JP5277487B2 - Graphite elastic body and method for producing the same - Google Patents

Graphite elastic body and method for producing the same Download PDF

Info

Publication number
JP5277487B2
JP5277487B2 JP2008092704A JP2008092704A JP5277487B2 JP 5277487 B2 JP5277487 B2 JP 5277487B2 JP 2008092704 A JP2008092704 A JP 2008092704A JP 2008092704 A JP2008092704 A JP 2008092704A JP 5277487 B2 JP5277487 B2 JP 5277487B2
Authority
JP
Japan
Prior art keywords
graphite
cross
pores
section
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008092704A
Other languages
Japanese (ja)
Other versions
JP2009242196A (en
Inventor
敏樹 伊藤
利幸 西脇
正弘 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2008092704A priority Critical patent/JP5277487B2/en
Priority to TW97119480A priority patent/TWI399354B/en
Priority to US12/132,057 priority patent/US8048515B2/en
Priority to EP20080010260 priority patent/EP2017241B1/en
Priority to KR1020080053163A priority patent/KR100990574B1/en
Priority to CN2008101089252A priority patent/CN101381232B/en
Publication of JP2009242196A publication Critical patent/JP2009242196A/en
Priority to US13/242,968 priority patent/US8367196B2/en
Application granted granted Critical
Publication of JP5277487B2 publication Critical patent/JP5277487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、種々の化学合成装置、航空宇宙環境利用装置、原子炉、核融合炉、熱処理等の高温炉、センサー、示差熱天秤、ケミカルポンプ、エンジン用部材等に用いて好適な黒鉛製弾性体及びその製造方法に関する。   The present invention is a graphite elastic suitable for use in various chemical synthesis devices, aerospace environment utilization devices, nuclear reactors, fusion reactors, high temperature furnaces such as heat treatments, sensors, differential thermal balances, chemical pumps, engine members, etc. The present invention relates to a body and a manufacturing method thereof.

金属製のバネは、バネ定数の温度依存性が大きく、一般的に常用されるのは200℃以下であり耐熱性も600℃が限度で急激に強度が低下する。また、錆や化学薬品などに対する耐腐食性に乏しい。一方、セラミックス製のバネでも耐熱性は1000℃が限度で、耐熱衝撃性に乏しい。金属、セラミックス共に比重が高いので組込んだ装置等の重量が大きくなるなどの不都合な点があった。このような従来からあるバネの欠点を補うため有機質線状体をスプリング形状に形成した後、炭素化させてなる炭素系コイルスプリングが提案されている(例えば特許文献1参照)。   A metal spring has a large temperature dependence of the spring constant. Generally, a metal spring is commonly used at 200 ° C. or less, and its heat resistance is suddenly reduced to 600 ° C. Also, it has poor corrosion resistance against rust and chemicals. On the other hand, even with a ceramic spring, the heat resistance is limited to 1000 ° C., and the thermal shock resistance is poor. Since the specific gravity of both metal and ceramics is high, there are disadvantages such as an increase in the weight of the incorporated device. In order to compensate for the drawbacks of conventional springs, a carbon-based coil spring is proposed in which an organic linear body is formed into a spring shape and then carbonized (see, for example, Patent Document 1).

この炭素系コイルスプリングは、炭素化し得る有機物材料、あるいは、これに炭素繊維、黒鉛ウィスカー、黒鉛粉体、非晶質炭素粉体等を均一に分散し、高度に複合配向強化させた有機質線状体をコイル状に形成した後、必要に応じ炭素前駆体処理を施し、さらに不活性雰囲気中で加熱処理して炭素化し、この炭素系のスプリングの全表面を所望する機能に応じた金属で被覆して形成される。この炭素系コイルスプリングによれば、酸素存在下の高温でも優れた耐熱性及び耐腐食性を有し、高い強度と信頼性が期待された。   This carbon-based coil spring is an organic material that can be carbonized, or an organic linear material in which carbon fibers, graphite whiskers, graphite powder, amorphous carbon powder, etc. are uniformly dispersed and reinforced in a complex orientation. After the body is formed in a coil shape, it is treated with a carbon precursor if necessary, and further heat-treated in an inert atmosphere for carbonization, and the entire surface of this carbon-based spring is covered with a metal according to the desired function. Formed. This carbon-based coil spring has excellent heat resistance and corrosion resistance even at high temperatures in the presence of oxygen, and is expected to have high strength and reliability.

特開平6−144811号公報Japanese Patent Laid-Open No. 6-144811

しかしながら、上記した従来の炭素系コイルスプリングは、有機質線状体を炭素化する過程で寸法収縮を伴うため、精度の高いバネを得ることができないという欠点がある上、このような方法で製作される炭素材は、硬度の高いガラス状炭素であるため、後加工で形状を整えることは困難であった。また、広く用いられている等方性黒鉛材をコイル状等所定の形状に加工し、バネを製作することも可能であるものの、一般に等方性黒鉛材中の気孔は扁平で大きいため、繰り返し使用するうちに、扁平な気孔の端部から亀裂が進展し、バネの破壊に繋がりやすく、黒鉛製のバネの材料としては適していなかった。
本発明は上記状況に鑑みてなされたもので、炭素材料の欠点を補い、繰り返し使用しても破損することのない黒鉛製弾性体及びその製造方法を提供し、もって、金属製バネの使用不可環境下での安定した利用、長寿命化を図ることを目的とする。
However, the conventional carbon-based coil spring described above has a drawback that a highly accurate spring cannot be obtained because it involves dimensional shrinkage in the process of carbonizing an organic linear body, and is manufactured by such a method. Since the carbon material is glassy carbon with high hardness, it was difficult to adjust the shape by post-processing. Although it is possible to produce a spring by processing a widely used isotropic graphite material into a predetermined shape such as a coil shape, the pores in the isotropic graphite material are generally flat and large. During use, cracks propagated from the ends of the flat pores, which easily led to breakage of the spring, and were not suitable as a material for a graphite spring.
The present invention has been made in view of the above circumstances, and provides a graphite elastic body that compensates for the disadvantages of the carbon material and does not break even when used repeatedly, and a method for manufacturing the same, and thus a metal spring cannot be used. The purpose is to achieve stable use and long life in the environment.

本発明に係る上記目的は、下記構成により達成される。
(1) 多数の黒鉛粒子と気孔とからなる微細構造を有し、断面を走査型電子顕微鏡で観察したときに、断面に現れる気孔の密度が6000μm2あたり250個以上、断面に現れる気孔の平均断面積が5μm2以下、断面に現れる気孔の平均扁平率が0.55以下とした黒鉛材料を用いて形成したことを特徴とする黒鉛製弾性体。
The above object of the present invention is achieved by the following configuration.
(1) It has a fine structure composed of a large number of graphite particles and pores. When the cross section is observed with a scanning electron microscope, the density of pores appearing in the cross section is 250 or more per 6000 μm 2. A graphite elastic body characterized by being formed using a graphite material having a cross-sectional area of 5 μm 2 or less and an average flatness of pores appearing in a cross-section of 0.55 or less.

この黒鉛製弾性体によれば、微細な黒鉛粒子及び気孔が均一に分布し、強度、弾性率が高まり、耐熱性、耐腐食性、切削加工性も確保され、寸法精度も高まる。   According to this graphite elastic body, fine graphite particles and pores are uniformly distributed, the strength and elastic modulus are increased, heat resistance, corrosion resistance and cutting workability are ensured, and dimensional accuracy is also increased.

(2) 前記黒鉛材料からなる筒状バネ母材の外周部が軸線を中心に螺旋の突切溝で切られてコイルバネ状に形成されたことを特徴とする(1)の黒鉛製弾性体。 (2) The graphite elastic body according to (1), wherein an outer peripheral portion of the cylindrical spring base material made of the graphite material is formed in a coil spring shape by being cut by a spiral cut-off groove about the axis.

この黒鉛製弾性体によれば、断面四角形の棒材を螺旋状に巻いたのと同様のコイルバネを形成することができる。また、棒材を巻き付けて形成する通常のコイルバネの場合、平に仕上げなければならない端部(座)が、筒状バネ母材の平坦な筒端部をそのまま利用できるので、仕上げを容易にすることができる。なお、筒状バネ母材を、円錐形とすれば、円錐形コイルバネを同様にして得ることができる。   According to this graphite elastic body, it is possible to form a coil spring similar to a spirally wound rod having a square cross section. Moreover, in the case of a normal coil spring formed by winding a bar, the end (seat) that must be flattened can use the flat tube end of the cylindrical spring base material as it is, thus facilitating finishing. be able to. If the cylindrical spring base material is conical, a conical coil spring can be obtained in the same manner.

