JP2009190146A - Tool material - Google Patents

Tool material Download PDF

Info

Publication number
JP2009190146A
JP2009190146A JP2008035474A JP2008035474A JP2009190146A JP 2009190146 A JP2009190146 A JP 2009190146A JP 2008035474 A JP2008035474 A JP 2008035474A JP 2008035474 A JP2008035474 A JP 2008035474A JP 2009190146 A JP2009190146 A JP 2009190146A
Authority
JP
Japan
Prior art keywords
cemented carbide
tool
cbn sintered
value
tool material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008035474A
Other languages
Japanese (ja)
Inventor
Masayuki Imai
真之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2008035474A priority Critical patent/JP2009190146A/en
Publication of JP2009190146A publication Critical patent/JP2009190146A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Milling Processes (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tool material using a cBN sintered body for a blade, having a high breakage strength. <P>SOLUTION: The tool material in a columnar shape is formed of the cBN sintered body at one end and a WC-based cemented carbide at the other, wherein: the WC-based cemented carbide comprises a cemented carbide A and a cemented carbide B longitudinally, with one end of the cemented carbide A having a faying surface C with the cBN sintered body and the other having a faying surface D with the cemented carbide B; the cemented carbide A has a WC average grain size d1 (μm) within a range of 2≤d1≤4 and contains Co in an amount of 6-12% by mass; the cemented carbide B has a WC average grain size d2 (μm) within a range of 0.3≤d2≤1 and contains Co in an amount of 5-11%; and the tool material 1 has a length L (mm) and a diameter D (mm) within the ranges of 3≤L≤60 and D≤6, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、cBN焼結体を刃部に用いる工具素材に関する。特に、刃径が1mm以下の回転工具に関するものである。   This invention relates to the tool raw material which uses a cBN sintered compact for a blade part. In particular, the present invention relates to a rotary tool having a blade diameter of 1 mm or less.

特許文献1は、超硬合金が裏打ちされたcBN焼結体円板と、これを用いて形成した回転工具の技術を開示している。   Patent Document 1 discloses a technique of a cBN sintered body disk lined with a cemented carbide and a rotary tool formed using the cBN sintered body disk.

特開2004−268202号公報JP 2004-268202 A

本願発明は、折損強度の高い工具素材を提供することを目的とする。   An object of this invention is to provide the tool raw material with high fracture strength.

本願発明は、円柱形状の工具素材(1)の一方の端部がcBN焼結体(2)、他の端部がWC基超硬合金(3)で形成され、該WC基超硬合金(3)は長手方向に超硬合金A(4)と超硬合金B(5)とからなり、該超硬合金A(4)の一方の端部は、該cBN焼結体(2)との接合面C(6)を有し、該超硬合金A(4)の他の端部は、該超硬合金B(5)との接合面D(7)を有し、該超硬合金A(4)は、WC平均粒径をd1(μm)としたとき、2≦d1≦4、Co含有量は質量%で、6%以上、12%以下であり、該超硬合金B(5)は、WC平均粒径をd2(μm)としたとき、0.3≦d2≦1、Co含有量は5%以上、11%以下であり、工具素材(1)の長さ(mm)をL、直径(mm)をDとしたとき、3≦L≦60、D≦6、であることを特徴とする工具素材である。上記の構成を採用することによって折損強度の高い工具素材を提供することができる。また、本願発明の工具素材は、cBN焼結体(2)の長さ(mm)をL1、超硬合金A(4)の長さ(mm)をL2、超硬合金B(5)の長さ(mm)をL3、としたとき、L2/L1≧2、(L1+L2)/L3≦0.7、であることが好ましい。また、d1値が、2.5≦d1≦3.5、d2値が、0.3≦d2≦0.6、であることが好ましい。   In the present invention, one end of a cylindrical tool material (1) is formed of a cBN sintered body (2) and the other end is formed of a WC-based cemented carbide (3), and the WC-based cemented carbide ( 3) is composed of cemented carbide A (4) and cemented carbide B (5) in the longitudinal direction, and one end of the cemented carbide A (4) is connected to the cBN sintered body (2). The other end of the cemented carbide A (4) has a bonding surface D (7) with the cemented carbide B (5), and the cemented carbide A (4), when the WC average particle diameter is d1 (μm), 2 ≦ d1 ≦ 4, the Co content is 6% by mass and 12% by mass, and the cemented carbide B (5) Is 0.3 ≦ d2 ≦ 1, when the WC average particle diameter is d2 (μm), the Co content is 5% or more and 11% or less, and the length (mm) of the tool material (1) is L When the diameter (mm) is D, 3 ≦ L ≦ 60, D It is a tool material characterized by ≦ 6. By adopting the above configuration, a tool material with high break strength can be provided. The tool material of the present invention is such that the length (mm) of the cBN sintered body (2) is L1, the length (mm) of the cemented carbide A (4) is L2, and the length of the cemented carbide B (5). When the thickness (mm) is L3, it is preferable that L2 / L1 ≧ 2 and (L1 + L2) /L3≦0.7. Further, it is preferable that the d1 value is 2.5 ≦ d1 ≦ 3.5, and the d2 value is 0.3 ≦ d2 ≦ 0.6.

