JP2008302406A - Solid wire for carbon dioxide gas-shielded arc welding - Google Patents

Solid wire for carbon dioxide gas-shielded arc welding Download PDF

Info

Publication number
JP2008302406A
JP2008302406A JP2007153358A JP2007153358A JP2008302406A JP 2008302406 A JP2008302406 A JP 2008302406A JP 2007153358 A JP2007153358 A JP 2007153358A JP 2007153358 A JP2007153358 A JP 2007153358A JP 2008302406 A JP2008302406 A JP 2008302406A
Authority
JP
Japan
Prior art keywords
mass
slag
wire
welding
excessive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007153358A
Other languages
Japanese (ja)
Other versions
JP5137468B2 (en
Inventor
Reiichi Suzuki
励一 鈴木
Toshihiko Nakano
利彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007153358A priority Critical patent/JP5137468B2/en
Priority to TW097113032A priority patent/TW200902211A/en
Priority to CN2008100962805A priority patent/CN101318276B/en
Priority to KR1020080053327A priority patent/KR20080108052A/en
Publication of JP2008302406A publication Critical patent/JP2008302406A/en
Application granted granted Critical
Publication of JP5137468B2 publication Critical patent/JP5137468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid wire for carbon dioxide gas-shielded arc welding having high practicality as a 540 N/mm<SP>2</SP>class wire (=YGW18), which obtains a weld zone having excellent strength and toughness, and has suitable slag peelability at a suitable slag amount. <P>SOLUTION: The solid wire has a composition comprising 0.020 to 0.070% C, 0.70 to 1.10% Si, 1.50 to 1.74% Mn, 0.005 to 0.018% P, ≤0.010% S, 0.18 to 0.30% Ti, 0.0015 to 0.0060% B, ≤0.08% Mo, ≤0.0100% O and ≤0.45% Cu (if the circumferential face is provided with copper plating, the content of the plating is included), and the balance Fe with inevitable impurities, and, if a parameter X<SB>W</SB>(%) is defined by X<SB>W</SB>=C+Si/24+Mn/6+B×30 based on the contents of C, Si, Mn and B, the X<SB>W</SB>is in the range of 0.380 to 0.600. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は軟鋼又は490乃至520N/mm級高張力鋼を炭酸ガスシールドアーク溶接する際に、高能率で、かつ機械的性能が優れた溶接金属が得られる炭酸ガスシールドアーク溶接用ソリッドワイヤに関する。 The present invention relates to a solid wire for carbon dioxide shielded arc welding, which can provide a weld metal with high efficiency and excellent mechanical performance when mild steel or 490 to 520 N / mm grade 2 high strength steel is subjected to carbon dioxide shielded arc welding. .

近時、建築鉄骨分野では、炭酸ガス(CO)をシールドガスとするガスシールドアーク溶接法が、その高能率性の利点から主力で使用されている。溶接品質面において耐震性向上を主眼として溶接継手部の性能向上をはかるべく、1996年の建築工事標準仕様書JASS6改定、1999年の建築基準法改定において溶接時の入熱・パス間温度に上限管理が規定された。この動向を受けて溶接ワイヤも490N/mm級鋼板に対して最大入熱40kJ/cm、パス間温度350℃まで許容できる、あるいは520N/mm級鋼板に対しては最大入熱30kJ/cm,パス間温度250℃まで許容できるものとして大入熱・高パス間温度対応ワイヤが開発され、1999年に540N/mm級としてJIS化された。以後、今日まで従来ワイヤよりも大入熱・高パス間温度でも優れた機械的性能が得られる540N/mm級ワイヤは急速に普及している。特に、ロボット溶接と異なり、入熱、パス間温度管理が困難な人手による半自動溶接の分野では熱管理の許容範囲が広い540N/mm級ワイヤの普及は目覚ましい。 Recently, in the field of building steel frames, gas shielded arc welding using carbon dioxide (CO 2 ) as a shielding gas has been mainly used because of its high efficiency. In order to improve the performance of welded joints with a focus on improving seismic resistance in terms of welding quality, the building construction standard specification JASS6 was revised in 1996, and the building standards law was revised in 1999. Management was prescribed. In response to this trend, the welding wire can accept a maximum heat input of 40 kJ / cm for a 490 N / mm grade 2 steel sheet and a pass-to-pass temperature of 350 ° C., or a maximum heat input of 30 kJ / cm for a 520 N / mm grade 2 steel sheet. , A wire with a high heat input and a high interpass temperature was developed that allowed an interpass temperature of up to 250 ° C. In 1999, it was converted to JIS as 540 N / mm 2 class. Since then, 540 N / mm class 2 wires, which can obtain superior mechanical performance even at higher heat input and higher inter-pass temperatures than those of conventional wires, have rapidly spread. In particular, unlike robot welding, in the field of manual semi-automatic welding where it is difficult to control heat input and temperature between passes, the widespread use of 540 N / mm class 2 wire, which has a wide allowable range of heat management, is remarkable.

これまでに開発された炭酸ガス溶接用大電流・高パス間温度対応ワイヤとしては、特許文献1乃至13に開示されたものがある。   Conventionally developed high-current / high-pass temperature wires for carbon dioxide welding have been disclosed in Patent Documents 1 to 13.

これらは全般的にSi,Mn,Tiといった脱酸成分を従来ワイヤよりも多く含有し、かつMo,B,Cr,Al,Nb,V,Ni等を必要に応じて添加しているのが特徴である。これによって、鋼の焼入れ性を高め、結晶粒微細化による靱性の向上とさらに析出硬化及び固溶硬化の作用を合わせることにより強度も高めている。この種のワイヤは開先幅が大きくなり、パス間温度が高くなる板厚の大きい鋼板ほど顕著に効果がある。   These are generally characterized by containing more deoxidizing components such as Si, Mn, and Ti than conventional wires, and adding Mo, B, Cr, Al, Nb, V, Ni, etc. as necessary. It is. As a result, the hardenability of the steel is enhanced, and the strength is enhanced by combining the improvement of toughness by refining crystal grains with the effects of precipitation hardening and solid solution hardening. This type of wire is more effective for a steel plate having a larger groove width and a higher plate thickness at which the interpass temperature is higher.

特開平10−230387号Japanese Patent Laid-Open No. 10-230387 特開平11−90678号JP-A-11-90678 特開2001−287086号JP 2001-287086 A 特開2002−321087号JP 2002-321087 A 特開2002−346789号JP 2002-346789 特開2002−79395号JP 2002-79395 A 特開2002−103082号JP 2002-103082 A 特開2003−119550号JP 2003-119550 A 特開2003−136281号JP 2003-136281 A 特開2004−202572号JP 2004-202572 A 特開2004−237361号JP 2004-237361 A 特開2004−98143号JP 2004-98143 A 特開2006−289395号JP 2006-289395 A

鉄骨建築業界にパス間温度管理が導入された当初は、規定の温度に到達すると、冷却するまで待ち時間が発生し、スラグが堆積しても余裕を持ってチッパーなどの工具によりスラグ除去を行うことができた。そのため、これまで開発されてきた540N/mm級の炭酸ガス溶接用大電流・高パス間温度対応ワイヤは、スラグの剥離性を考慮に入れられていなかった。しかし、近年は一人の溶接作業者が多数の溶接継手を同時に担当し、規定の温度に到達すると、別の溶接継手に移動して溶接を行い、前継手はその間に冷却されるという手法が開発、普及してきた。このように待ち時間がほとんど消失すると、これまで問題とされてこなかった大電流・高パス間温度対応ワイヤの多量なスラグ発生量およびその劣悪な剥離性が能率を低下させる大きな問題として認識され始めた。そこで、この問題を解決すべく、最大入熱40kJ/cm・最高パス間温度350℃の条件で490N/mm級鋼に必要十分な機械的性能、又は最大入熱30kJ/cm・最高パス間温度250℃の条件で520N/mm級鋼に必要十分な機械的性能を有し、かつスラグの剥離性が良好であるという付加性能を付与した高能率な溶接ワイヤの要望が出され、その開発がされてきている。 When inter-pass temperature control was introduced to the steel building industry, when it reaches the specified temperature, a waiting time is generated until cooling, and even if slag accumulates, slag is removed with a tool such as a chipper. I was able to. For this reason, the 540 N / mm 2 class carbon dioxide welding high-current / high-pass temperature compatible wire that has been developed so far has not taken into account the slag peelability. However, in recent years, a method has been developed in which a single welder is in charge of many welded joints at the same time, and when the specified temperature is reached, the welding is moved to another welded joint and the front joint is cooled during that time. Has become popular. When the waiting time almost disappears in this way, a large amount of slag generation and poor peelability of the wire for high current / high-pass temperature, which has not been considered as a problem until now, have begun to be recognized as a major problem that reduces efficiency. It was. Therefore, in order to solve this problem, sufficient mechanical performance for 490 N / mm grade 2 steel under conditions of maximum heat input of 40 kJ / cm and maximum pass temperature of 350 ° C, or maximum heat input of 30 kJ / cm and maximum pass There is a need for a high-efficiency welding wire that has the necessary and sufficient mechanical performance for 520 N / mm grade 2 steel under the condition of a temperature of 250 ° C. and that has the added performance of good slag peelability. It has been developed.

しかし、最近はさらに540N/mm級ワイヤの普及と共に新たな要望が出されつつある。 Recently, however, new demands are being made with the spread of 540 N / mm class 2 wires.