(3) 多数の黒鉛粒子と気孔とからなる微細構造を有し、断面を走査型電子顕微鏡で観察したときに、断面に現れる気孔の密度が6000μm2あたり250個以上、断面に現れる気孔の平均断面積が5μm2以下、断面に現れる気孔の平均扁平率が0.55以下とした黒鉛材料を用いて筒状バネ母材を形成する工程と、
該筒状バネ母材の内周に円柱体を接着剤にて嵌着してワークを得る工程と、
該ワークを軸線回りで回転させながら刃物を軸線と平行に相対移動させて前記筒状バネ母材を前記円柱体に至る螺旋溝で突っ切る工程と、
該突切溝付きワークを熱処理して前記接着剤を分解し、前記円柱体を抜脱する工程と、
を含むことを特徴とする黒鉛製弾性体の製造方法。
(3) An average of pores appearing in the cross section having a fine structure composed of a large number of graphite particles and pores, and the density of pores appearing in the cross section is 250 or more per 6000 μm 2 when the cross section is observed with a scanning electron microscope. Forming a cylindrical spring base material using a graphite material having a cross-sectional area of 5 μm 2 or less and an average flatness of pores appearing in the cross section of 0.55 or less;
A step of fitting a cylindrical body with an adhesive to the inner periphery of the cylindrical spring base material to obtain a workpiece;
A step of cutting the cylindrical spring base material in a spiral groove reaching the cylindrical body by rotating the workpiece relative to the axis while rotating the workpiece around the axis;
Heat-treating the parting grooved workpiece to decompose the adhesive, and removing the cylindrical body;
A method for producing a graphite elastic body, comprising:

この黒鉛製弾性体の製造方法によれば、円柱体が筒状バネ母材の補強部材として働き、筒状バネ母材の半径方向内側への潰れ強度が高まり、螺旋状の突切溝加工が筒状バネ母材の外周部に形成可能となる。   According to this method for manufacturing an elastic body made of graphite, the cylindrical body works as a reinforcing member for the cylindrical spring base material, the crushing strength of the cylindrical spring base material in the radial direction increases, and the spiral cut-off groove processing is performed in the cylinder. It becomes possible to form on the outer periphery of the spring base material.

本発明に係る黒鉛製弾性体によれば、多数の黒鉛粒子と気孔とからなる微細構造を有し、断面を走査型電子顕微鏡で観察したときに、断面に現れる気孔の密度が6000μm2あたり250個以上、断面に現れる気孔の平均断面積が5μm2以下、断面に現れる気孔の平均扁平率が0.55以下とした黒鉛材料を用いて形成したので、微細な黒鉛粒子及び気孔が均一に分布し、高強度で高弾性率でありながら、耐熱性、耐腐食性、切削加工性を備え、しかも、寸法精度を高めることができる。この結果、炭素材料の欠点を補い、種々の化学合成装置、航空宇宙環境利用装置、原子炉、核融合炉等で繰り返し使用しても破損することがなく、安定して利用できる長寿命の黒鉛製弾性体を提供できる。 The graphite elastic body according to the present invention has a fine structure composed of a large number of graphite particles and pores, and the density of pores appearing in the cross section when the cross section is observed with a scanning electron microscope is 250 per 6000 μm 2. Since it is made of graphite material with an average cross-sectional area of pores appearing in the cross section of 5 μm 2 or less and an average flatness of pores appearing in the cross-section of 0.55 or less, fine graphite particles and pores are uniformly distributed In addition, while having high strength and high elastic modulus, it has heat resistance, corrosion resistance and cutting workability, and can improve dimensional accuracy. As a result, the long-lived graphite that compensates for the shortcomings of carbon materials and can be used stably without being damaged even when used repeatedly in various chemical synthesis equipment, aerospace environment utilization equipment, nuclear reactors, fusion reactors, etc. An elastic body can be provided.

本発明に係る黒鉛製弾性体の製造方法によれば、上記黒鉛材料を用いて筒状バネ母材を形成し、筒状バネ母材の内周に炭素材からなる円柱体を接着剤にて嵌着してワークを得、このワークを軸線回りで回転させながら筒状バネ母材を軸線を中心とした螺旋溝で突っ切り、この突切溝付きワークを接着剤の分解温度以上、且つ黒鉛材料の酸化温度以下で熱処理して円柱体を抜脱するので、円柱体を筒状バネ母材の補強部材とし、筒状バネ母材を半径方向内側に潰すことなく、螺旋状の突切溝加工を外周部に施して、コイルバネ状の黒鉛製弾性体を得ることができる。   According to the method for producing a graphite elastic body according to the present invention, a cylindrical spring base material is formed using the graphite material, and a cylindrical body made of a carbon material is formed on the inner periphery of the cylindrical spring base material with an adhesive. A workpiece is obtained by fitting, and the cylindrical spring base material is cut off by a spiral groove centering on the axis while rotating the work around the axis, and the work with the cut-off groove exceeds the decomposition temperature of the adhesive and is made of a graphite material. Since the cylindrical body is removed by heat treatment at an oxidation temperature or lower, the cylindrical body is used as a reinforcing member for the cylindrical spring base material, and the spiral parting groove processing is performed on the outer periphery without crushing the cylindrical spring base material radially inward. By applying to the part, a coil spring-like graphite elastic body can be obtained.

以下、本発明に係る黒鉛製弾性体及びその製造方法の好適な実施の形態を図面を参照して説明する。
本発明に係る黒鉛製弾性体は、板状の黒鉛製弾性体の場合、厚さ方向に荷重をかける黒鉛製弾性体であり、例えば、圧カセンサー、ロードセル等で使用されるダイヤフラム、板バネ、さらバネ等が挙げられる。線状の黒鉛製弾性体の場合、太さ方向、あるいは捻れ方向に荷重をかける弾性体が相当し、直線状のものに限らず、螺旋形状の弾性体も含まれる。例えば、コイルスプリング、渦巻きバネ等が挙げられる。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a graphite elastic body and a method for producing the same according to the present invention will be described with reference to the drawings.
In the case of a plate-like graphite elastic body, the graphite elastic body according to the present invention is a graphite elastic body that applies a load in the thickness direction. For example, a diaphragm used in a pressure sensor, a load cell, etc., a leaf spring, Furthermore, a spring etc. are mentioned. In the case of a linear graphite elastic body, it corresponds to an elastic body that applies a load in the thickness direction or the twist direction, and is not limited to a linear one, and includes a helical elastic body. For example, a coil spring, a spiral spring, etc. are mentioned.

図1は本発明に係る黒鉛製弾性体の斜視図である。
以下、黒鉛製弾性体をコイルスプリング11とした形態を説明する。コイルスプリング11は、黒鉛材料からなる筒状バネ母材13の外周部13aが軸線Lを中心に螺旋の突切溝15で切られ(切削され)てコイルバネ状に形成されている。つまり、コイルスプリング11は、断面四角形の棒材を螺旋状に巻いたコイルバネ状に形成される。棒材を巻き付けて形成する通常のコイルバネの場合、平に仕上げなければならない端部(座)13bが、コイルスプリング11では、筒状バネ母材13の平坦な端部13bをそのまま利用できるので、仕上げを容易にすることができる。なお、筒状バネ母材13を、円錐形とすれば、円錐形コイルバネを同様にして得ることができる。
FIG. 1 is a perspective view of a graphite elastic body according to the present invention.
Hereinafter, the form which made the graphite elastic body the coil spring 11 is demonstrated. The coil spring 11 is formed in a coil spring shape by cutting (cutting) an outer peripheral portion 13a of a cylindrical spring base material 13 made of a graphite material with a spiral cut-off groove 15 about an axis L. That is, the coil spring 11 is formed in a coil spring shape in which a bar having a square cross section is spirally wound. In the case of a normal coil spring formed by winding a rod, the end (seat) 13b that must be flattened can be used as it is in the coil spring 11, because the flat end 13b of the cylindrical spring base material 13 can be used as it is. Finishing can be facilitated. If the cylindrical spring base material 13 is conical, a conical coil spring can be obtained in the same manner.

