JP2008302848A - Tire condition estimating device, and automobile and tire condition estimating method - Google Patents

Tire condition estimating device, and automobile and tire condition estimating method Download PDF

Info

Publication number
JP2008302848A
JP2008302848A JP2007152897A JP2007152897A JP2008302848A JP 2008302848 A JP2008302848 A JP 2008302848A JP 2007152897 A JP2007152897 A JP 2007152897A JP 2007152897 A JP2007152897 A JP 2007152897A JP 2008302848 A JP2008302848 A JP 2008302848A
Authority
JP
Japan
Prior art keywords
tire
contact
acceleration
circumferential
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007152897A
Other languages
Japanese (ja)
Inventor
Takahiro Ishige
高博 石毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007152897A priority Critical patent/JP2008302848A/en
Publication of JP2008302848A publication Critical patent/JP2008302848A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To properly detect a tire condition even before starting braking. <P>SOLUTION: A sensor unit 3FR is installed on an inner periphery of a tread part of a tire, and peripheral acceleration of the tread part is detected, so as to estimate a tire condition based on the detected peripheral acceleration. That is to say, because the tire condition is estimated based on the peripheral acceleration of the tread part, for example, the tire condition can be detected more properly even before starting braking, unlike a method for estimating a tire condition based on a slip rate during braking. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、タイヤの状態を推定するタイヤ状態推定装置、自動車及びタイヤ状態推定方法に関する。   The present invention relates to a tire state estimation device, an automobile, and a tire state estimation method for estimating a tire state.

従来、この種の技術としては、例えば、制動時の各車輪の前後力と上下力とに基づいて、制動開始直後から所定時間経過後までの間のスリップ率を算出し、その算出結果に基づいてブレーキングスティフネスを推定するものがある(例えば、特許文献1参照)。
特開2005−239071号公報
Conventionally, as this type of technology, for example, based on the longitudinal force and vertical force of each wheel at the time of braking, the slip ratio between immediately after the start of braking and after the lapse of a predetermined time is calculated. In some cases, the braking stiffness is estimated (see, for example, Patent Document 1).
JP 2005-239071 A

しかしながら、上記従来の技術にあっては、制動が行われないとブレーキングスティフネスを検出できないので、制動開始前には、タイヤの状態を検出できない。
このように、上記従来の技術にあっては、タイヤ状態を適切に推定できなかった。
本発明は、上記従来技術に鑑みてなされたものであって、タイヤの状態をより適切に検出できるタイヤ状態推定装置、自動車及びタイヤ状態推定方法を提供することを課題とする。
However, in the above prior art, since the braking stiffness cannot be detected unless braking is performed, the state of the tire cannot be detected before the braking is started.
As described above, in the conventional technique, the tire state cannot be estimated appropriately.
This invention is made | formed in view of the said prior art, Comprising: It aims at providing the tire state estimation apparatus which can detect the state of a tire more appropriately, a motor vehicle, and the tire state estimation method.

上記課題を解決するために、本発明に係るタイヤ状態推定装置は、トレッド部の内周面に設置され当該トレッド部の周方向加速度を検出する加速度検出手段と、前記加速度検出手段で検出された周方向加速度に基づいてタイヤの状態を推定する状態推定手段と、を備えたことを特徴とする。
また、本発明に係る自動車は、タイヤと、前記タイヤのトレッド部の内周面に設置され当該トレッド部の周方向加速度を検出する加速度検出手段と、前記加速度検出手段で検出された周方向加速度に基づいて前記タイヤの状態を推定する状態推定手段と、前記状態推定手段で推定されたタイヤの状態に基づいて車両を制御する車両制御手段と、を備えたことを特徴とする。
さらに、本発明に係るタイヤ状態推定方法は、トレッド部の周方向加速度を検出し、検出された周方向加速度に基づいてタイヤの状態を推定することを特徴とする。
In order to solve the above-described problem, a tire state estimation device according to the present invention is installed on an inner peripheral surface of a tread portion and detects acceleration in a circumferential direction of the tread portion, and is detected by the acceleration detection portion. And a state estimating means for estimating the state of the tire based on the circumferential acceleration.
Further, the automobile according to the present invention includes a tire, acceleration detection means that is installed on an inner peripheral surface of the tread portion of the tire and detects a circumferential acceleration of the tread portion, and a circumferential acceleration detected by the acceleration detection means. And a vehicle control means for controlling the vehicle based on the tire state estimated by the state estimation means.
Furthermore, the tire condition estimation method according to the present invention is characterized by detecting a circumferential acceleration of a tread portion and estimating a tire condition based on the detected circumferential acceleration.