本願発明によって、折損強度の高い工具素材を提供することができた。   By this invention, the tool raw material with high breaking strength was able to be provided.

本願発明の工具素材(1)の例を図1に示す。円柱形状の工具素材(1)の一方の端部がcBN焼結体(2)、他の端部がWC基超硬合金(3)で形成されている。またWC基超硬合金(3)は長手方向に超硬合金A(4)と超硬合金B(5)とからなっている。更に、超硬合金A(4)の一方の端部は、cBN焼結体(2)との接合面C(6)を有し、超硬合金A(4)の他の端部は、超硬合金B(5)との接合面D(7)を有している。例えば、cBN焼結体を刃部とする切削工具は、切削加工時に刃部の温度が約800から1000℃の高温となる。特に切削条件が高速高送り等の過酷な場合、刃部の温度上昇は著しい。従って、cBN焼結体と超硬合金Aとの接合面Cは、高温域での密着強度が要求される。そこで超高圧高温条件下で両者を一体焼結処理することによって形成された接合面Cを有することが必要である。またこの一体焼結処理は、cBN焼結体と超硬合金とを接合させるために必要な処理でもある。一方、超硬合金Aと超硬合金Bとの接合面Dは、超硬合金Aの厚さの分、cBN焼結体からの距離が離れているため、例えば拡散接合法をよって形成された接合面Dを選択することができる。
本願発明の工具素材のWC基超硬合金において、cBN焼結体との接合面Cを有する超硬合金Aは、WC平均粒径をd1(μm)としたとき、2≦d1≦4、より好ましくは、2.5≦d1≦3.5であり、Co含有量は質量%で、6%以上、12%以下である。また、この超硬合金Aの別の端部と接合面Dを有する超硬合金Bは、WC平均粒径をd2(μm)としたとき、0.3≦d2≦1、より好ましくは0.3≦d2≦0.6であり、Co含有量は5%以上、11%以下である。cBN焼結体と接合面Cを介している超硬合金Aも熱伝導によって600から700℃の高温域での機械的強度が要求され、破壊、亀裂の進展を回避しなければならない。そのため、高温となる接合面C近傍の超硬合金Aの亀裂が進展し難いd1値が2μm以上の粗粒超硬合金を用いれば、高温域となる接合面C近傍の超硬合金Aの折損強度を向上させることができる。しかし、d1値の増大により曲げ変形が起こりやすくなるため、d1値は4μm以下にする必要がある。このためd1値は2≦d1≦4、より好ましくは、2.5≦d1≦3.5とする。また、超硬合金Aには、加熱と冷却が加わるため、熱衝撃抵抗Rも大きいことが必要となる。熱衝撃抵抗Rは、次の化1によって定義される。ここで、kは定数、λは熱伝導率、σmは抗折力、αは熱膨張係数、Eはヤング率である。
An example of the tool material (1) of the present invention is shown in FIG. One end of the cylindrical tool material (1) is formed of a cBN sintered body (2), and the other end is formed of a WC-based cemented carbide (3). The WC-based cemented carbide (3) is composed of cemented carbide A (4) and cemented carbide B (5) in the longitudinal direction. Furthermore, one end of the cemented carbide A (4) has a joint surface C (6) with the cBN sintered body (2), and the other end of the cemented carbide A (4) It has a joint surface D (7) with the hard alloy B (5). For example, a cutting tool having a cBN sintered body as a blade portion has a high temperature of about 800 to 1000 ° C. during cutting. In particular, when the cutting conditions are severe such as high speed and high feed, the temperature rise of the blade portion is remarkable. Therefore, the bonding surface C between the cBN sintered body and the cemented carbide A is required to have an adhesion strength in a high temperature range. Therefore, it is necessary to have a joint surface C formed by subjecting both to integral sintering under ultrahigh pressure and high temperature. This integrated sintering process is also a process necessary for joining the cBN sintered body and the cemented carbide. On the other hand, the bonding surface D between the cemented carbide A and the cemented carbide B is formed by, for example, a diffusion bonding method because the distance from the cBN sintered body is increased by the thickness of the cemented carbide A. The joining surface D can be selected.
In the WC-based cemented carbide of the tool material of the present invention, the cemented carbide A having the joint surface C with the cBN sintered body has a WC average particle diameter of d1 (μm), 2 ≦ d1 ≦ 4, Preferably, 2.5 ≦ d1 ≦ 3.5, and the Co content is 6% or more and 12% or less by mass%. Further, the cemented carbide B having another end portion of the cemented carbide A and the joint surface D has a WC average particle size of d2 (μm), and 0.3 ≦ d2 ≦ 1, more preferably 0.8. 3 ≦ d2 ≦ 0.6, and the Co content is 5% or more and 11% or less. The cemented carbide A through the cBN sintered body and the joint surface C is also required to have mechanical strength in a high temperature range of 600 to 700 ° C. due to heat conduction, and the development of fracture and cracks must be avoided. For this reason, if a coarse cemented carbide having a d1 value of 2 μm or more, in which the crack of the cemented carbide A in the vicinity of the joining surface C that becomes high temperature is difficult to progress, breakage of the cemented carbide A in the vicinity of the joining surface C that becomes the high temperature region. Strength can be improved. However, since the bending deformation is likely to occur as the d1 value increases, the d1 value needs to be 4 μm or less. For this reason, the d1 value is 2 ≦ d1 ≦ 4, more preferably 2.5 ≦ d1 ≦ 3.5. In addition, since the cemented carbide A is heated and cooled, the thermal shock resistance R needs to be large. The thermal shock resistance R is defined by the following chemical formula 1. Here, k is a constant, λ is thermal conductivity, σm is a bending strength, α is a thermal expansion coefficient, and E is a Young's modulus.