コイルスプリング11に用いられる黒鉛材は、多数の黒鉛粒子と気孔とからなる微細構造を有している。この黒鉛材料の断面を走査型顕微鏡で観察したとき、断面に現れる気孔は、6000μm2あたり250個以上、断面に現れる気孔の平均面積が5μm2以下である。つまり、黒鉛材料の中に分布する気孔が十分に小さく、かつ、黒鉛材料の単位体積あたりに存在する気孔数が充分に多い。このため、切削時に大きな粒子単位で脱落することなく、平滑な加工面が得られる。また、大きな気孔が存在せず、応力集中が発生しにくいため、繰り返し使用しても亀裂進展の少ない黒鉛材を提供できる。 The graphite material used for the coil spring 11 has a fine structure composed of many graphite particles and pores. When the cross section of the graphite material was observed with a scanning microscope, pores appearing in cross-section, 6000 .mu.m 2 per 250 or more, the average area of pores appearing on the cross-section is 5 [mu] m 2 or less. In other words, the pores distributed in the graphite material are sufficiently small, and the number of pores present per unit volume of the graphite material is sufficiently large. For this reason, a smooth machined surface is obtained without dropping off in units of large particles during cutting. In addition, since there are no large pores and stress concentration is unlikely to occur, it is possible to provide a graphite material with little crack propagation even after repeated use.

また、黒鉛弾性体に用いられる黒鉛材は、断面を走査型顕微鏡で観察したとき、断面に現れる気孔の平均扁平率が0.55以下である。加工時における刃物による圧縮強度に対して黒鉛材料の弾性率が大きくなり、加工時に生じる切削屑を小さくすることができる。すなわち、刃物の切削抵抗が小さく、加工がしやすい。また、断面に現れる気孔の平均扁平率を0.55以下とすることにより、気孔端部のノッチ(切り込み)を小さくすることができ、亀裂進展の少ない黒鉛材を提供することができる。   Moreover, when the cross section of the graphite material used for the graphite elastic body is observed with a scanning microscope, the average flatness of pores appearing in the cross section is 0.55 or less. The elastic modulus of the graphite material is increased with respect to the compressive strength by the blade during processing, and cutting waste generated during processing can be reduced. That is, the cutting resistance of the cutter is small and easy to process. Moreover, by setting the average flatness of the pores appearing in the cross section to 0.55 or less, the notch (cut) at the pore ends can be reduced, and a graphite material with less crack propagation can be provided.

上記のような黒鉛材料の気孔の形状とその加工性との関係は以下のメカニズムによるものと推察される。
黒鉛材料は、切削される際に、刃物の進行方向に圧縮力が働く。この時、刃物の進行に伴って蓄えられた歪みエネルギーが、破壊に必要なエネルギーを超えたときに切削される。平滑な加工面を得るためには、細かな切削粉を出しながら加工することが必要であり、大きな歪みエネルギーを蓄える前に破壊が起こることが重要である。
大きな歪みエネルギーを蓄えないためには、圧縮強度が小さく、弾性率が大きいことが重要であり、つまり、切削される粒子の直径は、圧縮強度/弾性率と正の相関があると言える。以上より、切削される粒子の直径が小さい(きめの細かい)加工面を得るためには、所定の圧縮強度のもとでは、より弾性率が大きい黒鉛材料が有利であることがわかる。
The relationship between the pore shape of the graphite material as described above and its workability is presumed to be due to the following mechanism.
When the graphite material is cut, a compressive force acts in the traveling direction of the blade. At this time, cutting is performed when the strain energy stored as the blade advances exceeds the energy required for destruction. In order to obtain a smooth machined surface, it is necessary to work while producing fine cutting powder, and it is important that destruction occurs before storing large strain energy.
In order not to store large strain energy, it is important that the compressive strength is small and the elastic modulus is large, that is, the diameter of the particles to be cut has a positive correlation with the compressive strength / elastic modulus. From the above, it can be seen that a graphite material having a higher elastic modulus is advantageous under a predetermined compressive strength in order to obtain a machined surface with a small diameter of the particles to be cut (finely detailed).

次に、黒鉛材料の弾性率と気孔の形状との関係について説明すると、一般に黒鉛材料の弾性率は以下のKnudsenの経験式で示される。
E(P)=E(0)exp(−bP)
(E(P):弾性率、P:気孔率、b:経験定数)
経験定数bは気孔の形状に強く依存しており、気孔の形状が球形の場合には、その値が小さく、扁平回転楕円体から亀裂状の気孔形状になるに従って急激にその値が大きくなることが知られている(「新・炭素材料入門」、炭素材料学会編)。従って、弾性率を大きくするためには、その形状が丸い(扁平率が小さい)黒鉛材料が有利であることがわかる。
以上より、黒鉛材料の気孔の形状とその加工性との関係が導かれると考えられる。すなわち、気孔の形状が丸い(すなわち、観察断面に現れる気孔の平均扁平率が0.55以下となる)ことにより、黒鉛材料の弾性率を大きくすることができるので、きめ細かな加工面を得ることができ、加工性に優れた黒鉛材料が得られる。
Next, the relationship between the elastic modulus of the graphite material and the shape of the pores will be explained. Generally, the elastic modulus of the graphite material is expressed by the following Knudsen's empirical formula.
E (P) = E (0) exp (-bP)
(E (P): elastic modulus, P: porosity, b: empirical constant)
The empirical constant b strongly depends on the shape of the pores, and when the shape of the pores is spherical, the value is small, and the value rapidly increases as the flat spheroid changes to a cracked pore shape. Is known (“Introduction to New Carbon Materials”, edited by the Carbon Materials Society of Japan). Therefore, it can be seen that a graphite material having a round shape (small flatness) is advantageous for increasing the elastic modulus.
From the above, it is considered that the relationship between the pore shape of the graphite material and its workability is derived. That is, since the pore shape is round (that is, the average flatness of pores appearing in the observation cross section is 0.55 or less), the elastic modulus of the graphite material can be increased, so that a finely machined surface can be obtained. And a graphite material excellent in workability can be obtained.

次に、圧縮強度に関しては、気孔が扁平回転楕円体や、亀裂状の気孔であっても、圧縮荷重がかかることによって気孔は潰れるように作用するため、気孔の形状は大きな影響を与えない。圧縮強度に対しては気孔率の影響の方が大きいことがわかる。
気孔率が小さいと、圧縮強度が高くなりすぎ切削されにくくなり、加工面の凹凸が大きくなる。気孔率が大きいと、圧縮強度を小さくできるものの、軟らかい黒鉛材料となるため、微細な加工を施しても、折れたり割れやすくなる。また放電加工においても消耗しやすくなる。
Next, regarding the compressive strength, even if the pores are flat spheroids or cracked pores, the pores are crushed by applying a compressive load, so the shape of the pores does not have a great influence. It can be seen that the effect of porosity is greater on the compressive strength.
When the porosity is small, the compressive strength becomes too high to be cut, and the unevenness of the processed surface becomes large. When the porosity is high, the compressive strength can be reduced, but the graphite material becomes soft, and therefore, even if it is subjected to fine processing, it tends to be broken or broken. Moreover, it becomes easy to wear even in electric discharge machining.

黒鉛材料の気孔率と、かさ密度とは相関が高く、同一の原材料を使用し、同一の黒鉛化処理を施した場合、同一の気孔率であれば、ほぼ同一のかさ密度となる。
本発明では、主にピッチを出発原料として、ピッチコークスを経る成分や、直接炭素化、黒鉛化される成分があるものの、出発原料と黒鉛化処理温度は限られた範囲内で行われているため、黒鉛材料のかさ密度は好ましい範囲が存在し、その値は1.78〜1.86g/cm3であり、より好ましくは1.82〜1.85g/cm3である。なお、かさ密度は、体積、質量を測定することにより得られる。
There is a high correlation between the porosity and the bulk density of the graphite material. When the same raw material is used and the same graphitization treatment is performed, the same porosity density is obtained with the same porosity.
In the present invention, the starting material and the graphitization temperature are performed within a limited range, although there are components that mainly undergo pitch coke, and components that are directly carbonized and graphitized, starting from pitch. Therefore, the bulk density of the graphite material has a preferable range, and the value is 1.78 to 1.86 g / cm 3 , more preferably 1.82 to 1.85 g / cm 3 . The bulk density can be obtained by measuring volume and mass.

本発明において、断面に現れる気孔の個数、平均面積及び平均扁平率は、黒鉛材料を電子顕微鏡等で観察することにより算出することができる。具体的には、まず黒鉛材料の切断面をCP(クロスセクションポリッシャ)法により加工する。作製した断面にフラットミリング処理(45°、3分)を施した後、FE−SEMにて観察することにより得られる。
また、撮影した画像の解析は、画像解析ソフト(Image J 1.37)を用いて2値化した後、個々の空隙(断面に現れる気孔)の面積を算出する。個々の空隙について楕円フィットを行い、その長軸、短軸の値から扁平率を算出する。
なお、扁平率とは、空隙(断面に現れる気孔)にフィットされた楕円の(長軸−短軸)/長軸のことである。
In the present invention, the number of pores appearing in the cross section, the average area, and the average flatness can be calculated by observing the graphite material with an electron microscope or the like. Specifically, first, the cut surface of the graphite material is processed by a CP (cross section polisher) method. It is obtained by observing with a FE-SEM after performing a flat milling process (45 °, 3 minutes) on the prepared cross section.
The analysis of the photographed image is binarized using image analysis software (Image J 1.37), and then the area of each void (pore appearing in the cross section) is calculated. Ellipse fitting is performed for each gap, and the flatness is calculated from the values of the major axis and minor axis.
The flatness is an ellipse (major axis-minor axis) / major axis fitted to a void (a pore appearing in a cross section).