本発明に係るタイヤ状態推定装置にあっては、トレッド部の周方向加速度に基づいて周方向加速度に基づいてタイヤの状態を推定するため、例えば、制動時のスリップ率に基づいてタイヤの状態を推定する方法と異なり、制動開始前にあっても、タイヤの状態をより適切に検出することができる。
また、本発明に係る自動車にあっては、トレッド部の周方向加速度に基づいて周方向加速度に基づいてタイヤの状態を推定するため、例えば、制動時のスリップ率に基づいてタイヤの状態を推定する方法と異なり、制動開始前にあっても、タイヤの状態をより適切に検出することができる。
さらに、本発明のタイヤ状態推定方法にあっては、トレッド部の周方向加速度に基づいて周方向加速度に基づいてタイヤの状態を推定するため、例えば、制動時のスリップ率に基づいてタイヤの状態を推定する方法と異なり、制動開始前にあっても、タイヤの状態をより適切に検出することができる。
In the tire state estimation device according to the present invention, in order to estimate the tire state based on the circumferential acceleration based on the circumferential acceleration of the tread portion, for example, the tire state is determined based on the slip ratio during braking. Unlike the estimation method, the state of the tire can be detected more appropriately even before the start of braking.
In addition, in the automobile according to the present invention, the tire state is estimated based on the circumferential acceleration based on the circumferential acceleration of the tread portion. For example, the tire state is estimated based on the slip ratio during braking. Unlike the method, the tire state can be detected more appropriately even before the start of braking.
Furthermore, in the tire state estimation method of the present invention, since the tire state is estimated based on the circumferential acceleration based on the circumferential acceleration of the tread portion, for example, based on the slip ratio during braking, the tire state Unlike the method of estimating the tire, it is possible to more appropriately detect the state of the tire even before the start of braking.

以下、図面を参照して本発明を適用した自動車の実施の形態を説明する。
(構成)
図1は、本発明の第1実施形態に係る自動車1Aの構成を示す概略図である。
自動車1Aは、図1に示すように、車体2、センサユニット3FL〜3RR、センサ信号処理ユニット4及び車輪5FL〜5RRを備えている。
これらのうち、センサユニット3FL〜3RRは、各車輪5FL〜5RRそれぞれのタイヤ10に備えられており、センサユニット3FRが設置されている部位(センサ設置部位)の周方向加速度及びセンサ設置部位の重力方向加速度を検出する。これらセンサユニット3FL〜3RRの出力信号は、センサ信号処理ユニット4に入力される。
図2は、センサユニット3FRが設置されるタイヤ10の構成例を示す図である。
Embodiments of an automobile to which the present invention is applied will be described below with reference to the drawings.
(Constitution)
FIG. 1 is a schematic diagram showing the configuration of an automobile 1A according to the first embodiment of the present invention.
As shown in FIG. 1, the automobile 1A includes a vehicle body 2, sensor units 3FL to 3RR, a sensor signal processing unit 4, and wheels 5FL to 5RR.
Among these, the sensor units 3FL to 3RR are provided in the tires 10 of the respective wheels 5FL to 5RR, and the circumferential acceleration at the site where the sensor unit 3FR is installed (sensor installation site) and the gravity at the sensor installation site. Detect direction acceleration. The output signals of these sensor units 3FL to 3RR are input to the sensor signal processing unit 4.
FIG. 2 is a diagram illustrating a configuration example of the tire 10 in which the sensor unit 3FR is installed.

なお、センサユニット3FL〜3RRが設置されるタイヤ10の構成はそれぞれ同様であるため、センサユニット3FRが設置される右前輪5FRのタイヤ10を例に挙げて説明する。
センサユニット3FRは、トレッド部11の内周面の幅方向中央に設置されており、トレッド部11が路面に接触するときに路面に接する面のほぼ中央に位置する。
ここで、センサユニット3FRの出力信号を車体側に設置されるセンサ信号処理ユニット4に入力する方法としては、例えば、スリップリングを介して信号処理ユニット4に出力信号を入力する方法や、センサユニット3FRと共に無線装置を備え、無線装置によって車体の非回転部に設置した受信ユニットに出力信号を送信し、受信ユニットから信号処理ユニット4に出力信号を入力する方法が挙げられる。
In addition, since the structure of the tire 10 in which the sensor units 3FL to 3RR are installed is the same, the tire 10 of the right front wheel 5FR in which the sensor unit 3FR is installed will be described as an example.
The sensor unit 3FR is installed at the center in the width direction of the inner peripheral surface of the tread portion 11, and is positioned at the approximate center of the surface that contacts the road surface when the tread portion 11 contacts the road surface.
Here, as a method of inputting the output signal of the sensor unit 3FR to the sensor signal processing unit 4 installed on the vehicle body side, for example, a method of inputting the output signal to the signal processing unit 4 via a slip ring, There is a method of providing a wireless device together with 3FR, transmitting an output signal to a receiving unit installed in a non-rotating portion of the vehicle body by the wireless device, and inputting the output signal from the receiving unit to the signal processing unit 4.

なお、出力レベルが低く伝送距離が短い無線装置を用いる場合には、アクスルやハブベアリング等のタイヤ10付近の固定部材に受信ユニットのアンテナを設置する。
また、センサユニット3FRは、2軸加速度センサで構成され、センサ設置部位の周方向加速度及びセンサ設置部位の重力方向加速度(センサユニット3FRの位置に関する物理量)を検出する。
なお、センサユニット3FRを1軸加速度センサを用いて構成する場合には、センサ設置部位の周方向加速度を検出する1軸加速度センサに加えて、センサ設置部位の半径方向加速度(センサユニット3FRの位置に関する物理量)を検出する1軸加速度センサを設置する。
When a wireless device with a low output level and a short transmission distance is used, an antenna of the receiving unit is installed on a fixing member near the tire 10 such as an axle or a hub bearing.
The sensor unit 3FR includes a biaxial acceleration sensor, and detects the circumferential acceleration at the sensor installation site and the gravitational acceleration at the sensor installation site (physical quantity related to the position of the sensor unit 3FR).
When the sensor unit 3FR is configured using a uniaxial acceleration sensor, in addition to the uniaxial acceleration sensor that detects the circumferential acceleration of the sensor installation site, the radial acceleration of the sensor installation site (the position of the sensor unit 3FR) A one-axis acceleration sensor for detecting physical quantity) is installed.