既述のとおり、大入熱高パス間温度対応ワイヤは板厚の大きい鋼板ほど顕著に効果がある。このため、以前は入熱及びパス間温度が共にあまり上がらない20mm以下の比較的薄い板厚では、コストの観点から、昔から使われていた490N/mm級=YGWIIが必要十分と考えられて適用されており、板厚が厚い場合は540N/mm級=YGW18と使い分けられていたが、最近は交換が面倒であること、540N/mm級ワイヤの普及でワイヤコストが490N/mm級との差が縮小したこと、耐震性向上の観点で建築構造設計者が高強度化指向を強めていることなどの理由により、薄板の鋼板にも当然のように540N/mm級ワイヤが適用されるようになってきた。しかし、これによって2つの問題が起きている。 As described above, the high heat input high-pass temperature compatible wire is more effective as the steel plate has a larger thickness. For this reason, in the case of a relatively thin plate thickness of 20 mm or less where both heat input and interpass temperature do not increase so much, 490 N / mm class 2 = YGWII, which has been used for a long time, is considered necessary and sufficient from the viewpoint of cost. When the plate thickness is thick, it was properly used as 540N / mm class 2 = YGW18, but recently, replacement is troublesome, and the cost of wire is 490N / mm due to the spread of 540N / mm class 2 wire. As a matter of course, 540N / mm class 2 wire is also applied to thin steel sheets due to the fact that the difference from class 2 has been reduced, and that building structure designers have been increasing the direction of increasing strength in terms of improving earthquake resistance. Has come to apply. However, this causes two problems.

一つ目の問題点は、開先面積が小さいため、入熱が25kJ/cm程度までしか上がらない場合があり、かつパス数も少ないのでパス間温度が200℃程度までしか上昇しないうちに溶接を終えてしまう。つまり、低入熱・低パス間温度の冷却速度過剩条件となり、これまでの540N/mm級ワイヤではフェライト組織のままでの微細化ではなく、ベイナイト組織又はマルテンサイト組織への組織変態を起こし、逆に靭性が低くなる。 The first problem is that, since the groove area is small, the heat input may only rise to about 25 kJ / cm, and the number of passes is small, so the temperature between passes will only rise to about 200 ° C before welding. Will finish. In other words, it becomes a condition of excessive cooling rate with low heat input and low pass temperature, and the conventional 540 N / mm class 2 wire is not refined as a ferrite structure, but causes a transformation to a bainite structure or a martensite structure. On the contrary, the toughness is lowered.

二つ目の問題点は、開先面積が小さくなることで相対的に裏当金の母材希釈率が上昇し、その組成の影響を受けやすくなる。現在、裏当金は低価格で窒素含有量が多い低品質の鋼板が使われることが多く、溶接金属への窒素含有量の増加によって靱性が低下してしまう。   The second problem is that the base metal dilution rate of the backing gold is relatively increased due to the small groove area, which is easily affected by the composition. At present, low-quality steel sheets with low nitrogen and high nitrogen content are often used for backing metal, and the toughness is reduced by increasing the nitrogen content in the weld metal.

更に、スラグ剥離性についても、ロボット溶接では、スラグ剥離性が良好であることは好ましい条件であるのに対し、人手による半自動溶接においては、過剰なスラグ剥離性はスラグが剥離する際に勢いよく飛んで作業者の目などに入りやすいため、問題となる。   Furthermore, with regard to slag removability, in robot welding, it is a preferable condition that slag removability is good, whereas in semi-automatic welding by hand, excessive slag removability is vigorous when slag peels. This is a problem because it is easy to fly and get into the eyes of workers.

また、スラグ量についても過剰に減らしてしまうことは問題があることがわかってきた。半自動溶接は作業者個人の間の技量の差が大きく、技量が低い溶接者は極めて高い溶接電流を使用し、過剰なウィービングを行い、又は1パスあたりの溶着量を過剰に増やしてしまうなどの原因により、溶融池のシールド性を悪化させ、ブローホールなどの気孔欠陥を発生させてしまうことがある。このため、スラグ量を過剰に減らしてしまうと、溶融池がスラグの保護を受けることが無くなり、ガス雰囲気に曝されてシールド性が低下し、より耐気孔欠陥性を劣化させてしまうことになる。このため、技量差だけでなく、溶融池への風の影響も受けやすくなる。   It has also been found that there is a problem with excessively reducing the amount of slag. Semi-automatic welding has a large difference in skills among individual workers. Welders with low skills use extremely high welding currents, perform excessive weaving, or increase the amount of welding per pass. Due to the cause, the shielding property of the molten pool may be deteriorated, and pore defects such as blowholes may be generated. For this reason, if the amount of slag is reduced excessively, the molten pool is not protected by the slag, exposed to the gas atmosphere, the shielding performance is lowered, and the pore defect resistance is further deteriorated. . For this reason, it becomes easy to receive not only a skill difference but the influence of the wind to a molten pool.

このような背景の基で、以下の条件を達成し得る溶接ワイヤの開発が要望されている。   Based on such a background, development of a welding wire that can achieve the following conditions is desired.

(1)軟鋼又は490乃至520N/mm級高張力鋼を炭酸ガスシールドアーク溶接する際に使用するのに適した540N/mm級ワイヤ(=YGW18)としての基本的な機械的性質を有する。 (1) Basic mechanical properties as a 540 N / mm class 2 wire (= YGW18) suitable for use in carbon dioxide shielded arc welding of mild steel or 490 to 520 N / mm class 2 high strength steel .

(2)板厚が厚い場合は勿論のこと、薄い場合においても、裏当て材の組成の影響を受けずに、溶接部の強度と靱性が良好である。   (2) The strength and toughness of the welded portion are good without being affected by the composition of the backing material, not only when the plate thickness is thick, but also when it is thin.

(3)半自動溶接用に、溶接能率(剥離性良いほど高能率)と安全(剥離性が悪いほど安全)の観点からスラグの剥離性を適度にする。   (3) For semi-automatic welding, the slag removability is moderated from the viewpoint of welding efficiency (higher efficiency as the peelability is better) and safety (safer as the peelability is worse).

(4)半自動溶接の技量の差又は多少の風量の変動などで溶接金属の性能に大きな影響を与えぬように、スラグの量を適度にする。なお、スラグ量が多いほど機械的性能が安定し、スラグ量が少ないほど高能率になる。   (4) The amount of slag is made moderate so as not to have a large effect on the performance of the weld metal due to differences in the skills of semi-automatic welding or slight fluctuations in the air flow. The mechanical performance becomes more stable as the amount of slag increases, and the efficiency becomes higher as the amount of slag decreases.

本願発明者は、従来の540N/mm級ワイヤを基本に改良を施し、上記目的を達成できる炭酸ガスシールドアーク溶接用ソリッドワイヤを完成したものである。 The inventor of the present application has made improvements on the basis of the conventional 540 N / mm class 2 wire, and has completed a solid wire for carbon dioxide shielded arc welding that can achieve the above object.

本発明はかかる問題点に鑑みてなされたものであって、540N/mm級ワイヤ(=YGW18)としての実用性が高く、強度及び靭性が優れた溶接部を得ることができ、適度なスラグ量で適度なスラグ剥離性を有する炭酸ガスシールドアーク溶接用ソリッドワイヤを提供することを目的とする。 The present invention has been made in view of such problems, and has a high practicality as a 540 N / mm second grade wire (= YGW18), and can provide a welded portion having excellent strength and toughness. An object of the present invention is to provide a solid wire for carbon dioxide shielded arc welding having a moderate amount of slag removability.

本発明に係る炭酸ガスシールドアーク溶接用ソリッドワイヤは、C:0.020乃至0.070質量%、Si:0.70乃至1.10質量%、Mn:1.50乃至1.74質量%、P:0.005乃至0.018質量%、S:0.010質量%以下、Ti:0.18乃至0.30質量%、B:0.0015乃至0.0060質量%、Mo:0.08質量%以下、O:0.0100質量%以下、Cu(周面に銅メッキを有する場合はこのメッキ分を含む):0.45質量%以下を含有し、残部Fe及び不可避的不純物であり、パラメータX(質量%)を、C,Si、Mn及びBの含有量を基にX=C+Si/24+Mn/6+B×30で定義した場合に、Xが0.380乃至0.600であることを特徴とする。 The solid wire for carbon dioxide shielded arc welding according to the present invention is C: 0.020 to 0.070 mass%, Si: 0.70 to 1.10 mass%, Mn: 1.50 to 1.74 mass%, P: 0.005 to 0.018 mass%, S: 0.010 mass% or less, Ti: 0.18 to 0.30 mass%, B: 0.0015 to 0.0060 mass%, Mo: 0.08 % By mass or less, O: 0.0100% by mass or less, Cu (in the case of having a copper plating on the peripheral surface, including this plating content): 0.45% by mass or less, the balance Fe and inevitable impurities, When the parameter X W (mass%) is defined as X W = C + Si / 24 + Mn / 6 + B × 30 based on the contents of C, Si, Mn and B, X W is 0.380 to 0.600. It is characterized by that.

この炭酸ガス溶接用ソリッドワイヤにおいて、更に、Nb:0.08質量%以下、V:0.08質量%以下、Al:0.08質量%以下、Cr:0.50質量%以下及びNi:0.50質量%以下からなる群から選択された1種以上の元素を含有することができる。この場合は、前記パラメータXは、更に、Ni,Mo,V、Nb及びAlの含有量(含有しない元素は、0として)を加えて、X(質量%)=C+Si/24+Mn/6+B×30+Ni/20+Cr/20+Mo/4+V/14+Nb/14+Al/20として定義した場合、このパラメータXが0.380乃至0.600である。 In this solid wire for carbon dioxide welding, Nb: 0.08 mass% or less, V: 0.08 mass% or less, Al: 0.08 mass% or less, Cr: 0.50 mass% or less, and Ni: 0 One or more elements selected from the group consisting of .50% by mass or less can be contained. In this case, the parameter XW is further added with the contents of Ni, Mo, V, Nb and Al (elements not included are set to 0), and X W (mass%) = C + Si / 24 + Mn / 6 + B × If you define as 30 + Ni / 20 + Cr / 20 + Mo / 4 + V / 14 + Nb / 14 + Al / 20, the parameter X W is 0.380 to 0.600.

