JP2008302364A - Electrostatic atomizing system - Google Patents

Electrostatic atomizing system Download PDF

Info

Publication number
JP2008302364A
JP2008302364A JP2008246916A JP2008246916A JP2008302364A JP 2008302364 A JP2008302364 A JP 2008302364A JP 2008246916 A JP2008246916 A JP 2008246916A JP 2008246916 A JP2008246916 A JP 2008246916A JP 2008302364 A JP2008302364 A JP 2008302364A
Authority
JP
Japan
Prior art keywords
liquid
ions
fine particle
tip
charged fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008246916A
Other languages
Japanese (ja)
Other versions
JP4821826B2 (en
Inventor
Hiroshi Suda
洋 須田
Takayuki Nakada
隆行 中田
Takahiro Miyata
▲隆▼弘 宮田
Shoji Machi
昌治 町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008246916A priority Critical patent/JP4821826B2/en
Publication of JP2008302364A publication Critical patent/JP2008302364A/en
Application granted granted Critical
Publication of JP4821826B2 publication Critical patent/JP4821826B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bactericidal effect with a simple construction at present as well as a bactericidal effect after a certain time lapses from the present and further, a higher level-bactericidal effect. <P>SOLUTION: A metal ion eluting means B that elutes Zn ions with a bactericidal activity into liquid W that is supplied for electrostatic atomization is provided in an electrostatic atomizing system A that performs electrostatic atomization on the liquid W by applying high voltage thereto. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、除菌力のある帯電微粒子ミストを発生させるための静電霧化装置に関するものである。   The present invention relates to an electrostatic atomizer for generating charged fine particle mist having sterilizing power.

従来から静電霧化装置として、例えば特許文献1が知られている。この特許文献1に示された従来例にあっては、液体溜め部の液体を毛細管現象により放電電極の先端に搬送し、このように毛細管現象により放電電極の先端部に供給された液体を放電電極の先端部に表面張力により保持し、この放電電極の先端部に表面張力により保持された液体に高電圧を印加することで静電霧化して活性種(ラジカル)を含むナノメータサイズの帯電微粒子ミストを発生するようになっている。   For example, Patent Document 1 is known as an electrostatic atomizer. In the conventional example shown in Patent Document 1, the liquid in the liquid reservoir is transported to the tip of the discharge electrode by a capillary phenomenon, and the liquid supplied to the tip of the discharge electrode by the capillary phenomenon is discharged. Nanometer-sized charged fine particles containing active species (radicals) by electrostatic atomization by applying a high voltage to the liquid held by the surface tension at the tip of the discharge electrode. Mist is generated.

この静電霧化装置によるナノメータサイズの帯電微粒子ミストの発生のメカニズムは、放電電極と対向電極との間にかけられた電圧により放電電極の先端部に供給された水Wのような液体が帯電し、帯電した液体にクーロン力が働き、放電電極の先端に供給された液体の液面が局所的に先端が尖った錐状に盛り上がる(テイラーコーン)。このテイラーコーンの先端部に電荷が集中して高密度化され、高密度された電荷の反発力による液体の分裂・飛散(レイリー分裂)を繰り返して静電霧化を行い、ラジカルを有するナノメータサイズの帯電微粒子ミスト(マイナスイオンミスト)を生成させるようになっている。   The mechanism of generation of nanometer-sized charged fine particle mist by this electrostatic atomizer is that a liquid such as water W supplied to the tip of the discharge electrode is charged by a voltage applied between the discharge electrode and the counter electrode. The Coulomb force acts on the charged liquid, and the liquid level of the liquid supplied to the tip of the discharge electrode rises locally in a cone shape with a sharp tip (Taylor cone). Nanometer-size with radicals, with charges concentrated at the tip of the Taylor cone and densified by repeated atomization and scattering (Rayleigh fission) of the liquid by the repulsive force of the dense charge The charged fine particle mist (negative ion mist) is generated.