また、周方向加速度を検出する一組の1軸加速度センサを半径方向反対側に設置し、重力加速度の検出を行うことで、センサ設置部位の周方向加速度及びセンサユニット3FRの回転角度(センサユニット3FRの位置に関する物理量)を検出する。
センサ信号処理ユニット4は、車両状態推定処理を実行し、センサユニット3FL〜3RRによって検出されたセンサ設置部位の周方向加速度及びセンサ設置部位の重力方向加速度に基づいてブレーキングスティフネス(μ−sカーブの勾配)を算出する。
また、センサ信号処理ユニット4は、算出されたブレーキングスティフネスに基づいて制動力制御装置、駆動力制御装置及び姿勢制御装置等の制御装置を制御することで、制動時の車輪スリップを抑制するABS制御、発進時や加速時の駆動輪スピンを抑制するTCS制御、コーナリング時の車輪横滑りを抑制するVDC制御及び車両の姿勢制御を行う。
In addition, a set of uniaxial acceleration sensors that detect circumferential acceleration are installed on the opposite side in the radial direction, and gravity acceleration is detected, so that the circumferential acceleration of the sensor installation site and the rotation angle of the sensor unit 3FR (sensor unit The physical quantity related to the position of 3FR) is detected.
The sensor signal processing unit 4 executes vehicle state estimation processing, and based on the circumferential acceleration of the sensor installation site and the gravity acceleration of the sensor installation site detected by the sensor units 3FL to 3RR, the braking stiffness (μ-s curve). Slope).
Further, the sensor signal processing unit 4 controls the control devices such as the braking force control device, the driving force control device, and the attitude control device based on the calculated braking stiffness, thereby suppressing the wheel slip during braking. Control, TCS control that suppresses drive wheel spin at start-up and acceleration, VDC control that suppresses wheel skid during cornering, and vehicle attitude control are performed.

<動作>
次に、センサ信号処理ユニット4で実行される車両状態推定処理について説明する。
図3は、車両状態推定処理を示すフローチャートである。
車両状態推定処理は、タイヤ10が1回転するたびに実行されるものであって、図3に示すように、まず、そのステップS1(接地長検出部)では、センサユニット3FRによって検出されたセンサ設置部位の周方向加速度に基づいて、タイヤ10が1回転する間にセンサ設置部位が路面と接触している時間(路面接地時間Δt)を検出する。
<Operation>
Next, the vehicle state estimation process executed by the sensor signal processing unit 4 will be described.
FIG. 3 is a flowchart showing the vehicle state estimation process.
The vehicle state estimation process is executed every time the tire 10 makes one revolution, and as shown in FIG. 3, first, in step S1 (contact length detection unit), the sensor detected by the sensor unit 3FR. Based on the circumferential acceleration of the installation site, the time during which the sensor installation site is in contact with the road surface during one rotation of the tire 10 (road surface contact time Δt) is detected.

図4は、車輪3FRのセンサ設置部位と路面との接触状態を示す図である。
まず、図4に示すように、センサ設置部位が路面との接触を開始する点Bの位置に移動し、センサ設置部位が路面に接触して弾性変形をすると、図5に示すように、センサ設置部位が減速方向に変化するため、センサユニット3FRによって検出された周方向加速度が減速方向に変化したときに、センサ設置部位が路面との接触を開始したと判定する。
FIG. 4 is a diagram illustrating a contact state between the sensor installation site of the wheel 3FR and the road surface.
First, as shown in FIG. 4, when the sensor installation part moves to the position of point B where contact with the road surface starts and the sensor installation part comes into contact with the road surface and undergoes elastic deformation, as shown in FIG. Since the installation site changes in the deceleration direction, it is determined that the sensor installation site has started to contact the road surface when the circumferential acceleration detected by the sensor unit 3FR changes in the deceleration direction.

また、センサ設置部位が路面に接触した後、タイヤ10の回転により、センサ設置部位が点Bの位置から路面との接触を終了する点Dの位置に移動し、センサ設置部位が路面から離脱して弾性変形が回復すると、センサ設置部位が加速方向に変化するため、センサユニット3FRによって検出された周方向加速度が加速方向に変化したときに、センサ設置部位が路面から離脱したと判定し、これら判定結果に基づいて、センサ設置部位が路面に接触したと判定されてから離脱したと判定されまでの間の時間を、センサ設置部位11が路面に接触している時間(路面設置時間Δt)の検出結果とする。   Further, after the sensor installation site contacts the road surface, the rotation of the tire 10 causes the sensor installation site to move from the position of point B to the position of point D where contact with the road surface ends, and the sensor installation site leaves the road surface. When the elastic deformation recovers, the sensor installation site changes in the acceleration direction. Therefore, when the circumferential acceleration detected by the sensor unit 3FR changes in the acceleration direction, it is determined that the sensor installation site has detached from the road surface. Based on the determination result, the time from when it is determined that the sensor installation site is in contact with the road surface until it is determined that the sensor installation site is detached is the time during which the sensor installation site 11 is in contact with the road surface (road surface installation time Δt). The detection result.