断面に現れる気孔の個数、平均面積及び平均扁平率の測定には、上記のようにSEMを使用することが望ましい。ミクロンオーダーの気孔の形状を判別するのに充分な解像度が得られる上、粒子部分は単一の濃度の灰色、気孔部分は気孔の深さに応じて深い気孔の場合は黒色、浅い気孔の場合は白色に表示され、明確に気孔と粒子を区別することができるからである。   As described above, it is desirable to use SEM for the measurement of the number of pores appearing in the cross section, the average area, and the average flatness. Sufficient resolution is obtained to determine the shape of micron-order pores, and the particle part is gray at a single concentration, the pore part is black depending on the depth of the pore, black if it is deep, and if it is shallow Is displayed in white so that pores and particles can be clearly distinguished.

断面に現れる気孔の個数、平均面積及び平均扁平率の測定は、樹脂埋めされていない黒鉛材料を用いることが好ましい。黒鉛材料を樹脂埋めすると、黒鉛材料内部に存在する開気孔に樹脂が封止されて、正しい気孔の個数及び形状を判別することができないからである。   For the measurement of the number of pores appearing in the cross section, the average area, and the average flatness, it is preferable to use a graphite material not filled with resin. This is because if the graphite material is filled with resin, the resin is sealed in the open pores present in the graphite material, and the correct number and shape of the pores cannot be determined.

最大気孔直径(長軸)は、20μm以下であることが好ましい。最大気孔直径が20μm以下であることにより、切削時に気孔に沿ってクラックが進展するため、細ピンでは折れ、薄いリブの切削加工においては割れ、穴あきの原因となる。
最大気孔直径も前記と同様にSEMで観察した断面から測定することができる。なお、SEMの断面観察から得られた気孔の直径は、水銀圧入式ポロシメータ等で得られる気孔及び黒鉛粒子の直径とは異なる。前者は、実際の大きさが計測されるのに対し、後者は連続気孔の入口部分の直径が計測される。
The maximum pore diameter (major axis) is preferably 20 μm or less. When the maximum pore diameter is 20 μm or less, cracks develop along the pores at the time of cutting. Therefore, the fine pins break, and thin ribs cause cracks and holes.
The maximum pore diameter can also be measured from the cross section observed with the SEM as described above. The diameter of the pores obtained from the cross-sectional observation of the SEM is different from the diameters of the pores and graphite particles obtained with a mercury intrusion porosimeter or the like. The former measures the actual size, while the latter measures the diameter of the inlet portion of the continuous pores.

次に、コイルスプリング11の製造方法について説明する。
図2は図1に示した黒鉛製弾性体の製作に用いられる旋盤の一例を示す構成図、図3は図1に示した黒鉛製弾性体の製造の手順を(a)〜(e)で表した模式図である。
コイルスプリング11の製造には、先ず、黒鉛材料からなる図3(a)に示す筒状バネ母材13を形成する。黒鉛材料は、ピッチに炭素質微粉を添加し混練した後、熱処理を加えて400〜500℃で熱処理をしながら揮発分調整を行い、二次原料を得る。次に得られた二次原料を、粒径の細かい微粉を除去する機能を備えた粉砕機で過粉砕しないよう粒度調整をしながら粉砕し、二次原料粉を得る。次に、冷間等方圧成形(CIP成形)により筒状に成形し、焼結炉にて約1000℃で焼成し、さらに黒鉛化炉にて約2500℃で黒鉛化処理を行い、黒鉛材料からなる筒状バネ母材13が得られる。
Next, a method for manufacturing the coil spring 11 will be described.
FIG. 2 is a block diagram showing an example of a lathe used for manufacturing the graphite elastic body shown in FIG. 1, and FIG. 3 shows the procedure for manufacturing the graphite elastic body shown in FIG. FIG.
To manufacture the coil spring 11, first, the cylindrical spring base material 13 shown in FIG. 3A made of a graphite material is formed. After adding carbonaceous fine powder to pitch and kneading the graphite material, heat treatment is performed and volatile content is adjusted while heat treatment at 400 to 500 ° C. to obtain a secondary material. Next, the obtained secondary raw material is pulverized while adjusting the particle size so as not to be excessively pulverized by a pulverizer having a function of removing fine powder having a small particle diameter, thereby obtaining a secondary raw material powder. Next, it is formed into a cylindrical shape by cold isostatic pressing (CIP molding), fired at about 1000 ° C. in a sintering furnace, and further graphitized at about 2500 ° C. in a graphitization furnace, and then a graphite material A cylindrical spring base material 13 is obtained.

なお、使用するピッチとは、石炭系や石油系のピッチのことであり、これらの混合物であってもよい。これらの原材料のうち、石炭系のピッチを使用するのが望ましい。石炭系のピッチの場合は、光学的異方性が発達しにくく(結晶が針状に発達しにくく)高強度で、高弾性の黒鉛材料を得ることができる。   The pitch used is a coal-based or petroleum-based pitch, and may be a mixture thereof. Of these raw materials, it is desirable to use a coal-based pitch. In the case of coal-based pitch, optical anisotropy hardly develops (crystals hardly develop into needles), and a high-strength and highly elastic graphite material can be obtained.

また、ピッチの軟化点は、50℃以下であることが望ましい。50℃以上であると、混練時の粘度が上昇し製造が非常に困難となる。
本発明に使用する炭素質微粉は、メソフェースの発達する際の核となるものであり、カーボンブラック、黒鉛微粉、生ピッチコークス微粉、仮焼ピッチコークス微粉等の炭素質のものを使用することができる。微粉のサイズとしては、5μm以下のものが望ましい。5μm以上の微粉を使用すると混練して得られた二次原料を粉砕する際の粒度分布の制御が困難となり、粒度分布の粗い側が増えるからである。ピッチへの添加量としては、3〜10%重量であることが望ましい。10重量%を超えて添加するとピッチの粘度が上昇し、製造が非常に困難となる。3重量%以下の場合にはコークスのモザイク組織が十分に発達できない。
The softening point of the pitch is desirably 50 ° C. or lower. When the temperature is 50 ° C. or higher, the viscosity at the time of kneading increases and the production becomes very difficult.
The carbonaceous fine powder used in the present invention is a core when the mesophase develops, and it is possible to use a carbonaceous powder such as carbon black, graphite fine powder, raw pitch coke fine powder, calcined pitch coke fine powder or the like. it can. The size of the fine powder is preferably 5 μm or less. This is because if a fine powder of 5 μm or more is used, it is difficult to control the particle size distribution when the secondary material obtained by kneading is pulverized, and the coarser side of the particle size distribution increases. The addition amount to the pitch is desirably 3 to 10% by weight. If the amount exceeds 10% by weight, the viscosity of the pitch will increase, making the production very difficult. When the amount is 3% by weight or less, the mosaic structure of coke cannot be sufficiently developed.

上記原材料の熱処理は、JIS8812で測定される揮発分が6〜12%(より好ましくは8〜11%)になるよう温度、時間を調整され二次原料が得られる。揮発分が6%未満の場合には、粒子間の接着が十分に得られないため、密度の低い黒鉛材料しか得ることができない。12%以上の場合には、焼成時に内部から発生する炭化水素ガスの量が多く、割れやすい上、蓄積したガスが大きな気孔を形成する。   In the heat treatment of the raw material, the temperature and time are adjusted so that the volatile content measured by JIS8812 is 6 to 12% (more preferably 8 to 11%) to obtain a secondary raw material. When the volatile content is less than 6%, sufficient adhesion between the particles cannot be obtained, so that only a low-density graphite material can be obtained. In the case of 12% or more, the amount of hydrocarbon gas generated from the inside during firing is large, and it is easy to break, and the accumulated gas forms large pores.