更に、ワイヤ表面にMoSがワイヤ10kg当たり、0.01乃至1.00g存在することができる。 Further, 0.01 to 1.00 g of MoS 2 can be present on the wire surface per 10 kg of the wire.

本発明によれば、強度及び靭性が優れた溶接部を形成でき、スラグ量及びスラグ剥離性が適度であり、540N/mm級ワイヤ(=YGW18)として優れた特性を有する炭酸ガスシールドアーク溶接用ソリッドワイヤを得ることができる。 According to the present invention, a welded portion having excellent strength and toughness can be formed, the amount of slag and slag peelability are appropriate, and carbon dioxide shielded arc welding having excellent characteristics as a 540 N / mm second grade wire (= YGW18). A solid wire can be obtained.

本発明者等は、540N/mm級ワイヤ(=YGW18)の溶接スラグに関する研究を重ね、その特性に対する影響要因を明らかにした。即ち、溶接スラグの生成量は強脱酸成分のうち、Mn、Ti、及びO量と最も強い関係があり、これらの含有量の増大に伴い、スラグ生成量が増加する。また、薄板溶接の際に、粗悪品質の裏当金を用いた場合には、含有窒素が溶接金属の靭性を低下させるが、Tiが多いほうがTiNとして固定化し、靱性向上に寄与する。換言すれば、Ti量が少ないと薄板の場合には靭性劣化がおきやすい。一方、Tiが過剰に少なくなると、溶滴移行が大粒のグロビュール移行から小粒の短絡移行に変化し、飛散距離が長く、多量のスパッタが発生する。ロボットであれば、さほど問題にならないが、半自動溶接では、極めて大きな問題となり、頻繁にトーチノズル清掃を実施する必要があるため、溶接能率が低下する。また、スラグの大幅減少はシールド不良を招きやすくなる。 The inventors of the present invention have conducted research on a welding slag of a 540 N / mm class 2 wire (= YGW18), and have clarified influential factors on the characteristics. That is, the amount of weld slag produced has the strongest relationship with the amount of Mn, Ti, and O among the strong deoxidation components, and the amount of slag produced increases with the increase of these contents. Further, when poor quality backing metal is used during thin plate welding, the nitrogen content decreases the toughness of the weld metal, but the more Ti, the more the TiN is fixed, contributing to the improvement of the toughness. In other words, if the amount of Ti is small, toughness tends to deteriorate in the case of a thin plate. On the other hand, when Ti decreases excessively, the droplet transfer changes from a large globule transfer to a small short-circuit transfer, the scattering distance is long, and a large amount of spatter is generated. If it is a robot, it will not be a problem so much, but semi-automatic welding is a very big problem, and it is necessary to frequently clean the torch nozzle, so that the welding efficiency is lowered. In addition, a significant decrease in slag tends to cause shielding failure.

スラグの剥離性は、溶融状態におけるスラグ/溶接金属間の界面エネルギー、凝固後のスラグ自体の強度、溶接金属表面の凹凸、つまり物理的高低差、及びその高低部位生成頻度との間に、強い関係があり、Mn,Tiの増加、及びPの減少により、スラグ剥離性は低下する。一方、これらの得られた知見に基づき、スラグ生成量低減と剥離性向上技術を過剰に追求すると、強度及び靭性といった機械的性能の不安定化と、剥離スラグによる溶接時の安全性低下、溶接金属の高温割れ発生といった短所が生じやすくなる。   Slag detachability is strong between the interfacial energy between the slag / welded metal in the molten state, the strength of the slag itself after solidification, the unevenness of the surface of the weld metal, that is, the physical height difference, and the frequency of the formation of the heights There is a relationship, and the increase in Mn and Ti and the decrease in P lower the slag peelability. On the other hand, based on these findings, excessive pursuit of technology to reduce slag generation and improve peelability leads to instability of mechanical performance such as strength and toughness, reduced safety during welding due to peeled slag, welding Disadvantages such as occurrence of hot cracking of metal are likely to occur.

Moは溶接金属の高強度化を図ることができる元素として有名であり、JIS Z3312 YGW18規格でも、0.40質量%以下の上限規定で添加が許容されているが、薄板の低入熱・低パス間温度条件では、Moの添加によって、溶接金属が過剰焼入れとなって脆化する。更に加えて、Moの添加は、高窒素量の粗悪な裏当金との組合せにより、溶接金属の著しい低靱性化が顕著となる。従って、厚板側での機械的性能の余裕代が少なくなるものの、板厚12mm程度の薄板から板厚80mm程度の厚板まで高靱性が得られるワイヤとして、むしろMoはできるだけ少ないほうが良く、無添加が望ましいことがわかった。   Mo is well-known as an element that can increase the strength of weld metal. Even in the JIS Z3312 YGW18 standard, addition is permitted with an upper limit of 0.40 mass% or less. Under the interpass temperature condition, the weld metal becomes excessively quenched due to the addition of Mo. In addition, when Mo is added in combination with a rough backing metal having a high nitrogen content, the weld metal has a remarkable low toughness. Therefore, although the margin of mechanical performance on the thick plate side is reduced, as a wire that can obtain high toughness from a thin plate having a thickness of about 12 mm to a thick plate having a thickness of about 80 mm, it is preferable that Mo be as little as possible. The addition was found to be desirable.

その他のワイヤ成分以外の要因として、ワイヤ送給の不安定が生じると、溶融池形成が乱れ、生成されたスラグの厚さが不均一となり、スラグ剥離性を劣化させることも知見した。   It has also been found that as a factor other than the other wire components, when the wire feeding becomes unstable, the formation of the molten pool is disturbed, the thickness of the generated slag becomes uneven, and the slag peelability is deteriorated.

次に、本発明の炭酸ガスシールドアーク溶接用ソリッドワイヤの成分添加理由及び組成限定理由について説明する。   Next, the reason for adding components and the reason for limiting the composition of the solid wire for carbon dioxide shielded arc welding of the present invention will be described.

「C:0.020乃至0.070質量%」
Cは強度を確保する為に重要な添加元素であるが、0.020質量%未満では厚板溶接時の大入熱・高パス間温度溶接条件において必要強度を確保できない。望ましくは0.040質量%以上である。一方、Cを過剰に添加すると高温割れが発生しやすくなる。また、アーク雰囲気中においてCO爆発現象によりスパッタ発生量も増加し、アーク安定性が劣化する。薄板溶接時の低入熱.低パス間温度溶接条件において過剰強度になって、靱性が逆に低下する。0.070質量%を超えるとこれらの効果が顕著になるため、上限は0.070質量%とする。なお望ましくは0.060質量%以下である。
“C: 0.020 to 0.070 mass%”
C is an important additive element for securing the strength, but if it is less than 0.020% by mass, the required strength cannot be secured under the high heat input and high pass temperature welding conditions during thick plate welding. Desirably, it is 0.040 mass% or more. On the other hand, when C is added excessively, hot cracking tends to occur. Further, the amount of spatter generated by the CO explosion phenomenon in the arc atmosphere also increases, and the arc stability deteriorates. Low heat input during thin plate welding. Under low-pass temperature welding conditions, the strength becomes excessive and the toughness decreases. If the amount exceeds 0.070% by mass, these effects become significant, so the upper limit is made 0.070% by mass. Desirably, it is 0.060 mass% or less.

「Si:0.70乃至1.10質量%」
Siは強度確保と脱酸による気孔欠陥防止のために主に添加する。多量に添加するとスラグ量が増えるもののスラグ剥離性は向上させる効果があり、これらの効果は0.70質量%以上で有効である。これ未満では剥離性が悪く、能率低下とアーク不安定になる。さらに好ましい下限は0.85質量%である。一方、Siを1.10質量%を超えて過剰添加すると、スラグ量が過剰となり、アーク安定性が劣化すると共に、靭性が低下する。剥離性が過剰となり、半自動溶接時の安全性も低下する。従って、1.10質量%をSiの上限とする。
“Si: 0.70 to 1.10 mass%”
Si is mainly added to ensure strength and prevent pore defects due to deoxidation. When added in a large amount, the amount of slag increases, but there is an effect of improving the slag removability, and these effects are effective at 0.70% by mass or more. If it is less than this, the peelability is poor, and the efficiency is lowered and the arc becomes unstable. A more preferred lower limit is 0.85% by mass. On the other hand, when Si is excessively added exceeding 1.10% by mass, the amount of slag becomes excessive, the arc stability deteriorates, and the toughness decreases. Peelability becomes excessive and safety during semi-automatic welding is also reduced. Therefore, 1.10 mass% is made the upper limit of Si.

「Mn:1.50乃至1.74質量%」
Mnは脱酸、強度上昇、高靱性を得る効果がある。一般的な大入熱用ワイヤはMnを多く含有するものが多いが、一方でMnはスラグの生成量を増大し、かつ剥離性も劣化させる。1.50質量%未満では靱性や厚板溶接時の強度が不足する。スラグ量が過少なため、技量不足の溶接者ではシールド不足と溶接金属の性能不足を招くおそれがある。スラグ剥離性が過剰となり、半自動溶接時の安全性も低下する。従って、1.50質量%をMnの下限とする。一方、1.74質量%を超えての添加はスラグ値の増大と剥離性低下によるアーク安定性劣化と能率の低下となる。また、薄板溶接時の低入熱・低パス間温度溶接条件において過剰強度になって、靱性が逆に低下する。したがって、1.74質量%をMnの上限とする。更に望ましくは、1.70質量%以下である。
“Mn: 1.50 to 1.74 mass%”
Mn has the effects of obtaining deoxidation, increasing strength, and high toughness. Many general heat input wires contain a large amount of Mn. On the other hand, Mn increases the amount of slag produced and degrades the peelability. If it is less than 1.50% by mass, the toughness and the strength during thick plate welding are insufficient. Since the amount of slag is too small, a welder with insufficient skill may lead to insufficient shielding and insufficient performance of the weld metal. Slag peelability becomes excessive, and safety during semi-automatic welding is also reduced. Therefore, 1.50 mass% is taken as the lower limit of Mn. On the other hand, addition exceeding 1.74% by mass results in deterioration in arc stability and efficiency due to increase in slag value and decrease in peelability. In addition, the strength becomes excessive in the low heat input and low pass temperature welding conditions during thin plate welding, and the toughness is reduced. Therefore, 1.74 mass% is made the upper limit of Mn. More desirably, it is 1.70 mass% or less.