なお、センサ設置部位が点Bの位置から点Dの位置に移動する過程にあっては、センサ設置部位と路面との接触状態は粘着状態からすべり状態に遷移するが、路面μが高く、センサ設置部位と路面との接触部においてすべり状態に遷移している領域が小さい場合(粘着領域が大きい場合)には、センサユニット3FRによって検出されるセンサ設置部位の周方向加速度は小さくなる。また、路面μが低く、センサ設置部位と路面との接触部においてすべり状態に遷移している領域が大きい場合には、センサ設置部位が路面から離脱する直前からセンサ設置部位の周方向加速度が加速方向への変化を開始する。   In the process of moving the sensor installation site from the position of point B to the position of point D, the contact state between the sensor installation site and the road surface transitions from the adhesive state to the slip state, but the road surface μ is high, When the area transitioning to the slip state at the contact portion between the installation site and the road surface is small (when the adhesion region is large), the circumferential acceleration of the sensor installation site detected by the sensor unit 3FR is small. In addition, when the road surface μ is low and the area where the sensor installation part and the road surface are in a slip state is large, the acceleration in the circumferential direction of the sensor installation part accelerates immediately before the sensor installation part leaves the road surface. Start changing direction.

次にステップS2(接地長演算部)に移行して、前記ステップS1で検出された路面接地時間Δtに車速Vを乗じて、トレッド部11において路面と接触している部位の周方向長さ(接地長L)を算出する。
次にステップS3(接地角度演算部)に移行して、前記ステップS1で検出された路面接地時間Δtに車輪3FRの回転角速度ωを乗じて、トレッド部11において路面と接触している部位のタイヤ前後方向最前端とタイヤ中心とを通る直線と、タイヤ前後方向最後端とタイヤ中心とを通る直線とがなす角度(接地区間角度θ)を算出する。
Next, the process proceeds to step S2 (contact length calculation unit), the road surface contact time Δt detected in step S1 is multiplied by the vehicle speed V, and the circumferential length of the portion in contact with the road surface in the tread portion 11 ( The contact length L) is calculated.
Next, the process proceeds to step S3 (contact angle calculation unit), where the road surface contact time Δt detected in step S1 is multiplied by the rotational angular velocity ω of the wheel 3FR, and the tire in the tread portion 11 in contact with the road surface. An angle (ground contact section angle θ) formed by a straight line passing through the front and rear direction front end and the tire center and a straight line passing through the tire front and rear direction rear end and the tire center is calculated.

ここで、センサユニット3FRとして半径方向加速度を検出可能な2軸加速度センサを用い、タイヤ中心を通る鉛直軸と路面との接点を接触部位中心とし、トレッド部11において路面と接触している接触部位のタイヤ前後方向最前端から接触部位中心までを前部とし、接触部位のタイヤ前後方向最後端から接触部位中心までを後部とすると、半径方向加速度が鉛直下方に最大となるタイミングを2軸加速度センサで検出し、検出されたタイミングにセンサ設置位置が接触部位中心にあるものとして、センサ設置位置が接触部位のタイヤ前後方向最前端から接触部中心位置までの間にある時間と接触部中心位置から接触部位のタイヤ前後方向最前端までの間にある時間との比に従って接地区画角度θを分割することで、前部及び後部それぞれに対応する接地区間角度を検出することもできる。   Here, a two-axis acceleration sensor capable of detecting radial acceleration is used as the sensor unit 3FR, and a contact part that is in contact with the road surface in the tread portion 11 with the contact point between the vertical axis passing through the tire center and the road surface as the center of the contact part. If the front part in the front-rear direction of the tire and the center of the contact part are the front part and the rear part in the front-rear direction of the tire in the front-rear direction of the contact part is the rear part, the timing at which the radial acceleration becomes maximum vertically downward is a biaxial acceleration sensor. The sensor installation position is assumed to be at the center of the contact part at the detected timing, and the sensor installation position is determined from the time between the front end in the tire longitudinal direction of the contact part and the contact part center position and the contact part center position. By dividing the contact section angle θ according to the ratio of the time between the front and rear end of the tire in the front-rear direction of the contact part, each of the front part and the rear part It is also possible to detect the corresponding ground segment angle.

また、半径方向加速度を検出可能な2軸加速度センサを用い、前部及び後部それぞれに対応する接地区間角度を個別に検出する場合には、図6に示すように、後部の接地区間角度の変動を検出することで、後部のタイヤ前後方向後端に生じるすべり領域の変動を検出でき、すべり領域の変動を生じさせる路面状況の変化を間接的に推定することもできる。
次にステップS4(動負荷半径演算部)に移行して、前記ステップS2で算出された接地長L及び前記ステップS3で算出された接地区間角度θに基づき、下記(1)式に従ってタイヤ中心から路面へ降ろした鉛直線の長さ(タイヤ動負荷半径R)を算出する。
In addition, when using a biaxial acceleration sensor capable of detecting radial acceleration and separately detecting the contact section angles corresponding to the front and rear parts, as shown in FIG. By detecting this, it is possible to detect a change in the slip region that occurs at the rear end in the front-rear direction of the tire, and it is possible to indirectly estimate a change in the road surface condition that causes the change in the slip region.
Next, the process proceeds to step S4 (dynamic load radius calculation unit), and from the tire center according to the following formula (1) based on the contact length L calculated in step S2 and the contact section angle θ calculated in step S3. The length (tire dynamic load radius R) of the vertical line descending to the road surface is calculated.