上記原材料を熱処理し得られた二次原料は、粒度を制御しながら粉砕され、得られた二次原料粉からは、微粉末は取り除かれている。粉砕の方法は、内部分級機を備えた粉砕機を用いる方法や、粉砕機と精密気流分級機とを備えた粉砕プラントを用いる方法、粉砕機で粉砕された原材料を精密気流分級機で別個に粒度調整する方法等がある。
微粉末が含まれる二次原料粉を用いた黒鉛材料は、焼成時に発生するガスが放出されにくくなり、割れやすくなる。さらには、素材内にガスが蓄積し、大きな気孔を形成する。
The secondary raw material obtained by heat-treating the raw material is pulverized while controlling the particle size, and fine powder is removed from the obtained secondary raw material powder. The method of pulverization includes a method using a pulverizer equipped with an internal partial classifier, a method using a pulverizer plant equipped with a pulverizer and a precision airflow classifier, and a raw material crushed by the pulverizer separately with a precision airflow classifier. There is a method of adjusting the particle size.
The graphite material using the secondary raw material powder containing the fine powder is less likely to release the gas generated during firing and easily breaks. Furthermore, gas accumulates in the material and forms large pores.

二次原料粉は、レーザー回折式粒度測定器で測定されるメジアン径(DP−50:50%積算直径)が5〜10μmであるが好ましい。通常粒子間に存在する気孔はシャープなエッジを持った扁平率の大きな気孔である場合が多く、粒子の大きさが大きい場合、気孔のサイズと形状とが相乗効果を示し、弾性率の低下が大きくなる。このため、メジアン径が10μm以上である場合、弾性率が大きく低下してしまう。また、メジアン径が5μm以下である場合、焼成時に二次原料粉の成形体から発生する揮発分を速やかに素材の外部に排出することができず、割れやすくなる。さらには、素材内にガスが蓄積し、大きな気孔を形成する。
また二次原料粉は、レーザー回折式粒度測定器で測定される粒度分布の範囲が1μm〜80μmであることが好ましい。1μm以下の原材料が含まれると、焼成時に二次原料粉の成形体から発生する揮発分を速やかに素材の外部に排出することができず、割れやすくなる。さらには、素材内にガスが蓄積し、大きな気孔を形成する。80μm以上の粒子が含まれると、大きな粒子の外周部や大きな粒子どうしの界面近傍に扁平な気孔ができやすくなる上、気孔の数も少なくなり、平均断面積も低下する。
The secondary raw material powder preferably has a median diameter (DP-50: 50% integrated diameter) of 5 to 10 μm as measured with a laser diffraction particle size measuring instrument. The pores that normally exist between particles are often pores with sharp edges and large flatness, and when the size of the particles is large, the size and shape of the pores have a synergistic effect and the elastic modulus decreases. growing. For this reason, when a median diameter is 10 micrometers or more, an elasticity modulus will fall large. Further, when the median diameter is 5 μm or less, the volatile matter generated from the compact of the secondary raw material powder during firing cannot be quickly discharged out of the raw material, and is easily broken. Furthermore, gas accumulates in the material and forms large pores.
Moreover, it is preferable that the secondary raw material powder has a particle size distribution range of 1 μm to 80 μm as measured with a laser diffraction particle size analyzer. If a raw material of 1 μm or less is included, the volatile matter generated from the molded body of the secondary raw material powder at the time of firing cannot be quickly discharged out of the raw material and is easily broken. Furthermore, gas accumulates in the material and forms large pores. When particles of 80 μm or more are contained, flat pores are easily formed near the outer periphery of the large particles and the interface between the large particles, the number of pores is reduced, and the average cross-sectional area is also reduced.

次に、図3(b)に示すように、筒状バネ母材13の内周に円柱体17を接着剤にて嵌着して筒状バネ母材13と円柱体17を一体化させたワークW1を得る。
接着剤としては、熱分解し、揮散するものであれば特に種類は限定されず、例えばα-シアノアクリレート(瞬間接着剤)等を好適に使用することが出来る。α-シアノアクリレートであれば、2・300℃に加熱することにより解重合し、モノマーに分解する。また、黒鉛材料の酸化開始温度は400℃前後であるため、黒鉛材料を酸化させることなく、接着剤のみ熱分解させることが出来る。
Next, as shown in FIG. 3B, the cylindrical spring base material 13 and the cylindrical body 17 are integrated by fitting a cylindrical body 17 on the inner periphery of the cylindrical spring base material 13 with an adhesive. Work W1 is obtained.
The adhesive is not particularly limited as long as it is thermally decomposed and volatilized. For example, α-cyanoacrylate (instant adhesive) or the like can be preferably used. If it is α-cyanoacrylate, it is depolymerized by heating to 2300 ° C. and decomposes into monomers. Further, since the oxidation start temperature of the graphite material is around 400 ° C., only the adhesive can be thermally decomposed without oxidizing the graphite material.

次に、図2に示す旋盤19を用い、ワークW1を軸線回りで回転させながら、刃物(バイト)21を軸線Lと平行に相対移動させて、図3(c)に示すように、筒状バネ母材13を、軸線Lを中心とした円柱体17に至る螺旋溝23で突っ切る。すなわち、ワークW1に対してネジ切り加工を行う場合と同様に、主軸25を回転中心としてワークW1を回転させ、刃物台27から、ワークW1の周部に対して刃物21を接触させながら、ワークW1の回転に同期させて主軸25の軸心に平行なガイド軸31に沿って刃物21を移動させて螺旋溝23を形成する。この際、円柱体17が筒状バネ母材13の補強部材として働き、筒状バネ母材13の半径方向内側への潰れ強度が高まり、螺旋状の突切溝加工が筒状バネ母材13の外周部13aに形成可能となる。   Next, the lathe 19 shown in FIG. 2 is used to rotate the workpiece W1 around the axis while moving the cutter (bite) 21 in parallel with the axis L, and as shown in FIG. The spring base material 13 is cut through a spiral groove 23 reaching the cylindrical body 17 with the axis L as the center. That is, as in the case of threading the workpiece W1, the workpiece W1 is rotated about the spindle 25, and the tool 21 is brought into contact with the peripheral portion of the workpiece W1 from the tool rest 27 while the workpiece 21 is in contact with the peripheral portion of the workpiece W1. The blade 21 is moved along the guide shaft 31 parallel to the axis of the main shaft 25 in synchronization with the rotation of W1 to form the spiral groove 23. At this time, the cylindrical body 17 serves as a reinforcing member for the cylindrical spring base material 13, the crushing strength of the cylindrical spring base material 13 in the radial direction is increased, and the spiral cut-off groove processing is performed on the cylindrical spring base material 13. It can be formed on the outer peripheral portion 13a.

螺旋溝23の形成された図3(d)に示すワークW2が得られたなら、次に、この突切溝付きワークW2を、上記接着剤の分解温度以上、且つ黒鉛材料の酸化温度以下で熱処理して円柱体17を抜脱し、図3(e)に示すコイルスプリング11の製造を完了する。   If the workpiece W2 shown in FIG. 3 (d) in which the spiral groove 23 is formed is obtained, then the workpiece W2 with the parting groove is heat-treated at a temperature not lower than the decomposition temperature of the adhesive and not higher than the oxidation temperature of the graphite material. Then, the cylindrical body 17 is removed and the manufacture of the coil spring 11 shown in FIG.

したがって、上記のコイルスプリング11によれば、多数の黒鉛粒子と気孔とからなる微細構造を有し、断面を走査型電子顕微鏡で観察したときに、断面に現れる気孔の密度が6000μm2あたり250個以上、断面に現れる気孔の平均断面積が5μm2以下、断面に現れる気孔の平均扁平率が0.55以下とした黒鉛材料を用いて形成したので、微細な黒鉛粒子及び気孔が均一に分布し、高強度で高弾性率でありながら、耐熱性、耐腐食性、切削加工性を備え、しかも、寸法精度を高めることができる。この結果、炭素材料の欠点を補い、種々の化学合成装置、航空宇宙環境利用装置、原子炉、核融合炉等で繰り返し使用しても破損することがなく、金属製バネの使用不可状況下においても安定して利用できる長寿命のコイルスプリング11を提供できる。 Therefore, according to the coil spring 11 described above, it has a fine structure composed of a large number of graphite particles and pores, and when the cross section is observed with a scanning electron microscope, the density of pores appearing in the cross section is 250 per 6000 μm 2. As described above, since the average cross-sectional area of pores appearing in the cross section is 5 μm 2 or less and the average flatness of pores appearing in the cross section is 0.55 or less, fine graphite particles and pores are uniformly distributed. While having high strength and high elastic modulus, it has heat resistance, corrosion resistance and cutting workability, and can improve dimensional accuracy. As a result, it compensates for the shortcomings of carbon materials and does not break even when used repeatedly in various chemical synthesis equipment, aerospace environment utilization equipment, nuclear reactors, fusion reactors, etc. In addition, a long-life coil spring 11 that can be used stably can be provided.