「Ti:0.18乃至0.30質量%」
Tiは高電流域での大粒の溶滴移行と安定性を向上し、スラグ膜を形成する主要成分である。0.18質量%未満では、半自動溶接で使われる直径1.4mmのワイヤの場合に、400A以上の高い電流域において顕著にアーク安定性が劣化し、スパッタ発生量が増加して除去作業のため能率が低下する。また、スラグ量が不足し、技量不足の溶接者ではシールド不足と溶接金属の性能不足を招く恐れがある。風の影響も受けやすくなる。スラグ剥離性が過剰となり、半自動溶接時の安全性も低下する。一方、0.30質量%を超えて添加するとスラグ量が過剩に多くなり、スラグ量の増大と剥離性低下によるアーク安定性劣化と能率の低下となる。よって、上限を0.30質量%以下とする。望ましくは0.23質量%以下である。
“Ti: 0.18 to 0.30 mass%”
Ti is a main component that improves the migration and stability of large droplets in a high current region and forms a slag film. If it is less than 0.18% by mass, in the case of a wire with a diameter of 1.4 mm used for semi-automatic welding, the arc stability is significantly deteriorated in a high current region of 400 A or more, and the amount of spatter generated increases, so that the removal work. Efficiency decreases. In addition, the amount of slag is insufficient, and a welder with insufficient skill may lead to insufficient shielding and insufficient performance of the weld metal. It is also susceptible to wind. Slag peelability becomes excessive, and safety during semi-automatic welding is also reduced. On the other hand, if added over 0.30% by mass, the amount of slag is excessively increased, resulting in deterioration of arc stability and efficiency due to increase in slag amount and decrease in peelability. Therefore, the upper limit is made 0.30% by mass or less. Desirably, it is 0.23 mass% or less.

「Mo:0.08質量%以下」
Moは一般に焼入れ性を向上し、溶接金属の強度を上昇させるが、一方で薄板になるほど過剰強度による低靱性化をもたらす。さらには高窒素量の粗悪な裏当金との組合せにより著しく低靱性化が顕著となる。したがって、板厚12mm程度の薄板から板厚80mm程度の厚板まで高靭性が得られるワイヤとしてむしろMoは出来るだけ少ないほうが良く、無添加が望ましい。ただ、不純物としての許容上限は0.08質量%であり、これを超えると靱性低下が著しくなる。より好ましくは0.01質量%未満である。
“Mo: 0.08 mass% or less”
Mo generally improves hardenability and increases the strength of the weld metal, but on the other hand, the thinner the plate, the lower the toughness due to excess strength. Further, the combination with a bad backing metal with a high nitrogen content makes the toughness remarkably remarkable. Therefore, it is preferable that Mo is as little as possible as a wire to obtain high toughness from a thin plate having a thickness of about 12 mm to a thick plate having a thickness of about 80 mm, and it is desirable that no additive be added. However, the allowable upper limit as an impurity is 0.08% by mass. More preferably, it is less than 0.01% by mass.

「P:0.005乃至0.018質量%」
P添加により溶融池の表面張力が低下し、凝固時の物理的凹凸を減少して滑らかにさせる効果がある。これにより、スラグ剥離性の向上効果がある。P:0.005質量%未満ではこの効果は現れず、剥離性が悪いことに起因して能率低下とアーク不安定になる。従って、Pの下限は0.005質量%以上である。一方、P:0.018質量%を越えての添加は剥離過剰となって半自動溶接時の安全性が低下する。更に、溶接金属に高温割れが発生しやすくなる。靱性も低下する。したがって、Pの上限はP:0.018質量%である。
“P: 0.005 to 0.018 mass%”
The addition of P has the effect of reducing the surface tension of the molten pool and reducing the physical unevenness during solidification to make it smooth. Thereby, there exists an improvement effect of slag peelability. When P is less than 0.005% by mass, this effect does not appear, and the efficiency is lowered and the arc becomes unstable due to poor peelability. Therefore, the lower limit of P is 0.005% by mass or more. On the other hand, addition exceeding P: 0.018% by mass results in excessive peeling, and the safety during semi-automatic welding decreases. Furthermore, hot cracks are likely to occur in the weld metal. Toughness is also reduced. Therefore, the upper limit of P is P: 0.018% by mass.

「S:0.010質量%以下」
Sは、Pと同様に、溶融池の表面張力が低下し、凝固時の物理的凹凸を減少して滑らかにさせてスラグ剥離性向上効果が得られるが、少量の添加で顕著に剥離性が向上し安全性が低下するとともに、靱性低下の欠点が著しい。このため、本発明では、Sは積極的には添加せず、不純物元素である。また、Sは多量に含有すると、高温割れも生じる。不純物として、Sは0.010質量%以下に抑制すると、これらの欠点が生じないので、0.010質量%を上限とする。なお、好ましくは、溶製時の脱硫を強めて、Sを0.006質量%以下に制限する。
“S: 0.010 mass% or less”
S, like P, reduces the surface tension of the molten pool, reduces the physical unevenness during solidification and smoothes it, and can improve the slag peelability. While improving and reducing safety, the disadvantage of reduced toughness is significant. For this reason, in the present invention, S is not actively added but is an impurity element. If S is contained in a large amount, hot cracking also occurs. If S is suppressed to 0.010% by mass or less as an impurity, these defects do not occur, so 0.010% by mass is the upper limit. In addition, Preferably, desulfurization at the time of melting is strengthened, and S is limited to 0.006% by mass or less.

「B:0.0015乃至0.0060質量%」
Bは少量の添加で溶接金属の結晶粒の微細化による強度と靱性を向上させる効果がある。B無添加のYGW18ワイヤもあるが、比較的薄板では高窒素の裏当金からの窒素分混入を考慮すると、特に靱性向上のためにはB添加必須である。Bが0.0015質量%未満では靱性と特に厚板適用時の強度の向上効果は現れず不足するのでこれを下限とする。一方、0.0060質量%を超えて過剰に添加すると薄板適用時に逆に過剩強度による低靱性化をもたらす。また、高温割れが発生しやすくなる。従って、これを上限とする。より好ましくは0.0035質量%以下である。
“B: 0.0015 to 0.0060 mass%”
B has the effect of improving the strength and toughness by refining the crystal grains of the weld metal with a small amount of addition. Although there is Y additive-free YGW18 wire, it is indispensable to add B particularly in order to improve toughness in consideration of nitrogen content from a high nitrogen backing metal in a relatively thin plate. If B is less than 0.0015% by mass, the effect of improving the toughness and particularly the strength at the time of application of a thick plate does not appear and is insufficient. On the other hand, when it is added excessively exceeding 0.0060% by mass, the toughness is reduced due to the excessive strength when the thin plate is applied. Moreover, it becomes easy to generate | occur | produce a hot crack. Therefore, this is the upper limit. More preferably, it is 0.0035 mass% or less.

「O:0.0100質量%以下」
スラグは酸化物である。従って、O量が増加すると化学反応によって生じるスラグ生成量も増加する。その結果ア一ク安定性が劣化とともに除去作業増加で能率が低下する。また、介在物増加により靱性劣化し、高温割れも発生しやすくなる。0.0100質量%以下であれば通常問題ないので、Oは0.0100質量%以下に規制する。なお、Oはその分布、つまり線材のバルク、表面などの位置は無関係であり、総合計である。
“O: 0.0100 mass% or less”
Slag is an oxide. Therefore, as the amount of O increases, the amount of slag produced by the chemical reaction also increases. As a result, the efficiency decreases due to the increase in removal work as the arc stability deteriorates. In addition, the increase in inclusions causes toughness deterioration, and high temperature cracking is likely to occur. Since there is usually no problem if it is 0.0100% by mass or less, O is restricted to 0.0100% by mass or less. The distribution of O, that is, the position of the wire, such as the bulk and surface, is irrelevant and is a total.

「Cu:0.45質量%以下」
Cuは過剰添加で高温割れを発生させやすくなると共に、スラグの性質を変化させて剥離性を劣化させる。その結果、アーク安定性が劣化する。素線として積極添加させる意味はなく、通電性、耐錆性、伸線性、意匠性改善のために施される銅めっき分としての量がほとんどである。0.45質量%を超えると、高温割れ及びスラグ剥離性が問題となるので、上限は0.45質量%とする。なお、Cuは線材自体に含まれるものだけではなく、周面に銅めっきしてあるワイヤでは、めっき分も含めた含有量である。
“Cu: 0.45 mass% or less”
When Cu is added excessively, it becomes easy to generate hot cracks, and the properties of the slag are changed to deteriorate the peelability. As a result, arc stability is degraded. There is no meaning to positively add as an element wire, and the amount of copper plating applied for improving the electrical conductivity, rust resistance, wire drawing and design is almost all. If it exceeds 0.45% by mass, hot cracking and slag peelability become problems, so the upper limit is 0.45% by mass. In addition, Cu is not only contained in the wire itself, but in a wire plated with copper on the peripheral surface, the Cu content is also included.