なお、接地区間角度θが微少である場合には、下記(1)式に代わり、下記(2)式に従ってタイヤ動負荷半径Rを算出する。
R(tanθ1+tanθ2)= L ・・・ (1)
R ≒ L /(θ1+θ2) ・・・(2)
次にステップS5(撓み量推定部)に移行して、前記ステップS4で算出されたタイヤ動負荷半径Rに基づき、下記(3)式に従ってタイヤ10の上下方向撓み量(縦撓み量)dを算出する。
R=0.9544R0−0.0812d−1.0356d2/R0 ・・・(3)
なお、前記(3)式により、複素解が得られた場合には、上下方向撓み量dとして正の実数値のみを採用する。
When the contact section angle θ is very small, the tire dynamic load radius R is calculated according to the following equation (2) instead of the following equation (1).
R (tan θ1 + tan θ2) = L (1)
R≈L / (θ1 + θ2) (2)
Next, the process proceeds to step S5 (deflection amount estimation unit), and based on the tire dynamic load radius R calculated in step S4, the vertical deflection amount (vertical deflection amount) d of the tire 10 is calculated according to the following equation (3). calculate.
R = 0.9544R0-0.0812d-1.0356d2 / R0 (3)
In addition, when a complex solution is obtained by the above equation (3), only a positive real value is employed as the vertical deflection amount d.

次にステップS6(接地荷重推定部)に移行して、図7に示すように、前記ステップS5で算出されたタイヤ10の上下方向撓み量dに予め記憶しているタイヤ縦バネ係数を乗じて、車輪5FRの接地荷重(上下方向の荷重)Fzを算出する。
次にステップS7(接地幅推定部)に移行して、図8に示すように、前記ステップS2で算出された接地長L及び前記ステップS6で算出された接地荷重Fzに基づき、接地長Lと接地荷重Fzとの関係が線形近似できることを利用して接地長Lの変化によるタイヤ接地幅wの変化を規定する式に従って、タイヤ接地幅wを算出する。
なお、一般に、タイヤ接地幅wは接地荷重Fzに比例して増大するが、接地荷重Fzが特定荷重以上になると、タイヤ接地幅wの変化量は小さくなる。
Next, the process proceeds to step S6 (contact load estimation unit), and as shown in FIG. 7, the vertical deflection amount d of the tire 10 calculated in step S5 is multiplied by the tire longitudinal spring coefficient stored in advance. Then, the ground load (the load in the vertical direction) Fz of the wheel 5FR is calculated.
Next, the process proceeds to step S7 (contact width estimation unit), and as shown in FIG. 8, based on the contact length L calculated in step S2 and the contact load Fz calculated in step S6, the contact length L and The tire contact width w is calculated according to an equation that defines the change in the tire contact width w due to the change in the contact length L by utilizing the fact that the relationship with the contact load Fz can be linearly approximated.
In general, the tire contact width w increases in proportion to the contact load Fz. However, when the contact load Fz exceeds a specific load, the change amount of the tire contact width w decreases.

また、近年、扁平タイヤが普及し、タイヤ接地幅wの変化が小さいタイヤが一般的になりつつあるが、本実施形態では、扁平率が低いタイヤ10が用いられている。
次にステップS8に移行して、前記ステップS2で算出された接地長L及び前記ステップS7で算出されたタイヤ接地幅wに基づき、下記(4)式に従ってブレーキングスティフネスを算出してから、この演算処理を終了する。
Ks = (1/2) Cx・w・L2 ・・・(4)
In recent years, flat tires have become widespread, and tires with small changes in the tire ground contact width w are becoming common, but in the present embodiment, tires 10 having a low flatness ratio are used.
Next, the process proceeds to step S8, where the braking stiffness is calculated according to the following equation (4) based on the contact length L calculated in step S2 and the tire contact width w calculated in step S7. The computation process ends.
Ks = (1/2) Cx · w · L2 (4)

以上、本実施形態では、図1のセンサユニット3FL〜3FRが特許請求の範囲に記載の加速度検出手段を構成し、以下同様に、図1のセンサ信号処理ユニット4が状態推定手段を構成し、図3のステップS1が接触開始判定手段、接触終了判定手段及び接触時間検出手段を構成し、図3のステップS2が接地長算出手段を構成し、図3のステップS3が周方向角度検出手段を構成し、図3のステップS4が動負荷半径算出手段を構成し、図3のステップS5が撓み量算出手段を構成し、図3のステップS6が接地荷重算出手段を構成し、図3のステップS7が接地幅算出手段を構成し、図3のステップS8がブレーキングスティフネス算出手段を構成する。   As described above, in the present embodiment, the sensor units 3FL to 3FR in FIG. 1 constitute the acceleration detecting means described in the claims, and similarly, the sensor signal processing unit 4 in FIG. 1 constitutes the state estimating means. Step S1 in FIG. 3 constitutes a contact start judging means, a contact end judging means, and a contact time detecting means, step S2 in FIG. 3 constitutes a contact length calculating means, and step S3 in FIG. 3 constitutes a circumferential angle detecting means. 3, step S4 in FIG. 3 constitutes the dynamic load radius calculating means, step S5 in FIG. 3 constitutes the deflection amount calculating means, step S6 in FIG. 3 constitutes the ground load calculating means, and step in FIG. S7 constitutes a contact width calculation means, and step S8 in FIG. 3 constitutes a braking stiffness calculation means.

