode suitable for water electric discharge machining

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118066A (en) * 1993-10-22 1995-05-09 Tokai Carbon Co Ltd Production of high strength isotropic graphite material
CN100377995C (en) * 2006-07-26 2008-04-02 南阳博兴矿业有限责任公司 Granular graphite for brake block and its prepn
CN100457681C (en) * 2006-11-07 2009-02-04 中钢集团吉林炭素股份有限公司 High conductive high strength graphite brick for ultralarge blast furnace, its production technology and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182213A (en) * 1983-03-31 1984-10-17 Toyo Tanso Kk Isotropic carbon material
JPS6172610A (en) * 1984-09-14 1986-04-14 Hitachi Chem Co Ltd Production of high-density graphite material
JPH04119910A (en) * 1990-09-12 1992-04-21 Nippon Steel Corp Production of carbon material with micropore
JPH0732216A (en) * 1993-07-15 1995-02-03 Toyo Tanso Kk Graphite material for electrode suitable for water electric discharge machining

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242196A (en) * 2008-03-31 2009-10-22 Ibiden Co Ltd Graphite elastic body and its manufacturing method
WO2011046146A1 (en) 2009-10-13 2011-04-21 東洋炭素株式会社 Carbon material and process for production thereof
EP2489648A1 (en) * 2009-10-13 2012-08-22 Toyo Tanso Co., Ltd. Carbon material and process for production thereof
EP2489648A4 (en) * 2009-10-13 2013-06-12 Toyo Tanso Co Carbon material and process for production thereof
US8894962B2 (en) 2009-10-13 2014-11-25 Toyo Tanso Co., Ltd. Carbon material and method of manufacturing the same
JP2013001631A (en) * 2011-06-21 2013-01-07 Taiheiyo Cement Corp Tool made of carbon
WO2014162692A1 (en) * 2013-04-01 2014-10-09 東洋炭素株式会社 Carbon material for bearings and sliding member formed of carbon material for bearings
JPWO2014162692A1 (en) * 2013-04-01 2017-02-16 東洋炭素株式会社 Carbon material for bearing and sliding member made of carbon material for bearing
US9902839B2 (en) 2013-04-01 2018-02-27 Toyo Tanso Co., Ltd. Carbon material for bearings and sliding member made of carbon material for bearings

Also Published As

Publication number Publication date
CN101381232B (en) 2012-06-27
CN101381232A (en) 2009-03-11
JP5277483B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5277483B2 (en) Graphite material
KR100990574B1 (en) Graphite material and a method of producing graphite material
JP5810469B2 (en) Cemented carbide and method for producing cemented carbide
JP6796266B2 (en) Cemented carbide and cutting tools
CN110219042B (en) Polycrystalline diamond body, cutting tool, wear-resistant tool, grinding tool, and method for manufacturing polycrystalline diamond body
KR20150138302A (en) Pcbn material, method for making same, tools comprising same and method of using same
JP6123138B2 (en) Cemented carbide, microdrill, and method of manufacturing cemented carbide
TWI704105B (en) Diamond polycrystal and tool including same
JP5076044B2 (en) Composite wear-resistant member and manufacturing method thereof
TWI690488B (en) Diamond polycrystal and tool including same
JP4624690B2 (en) Cutting tool insert and method of manufacturing the same
JP2016041853A (en) Cemented carbide, micro-drill and method for producing cemented carbide
KR102638420B1 (en) Diamond bonded body and method for manufacturing diamond bonded body
JP5277487B2 (en) Graphite elastic body and method for producing the same
JP2000271807A (en) Cutting tool and wear resistant material
JP7068657B2 (en) Cutting tool made of cubic boron nitride base sintered body
JP2020158361A (en) Boron nitride-based sintered body, insert and cutting tool
CN107210243A (en) Wedge bond part
Liu et al. Investigation on critical cutting depth in milling of wave-transmitting Si 3 N 4 ceramics
JP2009190146A (en) Tool material
JP7161670B2 (en) Cubic boron nitride-based sintered body and cutting tool
JP2006131974A (en) Cemented carbide
Cintas Físico et al. Production of Ultrafine Grained Hardmetals by Electrical Resistance Sintering
JPH0848564A (en) Silicon nitride sintered compact and its production
Sato et al. Characterization of Large Defects in Alumina Green Compacts with Liquid Immersion- Polarized Light Microscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5277483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250