Figure 2009190146
Figure 2009190146

Co量が6%未満の場合、R値が減少するが、Co量が12%を超えて大きくてもλ値の低下によりR値が減少してしまう。そこで、超硬合金AのCo量を6%以上、12%以下とする。本願発明の工具素材における超硬合金Aは、主に回転工具における首部を構成することになる。
一方、超硬合金Bは、回転工具におけるシャンク部やシャンク部よりも径が絞られる首部、又はシャンク部から首部に跨った構成をすることになる。そこで、径が絞られる首部とシャンク部の境界は応力が集中するため、超硬合金Bは、折損強度の高い超微粒系超硬合金を用いることになる。例えば、特に首下が長い小径工具においてその影響は大きい。超硬合金Bは、d2値が1μm以下の折損強度の高い超微粒系超硬合金を用いることにより、応力の集中する首部とシャンク部の境界部の強度を向上することができる。しかし、d2値が0.3μm未満の超硬合金では、焼結時に異常成長するWC粒子の影響のため、抗折力は低下してしまう。このため超硬合金Bのd2値を0.3≦d2≦1、とする。また、首部は振動や曲げ変形を抑制する必要があり、同時に小径工具では耐衝撃性を高める必要がある。破壊靱性値K1cは、Co量の増加とともに増大するため首部においてもCo量を規定する必要がある。Co量が5%未満の場合、K1cの減少により耐衝撃性が低下してしまい、Co量が11%を超えて大きいいと、耐振動性が低下する他、曲げ変形を生じやすくなってしまう。そこで、超硬合金BのCo含有量を5%以上、11%以下に規定する。
本願発明の工具素材において、L値、D値は、3≦L≦60、D≦6、である。これは、回転工具、特に小径工具における工具の全長とシャンク径のサイズを配慮している。
When the Co amount is less than 6%, the R value decreases. However, even if the Co amount exceeds 12% and is large, the R value decreases due to a decrease in the λ value. Therefore, the Co content of the cemented carbide A is set to 6% or more and 12% or less. The cemented carbide A in the tool material of the present invention mainly constitutes the neck of the rotary tool.
On the other hand, the cemented carbide B has a configuration in which the diameter is narrower than that of the shank part or the shank part in the rotary tool, or a straddle from the shank part to the neck part. Therefore, since stress concentrates at the boundary between the neck and the shank where the diameter is reduced, the cemented carbide B uses an ultra-fine grain cemented carbide with high break strength. For example, the influence is large especially in a small diameter tool having a long neck. The cemented carbide B can improve the strength of the boundary between the neck portion and the shank portion where stress is concentrated by using an ultrafine grained cemented carbide having a high fracture strength with a d2 value of 1 μm or less. However, in a cemented carbide with a d2 value of less than 0.3 μm, the bending strength is reduced due to the influence of WC particles that grow abnormally during sintering. For this reason, the d2 value of the cemented carbide B is set to 0.3 ≦ d2 ≦ 1. Moreover, it is necessary to suppress vibration and bending deformation at the neck, and at the same time, it is necessary to improve impact resistance with a small diameter tool. The fracture toughness value K1c increases as the amount of Co increases, so it is necessary to define the amount of Co also at the neck. When the Co content is less than 5%, the impact resistance is reduced due to the decrease in K 1c. When the Co content is more than 11%, vibration resistance is lowered and bending deformation is likely to occur. . Therefore, the Co content of the cemented carbide B is specified to be 5% or more and 11% or less.
In the tool material of the present invention, the L value and the D value are 3 ≦ L ≦ 60 and D ≦ 6. This takes into account the overall tool length and the size of the shank diameter in rotating tools, particularly small diameter tools.