<作用・効果>
(1)このように、本実施形態のタイヤ状態推定装置にあっては、タイヤのトレッド部の内周面に加速度検出手段(センサユニット3FR)を設置して、トレッド部の周方向加速度を検出し、検出された周方向加速度に基づいてタイヤの状態を推定するようにした。すなわち、トレッド部の周方向加速度に基づいて周方向加速度に基づいてタイヤの状態を推定するため、例えば、制動時のスリップ率に基づいてタイヤの状態を推定する方法と異なり、制動開始前にあっても、タイヤの状態をより適切に検出できる。
<Action and effect>
(1) As described above, in the tire state estimation device according to the present embodiment, the acceleration detection means (sensor unit 3FR) is installed on the inner peripheral surface of the tread portion of the tire to detect the circumferential acceleration of the tread portion. The tire state is estimated based on the detected circumferential acceleration. That is, since the tire state is estimated based on the circumferential acceleration based on the circumferential acceleration of the tread portion, for example, unlike the method of estimating the tire state based on the slip rate during braking, there is However, the state of the tire can be detected more appropriately.

(2)また、トレッド部の周方向加速度に基づいて、センサ設置部位が路面に接触を開始したと判定されてから当該接触を終了したと判定されるまでの間の時間(路面接地時間Δt)を検出するようにしたため、路面接地時間Δtを比較的容易に検出できる。
(3)さらに、検出された時間(路面接地時間Δt)に基づき前記トレッド部において路面と接触している路面接触部位の周方向長さを算出し、路面接触部位のタイヤ前後方向最前端とタイヤ中心を通る直線及び路面接触部位のタイヤ前後方向最後端とタイヤ中心を通る直線がなす角度を検出し、検出された角度及び路面接触部位の周方向長さに基づいてタイヤの動負荷半径を算出するようにしたため、タイヤ動負荷半径を比較的容易に算出できる。
(2) Also, based on the circumferential acceleration of the tread portion, the time from when it is determined that the sensor installation site has started to contact the road surface until it is determined that the contact has ended (road surface contact time Δt) Therefore, the road surface contact time Δt can be detected relatively easily.
(3) Further, based on the detected time (road surface contact time Δt), the circumferential length of the road surface contact portion that is in contact with the road surface in the tread portion is calculated, and the tire front-rear direction front end in the road surface contact portion and the tire Detects the angle between the straight line passing through the center and the rear end in the tire front-rear direction of the road surface contact area and the straight line passing through the tire center, and calculates the dynamic load radius of the tire based on the detected angle and the circumferential length of the road surface contact area Therefore, the tire dynamic load radius can be calculated relatively easily.

(4)また、算出された動負荷半径に基づいてタイヤの上下方向撓み量を算出し、算出された上下方向撓み量に基づいて接地荷重を算出し、算出された接地荷重に基づいてタイヤ接地幅を算出するようにしたため、タイヤ接地幅を比較的容易に算出できる。
(5)さらに、算出された路面接触部位の周方向長さ及びタイヤ接地幅に基づいてブレーキングスティフネスを算出するようにしたため、ブレーキングスティフネスを比較的容易に算出できる。
(4) Further, the amount of vertical deflection of the tire is calculated based on the calculated dynamic load radius, the ground load is calculated based on the calculated vertical amount of deflection, and the tire ground contact is calculated based on the calculated ground load. Since the width is calculated, the tire contact width can be calculated relatively easily.
(5) Furthermore, since the braking stiffness is calculated based on the calculated circumferential length of the road surface contact portion and the tire contact width, the braking stiffness can be calculated relatively easily.

(6)また、本実施形態の自動車にあっては、タイヤのトレッド部の内周面に加速度検出手段(センサユニット3FR)を設置して、トレッド部の周方向加速度を検出し、検出された周方向加速度に基づいてタイヤの状態を推定するようにした。すなわち、トレッド部の周方向加速度に基づいて周方向加速度に基づいてタイヤの状態を推定するため、例えば、制動時のスリップ率に基づいてタイヤの状態を推定する方法と異なり、制動開始前にあっても、タイヤの状態をより適切に検出できる。   (6) Further, in the automobile of the present embodiment, acceleration detection means (sensor unit 3FR) is installed on the inner peripheral surface of the tread portion of the tire, and the circumferential acceleration of the tread portion is detected and detected. The tire condition is estimated based on the circumferential acceleration. That is, since the tire state is estimated based on the circumferential acceleration based on the circumferential acceleration of the tread portion, for example, unlike the method of estimating the tire state based on the slip rate during braking, there is However, the state of the tire can be detected more appropriately.

(7)さらに、本実施形態のタイヤ状態推定方法にあっては、タイヤのトレッド部の内周面に加速度検出手段(センサユニット3FR)を設置して、トレッド部の周方向加速度を検出し、検出された周方向加速度に基づいてタイヤの状態を推定するようにした。すなわち、トレッド部の周方向加速度に基づいて周方向加速度に基づいてタイヤの状態を推定するため、例えば、制動時のスリップ率に基づいてタイヤの状態を推定する方法と異なり、制動開始前にあっても、タイヤの状態をより適切に検出できる。   (7) Furthermore, in the tire state estimation method of the present embodiment, acceleration detection means (sensor unit 3FR) is installed on the inner peripheral surface of the tread portion of the tire to detect the circumferential acceleration of the tread portion, The state of the tire is estimated based on the detected circumferential acceleration. That is, since the tire state is estimated based on the circumferential acceleration based on the circumferential acceleration of the tread portion, for example, unlike the method of estimating the tire state based on the slip rate during braking, there is However, the state of the tire can be detected more appropriately.