「Nb、V、Al;夫々0.08質量%以下、Cr、Ni;夫々0.50質量%以下」
Nb、V、Al、Cr、Niはその少量添加で結晶粒を微細にし、靱性を向上させる。しかし、Nb、V、Alは0.08質量%を超えて、Cr、Niは0.50質量%を超えて添加するとスラグ量の増加と剥離性低下が起こり、除去作業増加で能率が低下し、かつア一ク不安定化する。更に、溶接金属も薄板適用時に過剰強度による低靱性化をもたらす。従って、Nb、V、Alは0.08質量%を上限、Cr、Niは0.50質量%を上限とする。なお、Nb、V、Alについてはさらに好ましい範囲として0.020質量%を上限とする。Cr、Niについてはさらに好ましい範囲として0.10質量%を上限とする。
“Nb, V, Al: 0.08% by mass or less for each, Cr, Ni: 0.50% by mass or less for each”
Nb, V, Al, Cr, and Ni add a small amount to refine crystal grains and improve toughness. However, if Nb, V, and Al are added in excess of 0.08 mass%, and Cr and Ni are added in excess of 0.50 mass%, the amount of slag increases and the peelability decreases, and the efficiency decreases due to the increase in removal work. And the arc becomes unstable. Furthermore, weld metal also brings about low toughness due to excessive strength when a thin plate is applied. Accordingly, Nb, V, and Al have an upper limit of 0.08% by mass, and Cr and Ni have an upper limit of 0.50% by mass. In addition, about Nb, V, and Al, 0.020 mass% is made into an upper limit as a more preferable range. As for Cr and Ni, the upper limit is more preferably 0.10% by mass.

「パラメータX(質量%);0.380乃至0.600」
但し、パラメータXは下記数式で定義される。
“Parameter X W (mass%); 0.380 to 0.600”
However, the parameter X W is defined by the following equation.

選択成分を含まない請求項1のワイヤの場合:
=C+Si/24+Mn/6+B×30
選択成分を含む請求項2のワイヤの場合:
=C+Si/24+Mn/6+B×30+Ni/20+Cr/20+Mo/4+V/14+Nb/14+Al/20
In the case of the wire of claim 1 which does not contain a selective component:
X W = C + Si / 24 + Mn / 6 + B × 30
In the case of the wire of claim 2 comprising a selected component:
X W = C + Si / 24 + Mn / 6 + B × 30 + Ni / 20 + Cr / 20 + Mo / 4 + V / 14 + Nb / 14 + Al / 20

このパラメータXは、B添加溶接金属の焼入れ性を表すために独自に見出した変数であり、溶接ワイヤ成分から計算される。運用としては、式を構成するC,Si,Mn,B,Ni,Cr,Mo,V,Nb,Alの各元素が積極添加あるいは不純物によらず検出される場合は計算に入れ、逆に分析下限以下の実質無添加とみなされる量の場合は0として除外する。パラメータXが小さいほど、得られる溶接金属の焼入れ性が低いことを示す。パラメータXが0.380質量%未満の場合は、靱性と特に厚板適用時の大入熱・高パス間温度条件において、強度が不足する。このため、パラメータXの下限値は、0.380質量%とする。一方、パラメータXが0.600質量%を超えると、焼入れ性過剰により、薄板の低入熱・低パス間温度条件への適用時に、逆に過剰強度による低靱性化をもたらす。このため、パラメータX(質量%)は0.380乃至0.600とする。 This parameter XW is a variable uniquely found to represent the hardenability of the B-added weld metal, and is calculated from the welding wire component. As for operation, if each element of C, Si, Mn, B, Ni, Cr, Mo, V, Nb, and Al constituting the equation is positively added or detected regardless of impurities, it is included in the calculation and analyzed in reverse If the amount is considered to be substantially no addition below the lower limit, it is excluded as 0. It shows that the hardenability of the obtained weld metal is so low that parameter XW is small. If the parameter X W is less than 0.380 wt%, the high heat input and high interpass temperature conditions during particularly thick plate applied with toughness, strength is insufficient. Therefore, the lower limit value of the parameter X W is a 0.380 wt%. On the other hand, results in the parameter X W exceeds 0.600 mass%, the hardenability excessively, upon application to the low heat input and low interpass temperature conditions of the thin plate, a low toughness due to excessive strength conversely. For this reason, the parameter X W (mass%) is set to 0.380 to 0.600.

「ワイヤ表面のMoS:ワイヤ10kg当たり0.01乃至1.00g」
ワイヤ送給性もスラグ剥離性に大きな影響を及ぼす。ワイヤ送給が安定することにより溶融池形成もまた安定となり、生成されたスラグの厚さが均一となって、熱収縮の歪が均一に作用することにより、全面剥離しやすくなる。ワイヤ表面のMoSはチップ・ワイヤ間の給電点における融着を低下し、ワイヤ送給性向上につながる。既存のワイヤ表面の粒界に沿って過剰酸化させる方法によるワイヤ送給性向上手段では、酸素量が過剰になってスラグ量増大の欠点があるなど、MoS塗布手段は他の手段に比べてスラグ量増大等に及ぼすおそれがないため、本発明のワイヤのワイヤ送給性向上手段として好適である。この効果はワイヤ10kgあたり0.01g以上の付着で有効である。一方、ワイヤ10kgあたり1.00g以上付着させると、送給系内への堆積が始まり、逆に詰まることによる送給不良が発生し、スラグ性状に影響を及ぼして、剥離性を低下させることになる。その結果、アーク安定性が劣化する。従って、ワイヤ表面のMoSは、ワイヤ10kgあたり1.00gを上限値とする。
“MoS 2 on wire surface: 0.01 to 1.00 g per 10 kg of wire”
Wire feedability also has a significant effect on slag peelability. When the wire feed is stabilized, the formation of the molten pool is also stabilized, the thickness of the generated slag becomes uniform, and the heat shrinkage strain acts uniformly, so that the entire surface is easily peeled off. MoS 2 on the surface of the wire reduces fusion at the feeding point between the chip and the wire, leading to an improvement in wire feedability. Existing wire surface of the wire feedability improved means according to a method of over-oxidation along the grain boundaries, such as oxygen amount becomes excessive there is a drawback of increasing slag volume, MoS 2 coating means than other means Since there is no fear of increasing the amount of slag, etc., it is suitable as a means for improving the wire feedability of the wire of the present invention. This effect is effective with an adhesion of 0.01 g or more per 10 kg of wire. On the other hand, if more than 1.00 g per 10 kg of wire is deposited, deposition in the feeding system begins, and conversely, feeding failure due to clogging occurs, affecting the slag properties and reducing the peelability. Become. As a result, arc stability is degraded. Accordingly, the upper limit of MoS 2 on the wire surface is 1.00 g per 10 kg of wire.

鉄骨造の柱スキンプレート/梁フランジ継手を模擬し、図1に示す開先形状を持つ溶接試験体を用いて、表1に示す溶接条件で、所謂半自動溶接法で溶接を行った。溶接場所は屋外であり、0.5乃至0.8m/秒の安定した風が吹いている環境であった。用いた柱材、梁材、裏当金の成分を下記表2,表3に示す。柱材と梁材は高炉メーカー製であるのに対し、裏当金は市販の電炉メーカー製であり、著しく窒素含有量が高く溶接性が劣るものである。なお、非溶接体で、歪防止のために取り付ける拘束板は板厚25mmの柱材と同一材を用いている。   A steel column skin plate / beam flange joint was simulated, and welding was performed by a so-called semi-automatic welding method under the welding conditions shown in Table 1 using a weld specimen having a groove shape shown in FIG. The welding place was outdoors and was an environment where a stable wind of 0.5 to 0.8 m / sec was blowing. Tables 2 and 3 below show the components of the column material, beam material, and backing metal used. The column material and beam material are manufactured by a blast furnace manufacturer, whereas the backing metal is manufactured by a commercial electric furnace manufacturer, which has a remarkably high nitrogen content and poor weldability. In addition, the restraint board attached in order to prevent distortion with a non-welded body uses the same material as the column material with a plate thickness of 25 mm.

そして、溶接終了後のスラグの剥離性をデジタル画像処理により算出し(試験1)、スラグ量の計測(試験2)、溶接金属の強度と靱性の指標として引張試験とシャルピ衝撃試験(試験3)を実施した。また、溶接中のアークの安定性(試験4)と、スパッタ発生量(試験5)も記録した。更に、割れの発生を超音波深傷試験にて調べた(試験6)。発明ワイヤ成分と比較成分、及びこれらの溶接試験結果を、下記表4に示す。なお、表4の化学成分で「<0.***」としているのは一般的な分析下限未満の値であることを示し、工業的には含有していないものである。   Then, the slag peelability after welding is calculated by digital image processing (Test 1), the slag amount is measured (Test 2), and the tensile test and Charpy impact test (Test 3) are used as indicators of the strength and toughness of the weld metal. Carried out. In addition, the arc stability during welding (Test 4) and the amount of spatter generated (Test 5) were also recorded. Furthermore, the occurrence of cracks was examined by an ultrasonic deep wound test (Test 6). Inventive wire components and comparative components, and their welding test results are shown in Table 4 below. In addition, “<0. ***” in the chemical components in Table 4 indicates that the value is less than the general lower limit of analysis, and is not contained industrially.