本願発明の工具素材において、L2/L1値が2未満であると、超硬合金Bまで高温となるため、超硬合金Bの折損強度が低下してしまう。この理由は、超硬合金Bは高温での折損強度の低いからである。(L1+L2)/L3≦0.7に規定する理由は、刃先先端より長手方向に離れるに従って急速に温度は低下し200℃以下の低温となる。このため、(L1+L2)値が0.7*L3値以下であれば、低温となる部分で折損強度の高い微粒の超硬合金Bを用いることができるため小径工具の折損強度が向上する。一方、回転工具は刃先先端に力が作用するため、作用点より離れた部分の応力が大となる。そこで、(L1+L2)値が0.7*L3値を超えて長いと超硬合金Aの応力負荷が大となってしまい不都合である。本願発明の工具素材において、超硬合金Bの抗折力は3500MPa以上であることが好ましい。この理由は、応力の集中する首部とシャンク部の境界の折損強度をより向上できるからである。   If the L2 / L1 value is less than 2, the tool material of the present invention has a high temperature up to the cemented carbide B, so that the fracture strength of the cemented carbide B is lowered. This is because the cemented carbide B has a low breaking strength at high temperatures. The reason for defining (L1 + L2) /L3≦0.7 is that the temperature rapidly decreases as the distance from the tip of the blade edge increases in the longitudinal direction, and the temperature becomes 200 ° C. or lower. For this reason, if the (L1 + L2) value is 0.7 * L3 or less, the fine cemented carbide B having a high breaking strength can be used at a low temperature portion, and the breaking strength of the small-diameter tool is improved. On the other hand, since the force acts on the tip of the cutting edge of the rotary tool, the stress in the part away from the point of action becomes large. Therefore, if the (L1 + L2) value is longer than 0.7 * L3, the stress load of the cemented carbide A becomes large, which is inconvenient. In the tool material of the present invention, the bending strength of the cemented carbide B is preferably 3500 MPa or more. This is because the break strength at the boundary between the neck portion and the shank portion where stress is concentrated can be further improved.

本願発明の工具素材における超硬合金のd1、d2値は、超硬合金の断面を鏡面研磨した後、村上試薬で0.5分、王水で3分間エッチングすることによりWC粒子以外の金属を除去し、WC粒子の結晶粒界を明確にした後、顕微鏡による観察した。例えば、FE−EPMA(日本電子社製JXA−8500F型)を用いて倍率10k〜20k倍で観察を行い、その観察画像をコンピュータに取り込み、画像解析装置にて解析した。例えば、一定の面積の10〜30mm2の範囲に存在するWCの平均粒径を測定することができる。Co含有量は蛍光X線分析装置により、また抗折力はJIS規格、R1601に記載の3点曲げ試験法により求めることができる。次に、本願発明の工具素材を実施例により具体的に説明する。   The d1 and d2 values of the cemented carbide in the tool material of the present invention are obtained by mirror polishing the cross section of the cemented carbide and then etching the metal other than the WC particles by etching with Murakami reagent for 0.5 minutes and aqua regia for 3 minutes. After removing and clarifying the grain boundaries of the WC particles, they were observed with a microscope. For example, observation was performed at a magnification of 10 k to 20 k using FE-EPMA (JXA-8500F type manufactured by JEOL Ltd.), the observed image was taken into a computer, and analyzed by an image analyzer. For example, the average particle diameter of WC existing in a range of 10 to 30 mm 2 having a certain area can be measured. The Co content can be determined by a fluorescent X-ray analyzer, and the bending strength can be determined by a three-point bending test method described in JIS standard, R1601. Next, the tool material of the present invention will be specifically described with reference to examples.