実施形態に係る自動車1Aの構成を示す概略図である。1 is a schematic diagram illustrating a configuration of an automobile 1A according to an embodiment. センサユニット3FRが設置されるタイヤ10の構成例を示す図である。It is a figure which shows the structural example of the tire 10 in which the sensor unit 3FR is installed. 車両状態推定処理を示すフローチャートである。It is a flowchart which shows a vehicle state estimation process. 車輪3FRのセンサ設置部位と路面との接触状態を示す図である。It is a figure which shows the contact state of the sensor installation site | part of the wheel 3FR, and a road surface. センサユニット3FRによって検出される周方向加速度を示す図である。It is a figure which shows the circumferential direction acceleration detected by the sensor unit 3FR. センサユニット3FRによって検出される半径方向加速度を示す図である。It is a figure which shows the radial direction acceleration detected by the sensor unit 3FR. 上下方向撓み量dと接地荷重Fzとの関係を示す図である。It is a figure which shows the relationship between the amount d of vertical deflections, and the grounding load Fz. 接地長Lとタイヤ接地幅wと荷重Fzとの関係を示す図である。It is a figure which shows the relationship between the contact length L, the tire contact width w, and the load Fz.

符号の説明Explanation of symbols

1Aは自動車、2は車体、3FL〜3RRはセンサユニット、4はセンサ信号処理ユニット、5FL〜5RRは車輪、10はタイヤ、11はトレッド部 1A is an automobile, 2 is a vehicle body, 3FL to 3RR is a sensor unit, 4 is a sensor signal processing unit, 5FL to 5RR is a wheel, 10 is a tire, and 11 is a tread portion.

Claims (7)

トレッド部の内周面に設置され当該トレッド部の周方向加速度を検出する加速度検出手段と、前記加速度検出手段で検出された周方向加速度に基づいてタイヤの状態を推定する状態推定手段と、を備えたことを特徴とするタイヤ状態推定装置。   Acceleration detecting means installed on the inner peripheral surface of the tread portion and detecting circumferential acceleration of the tread portion; and state estimating means for estimating the tire state based on the circumferential acceleration detected by the acceleration detecting means, A tire state estimation device comprising the tire state estimation device. 前記状態推定手段は、前記加速度検出手段で検出された周方向加速度に基づいて前記加速度検出手段が設置されているセンサ設置部位が路面との接触を開始したか否かを判定する接触開始判定手段と、前記加速度検出手段で検出された周方向加速度に基づいて前記センサ設置部位が路面との接触を終了したか否かを判定する接触終了判定手段と、前記接触開始判定手段で前記接触を開始したと判定されてから前記接触終了判定手段で前記接触を終了したと判定されるまでの間の時間を検出する接触時間検出手段と、を備えたことを特徴とする請求項1に記載のタイヤ状態推定装置。   The state estimation means determines whether or not the sensor installation site where the acceleration detection means is installed has started contact with the road surface based on the circumferential acceleration detected by the acceleration detection means. And contact end determination means for determining whether or not the sensor installation site has ended contact with the road surface based on the circumferential acceleration detected by the acceleration detection means, and the contact is started by the contact start determination means 2. The tire according to claim 1, further comprising: a contact time detection unit that detects a time from when it is determined that the contact is completed until the contact end determination unit determines that the contact is completed. State estimation device. 前記状態推定手段は、前記接触時間検出手段で検出された時間に基づき前記トレッド部において路面と接触している路面接触部位の周方向長さを算出する接地長算出手段と、前記路面接触部位のタイヤ前後方向最前端とタイヤ中心を通る直線及び前記路面接触部位のタイヤ前後方向最後端とタイヤ中心を通る直線がなす角度を検出する周方向角度検出手段と、前記接地長算出手段で算出された路面接触部位の周方向長さ及び前記周方向角度検出手段で検出された角度に基づいてタイヤの動負荷半径を算出する動負荷半径算出手段と、を備えたことを特徴とする請求項2に記載のタイヤ状態推定装置。   The state estimation means includes a contact length calculation means for calculating a circumferential length of a road surface contact portion that is in contact with a road surface in the tread portion based on the time detected by the contact time detection means; and Calculated by a circumferential angle detection means for detecting an angle formed by a straight line passing through the tire front-rear direction front end and the tire center and a straight line passing through the tire front-rear direction end edge of the road surface contact portion and the tire center, and the contact length calculation means 3. A dynamic load radius calculating means for calculating a dynamic load radius of a tire based on a circumferential length of a road surface contact portion and an angle detected by the circumferential angle detecting means. The tire state estimation device described. 前記状態推定手段は、前記動負荷半径算出手段で算出された動負荷半径に基づいてタイヤの上下方向撓み量を算出する撓み量算出手段と、前記撓み量算出手段で算出された上下方向撓み量に基づいて接地荷重を算出する接地荷重算出手段と、前記接地荷重算出手段で算出された接地荷重に基づいてタイヤ接地幅を算出する接地幅算出手段と、を備えたことを特徴とする請求項3に記載のタイヤ状態推定装置。   The state estimation means includes a deflection amount calculation means for calculating a vertical deflection amount of the tire based on the dynamic load radius calculated by the dynamic load radius calculation means, and a vertical deflection amount calculated by the deflection amount calculation means. And a contact width calculation means for calculating a tire contact width based on the contact load calculated by the contact load calculation means. 4. The tire state estimation device according to 3. 前記状態推定手段は、前記接地長算出手段で算出された路面接触部位の周方向長さ及び前記接地幅算出手段で算出されたタイヤ接地幅に基づいてブレーキングスティフネスを算出するブレーキングスティフネス算出手段を備えたことを特徴とする請求項4に記載のタイヤ状態推定装置。   The state estimating means is a braking stiffness calculating means for calculating a braking stiffness based on a circumferential length of a road surface contact portion calculated by the contact length calculating means and a tire contact width calculated by the contact width calculating means. The tire state estimation device according to claim 4, comprising: タイヤと、前記タイヤのトレッド部の内周面に設置され当該トレッド部の周方向加速度を検出する加速度検出手段と、前記加速度検出手段で検出された周方向加速度に基づいて前記タイヤの状態を推定する状態推定手段と、前記状態推定手段で推定されたタイヤの状態に基づいて車両を制御する車両制御手段と、を備えたことを特徴とする自動車。   A tire, acceleration detecting means installed on an inner peripheral surface of the tread portion of the tire and detecting a circumferential acceleration of the tread portion, and a state of the tire estimated based on the circumferential acceleration detected by the acceleration detecting means And a vehicle control means for controlling the vehicle based on the state of the tire estimated by the state estimation means. トレッド部の周方向加速度を検出し、検出された周方向加速度に基づいてタイヤの状態を推定することを特徴とするタイヤ状態推定方法。   A tire condition estimation method, comprising: detecting a circumferential acceleration of a tread portion and estimating a tire condition based on the detected circumferential acceleration.
JP2007152897A 2007-06-08 2007-06-08 Tire condition estimating device, and automobile and tire condition estimating method Pending JP2008302848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152897A JP2008302848A (en) 2007-06-08 2007-06-08 Tire condition estimating device, and automobile and tire condition estimating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152897A JP2008302848A (en) 2007-06-08 2007-06-08 Tire condition estimating device, and automobile and tire condition estimating method