次に、試験1のスラグの剥離性評価方法について説明する。剥離性とスラグ量の評価は梁材の板厚が薄い条件1でのみ計測した。なお、条件1で良好だった溶接ワイヤは、条件2でも同じく良好であることを確認している。定量評価方法として自然剥離性を評価した。溶接完了後、図1(A)、(B)、(C)に示す一般的なパス間温度測定位置における鋼板表面温度が250℃まで冷却した時点でビード外観を写真撮影した。図1(A)は平面図、(B)は正面図、(C)は斜視図である。符号1は柱スキンプレート、符号2は梁フランジ、符号3は拘束板、符号4はエンドタブ、符号5は裏当金である。   Next, the slag peelability evaluation method of Test 1 will be described. The evaluation of peelability and slag amount was measured only under condition 1 where the plate thickness of the beam material was thin. In addition, it has confirmed that the welding wire which was favorable in the conditions 1 is also favorable in the conditions 2. Natural peelability was evaluated as a quantitative evaluation method. After the welding was completed, the bead appearance was photographed when the steel plate surface temperature at the general interpass temperature measurement position shown in FIGS. 1 (A), 1 (B), and (C) was cooled to 250 ° C. 1A is a plan view, FIG. 1B is a front view, and FIG. 1C is a perspective view. Reference numeral 1 denotes a column skin plate, reference numeral 2 denotes a beam flange, reference numeral 3 denotes a restraint plate, reference numeral 4 denotes an end tab, and reference numeral 5 denotes a backing metal.

次に、そのビード外観写真を(a)スラグが自然剥離した部分と(b)スラグが付着したままの部分に2値化する。画像解析ソフトによりそれぞれのピクセルの合計を計算し、(a)/((a)+(b))×100でスラグ剥離率(質量%)を求めた。スラグ剥離率が高能率性の観点から下限を5質量%、安全性確保の点から上限15質量%の範囲をスラグ剥離性良好と判定した。   Next, the bead appearance photograph is binarized into (a) a portion where the slag is naturally peeled and (b) a portion where the slag remains adhered. The total of each pixel was calculated by image analysis software, and the slag peeling rate (mass%) was obtained by (a) / ((a) + (b)) × 100. The lower limit of the slag peeling rate was determined to be 5% by mass from the viewpoint of high efficiency, and the upper limit of 15% by mass was determined to be good from the viewpoint of ensuring safety.

次に、試験2のスラグ量については、ビード外観写真撮影後に自然剥離したものも含めて全てのスラグを回収し、重量測定したものである。機械的性能安定性の点から下限を5g、高能率性の観点から上限を8gの範囲を、スラグ量良好と判定した。   Next, regarding the slag amount of Test 2, all the slag was collected and weighed, including the one that naturally separated after the bead appearance photography. From the viewpoint of mechanical performance stability, the lower limit was determined to be 5 g, and from the viewpoint of high efficiency, the upper limit was determined to be 8 g.

次に、試験3の溶接金属の引張試験とシャルピ衝撃試験は、条件1,2夫々においてJISZ3111のA2号(平行部直径6mm)及び標準試験片(10mm角)を、図2及び図3に示す位置より採取し、試験に供した。なお、引張試験は室温の20℃、シャルビー衝撃試験は0℃、3本平均を評価値とした。引張強さが490N/mm以上、シャルビー衝撃試験が平均70J以上を合格とした。 Next, the tensile test and the Charpy impact test of the weld metal in Test 3 are shown in FIGS. 2 and 3 for JISZ3111 A2 (parallel part diameter 6 mm) and standard test piece (10 mm square) under conditions 1 and 2, respectively. The sample was taken from the position and used for the test. Note that the tensile test was performed at 20 ° C. at room temperature, and the Charby impact test was performed at 0 ° C. with an average of 3 samples. The tensile strength was 490 N / mm 2 or more, and the average Charlie impact test was 70 J or more.

試験4のアーク安定性は溶接中の官能評価によるもので、特にスラグがアークの発生を邪魔し、乱すことがなかった場合、又は溶滴移行が乱れてスパッタを多量に発生することがなかった場合を良好と判断した。なお、ワイヤ送給不良に起因するアークの乱れが生じた場合も不合格とした。   The arc stability in Test 4 is based on sensory evaluation during welding. Especially when the slag did not disturb the generation of the arc and it did not disturb, or the droplet transfer was disturbed and a large amount of spatter was not generated. The case was judged good. In addition, the case where the disturbance of the arc resulting from the wire feeding failure occurred was also rejected.

試験5のスパッタ発生量は条件1における溶接終了後にシールドノズルに付着したスパッタを回収し、重量測定したものである。スパッタ発生量が12g以下を良好と判定した。   The amount of spatter generated in Test 5 is obtained by collecting the spatter attached to the shield nozzle after welding in Condition 1 and measuring the weight. A spatter generation amount of 12 g or less was determined to be good.

下記表1は溶接条件を示し、表2は鋼板の組み合わせを示し、表3は鋼板及び裏当金の化学組成(質量%)を示す。   Table 1 below shows welding conditions, Table 2 shows combinations of steel plates, and Table 3 shows chemical compositions (mass%) of steel plates and backing metal.

Figure 2008302406
Figure 2008302406

Figure 2008302406
Figure 2008302406

Figure 2008302406
Figure 2008302406

下記表4は各ワイヤの組成(質量%、MoSのみ単位はg/ワイヤ10kg)を示し、表5は試験結果を示す。表4及び表5に示すように、実施例No.1乃至20は本発明例であり、各成分の含有量が本発明範囲にあるので、スラグの剥離性、スラグ量、溶接金属の強度、靱性、アークの安定性、低スパッタ性、及び耐割れ性が全て良好であり、優れた溶接作業性と板厚によらず安定した機械的性質の溶接金属が得られている。 Table 4 below shows the composition of each wire (mass%, MoS 2 only unit is g / wire 10 kg), and Table 5 shows the test results. As shown in Tables 4 and 5, Example No. 1 to 20 are examples of the present invention, and the content of each component is within the scope of the present invention, so slag peelability, slag amount, weld metal strength, toughness, arc stability, low spattering, and crack resistance. The weld metal has a good mechanical property and has stable mechanical properties irrespective of the welding workability and the plate thickness.

一方、比較例No.21乃至50は本発明の範囲から外れるものである。比較例No.21はCが過少であり、厚板溶接時に溶接金属の強度が不足した。比較例
No.22はCが過剩であり溶接金属に高温割れが発生、薄板溶接時に過剰強度で低靱性化、スパッタも多くアーク安定性が悪くシールドノズル詰まりが生じやすいため連続溶接性が劣化した。比較例No.23はSiが過少であり厚板溶接時に溶接金属の強度が不足し、スラグ剥離性も悪くスラグが邪魔でアーク不安定となり、連続溶接性が劣化した。比較例No.24はSiが過剰であり溶接金属の靭性が不足し、スラグ量が過剰で邪魔となりアーク不安定となって連続溶接性が劣化した。さらにスラグ剥離性が過剰で飛散スラグが安全面から危険であった。
On the other hand, Comparative Example No. 21 to 50 are outside the scope of the present invention. Comparative Example No. No. 21 had too little C, and the strength of the weld metal was insufficient during thick plate welding. Comparative Example No. In No. 22, C was excessive, high-temperature cracking occurred in the weld metal, excessive strength and low toughness at the time of thin plate welding, a lot of spatter, arc stability was poor and clogging of the shield nozzle was likely to occur, and continuous weldability deteriorated. Comparative Example No. In No. 23, Si was insufficient, the strength of the weld metal was insufficient at the time of thick plate welding, the slag peelability was poor, the slag was obstructed and the arc became unstable, and the continuous weldability deteriorated. Comparative Example No. In No. 24, Si was excessive, the toughness of the weld metal was insufficient, the amount of slag was excessive and obstructed, the arc became unstable, and the continuous weldability deteriorated. Furthermore, the slag peelability was excessive and the scattered slag was dangerous from the safety aspect.

比較例No.25はTiが過少でありスパッタ発生量が多くアーク安定性が劣り、シールドノズル詰まりが生じやすいため連続溶接性が劣化した。裏当金から流入する窒素分に加え、スラグ量が過少な為、溶融池のシールド性が悪く、大気中窒素の巻込みによって靱性が低下した。また、スラグ剥離性が過剰で飛散スラグが安全面から危険であった。比較例No.26はTiが過剰でありスラグ量が多く、剥離性も悪かった。スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。比較例No.27はMnが過少であり厚板溶接時の溶接金属の引張強さが低かった。スラグ量が過少であるため、溶融池のシールド性が悪く、大気中窒素の巻込みによって靭性が低下した。また、スラグ剥離性が過剰で飛散スラグが安全面から危険であった。   Comparative Example No. No. 25 had a small amount of Ti, a large amount of spatter was generated, the arc stability was poor, and clogging of the shield nozzle was likely to occur, so that the continuous weldability deteriorated. In addition to the nitrogen flowing in from the backing metal, the amount of slag was too small, so the shielding property of the molten pool was poor, and the toughness decreased due to the inclusion of nitrogen in the atmosphere. Moreover, the slag peelability was excessive and the scattered slag was dangerous from the safety aspect. Comparative Example No. No. 26 had excessive Ti, a large amount of slag, and poor peelability. The arc became unstable due to the slag and the continuous weldability deteriorated. Comparative Example No. In No. 27, Mn was too small and the tensile strength of the weld metal at the time of thick plate welding was low. Since the amount of slag was too small, the shielding property of the molten pool was poor, and the toughness was reduced by the inclusion of nitrogen in the atmosphere. Moreover, the slag peelability was excessive and the scattered slag was dangerous from the safety aspect.