また、コイルスプリング11の製造方法によれば、黒鉛材料を用いて筒状バネ母材13を形成し、筒状バネ母材13の内周に炭素材からなる円柱体17を接着剤にて嵌着してワークW1を得、このワークW1を軸線回りで回転させながら筒状バネ母材13を軸線Lを中心とした螺旋溝23で突っ切り、この突切溝付きワークW2を接着剤の分解温度以上、且つ黒鉛材料の酸化温度以下で熱処理して円柱体17を抜脱するので、円柱体17を筒状バネ母材13の補強部材とし、筒状バネ母材13を半径方向内側に潰すことなく、螺旋状の突切溝加工を外周部13aに施して、コイルバネ状の黒鉛製弾性体を得ることができる。   Further, according to the method of manufacturing the coil spring 11, the cylindrical spring base material 13 is formed using a graphite material, and the cylindrical body 17 made of a carbon material is fitted to the inner periphery of the cylindrical spring base material 13 with an adhesive. A workpiece W1 is obtained, and the cylindrical spring base material 13 is cut off by a spiral groove 23 centering on the axis L while rotating the workpiece W1 around the axis, and the workpiece W2 with the cut-off groove exceeds the decomposition temperature of the adhesive. In addition, since the cylindrical body 17 is removed by heat treatment at a temperature lower than the oxidation temperature of the graphite material, the cylindrical body 17 is used as a reinforcing member for the cylindrical spring base material 13 and the cylindrical spring base material 13 is not crushed radially inward. A helical spring cut-off groove is formed on the outer peripheral portion 13a to obtain a coil spring-like graphite elastic body.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to the following Example.

1.黒鉛材料の製造
(実施例1〜2)
軟化点40℃の石炭系ピッチ95重量部にたいし、平均2μmに粉砕した仮焼コークス5重量部を添加し混練した後、熱処理を加えて415℃で熱処理しながら揮発分調整を行い、二次原料を得た。次に内部分級機を備えた粉砕機で過粉砕しないよう粉砕し、二次原料粉を得た。次に等方性静水圧プレスにて100MPaの圧力にて加圧した後、1000℃まで約5℃/時間の昇温速度にて焼成し、2500℃で黒鉛化処理を実施した。
尚、製造の途中で得られた二次原料粉には、レーザー回折式粒度分布計で計測される粒度分布に1μm以下及び80μm以上の粉は含まれていなかった。
表1に使用した原材料の特性値を示し、表2、3に得られた黒鉛材料の特性値を示す。
1. Production of graphite material (Examples 1-2)
After adding 5 parts by weight of calcined coke pulverized to an average of 2 μm to 95 parts by weight of a coal-based pitch with a softening point of 40 ° C., kneading, adjusting the volatile content while applying heat treatment at 415 ° C. The next raw material was obtained. Next, the mixture was pulverized by a pulverizer equipped with an inner classifier so as not to be excessively pulverized to obtain a secondary raw material powder. Next, after pressurizing at a pressure of 100 MPa with an isotropic isostatic press, firing was performed at a rate of temperature increase of about 5 ° C./hour up to 1000 ° C., and graphitization was performed at 2500 ° C.
Note that the secondary raw material powder obtained during the production did not contain powders of 1 μm or less and 80 μm or more in the particle size distribution measured with a laser diffraction particle size distribution meter.
Table 1 shows the characteristic values of the raw materials used, and Tables 2 and 3 show the characteristic values of the obtained graphite materials.

(比較例1)
内部分級機を持たない粉砕機で粉砕したこと以外は実施例1〜2と同様の方法で黒鉛材料を製造した。尚、製造の途中で得られた二次原料粉は、精密気流分級等の操作を行っておらず、レーザー回折式粒度分布計で計測される粒度分布に80μm以上の粉は含まれていなかったが、1μm以下の粉が9.3%含まれていた。
表1に使用した原材料の特性値を示し、表2、3に得られた黒鉛材料の特性値を示す。
(Comparative Example 1)
A graphite material was produced in the same manner as in Examples 1 and 2 except that it was pulverized by a pulverizer having no inner partial classifier. In addition, the secondary raw material powder obtained during the production was not subjected to operations such as precision airflow classification, and the particle size distribution measured by a laser diffraction particle size distribution meter did not include powder of 80 μm or more. However, it contained 9.3% of powder of 1 μm or less.
Table 1 shows the characteristic values of the raw materials used, and Tables 2 and 3 show the characteristic values of the obtained graphite materials.

(比較例2)
軟化点80℃の石炭系ピッチ35重量部にたいし、平均14μmに粉砕した仮焼コークス65重量部を添加し混練した後、熱処理を加えて250℃で熱処理しながら揮発分調整を行い、二次原料を得た。次に粉砕機と精密気流分級機とを備えた粉砕プラントで過粉砕しないよう粉砕し、二次原料粉を得た。次に等方性静水圧プレスにて100MPaの圧力にて加圧した後、1000℃まで約5℃/時間の昇温速度にて焼成し、2500℃で黒鉛化処理を実施した。
尚、製造の途中で得られた二次原料粉には、レーザー回折式粒度分布計で計測される粒度分布に1μm以下の粉は含まれていなかったが、80μm以上の粉が約3%含まれていた。
(Comparative Example 2)
After adding 65 parts by weight of calcined coke pulverized to an average of 14 μm to 35 parts by weight of a coal-based pitch having a softening point of 80 ° C., kneading, adjusting the volatile content while performing heat treatment at 250 ° C. The next raw material was obtained. Next, it was pulverized in a pulverization plant equipped with a pulverizer and a precision airflow classifier so as not to be excessively pulverized to obtain a secondary raw material powder. Next, after pressurizing at a pressure of 100 MPa with an isotropic isostatic press, firing was performed at a rate of temperature increase of about 5 ° C./hour up to 1000 ° C., and graphitization was performed at 2500 ° C.
In addition, the secondary raw material powder obtained in the middle of the production did not contain a powder of 1 μm or less in the particle size distribution measured with a laser diffraction particle size distribution meter, but contained about 3% of a powder of 80 μm or more. It was.

表1に原材料の特性値を示す。
Table 1 shows the characteristic values of the raw materials.

2. 黒鉛材料の特性評価
以下の項目を測定し、上記で得られた黒鉛材料の特性評価を行った。
(断面に現れる気孔の個数・平均面積・平均扁平率)
以下の手順で、断面に現れる気孔の個数、平均面積・平均扁平率を算出した。
(a)試料荒研磨
上記で作製したテストピースを約5mm厚の円柱状に切断し、両面をGATAN社製治具MODEL623及びSiC性耐水研磨紙#2400を用いて試料両面の整面処理を実施した。次に真鍮性の試料台に固定した。
(b)CP加工
JEOL製SM09010を使用し、加速電圧6kVでCP加工を行った。
(c)ミリング
日立ハイテク社製フラットミリング装置E−3200を使用し、加速電圧5kV、0.5mA、試料傾斜角45°、ミリング時間3分で、Arミリング処理を行った。
(d)FE−SEM観察
上記により作製した試料を日立ハイテク社製超高分解能電界放出形走査電子顕微鏡 S−4800を使用し加速電圧2kVで観察した。実施例1の黒鉛材料を図4a〜c、実施例2の黒鉛材料を図5a〜c、比較例1の黒鉛材料を図6a〜c、比較例2の黒鉛材料を図7a〜cに示す。
(e)画像解析
アメリカ国立衛生研究所製解析ソフトImageJ1.37を使用し、上記で得られたSEM画像を解析した。このときの観察倍率は2000倍で、ノイズ低減処理を施した後、平面部/空隙(気孔)部の2値化処理を実施した。尚、空隙(気孔)の解析対象は、空隙(気孔)か否かの判断が可能な0.2μmを超えるものとした。
画像解析ソフト(ImageJ)で2値化することにより得られた空隙(気孔)部に対して、面積計測、最適楕円フィッティングを実施すると共に個数をカウントし、上記処理より得られた値から断面に現れる気孔の個数、平均面積、平均扁平率を算出した。
(圧縮強度)
JIS R7222に準じて測定を実施した。
(弾性率)
JIS R7222に準じて測定を実施した。
2. Characteristic Evaluation of Graphite Material The following items were measured, and the characteristics of the graphite material obtained above were evaluated.
(Number of pores appearing in the cross section, average area, average flatness)
The number of pores appearing in the cross section, the average area, and the average flatness were calculated according to the following procedure.
(A) Sample rough polishing The test piece prepared above was cut into a cylindrical shape having a thickness of about 5 mm, and both surfaces of the sample were subjected to leveling treatment on both sides of the sample using a GATAN jig MODEL 623 and SiC water resistant abrasive paper # 2400. did. Next, it was fixed to a brass sample stage.
(B) CP processing
CP machining was performed at an acceleration voltage of 6 kV using SM09010 manufactured by JEOL.
(C) Milling Ar milling treatment was performed using a flat milling device E-3200 manufactured by Hitachi High-Tech Co., Ltd. at an acceleration voltage of 5 kV, 0.5 mA, a sample inclination angle of 45 °, and a milling time of 3 minutes.
(D) FE-SEM Observation The sample prepared as described above was observed at an acceleration voltage of 2 kV using an ultra-high resolution field emission scanning electron microscope S-4800 manufactured by Hitachi High-Tech. FIGS. 4a to 4c show the graphite material of Example 1, FIGS. 5a to 5c show the graphite material of Example 2, FIGS. 6a to 6c show the graphite material of Comparative Example 1, and FIGS. 7a to 7c show the graphite material of Comparative Example 2. FIGS.
(E) Image Analysis Using the analysis software ImageJ1.37 manufactured by the National Institutes of Health, the SEM image obtained above was analyzed. The observation magnification at this time was 2000 times, and after performing the noise reduction processing, the binarization processing of the plane portion / void (pore) portion was performed. It should be noted that the analysis target of voids (pores) exceeds 0.2 μm, from which it can be determined whether or not the voids (pores).
Area measurement and optimal ellipse fitting are performed on the void (pore) part obtained by binarization with image analysis software (ImageJ) and the number is counted, and the cross section is obtained from the value obtained by the above processing. The number of appearing pores, average area, and average flatness were calculated.
(Compressive strength)
Measurements were performed according to JIS R7222.
(Elastic modulus)
Measurements were performed according to JIS R7222.