Publications (1)

Publication Number Publication Date
JP2008302848A true JP2008302848A (en) 2008-12-18

Family

ID=40231927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152897A Pending JP2008302848A (en) 2007-06-08 2007-06-08 Tire condition estimating device, and automobile and tire condition estimating method

Country Status (1)

Country Link
JP (1) JP2008302848A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133155A1 (en) * 2014-03-07 2015-09-11 株式会社ブリヂストン Road surface condition estimation method
US10000100B2 (en) 2010-12-30 2018-06-19 Compagnie Generale Des Etablissements Michelin Piezoelectric based system and method for determining tire load
CN109715418A (en) * 2016-09-06 2019-05-03 尼拉动力公司 The estimation of absolute vehicle wheel roll radius and the estimation of vertical compressed value

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10000100B2 (en) 2010-12-30 2018-06-19 Compagnie Generale Des Etablissements Michelin Piezoelectric based system and method for determining tire load
WO2015133155A1 (en) * 2014-03-07 2015-09-11 株式会社ブリヂストン Road surface condition estimation method
JP2015168362A (en) * 2014-03-07 2015-09-28 株式会社ブリヂストン Method for estimating road surface state
US10059316B2 (en) 2014-03-07 2018-08-28 Bridgestone Corporation Road surface condition estimating method
CN109715418A (en) * 2016-09-06 2019-05-03 尼拉动力公司 The estimation of absolute vehicle wheel roll radius and the estimation of vertical compressed value
CN109715418B (en) * 2016-09-06 2021-11-02 尼拉动力公司 Estimation of absolute wheel rolling radius and estimation of vertical compression value
US11428526B2 (en) 2016-09-06 2022-08-30 Nira Dynamics Ab Estimation of absolute wheel roll radii and estimation of vertical compression value

Similar Documents

Publication Publication Date Title
CN101932458B (en) Method for determining the profile depth of a vehicle tyre
US7406863B2 (en) Contact-state obtaining apparatus and tire-deformation detecting apparatus
US7800487B2 (en) Method, apparatus and program for alarming decrease in tire-pressure
JP2021165055A (en) Road surface friction coefficient estimation device and steering device
JP2013523532A (en) A method for stabilizing a motorcycle when the rear wheel slips to the side
JP6195116B2 (en) Vehicle collision detection device
JP2005306160A (en) Method and device for presuming road surface friction coefficient, vehicle control method, and device therefor
JP4964328B2 (en) Tire pressure drop detection device, method and program
US8631681B2 (en) Apparatus and method of calculating a wheel speed by using a tire force sensor and chassis control system using the same
JP2008302848A (en) Tire condition estimating device, and automobile and tire condition estimating method
JP2009227203A (en) Camber angle adjusting device
CN107415811B (en) System and method for activating warning lights of a vehicle
JP2005265561A (en) Wheel information processor and wheel revolution status estimation method
JP2009067377A (en) Vehicle determination device
KR101997432B1 (en) Electronic stability control apparatus for vehicle and control method therfor
JP2009061905A5 (en)
KR101521841B1 (en) Right Side And Left Side Distinction Method Using TPMS And Distiction Device Thereof
JP2001241945A (en) Tire condition detecting device, moving body control device, and tire condition detecting method
JP4028842B2 (en) Tire pressure drop detection method and apparatus, and tire decompression determination program
JP2006138764A (en) Apparatus and method for monitoring wheel condition
JPH10281944A (en) Tire judging device for vehicle
KR20080088052A (en) Device for detecting different kinds of tires in esp and method thereof
JP4764913B2 (en) Tire pressure drop detection device and method, and tire pressure drop detection program
JP4973195B2 (en) Vehicle state determination device
JP2007106324A (en) Wheel information processor and wheel information processing method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100917