このナノメータサイズの帯電微粒子ミストは活性種(ラジカル)を含んでいるため、このナノメータサイズという極めて粒径の小さい帯電微粒子ミストを放出すると、放出空間内の隅々まで飛散して放出空間の除菌、脱臭を行なうと共に、放出空間内に存在する物に付着浸透して効果的に除菌、脱臭を行なうことができる。   Since this nanometer-sized charged fine particle mist contains active species (radicals), if this nanometer-sized charged fine particle mist with extremely small particle size is released, it will scatter to every corner of the discharge space and disinfect the discharge space. In addition to performing deodorization, it is possible to effectively disinfect and deodorize by adhering to and penetrating objects existing in the discharge space.

上記のように帯電微粒子ミストは活性種を含んでいるため除菌、脱臭効果が期待できるが、帯電微粒子ミストに含まれた活性種(ラジカル)による除菌は帯電微粒子ミストの飛翔中又は帯電微粒子ミストが付着した時点で帯電微粒子水Wの中に包みこんでラジカルで除菌するもので、帯電微粒子ミストの飛翔中又は付着した時点で存在する菌に対してのみ除菌効果があり、つまり現時点において存在する菌に対してのみ除菌効果があり、帯電微粒子ミストが飛翔して付着した箇所であっても、現在より後、つまり、帯電微粒子ミストが付着して時間が経過した後に該当箇所に新たに発生又は付着した菌に対しては除菌効果が期待できないという問題があり、更に、使用箇所においては、帯電微粒子ミストに含まれる活性種による除菌効果だけでは十分でない場合があり、より高いレベルでの除菌効果が求められているのが現状である。
特許第3260150号公報
As described above, since the charged fine particle mist contains active species, sterilization and deodorizing effects can be expected. However, the active fine particles (radicals) contained in the charged fine particle mist can be sterilized during the flight of the charged fine particle mist or charged fine particles. Wrapped in charged fine particle water W when mist adheres and sterilized with radicals, and has a sterilization effect only against bacteria that exist during the flight of charged fine particle mist or when it adheres. Even if it is a spot where charged fine particle mist flies and adheres, it will remain after the current time, that is, after the time has passed since the charged fine particle mist adhered. There is a problem that the sterilization effect cannot be expected for newly generated or attached bacteria, and in addition, only the sterilization effect due to the active species contained in the charged fine particle mist is used at the place of use. There may not be sufficient, at present, sterilization effect is sought at a higher level.
Japanese Patent No. 3260150

本発明は上記の従来の問題点に鑑みて発明したものであって、簡単な構成で、現在における除菌効果が期待できると共に、現在から時間が経過した後における除菌効果も期待でき、更に、より高いレベルでの除菌効果が期待できる静電霧化装置を提供することを課題とするものである。   The present invention was invented in view of the above-described conventional problems, and can be expected to have a current sterilization effect with a simple configuration, and can also be expected to have a sterilization effect after a lapse of time from the present, It is an object of the present invention to provide an electrostatic atomizer that can be expected to have a higher level of sterilization effect.

上記課題を解決するために本発明に係る静電霧化装置は、液体Wに高電圧を印加して静電霧化する静電霧化装置Aにおいて、静電霧化のために供給する液体Wに除菌力のあるZnイオンを溶出させる金属イオン溶出手段Bを設けて成ることを特徴とするものである。   In order to solve the above problems, an electrostatic atomizing apparatus according to the present invention is a liquid supplied for electrostatic atomization in an electrostatic atomizing apparatus A that applies a high voltage to the liquid W to electrostatically atomize. Metal ion elution means B for eluting Zn ions having sterilizing power is provided in W.