比較例No.28はMnが過剰であり、スラグ量が多く、剥離性も悪かった。スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。薄板溶接時に過剰強度で低靱性化した。比較例No.29はMoが過剰であり、薄板溶接時に過剰強度により靭性が劣化した。比較例No.30はMoがさらに過剰であり、薄板溶接時のみならず厚板溶接時にも過剰強度により靭性が劣化した。比較例No.31,32はSが過剰であり、靱性が低いと共に高温割れも発生した。また、スラグ剥離性が過剰で飛散スラグが安全面から危険であった。比較例No.33はOが過剩であり、スラグ量が増加した。アークの安定性を損ない連続溶接性が劣化した。溶接金属中の介在物が過剰となって高温割れが発生し、靭性も低下した。   Comparative Example No. No. 28 had excessive Mn, a large amount of slag, and poor peelability. The arc became unstable due to the slag and the continuous weldability deteriorated. Low toughness with excessive strength during thin plate welding. Comparative Example No. In No. 29, Mo was excessive and toughness deteriorated due to excessive strength during thin plate welding. Comparative Example No. In No. 30, Mo was further excessive, and toughness deteriorated due to excessive strength not only during thin plate welding but also during thick plate welding. Comparative Example No. Nos. 31 and 32 had excessive S, low toughness and hot cracking. Moreover, the slag peelability was excessive and the scattered slag was dangerous from the safety aspect. Comparative Example No. In 33, O was excessive and the amount of slag increased. Degradation of continuous weldability due to loss of arc stability. Inclusions in the weld metal became excessive, causing high temperature cracks and toughness.

比較例No.34はPが過少であり、スラグの剥離性が悪く、スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。比較例No.35はPが過剰であり、靱性が低いと共に高温割れも発生した。スラグ剥離性が過剰で飛散スラグが安全面から危険であった。比較例No.36はCuが過剰であり、高温割れが発生すると共にスラグ剥離性も悪く、スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。比較例No.37はBが不足しており、厚板溶接時の強度、および板厚によらず靭性が不足した。比較例No.38はBが過剰であり、高温割れが発生した。また、薄板溶接時に過剰強度により靭性が劣化した。比較例No.39乃至No.43は夫々Nb,V,Al,Cr,Niが過剰であり、スラグ量が増加して剥離性も低下した。スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。薄板溶接時に強度過剰となり靱性も低下した。   Comparative Example No. In P, P was too small, the slag peelability was poor, the slag was obstructed and the arc became unstable, and the continuous weldability deteriorated. Comparative Example No. In 35, P was excessive, and the toughness was low and hot cracking occurred. The slag peelability was excessive and the scattered slag was dangerous for safety. Comparative Example No. In No. 36, Cu was excessive, hot cracks were generated, and slag peelability was poor, and the slag was obstructed and the arc became unstable, resulting in deterioration of continuous weldability. Comparative Example No. No. 37 had insufficient B, and toughness was insufficient regardless of the strength and thickness of the thick plate welding. Comparative Example No. In No. 38, B was excessive and hot cracking occurred. In addition, toughness deteriorated due to excessive strength during thin plate welding. Comparative Example No. 39 to No. No. 43 had excessive amounts of Nb, V, Al, Cr and Ni, respectively, and the amount of slag increased and the peelability also decreased. The arc became unstable due to the slag and the continuous weldability deteriorated. The strength became excessive during thin plate welding, and the toughness decreased.

比較例No.44はMoS付着量が過剰であり、コンジットライナー等の送給系にMoSが堆積して詰まり、ワイヤ送給が非常に不安定となった。その結果、アーク安定性が損なわれ、スラグ分布が不均一化して悪影響を及ぼし、剥離性が低下した。スパッタ量も増加した。比較例No.45はMn,Oが過剰である。スラグ量増加と剥離性低下が著しく、スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。溶接金属中の酸化物が介在物となって靱性が低下、割れも発生した。比較例No.46はSi過少、Mo、Bが過剰である。Si不足の為スラグ剥離性が悪く、スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。Bが過剰なため高温割れが発生した。更に、Mo,Bが過剰なため薄板溶接時に過剰強度となって靭性が劣化した。比較例No.47はC、Mn、Sが過剰である。Mn過剰のためスラグ量増加と剥離性が低下し、スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。C、Sが高いため高温割れが発生した。C、Mn過剰による強度過剰とS過剰により靭性も低かった。C過剰のためスパッタ発生量も多かった。 Comparative Example No. No. 44 had an excessive MoS 2 adhesion amount, and MoS 2 was deposited and clogged in the feeding system such as a conduit liner, and the wire feeding became very unstable. As a result, the arc stability was impaired, the slag distribution became non-uniform and had an adverse effect, and the peelability was reduced. The amount of spatter also increased. Comparative Example No. 45 is excessive in Mn and O. The amount of slag increased and the peelability decreased remarkably, the slag became obstructive and the arc became unstable, and the continuous weldability deteriorated. Oxides in the weld metal became inclusions, resulting in reduced toughness and cracking. Comparative Example No. 46 is too Si, and Mo and B are excess. Due to the lack of Si, the slag peelability was poor, the slag was obstructed and the arc became unstable, and the continuous weldability deteriorated. Since B was excessive, hot cracking occurred. Furthermore, since Mo and B are excessive, the toughness deteriorates due to excessive strength during thin plate welding. Comparative Example No. 47 is excessive in C, Mn, and S. Due to the excess of Mn, the amount of slag increased and the peelability decreased, and the arc became unstable due to the slag being disturbed, and the continuous weldability deteriorated. Hot cracking occurred because C and S were high. The toughness was low due to excessive strength and excessive S due to excessive C and Mn. A large amount of spatter was generated due to excess C.

比較例No.48はTi、Mn、Mo、S、及びBが過剰であり、パラメータXが大きすぎたため、スラグ量増加と剥離性低下が著しく、スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。焼入れ性過剰で強度が著しく高い為、薄板溶接のみならず厚板溶接時にも強度過剰で靱性が低下した。SとBが高い為高温割れも発生した。比較例No.49は490MPa級と呼ばれるJIS Z3312 YGW11規格のワイヤの一例であり、S過剩、B不足である。靱性が不足し、厚板溶接時には強度も不足した。スラグ剥離性が過剩で飛散スラグが安全面から危険であった。比較例No.50はMn、Moが過剰である。スラグ量増加と剥離性低下が著しく、スラグが邪魔でアーク不安定となり、連続溶接性が劣化した。薄板溶接時に過剰強度となって靭性が劣化した。比較例No.51は各元素の含有量は規定を満足するものの、Xが不足している。焼入れ性不足の為、靱性が不足し、厚板溶接時には強度も不足した。比較例No.52はNo.49と同様に490MPa級と呼ばれるJIS Z3312 YGW11規格のワイヤの典型例であり、S過剰、B不足である。靭性が不足し、厚板溶接時には強度も不足した。スラグ剥離性が過剰で飛散スラグが安全面から危険であった。比較例No.53は各元素の含有量は規定を満足するものの、Xが過剰である。焼入れ性過剰なため、薄板溶接時に過剰強度となって靱性が劣化した。








Comparative Example No. No. 48 is excessive in Ti, Mn, Mo, S, and B, and the parameter XW is too large. Therefore, the increase in slag amount and the decrease in peelability are remarkable, the slag becomes obstructive and the arc becomes unstable, and the continuous weldability deteriorates. . Excessive hardenability and extremely high strength resulted in excessive strength and decreased toughness not only during thin plate welding but also during thick plate welding. Hot cracking also occurred because S and B were high. Comparative Example No. 49 is an example of a JIS Z3312 YGW11 standard wire called a 490 MPa class, which is S excessive and B insufficient. The toughness was insufficient and the strength was insufficient when welding thick plates. The slag peelability was excessive and the scattered slag was dangerous for safety. Comparative Example No. 50 is excessive Mn and Mo. The amount of slag increased and the peelability decreased remarkably, the slag became obstructive and the arc became unstable, and the continuous weldability deteriorated. The toughness deteriorated due to excessive strength during thin plate welding. Comparative Example No. 51 Although the content of each element satisfies the provisions, X W is insufficient. Due to the lack of hardenability, the toughness was insufficient, and the strength was insufficient when welding thick plates. Comparative Example No. 52 is No. 52. This is a typical example of JIS Z3312 YGW11 standard wire called 490 MPa class as in 49, and S is excessive and B is insufficient. The toughness was insufficient and the strength was insufficient during thick plate welding. The slag peelability was excessive and the scattered slag was dangerous for safety. Comparative Example No. 53 content of each element but shall satisfy, X W is excessive. Since the hardenability was excessive, the toughness deteriorated due to excessive strength during thin plate welding.








Figure 2008302406
Figure 2008302406

Figure 2008302406
Figure 2008302406


Figure 2008302406
Figure 2008302406












Figure 2008302406
Figure 2008302406













Figure 2008302406
Figure 2008302406























Figure 2008302406
Figure 2008302406

溶接試験体形状と開先形状を示す図である。It is a figure which shows a welding test body shape and a groove shape. 溶接金属引張試験片の採取位置を示す図である。It is a figure which shows the extraction | collection position of a weld metal tensile test piece. 溶接金属シャルピ衝撃試験片の採取位置を示す図である。It is a figure which shows the collection position of a weld metal Charpy impact test piece.