(実施例1)
図1にcBN焼結部材(8)の模式図示す。cBN焼結部材(8)は、cBN焼結体、超硬合金Aと超硬合金Bとから構成される。まず、図2に示すcBN焼結部材(9)の超硬合金Aを作製した。超硬合金Aは、配合時のWC平均粒径を3.8μm、Co量を8.0%にし、1400℃60分真空中で焼結し、その後、1350°C50MPa、30分の条件でHIP処理をすることにより作製した。その後、研削加工により、厚み2.4mm、直径30mmの円板に加工した。次に、得られた超硬合金Aの円板上に65容量%のcBN粉末と、残りがTiNとAlからなる粉末を混合した粉体からなるcBN成形体を配置し、5.6GPa、1450℃の超高圧高温条件で一体焼結後に研削加工を施し、cBN焼結体の厚さが0.6mm、超硬合金Aの厚さが2.4mmの総厚3.0mmのcBN焼結部材(9)を得た。
次に、超硬合金Bを作製した。超硬合金Bは、配合時のWC平均粒径を1.2μm、Co量を8%にし、1400℃、60分真空中で焼結し、その後、1350℃、50MPa、30分の条件でHIP処理をすることにより作製した。その後、厚み47mm、直径30mmの円柱(10)に加工した。同時に超硬合金Bの抗折力試験片も作成した。
先に作製した厚さ3mmのcBN焼結部材(9)と、超硬合金Bの円柱(10)との間に厚さ10μmのNi箔をはさみ、ホットプレス法を用いて、真空中で1050℃、30MPa、10分の条件で拡散接合を施し、cBN焼結体、超硬合金A、Bで構成した厚さ50mm、直径30mmのcBN焼結部材(8)を作成した。
図1に示す様に本願発明の工具素材の作製方法は、cBN焼結部材(8)よりワイヤー放電加工により直径4.01mmの円柱部材を作製した後、D値が4mm、L値が50mmの丸棒にセンタレス加工した。図3に作成した本発明例1の工具素材を示す。ここで、工具素材の各種測定を行った。d1、d2値の測定結果、Co含有量、超硬合金Bの抗折力値、L1、L2、L3の値を表1に示した。
Example 1
FIG. 1 shows a schematic diagram of a cBN sintered member (8). The cBN sintered member (8) is composed of a cBN sintered body, cemented carbide A and cemented carbide B. First, the cemented carbide A of the cBN sintered member (9) shown in FIG. 2 was produced. Cemented carbide A has a WC average particle size of 3.8 μm and a Co amount of 8.0% at the time of blending, and sintered in vacuum at 1400 ° C. for 60 minutes, and then HIP under the conditions of 1350 ° C. and 50 MPa for 30 minutes. It produced by processing. Then, it was processed into a disk having a thickness of 2.4 mm and a diameter of 30 mm by grinding. Next, a cBN compact made of powder obtained by mixing 65% by volume of cBN powder and the remaining powder of TiN and Al on the disc of the cemented carbide A is placed, and 5.6 GPa, 1450 is placed. CBN sintered member with a total thickness of 3.0 mm, with the thickness of the cBN sintered body being 0.6 mm and the thickness of the cemented carbide A being 2.4 mm, after being integrally sintered under an ultrahigh pressure and high temperature condition of ° C. (9) was obtained.
Next, cemented carbide B was produced. Cemented carbide B has a WC average particle size of 1.2 μm and a Co content of 8% at the time of blending, and is sintered in vacuum at 1400 ° C. for 60 minutes, and then HIP under the conditions of 1350 ° C., 50 MPa, 30 minutes. It produced by processing. Then, it processed into the cylinder (10) of thickness 47mm and diameter 30mm. At the same time, a bending strength test piece of cemented carbide B was also prepared.
A Ni foil having a thickness of 10 μm is sandwiched between the cBN sintered member (9) having a thickness of 3 mm previously prepared and the cylinder (10) of the cemented carbide B, and 1050 in a vacuum using a hot press method. Diffusion bonding was performed under the conditions of 10 ° C., 30 MPa, and a cBN sintered member (8) having a thickness of 50 mm and a diameter of 30 mm composed of a cBN sintered body and cemented carbides A and B was prepared.
As shown in FIG. 1, the method for producing a tool material according to the present invention is that a cylindrical member having a diameter of 4.01 mm is produced from a cBN sintered member (8) by wire electric discharge machining, and then a D value is 4 mm and an L value is 50 mm. Centerless processing was performed on a round bar. FIG. 3 shows the tool material of Example 1 of the present invention created. Here, various measurements of the tool material were performed. Table 1 shows the measurement results of the d1 and d2 values, the Co content, the bending strength value of the cemented carbide B, and the values of L1, L2, and L3.

Figure 2009190146
Figure 2009190146

(実施例2)
実施例1によって得られた本発明例1の工具素材を用いて、図4に示す様なcBN小径ボールエンドミルを作製した。cBN小径ボールエンドミルは、円筒研削加工で首部を形成した後、溝研削加工で刃部を形成することにより、刃径が1mm、首下長さLnが8mmのcBN小径ボールエンドミルを得た。更に、同様の方法を用いて、超硬合金作製時における配合WC粉末の粒径とCo量やL1値、L2値、L3値を調整して本発明例2〜13、比較例16〜26を作製した。これらの工具素材よりcBN小径ボールエンドミルを作成した。図5は、本発明例14、15の別の実施形態に用いたcBN小径ボールエンドミルの作製方法の例を説明する模式図を示す。本願発明の工具素材を、丸棒(11)の先端に設けた孔に差し込みロウ付け後、所定の形状に加工して小径ボールエンドミルを得る方法である。
別に本発明例1と同様の方法で、cBN焼結体と1種類の超硬合金からなるcBN焼結部材を得た。得られたcBN焼結体部材4からワイヤー放電加工により、円柱部材を切り出した後、直径2mm長さ13mmの丸棒にセンタレス加工して従来例27、28の工具素材を作成した。超硬合金作製時において、配合WC粉末の粒径とCo量や厚みを調整した。この工具素材から、cBN小径ボールエンドミルを作成した。
工具素材の折損強度を評価するため本発明例1から15、比較例16から26、従来例27から29の各々5本の工具素材を使用して作成したcBN小径ボールエンドミルを評価した。切削試験は下記の試験条件で行った。評価は、切削距離300mまでに折損した本数を測定した。折損数を表1に併せて示した。
(試験条件)
被切削材:SKD11、硬さ、HRC60
工具形状:先端ボール刃、R:0.5mm
工具回転数:毎分40000回転
送り速度:1500mm/分
切り込み量:0.05mm
加工方法:乾式切削による等高線仕上げ加工、勾配角度:10°
(Example 2)
Using the tool material of Invention Example 1 obtained in Example 1, a cBN small-diameter ball end mill as shown in FIG. 4 was produced. In the cBN small-diameter ball end mill, a neck portion was formed by cylindrical grinding and then a blade portion was formed by groove grinding to obtain a cBN small-diameter ball end mill having a blade diameter of 1 mm and a neck length Ln of 8 mm. Further, by using the same method, the present invention examples 2 to 13 and comparative examples 16 to 26 were prepared by adjusting the particle size and Co amount, L1 value, L2 value, and L3 value of the blended WC powder at the time of producing the cemented carbide. Produced. A cBN small-diameter ball end mill was prepared from these tool materials. FIG. 5 is a schematic view for explaining an example of a method for producing a cBN small-diameter ball end mill used in another embodiment of Examples 14 and 15 of the present invention. This is a method of obtaining a small-diameter ball end mill by inserting the tool material of the present invention into a hole provided at the tip of a round bar (11), brazing, and processing into a predetermined shape.
Separately, a cBN sintered member comprising a cBN sintered body and one kind of cemented carbide was obtained in the same manner as in Invention Example 1. A cylindrical member was cut out from the obtained cBN sintered body member 4 by wire electric discharge machining, and then centerless processed into a round bar having a diameter of 2 mm and a length of 13 mm to produce tool materials of conventional examples 27 and 28. During the production of the cemented carbide, the particle size, Co amount and thickness of the blended WC powder were adjusted. A cBN small-diameter ball end mill was created from this tool material.
In order to evaluate the breaking strength of the tool material, cBN small-diameter ball end mills prepared by using five tool materials of Invention Examples 1 to 15, Comparative Examples 16 to 26, and Conventional Examples 27 to 29 were evaluated. The cutting test was performed under the following test conditions. Evaluation measured the number which broke up to 300m of cutting distance. The number of breaks is also shown in Table 1.
(Test conditions)
Workpiece: SKD11, hardness, HRC60
Tool shape: tip ball blade, R: 0.5 mm
Tool rotation speed: 40000 rotations per minute Feed rate: 1500 mm / min Cutting depth: 0.05 mm
Processing method: Contour finishing by dry cutting, gradient angle: 10 °