このような構成とすることで、液体Wに高電圧を印加して静電霧化することで活性種を有する帯電微粒子ミストを生成するのであるが、この際、帯電微粒子ミストに除菌力のあるZnイオンが含まれており、帯電微粒子ミストに含まれた活性種及び除菌力のあるZnイオンによりによる除菌効果がより一層向上する。しかも、帯電微粒子ミストの飛翔中あるいは付着した時点における除菌が活性種及び除菌力のあるZnイオンの双方により効果的に行われるだけでなく、帯電微粒子が付着して時間が経過した後であっても、付着箇所にはZnイオンが付着して残っているので、その後、該当箇所に新たに発生又は新たに付着した菌もZnイオンにより除菌ができる。   By adopting such a configuration, a charged fine particle mist having active species is generated by applying a high voltage to the liquid W and electrostatic atomization. At this time, the charged fine particle mist has a sterilizing power. A certain Zn ion is contained, and the sterilization effect due to the active species contained in the charged fine particle mist and the Zn ion having the sterilizing power is further improved. In addition, the sterilization of the charged fine particle mist during or after the adhering is not only effectively performed by both the active species and the sterilizing Zn ions, but also after the charged fine particles have adhered and the time has elapsed. Even if it exists, since Zn ion adheres and remains in the adhesion location, the bacteria which newly generate | occur | produced or newly adhered to the applicable location can be sterilized by Zn ion after that.

本発明は、除菌力のあるZnイオンが含まれた帯電微粒子ミスを生成できるので、帯電微粒子ミストに含まれた活性種及び除菌力のあるZnイオンによって、帯電微粒子ミストの飛翔中及び帯電微粒子ミストが付着した箇所にいる菌を効果的に除菌でき、また、帯電微粒子が付着して時間が経過した後であっても、付着箇所には残ったZnイオンにより該当箇所に新たに発生又は新たに付着した菌をZnイオンにより除菌できて長時間の除菌効果が発揮できる。   Since the present invention can generate charged fine particle misses containing Zn ions having sterilizing power, the active species contained in the charged fine particle mist and Zn ions having sterilizing power can be used during charging and charging of the charged fine particle mist. Bacteria in the location where the fine particle mist has adhered can be effectively sterilized, and even after the time has elapsed since the charged fine particles have adhered, newly generated Zn ions are generated in the applicable location due to the remaining Zn ions. Alternatively, newly attached bacteria can be sterilized with Zn ions, and a long-term sterilization effect can be exhibited.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

図1、図2には本発明の静電霧化装置Aの一実施形態が示してあり、図3、図4には他の静電霧化装置Aの他の実施形態が示してあり、図5、図6には静電霧化装置Aの更に他の実施形態が示してある。静電霧化装置Aは、先端部が放電電極4aとなった筒状をした霧化ノズル4と、筒状の霧化ノズル4の後端部に連通する液体溜め部1と、液体溜め部1内に液体Wを補給する液体補給部7と、放電電極4aの先端と対向する対向電極14と、放電電極4aと対向電極14との間に高電圧を印加する電圧印加部5とを備え、更に、放電電極4aの先端部に静電霧化のために供給する液体Wに除菌力のあるZnイオンを溶出させる金属イオン溶出手段Bを設けたもので、放電電極4aと対向電極14との間に高電圧を印加することで霧化ノズル4の先端部に供給されたZnイオンを含む液体Wを静電霧化するようになっている。   1 and 2 show one embodiment of the electrostatic atomizer A of the present invention, and FIGS. 3 and 4 show another embodiment of another electrostatic atomizer A. 5 and 6 show still another embodiment of the electrostatic atomizer A. The electrostatic atomizer A includes a cylindrical atomizing nozzle 4 whose tip is a discharge electrode 4a, a liquid reservoir 1 communicating with the rear end of the cylindrical atomizing nozzle 4, and a liquid reservoir. 1 includes a liquid replenishing unit 7 for replenishing the liquid W, a counter electrode 14 facing the tip of the discharge electrode 4a, and a voltage applying unit 5 for applying a high voltage between the discharge electrode 4a and the counter electrode 14. Furthermore, the discharge electrode 4a and the counter electrode 14 are provided with metal ion elution means B for eluting Zn ions having sterilizing power in the liquid W supplied for electrostatic atomization at the tip of the discharge electrode 4a. The liquid W containing Zn ions supplied to the tip of the atomizing nozzle 4 is electrostatically atomized by applying a high voltage between the two.