表2に黒鉛材料の特性値を示す。
Table 2 shows the characteristic values of the graphite material.

3.コイルスプリングの製造
実施例、比較例の黒鉛材料を厚さ2.5mmの中空円筒状に加工して筒状バネ母材13とし(図3(a))、筒状バネ母材13の内周に円柱体17をα-シアノアクリレートにて接着することで筒状バネ母材13と円柱体17を一体化させたワークW1を作成し(図3(b))、図2に示す旋盤19を用い、ワークW1に1mm幅でピッチ2mmの螺旋溝23を形成し(図3(c))、得られたワークW2を330℃で熱処理して円柱体17を抜き取り(図3(d))、コイルスプリング11が完成する(図3(e))。
3. Manufacture of coil springs The graphite materials of Examples and Comparative Examples are processed into a hollow cylindrical shape with a thickness of 2.5 mm to form a cylindrical spring base material 13 (FIG. 3A), and the inner circumference of the cylindrical spring base material 13 The cylindrical body 17 is bonded with α-cyanoacrylate to create a workpiece W1 in which the cylindrical spring base material 13 and the cylindrical body 17 are integrated (FIG. 3B), and the lathe 19 shown in FIG. Used, a spiral groove 23 having a width of 1 mm and a pitch of 2 mm is formed on the workpiece W1 (FIG. 3C), and the obtained workpiece W2 is heat-treated at 330 ° C. to extract the cylindrical body 17 (FIG. 3D). The coil spring 11 is completed (FIG. 3 (e)).

4.コイルスプリングの評価
実施例のコイルスプリング(実施例1,2の黒鉛材料で製造したコイルスプリング)についても、比較例のコイルスプリング(比較例1,2の黒鉛材料で製造したコイルスプリング)についても、外見上の差異を肉眼で確認することはできなかった。しかしながら、図4a〜c,図5a〜c,図6a〜c及び図7a〜cに示す黒鉛材料の断面写真からもわかる様に、実施例の黒鉛材料は比較的サイズが小さい丸い形状の気孔が均一に多数分布しているのに対し、比較例の黒鉛材料は、気孔が丸いものが少なく、比較的大きなものが多く存在しているため、実施例の黒鉛材料で製造したコイルスプリングと比較例の黒鉛材料で製造したコイルスプリングとでは、応力に対する耐性が大きく異なる。具体的には、比較例のコイルスプリングは、自然長状態から圧縮して最も縮んだ状態まで圧縮する間に欠けが発生し、伸縮を数回繰り返すだけで破損してしまう。これに対し、実施例のコイルスプリングは、自然長状態から最も縮んだ状態までの間の伸縮を繰り返しても欠けが発生せず、伸縮を1000回繰り返しても破損しなかった。
4). Evaluation of Coil Spring Regarding the coil spring of the example (coil spring manufactured with the graphite material of Examples 1 and 2) and the coil spring of the comparative example (coil spring manufactured with the graphite material of Comparative Examples 1 and 2), The difference in appearance could not be confirmed with the naked eye. However, as can be seen from the cross-sectional photographs of the graphite materials shown in FIGS. 4a to c, FIGS. 5a to c, FIGS. 6a to c and FIGS. 7a to c, the graphite materials of the examples have round pores with relatively small sizes. Although the graphite material of the comparative example has a small number of round pores and a relatively large number of graphite materials in comparison with the coil spring produced in the example and the comparative example, while many of them are uniformly distributed The resistance to stress is greatly different from that of a coil spring made of graphite material. Specifically, the coil spring of the comparative example is chipped during compression from the natural length state to the most contracted state, and is broken only by repeating expansion and contraction several times. On the other hand, the coil spring of the example was not broken even when the expansion and contraction from the natural length state to the most contracted state was repeated, and was not damaged even after the expansion and contraction was repeated 1000 times.

本発明に係る黒鉛製弾性体の斜視図である。1 is a perspective view of a graphite elastic body according to the present invention. 図1に示した黒鉛製弾性体の製作に用いられる旋盤の一例を示す構成図である。It is a block diagram which shows an example of the lathe used for manufacture of the elastic body made from graphite shown in FIG. 図1に示した黒鉛製弾性体の製造の手順を(a)〜(e)で表した模式図である。It is the schematic diagram which represented the procedure of manufacture of the graphite-made elastic body shown in FIG. 1 by (a)-(e). 実施例1で作製した黒鉛材料の断面SEM写真である。2 is a cross-sectional SEM photograph of the graphite material produced in Example 1. 実施例1で作製した黒鉛材料の断面SEM写真を画像処理した2値化像である。2 is a binarized image obtained by subjecting a cross-sectional SEM photograph of the graphite material produced in Example 1 to image processing. 実施例1で作製した黒鉛材料の断面SEM写真を画像処理した2値化像の楕円フィット図である。3 is an elliptical fit diagram of a binarized image obtained by image processing of a cross-sectional SEM photograph of the graphite material produced in Example 1. FIG. 実施例2で作製した黒鉛材料の断面SEM写真である。3 is a cross-sectional SEM photograph of the graphite material produced in Example 2. 実施例2で作製した黒鉛材料の断面SEM写真を画像処理した2値化像である。4 is a binarized image obtained by image processing of a cross-sectional SEM photograph of the graphite material produced in Example 2. FIG. 実施例2で作製した黒鉛材料の断面SEM写真を画像処理した2値化像の楕円フィット図である。4 is an elliptical fit diagram of a binarized image obtained by image processing of a cross-sectional SEM photograph of the graphite material produced in Example 2. FIG. 比較例1で作製した黒鉛材料の断面SEM写真である。3 is a cross-sectional SEM photograph of the graphite material produced in Comparative Example 1. 比較例1で作製した黒鉛材料の断面SEM写真を画像処理した2値化像である。3 is a binarized image obtained by image processing of a cross-sectional SEM photograph of the graphite material produced in Comparative Example 1. FIG. 比較例1で作製した黒鉛材料の断面SEM写真を画像処理した2値化像の楕円フィット図である。4 is an elliptical fit diagram of a binarized image obtained by image processing of a cross-sectional SEM photograph of the graphite material produced in Comparative Example 1. 比較例2で作製した黒鉛材料の断面SEM写真である。3 is a cross-sectional SEM photograph of the graphite material produced in Comparative Example 2. 比較例2で作製した黒鉛材料の断面SEM写真を画像処理した2値化像である。4 is a binarized image obtained by image processing of a cross-sectional SEM photograph of the graphite material produced in Comparative Example 2. FIG. 比較例2で作製した黒鉛材料の断面SEM写真を画像処理した2値化像の楕円フィット図である。6 is an elliptical fit diagram of a binarized image obtained by image processing of a cross-sectional SEM photograph of the graphite material produced in Comparative Example 2. FIG.