表1に示す本発明例1から15、比較例16から26と従来例27から28の切削試験の評価結果では、本発明例はいずれも折損はなく、折損強度に優れていた。本発明例10〜13、15は、本願発明の規定範囲を満足しているために、Ln/D値が10以上の首下が長く、刃径が1mmの小径のボールエンドミルにおいても折損はなく、優れた折損強度を示した。本発明例は、12、13、15は、本願発明の規定範囲を満足しているほか、首部を構成する超硬合金Bの抗折力が3800MPaであり強度が高いため、Ln/D値が15以上の首下長さの長い小径ボールエンドミルにおいても、折損はなく、優れた折損強度を示した。本発明例13は、本願発明の規定範囲を満足しているほか、更に超硬合金Bのd2値が0.6μm、超硬合金Aのd1値が3.1μmと好ましい値にあり、超硬合金Bの抗折力が3800MPaであるために、Ln/D値が20のような首下がさらに長い小径ボールエンドミルにおいても、折損はなく優れた折損強度を示した。
一方、比較例16、17は、d1値が2μm未満であり、本発明の規定の範囲よりも小さく、高温での折損強度が弱いため、刃部側での欠損本数が多く、工具の折損強度は低いものであった。比較例18は、d1値が5.6μmであり、本発明の規定の範囲よりも大きく、曲げ変形に起因する折損が多く、工具の折損強度は低いものであった。比較例19は、d2値が0.2μmであり本願発明の規定の範囲よりも小さく、比較例16、20は、d2値が1μmを超えて大きく本願発明の規定の範囲よりも大きく、伴に強度が弱いため、シャンク側での欠損本数が多く、工具の折損強度は低いものであった。比較例21は、超硬合金AのCo量が5%であり、本願発明の規定の範囲よりも小さく、比較例22は、超硬合金AのCo量が12.5%であり、本願発明の規定の範囲よりも大きく、伴に熱衝撃に起因する刃部側での欠損本数が多く、工具の折損強度は低いものであった。比較例23は、超硬合金BのCo量が4.5%であり本願発明の規定の範囲よりも小さく、衝撃に起因する折損が多く、工具の折損強度は低いものであった。比較例24は、超硬合金BのCo量が12%であり本願発明の規定の範囲よりも大きく、振動や曲げ変形に起因する破損が多く、工具の折損強度は低いものであった。比較例25は、L2/L1の値が1.7であり、本願発明の規定の範囲よりも小さく、シャンク側の首部が刃部に近接するため、シャンク側の首部での折損が多く、工具の折損強度は低いものであった。比較例26は、(L1+L2)/L3の値が0.75であり、本願発明の規定の範囲よりも大きく、刃部側の首部の部分が必要以上に長くなるため、刃部側の首部での折損が多く、工具の折損強度は低いものであった。従来例28、29は、超硬合金が1層であり本願発明の構成と異なるため、工具の折損強度は低いものであった。
In the evaluation results of the cutting tests of Invention Examples 1 to 15, Comparative Examples 16 to 26 and Conventional Examples 27 to 28 shown in Table 1, all of the invention examples were not broken and were excellent in break strength. Since Invention Examples 10 to 13 and 15 satisfy the specified range of the present invention, there is no breakage even in a ball end mill having a long neck length with an Ln / D value of 10 or more and a small-diameter ball end mill with a blade diameter of 1 mm. Excellent break strength. In the present invention example, 12, 13 and 15 satisfy the specified range of the present invention, and the bending strength of the cemented carbide B constituting the neck portion is 3800 MPa and the strength is high, so the Ln / D value is Even in a small-diameter ball end mill having a long neck length of 15 or more, there was no breakage and excellent breakage strength was exhibited. Invention Example 13 not only satisfies the specified range of the present invention, but also has a d2 value of cemented carbide B of 0.6 μm and a d1 value of cemented carbide A of 3.1 μm, which are preferable values. Since the bending strength of the alloy B was 3800 MPa, even a small-diameter ball end mill having a longer neck length such as an Ln / D value of 20 showed no breaking strength and excellent breaking strength.
On the other hand, in Comparative Examples 16 and 17, the d1 value is less than 2 μm, which is smaller than the specified range of the present invention, and the fracture strength at high temperature is weak, so the number of defects on the blade side is large, and the fracture strength of the tool Was low. In Comparative Example 18, the d1 value was 5.6 μm, which was larger than the specified range of the present invention, had many breakage due to bending deformation, and the breakage strength of the tool was low. Comparative Example 19 has a d2 value of 0.2 μm, which is smaller than the specified range of the present invention, and Comparative Examples 16 and 20 have a d2 value exceeding 1 μm and larger than the specified range of the present invention. Since the strength was weak, the number of defects on the shank side was large, and the breaking strength of the tool was low. In Comparative Example 21, the amount of Co in the cemented carbide A is 5%, which is smaller than the prescribed range of the present invention. In Comparative Example 22, the amount of Co in the cemented carbide A is 12.5%, and the present invention The number of defects on the blade side due to thermal shock was large, and the break strength of the tool was low. In Comparative Example 23, the amount of Co in the cemented carbide B was 4.5%, which was smaller than the specified range of the present invention, had many breakage due to impact, and the break strength of the tool was low. In Comparative Example 24, the amount of Co in the cemented carbide B was 12%, which was larger than the specified range of the present invention, there were many breakages due to vibration and bending deformation, and the break strength of the tool was low. In Comparative Example 25, the value of L2 / L1 is 1.7, which is smaller than the specified range of the present invention, and since the neck on the shank side is close to the blade part, there is a lot of breakage at the neck on the shank side. The break strength was low. In Comparative Example 26, the value of (L1 + L2) / L3 is 0.75, which is larger than the specified range of the present invention, and the neck part on the blade part side becomes longer than necessary. The breakage strength of the tool was low. Conventional examples 28 and 29 have one layer of cemented carbide and are different from the configuration of the present invention, so the break strength of the tool was low.