符号の説明Explanation of symbols

1:柱スキンプレート
2:梁フランジ
3:拘束板
4:エンドタブ
5:裏当金
1: pillar skin plate 2: beam flange 3: restraint plate 4: end tab 5: backing metal

Claims (3)

C:0.020乃至0.070質量%、Si:0.70乃至1.10質量%、Mn:1.50乃至1.74質量%、P:0.005乃至0.018質量%、S:0.010質量%以下、Ti:0.18乃至0.30質量%、B:0.0015乃至0.0060質量%、Mo:0.08質量%以下、O:0.0100質量%以下、Cu(周面に銅メッキを有する場合はこのメッキ分を含む):0.45質量%以下を含有し、残部Fe及び不可避的不純物であり、パラメータX(質量%)を、C,Si、Mn及びBの含有量を基にX=C+Si/24+Mn/6+B×30で定義した場合に、Xが0.380乃至0.600であることを特徴とする炭酸ガスシールドアーク溶接用ソリッドワイヤ。 C: 0.020 to 0.070 mass%, Si: 0.70 to 1.10 mass%, Mn: 1.50 to 1.74 mass%, P: 0.005 to 0.018 mass%, S: 0.010 mass% or less, Ti: 0.18 to 0.30 mass%, B: 0.0015 to 0.0060 mass%, Mo: 0.08 mass% or less, O: 0.0100 mass% or less, Cu (If the peripheral surface has copper plating, this plating content is included): 0.45% by mass or less, balance Fe and unavoidable impurities, parameter X W (% by mass), C, Si, Mn and when defined by X W = C + Si / 24 + Mn / 6 + B × 30 based on the content of B, solid wire for carbon dioxide shielded arc welding, wherein X W is 0.380 to 0.600. 更に、Nb:0.08質量%以下、V:0.08質量%以下、Al:0.08質量%以下、Cr:0.50質量%以下及びNi:0.50質量%以下からなる群から選択された1種以上の元素を含有し、前記パラメータX(質量%)は、更に、Ni,Mo,V、Nb及びAlの含有量(含有しない元素は、0として)を加えて、X=C+Si/24+Mn/6+B×30+Ni/20+Cr/20+Mo/4+V/14+Nb/14+Al/20として定義した場合、このパラメータXが0.380乃至0.600であることを特徴とする請求項1に記載の炭酸ガスシールドアーク溶接用ソリッドワイヤ。 Further, from the group consisting of Nb: 0.08 mass% or less, V: 0.08 mass% or less, Al: 0.08 mass% or less, Cr: 0.50 mass% or less, and Ni: 0.50 mass% or less. It contains one or more selected elements, and the parameter X W (mass%) further includes the contents of Ni, Mo, V, Nb and Al (elements not contained are set to 0), and X W = C + Si / 24 + Mn / 6 + B × 30 + Ni / 20 + Cr / 20 + Mo / 4 + V / 14 + Nb / 14 + Al / 20 If you define as, claimed in claim 1, characterized in that the parameter X W is 0.380 to 0.600 Solid wire for carbon dioxide shielded arc welding. ワイヤ表面にMoSがワイヤ10kg当たり、0.01乃至1.00g存在することを特徴とする請求項1又は2に記載の炭酸ガスシールドアーク溶接用ソリッドワイヤ。 3. The solid wire for carbon dioxide shielded arc welding according to claim 1, wherein 0.01 to 1.00 g of MoS 2 is present on the surface of the wire per 10 kg of the wire.
JP2007153358A 2007-06-08 2007-06-08 Solid wire for carbon dioxide shielded arc welding Active JP5137468B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007153358A JP5137468B2 (en) 2007-06-08 2007-06-08 Solid wire for carbon dioxide shielded arc welding
TW097113032A TW200902211A (en) 2007-06-08 2008-04-10 Solid-core welding wire for carbon dioxide gas protection arc welding
CN2008100962805A CN101318276B (en) 2007-06-08 2008-05-08 Solid-core welding wire for carbon dioxide gas protection arc welding
KR1020080053327A KR20080108052A (en) 2007-06-08 2008-06-05 Solid wire for carbon dioxide gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153358A JP5137468B2 (en) 2007-06-08 2007-06-08 Solid wire for carbon dioxide shielded arc welding

Publications (2)

Publication Number Publication Date
JP2008302406A true JP2008302406A (en) 2008-12-18
JP5137468B2 JP5137468B2 (en) 2013-02-06

Family

ID=40178681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153358A Active JP5137468B2 (en) 2007-06-08 2007-06-08 Solid wire for carbon dioxide shielded arc welding

Country Status (4)

Country Link
JP (1) JP5137468B2 (en)
KR (1) KR20080108052A (en)
CN (1) CN101318276B (en)
TW (1) TW200902211A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905392B (en) * 2010-08-26 2012-04-25 宜昌猴王焊丝有限公司 High-toughness low-alloy solid welding wire
CN102528318A (en) * 2010-12-17 2012-07-04 鞍钢股份有限公司 Gas shield welding wire for nuclear power
FR2990636B1 (en) * 2012-05-21 2015-03-20 Air Liquide THREAD WIRE FOR WELDING HIGH ELASTIC LIMIT STEELS
CN103464871B (en) * 2013-09-06 2016-03-30 海宁瑞奥金属科技有限公司 A kind of high tenacity CO 2gas protecting welding wire and application thereof
CN103600178B (en) * 2013-11-27 2016-08-17 中车眉山车辆有限公司 A kind of high-strength weathering steel gas shield solid core welding wire
CN105195919A (en) * 2014-06-11 2015-12-30 鞍钢股份有限公司 Gas protection welding wire for high-strength weathering steel and steel for gas protection welding wire
CN106181114A (en) * 2015-04-29 2016-12-07 海宁瑞奥金属科技有限公司 The low spatter gas shield welding wire that arc stability is excellent
CN108031956A (en) * 2017-11-06 2018-05-15 山西太钢不锈钢股份有限公司 The welding method of austenitic stainless steel
CN113613827A (en) * 2019-03-29 2021-11-05 杰富意钢铁株式会社 Solid wire for gas metal arc welding and gas metal arc welding method
CN113414474B (en) * 2021-07-09 2022-06-17 天津大学 Titanium alloy welding system and method with carbon dioxide as ambient atmosphere

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299583A (en) * 1994-05-10 1995-11-14 Kobe Steel Ltd Plated wire for gas shield arc welding
JPH11104886A (en) * 1997-09-30 1999-04-20 Kobe Steel Ltd Gas shielded arc welding method
JP2000061687A (en) * 1998-08-19 2000-02-29 Kobe Steel Ltd Welding metal of high toughness
JP2003211286A (en) * 2002-01-16 2003-07-29 Kobe Steel Ltd Solid wire without copper plating for carbon dioxide shielded arc welding
JP2004091860A (en) * 2002-08-30 2004-03-25 Kobe Steel Ltd Weld metal for low-alloy heat-resisting steel
JP2004195543A (en) * 2002-12-20 2004-07-15 Jfe Steel Kk Steel wire for gas shielded arc welding

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1152767C (en) * 2001-08-08 2004-06-09 武汉钢铁(集团)公司 Microtitanium-boron high-toughness gas protective welding stick
CN1290661C (en) * 2004-06-25 2006-12-20 武汉钢铁(集团)公司 High strength high tenacity high weather resistant gas protecting welding wire
JP4549143B2 (en) * 2004-09-22 2010-09-22 株式会社神戸製鋼所 Solid wire for gas shielded arc welding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07299583A (en) * 1994-05-10 1995-11-14 Kobe Steel Ltd Plated wire for gas shield arc welding
JPH11104886A (en) * 1997-09-30 1999-04-20 Kobe Steel Ltd Gas shielded arc welding method
JP2000061687A (en) * 1998-08-19 2000-02-29 Kobe Steel Ltd Welding metal of high toughness
JP2003211286A (en) * 2002-01-16 2003-07-29 Kobe Steel Ltd Solid wire without copper plating for carbon dioxide shielded arc welding
JP2004091860A (en) * 2002-08-30 2004-03-25 Kobe Steel Ltd Weld metal for low-alloy heat-resisting steel
JP2004195543A (en) * 2002-12-20 2004-07-15 Jfe Steel Kk Steel wire for gas shielded arc welding

Also Published As

Publication number Publication date
KR20080108052A (en) 2008-12-11
CN101318276A (en) 2008-12-10
TWI347244B (en) 2011-08-21
JP5137468B2 (en) 2013-02-06
TW200902211A (en) 2009-01-16
CN101318276B (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JP5137468B2 (en) Solid wire for carbon dioxide shielded arc welding
KR101764519B1 (en) Solid wire for gas-shielded arc welding, gas-shielded arc welding metal, welding joint, welding member, welding method, and method for manufacturing welding joint
KR100920550B1 (en) Flux-cored wire for titania-based gas shielded arc welding
CN110023030B (en) Flux-cored wire, method for manufacturing welded joint, and welded joint
JP5111028B2 (en) Flux-cored wire for gas shielded arc welding
KR20060050038A (en) Solid wire for gas shielded arc welding
JP2009178737A (en) Solid wire for carbon dioxide shielded arc welding
JP6201803B2 (en) Submerged arc welds with excellent low temperature toughness
JP5137426B2 (en) Solid wire for carbon dioxide shielded arc welding
KR101600174B1 (en) Flux cored wire for gas shielded arc welding
JP4745900B2 (en) High strength weld metal with good low temperature toughness, low temperature cracking resistance and bead shape during all position welding
JP2005246479A (en) Multilayer carbon dioxide gas shielded arc welding method for steel plate
JP2005230906A (en) Gas shielded arc welding method
JP4768310B2 (en) Solid wire for gas shielded arc welding
JPH10216934A (en) Gas shielded metal arc welding method for circumferential joint of steel tube, and wire for gas shielded metal arc welding
JP4549143B2 (en) Solid wire for gas shielded arc welding
JP7311473B2 (en) arc welding method
KR100726043B1 (en) Solid wire for gas-shielded arc welding
JPH05305476A (en) Solid wire for gas shielded arc welding
JP5480705B2 (en) Copper plated solid wire for carbon dioxide shielded arc welding
KR101286502B1 (en) Titania type flux cored wire having excellent crack resistance
JP3642178B2 (en) TIG welding wire for steel welding
JP4673048B2 (en) Gas shielded arc welding wire
JPH11197884A (en) Dual electrode electrogas arc welding method
JP2005254284A (en) Gas shielded arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R150 Certificate of patent or registration of utility model

Ref document number: 5137468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3