符号の説明Explanation of symbols

11 コイルスプリング(黒鉛製弾性体)
13 筒状バネ母材
13a 外周部
15 螺旋の突切溝
17 円柱体
21 刃物
23 螺旋溝
L 軸線
W1,W2 ワーク
11 Coil spring (graphite elastic body)
DESCRIPTION OF SYMBOLS 13 Cylindrical spring base material 13a Outer peripheral part 15 Spiral parting groove 17 Cylindrical body 21 Cutting tool 23 Spiral groove L Axis W1, W2 Workpiece

Claims (2)

多数の黒鉛粒子と気孔とからなる微細構造を有し、断面を走査型電子顕微鏡で観察したときに、断面に現れる気孔の密度が6000μm2あたり250個以上、断面に現れる気孔の平均断面積が5μm2以下、断面に現れる気孔の平均扁平率が0.55以下とした黒鉛材料を用いて形成した黒鉛製弾性体であって、前記黒鉛材料からなる筒状バネ母材の外周部が軸線を中心に螺旋の突切溝で切られてコイルバネ状に形成されたことを特徴とする黒鉛製弾性体。 It has a fine structure consisting of a large number of graphite particles and pores. When the cross section is observed with a scanning electron microscope, the density of pores appearing in the cross section is 250 or more per 6000 μm 2 , and the average cross sectional area of the pores appearing in the cross section is 5 [mu] m 2 or less, a black lead elastic body formed by using a graphite material having an average aspect ratio of the pores appearing in the cross section is 0.55 or less, the outer peripheral portion of the tubular spring base material made of the graphite material A graphite elastic body characterized by being formed in a coil spring shape by being cut by a spiral cut-off groove about an axis. 多数の黒鉛粒子と気孔とからなる微細構造を有し、断面を走査型電子顕微鏡で観察したときに、断面に現れる気孔の密度が6000μm2あたり250個以上、断面に現れる気孔の平均断面積が5μm2以下、断面に現れる気孔の平均扁平率が0.55以下とした黒鉛材料を用いて筒状バネ母材を形成する工程と、
該筒状バネ母材の内周に円柱体を接着剤にて嵌着してワークを得る工程と、
該ワークを軸線回りで回転させながら刃物を軸線と平行に相対移動させて前記筒状バネ母材を前記円柱体に至る螺旋溝で突っ切る工程と、
該突切溝付きワークを熱処理して前記接着剤を分解し、前記円柱体を抜脱する工程と、
を含むことを特徴とする請求項1記載の黒鉛製弾性体製造する方法。
It has a fine structure consisting of a large number of graphite particles and pores. When the cross section is observed with a scanning electron microscope, the density of pores appearing in the cross section is 250 or more per 6000 μm 2 , and the average cross sectional area of the pores appearing in the cross section is Forming a cylindrical spring base material using a graphite material having an average flatness of pores appearing in a cross section of 5 μm 2 or less and 0.55 or less;
A step of fitting a cylindrical body with an adhesive to the inner periphery of the cylindrical spring base material to obtain a workpiece;
A step of cutting the cylindrical spring base material in a spiral groove reaching the cylindrical body by rotating the workpiece relative to the axis while rotating the workpiece around the axis;
Heat-treating the parting grooved workpiece to decompose the adhesive, and removing the cylindrical body;
The method for producing a graphite elastic body according to claim 1 , comprising:
JP2008092704A 2007-06-07 2008-03-31 Graphite elastic body and method for producing the same Active JP5277487B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2008092704A JP5277487B2 (en) 2008-03-31 2008-03-31 Graphite elastic body and method for producing the same
TW97119480A TWI399354B (en) 2007-06-07 2008-05-27 Graphite material and a method of producing graphite material
US12/132,057 US8048515B2 (en) 2007-06-07 2008-06-03 Graphite material and a method of producing graphite material
KR1020080053163A KR100990574B1 (en) 2007-06-07 2008-06-05 Graphite material and a method of producing graphite material
EP20080010260 EP2017241B1 (en) 2007-06-07 2008-06-05 Graphite material and a method of producing graphite material
CN2008101089252A CN101381232B (en) 2007-06-07 2008-06-06 Graphite material and a method of producing graphite material
US13/242,968 US8367196B2 (en) 2007-06-07 2011-09-23 Graphite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092704A JP5277487B2 (en) 2008-03-31 2008-03-31 Graphite elastic body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009242196A JP2009242196A (en) 2009-10-22
JP5277487B2 true JP5277487B2 (en) 2013-08-28

Family

ID=41304562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092704A Active JP5277487B2 (en) 2007-06-07 2008-03-31 Graphite elastic body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5277487B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001582A (en) * 2011-06-13 2013-01-07 Kansai Coke & Chem Co Ltd Isotropic graphite material, and method for producing the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182213A (en) * 1983-03-31 1984-10-17 Toyo Tanso Kk Isotropic carbon material
JPS6144704A (en) * 1984-08-07 1986-03-04 Sumitomo Metal Ind Ltd Production of high-strength and high-density carbonaceous material
JPS6172610A (en) * 1984-09-14 1986-04-14 Hitachi Chem Co Ltd Production of high-density graphite material
JPH0616964B2 (en) * 1984-10-08 1994-03-09 株式会社東芝 How to make a coil
JP2635996B2 (en) * 1988-05-17 1997-07-30 川崎製鉄株式会社 Powder for molded high-density carbon material and method for producing high-density carbon material
US5041315A (en) * 1989-05-15 1991-08-20 Zircoa Inc. Flexible ceramic member and method of production thereof
JPH04119909A (en) * 1990-09-10 1992-04-21 Kawasaki Refract Co Ltd Carbon material
JP2558173B2 (en) * 1990-09-12 1996-11-27 新日本製鐵株式会社 Method for producing carbon material having fine pores
JPH06144811A (en) * 1992-11-10 1994-05-24 Mitsubishi Pencil Co Ltd Metal-coated carbonaceous spring
JPH0732216A (en) * 1993-07-15 1995-02-03 Toyo Tanso Kk Graphite material for electrode suitable for water electric discharge machining
JPH07118066A (en) * 1993-10-22 1995-05-09 Tokai Carbon Co Ltd Production of high strength isotropic graphite material
JP2001019547A (en) * 1999-06-28 2001-01-23 Mitsubishi Chemicals Corp Production of carbon/graphite compound molding product of complex shape
JP4074757B2 (en) * 2001-10-16 2008-04-09 関西熱化学株式会社 Modified graphite particles, production method thereof, and electrode material for secondary battery
JP4684581B2 (en) * 2004-07-06 2011-05-18 日本コークス工業株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
US8329136B2 (en) * 2005-12-14 2012-12-11 Nippon Coke & Engineering Company, Limited Graphite particle, carbon-graphite composite particle and their production processes
JP5277483B2 (en) * 2007-06-07 2013-08-28 イビデン株式会社 Graphite material

Also Published As

Publication number Publication date
JP2009242196A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
US8048515B2 (en) Graphite material and a method of producing graphite material
JP5277483B2 (en) Graphite material
JP4854482B2 (en) Boron carbide sintered body and manufacturing method thereof
CN110219042B (en) Polycrystalline diamond body, cutting tool, wear-resistant tool, grinding tool, and method for manufacturing polycrystalline diamond body
JP6458559B2 (en) Diamond polycrystals, cutting tools, wear-resistant tools, and grinding tools
JP6958563B2 (en) Diamond polycrystal manufacturing method, diamond polycrystal, cutting tool, abrasion resistant tool and grinding tool
JP2010503605A (en) Low CTE isotropic graphite
JPWO2008088048A1 (en) Wire drawing dies
EP3341341B1 (en) A method of producing a component of a composite of diamond and a binder
TWI781164B (en) Indenter including polycrystalline diamond, method for evaluating cracking load using the same, and evaluation device
JP5277487B2 (en) Graphite elastic body and method for producing the same
KR102552459B1 (en) Diamond Polycrystal and Tool with It
JP4998458B2 (en) Ceramic sintered body, sliding component using the same, and method for producing ceramic sintered body
JP5432610B2 (en) Diamond polycrystal
JP6772743B2 (en) Manufacturing method of diamond polycrystal, diamond polycrystal, cutting tool, abrasion resistant tool and grinding tool
TWI690488B (en) Diamond polycrystal and tool including same
JP2004338080A (en) Cutting tool insert and producing method for the same
Osipov et al. Composites of the cBN–Si 3 N 4 system reinforced by SiCw for turning tools
WO2021059700A1 (en) Polycrystal cubic crystal boron nitride and tool
Pushkarev et al. Improved diamond tools for high-speed machining of seating holes in grinding-wheel blanks
Shin et al. Machining and Joining to form Internal MESO‐Scale Channels in Ceramic Oxides
Datta et al. Strength and microstructure of sintered α-silicon carbide prepared from nano-crystalline particles doped with boron carbide
ARMOR Copyright zyxwvutsrqponmlk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5277487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250