図1は、本願発明の実施形態に用いたcBN焼結部材の模式図を示す。FIG. 1 shows a schematic diagram of a cBN sintered member used in an embodiment of the present invention. 図2は、cBN焼結部材の模式図を示す。FIG. 2 shows a schematic diagram of a cBN sintered member. 図3は、本願発明の工具素材の模式図を示す。FIG. 3 shows a schematic diagram of the tool material of the present invention. 図4は、本願発明のcBN小径ボールエンドミルの模式図を示す。FIG. 4 is a schematic diagram of a cBN small-diameter ball end mill according to the present invention. 図5は、本願発明の別の実施形態に用いたcBN小径ボールエンドミルを示す。FIG. 5 shows a cBN small-diameter ball end mill used in another embodiment of the present invention.

符号の説明Explanation of symbols

1:工具素材
2:cBN焼結体
3:WC基超硬合金
4:超硬合金A
5:超硬合金B
6:接合面C
7:接合面D
8:cBN焼結部材
9:cBN焼結部材
10:超硬合金Bの円柱
11:丸棒
1: Tool material 2: cBN sintered body 3: WC-based cemented carbide 4: Cemented carbide A
5: Cemented carbide B
6: Joint surface C
7: Bonding surface D
8: cBN sintered member 9: cBN sintered member 10: Column of cemented carbide B 11: Round bar

Claims (3)

円柱形状の工具素材(1)の一方の端部がcBN焼結体(2)、他の端部がWC基超硬合金(3)で形成され、該WC基超硬合金(3)は長手方向に超硬合金A(4)と超硬合金B(5)とからなり、該超硬合金A(4)の一方の端部は、該cBN焼結体(2)との接合面C(6)を有し、該超硬合金A(4)の他の端部は、該超硬合金B(5)との接合面D(7)を有し、該超硬合金A(4)は、WC平均粒径をd1(μm)としたとき、2≦d1≦4、Co含有量は質量%で、6%以上、12%以下であり、該超硬合金B(5)は、WC平均粒径をd2(μm)としたとき、0.3≦d2≦1、Co含有量は5%以上、11%以下であり、工具素材(1)の長さ(mm)をL、直径(mm)をDとしたとき、3≦L≦60、D≦6、であることを特徴とする工具素材。 One end of the cylindrical tool material (1) is formed of a cBN sintered body (2) and the other end is formed of a WC-based cemented carbide (3), and the WC-based cemented carbide (3) is elongated. It consists of cemented carbide A (4) and cemented carbide B (5) in the direction, and one end of the cemented carbide A (4) is joined surface C (with the cBN sintered body (2) 6), the other end of the cemented carbide A (4) has a joint surface D (7) with the cemented carbide B (5), and the cemented carbide A (4) , When the WC average particle diameter is d1 (μm), 2 ≦ d1 ≦ 4, the Co content is 6% or more and 12% or less by mass%, and the cemented carbide B (5) has a WC average When the particle size is d2 (μm), 0.3 ≦ d2 ≦ 1, the Co content is 5% or more and 11% or less, the length (mm) of the tool material (1) is L, and the diameter (mm ) Is D, 3 ≦ L ≦ 60 and D ≦ 6. Tool material characterized by that. 請求項1記載の工具素材において、該cBN焼結体(2)の長さ(mm)をL1、該超硬合金A(4)の長さ(mm)をL2、該超硬合金B(5)の長さ(mm)をL3、としたとき、L2/L1≧2、(L1+L2)/L3≦0.7、であることを特徴とする工具素材。 The tool material according to claim 1, wherein the length (mm) of the cBN sintered body (2) is L1, the length (mm) of the cemented carbide A (4) is L2, and the cemented carbide B (5 ), When the length (mm) is L3, L2 / L1 ≧ 2, and (L1 + L2) /L3≦0.7. 請求項1又は2記載の工具素材において、該d1値が、2.5≦d1≦3.5、該d2値が、0.3≦d2≦0.6、であることを特徴とする工具素材。 3. The tool material according to claim 1, wherein the d1 value is 2.5 ≦ d1 ≦ 3.5 and the d2 value is 0.3 ≦ d2 ≦ 0.6. .
JP2008035474A 2008-02-18 2008-02-18 Tool material Pending JP2009190146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008035474A JP2009190146A (en) 2008-02-18 2008-02-18 Tool material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008035474A JP2009190146A (en) 2008-02-18 2008-02-18 Tool material

Publications (1)

Publication Number Publication Date
JP2009190146A true JP2009190146A (en) 2009-08-27

Family

ID=41072629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008035474A Pending JP2009190146A (en) 2008-02-18 2008-02-18 Tool material

Country Status (1)

Country Link
JP (1) JP2009190146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062808A (en) * 2009-09-18 2011-03-31 Hitachi Tool Engineering Ltd Rotary cutting tool
CN103561911A (en) * 2011-05-27 2014-02-05 六号元素有限公司 Super-hard structure, tool element and method of making same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062808A (en) * 2009-09-18 2011-03-31 Hitachi Tool Engineering Ltd Rotary cutting tool
CN103561911A (en) * 2011-05-27 2014-02-05 六号元素有限公司 Super-hard structure, tool element and method of making same
JP2014522322A (en) * 2011-05-27 2014-09-04 エレメント シックス リミテッド Carbide structures, tool elements, and methods of making them
US8961719B2 (en) 2011-05-27 2015-02-24 Element Six Limited Super-hard structure, tool element and method of making same
JP2015134965A (en) * 2011-05-27 2015-07-27 エレメント シックス リミテッド Super-hard structure, tool element, and method of making the same
KR101555120B1 (en) * 2011-05-27 2015-09-22 엘리먼트 씩스 리미티드 Super-hard structure, tool element and method of making same
CN103561911B (en) * 2011-05-27 2016-04-13 六号元素有限公司 Superhard construction body, tool elements and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101867104B1 (en) Sintered cubic boron nitride tool
WO2017191744A1 (en) Cemented carbide and cutting tool
US20110176879A1 (en) Superhard body, tool and method for making same
KR102534356B1 (en) Polycrystalline cubic boron nitride composite material
WO2015199230A1 (en) Sintered object of cubic boron nitride and cutting tool
WO2011089555A2 (en) Superhard body, tool and method for making same
JP2017088917A (en) Hard metal alloy and cutting tool
JP5409199B2 (en) Cutting tools
JP6029004B2 (en) PCD drill
WO2004103615A1 (en) Method for toughening surface of sintered material cutting tool and sintered material cutting tool having long life
JP2009190146A (en) Tool material
JP7120524B2 (en) Diamond bonded body and method for manufacturing diamond bonded body
JP6491232B2 (en) cBN sintered body and cutting tool
JP6443207B2 (en) Cemented carbide and cutting tools
JP2019099396A (en) Cubic crystal boron nitride-based sintered body with fine structure texture, and cutting tool
JP2005052930A (en) Rotary cutting tool
TW201742691A (en) Rod, drill bit body, rod manufacturing method, and drill manufacturing method
JP2006016233A (en) Silicon nitride sintered compact and silicon nitride tool, cutting insert, and cutting tool
KR20230096073A (en) diamond tools
JP2011062808A (en) Rotary cutting tool
JP4126280B2 (en) Fine cemented carbide
JP2020158361A (en) Boron nitride-based sintered body, insert and cutting tool
JP2013053022A (en) Composite sintered body and composite sintered body tool using the same
JP6048079B2 (en) WC-based cemented carbide wire rod for cutting tools with high bending strength and excellent breakage resistance
JP2006089823A (en) Die made of high-speed tool steel