なお、以下の説明では液体Wが水の例で説明する。したがって、以下、液体W又は水Wとして説明する。   In the following description, the liquid W is described as an example of water. Therefore, the following description will be made as liquid W or water W.

添付図面に示す各実施形態おいては、先端部が放電電極4aとなった筒状の霧化ノズル4が横向きに配置してあり、この筒状の霧化ノズル4の内部の孔13部分の内径が先端部を除いて毛細管現象が発生しない大きさの孔部13aとなっている。孔13の先端部は先端が細径となるように孔径が次第に細くなっていて後述の水Wに圧力が作用しても孔13の最先端においては水Wが表面張力により液玉W1状態を保持し、孔13の最先端から水が垂れ流しされないような孔径としてあり、また、孔13の最先端の最も小径となった部分は毛細管現象が発生するような孔径にしてある。   In each embodiment shown in the accompanying drawings, a cylindrical atomizing nozzle 4 whose tip is a discharge electrode 4a is disposed sideways, and a hole 13 portion inside the cylindrical atomizing nozzle 4 is formed. The inner diameter of the hole 13a is such that no capillary action occurs except for the tip. The tip of the hole 13 is gradually narrowed so that the tip has a small diameter. Even when pressure is applied to the water W to be described later, the water W is in a liquid ball W1 state due to surface tension at the tip of the hole 13. The diameter of the hole 13 is such that the diameter of the hole 13 is maintained so that water does not flow down from the tip of the hole 13.

霧化ノズル4の後端部には液体溜め部1が連通してあり、該液体溜め部1は上部が横向きにした霧化ノズル4の先端部のレベルよりも上方に向けて突出している。本実施形態では筒状の霧化ノズル4が液体溜め部1から先端部の放電電極4a部分に液体Wを搬送するための液体搬送部2を構成している。   A liquid reservoir 1 communicates with the rear end portion of the atomizing nozzle 4, and the liquid reservoir 1 protrudes upward from the level of the tip of the atomizing nozzle 4 whose upper side is horizontally oriented. In the present embodiment, the cylindrical atomizing nozzle 4 constitutes the liquid transport unit 2 for transporting the liquid W from the liquid reservoir 1 to the discharge electrode 4a at the tip.

液体溜め部1内に溜められた液体Wには後述の金属イオン溶出手段Bにより液体溜め部1内において除菌力のある金属3からZnイオンを溶出させるようになっている。   In the liquid W stored in the liquid reservoir 1, Zn ions are eluted from the metal 3 having sterilizing power in the liquid reservoir 1 by the metal ion elution means B described later.

図1、図2に示す実施形態、図3、図4に示す実施形態における金属イオン溶出手段Bは、液体溜め部1内に2種類の金属3(3a、3b)を配置し、液体溜め部1の外部に配置した電圧印加部8から両金属3a、3bに電圧を印加するように構成してあり、電圧を印加することで両金属3a、3b間に電位差を生じさせてZnイオンを液体W中に溶出するようになっている(つまり、電気分解と同じシステムでZnイオンを液体W中に溶出するようになっている)。   The metal ion elution means B in the embodiment shown in FIGS. 1 and 2 and the embodiment shown in FIGS. 3 and 4 includes two kinds of metals 3 (3a and 3b) arranged in the liquid reservoir 1, and the liquid reservoir. 1 is configured to apply a voltage to both the metals 3a and 3b from the voltage application unit 8 disposed outside, and by applying a voltage, a potential difference is generated between both the metals 3a and 3b, and Zn ions are liquidated. It elutes in W (that is, Zn ions are eluted in the liquid W in the same system as electrolysis).

また、図5、図6に示す実施形態における金属イオン溶出手段Bは、液体溜め部1内に2種類の金属3(3a、3b)を配置し、この2種類の金属3a、3bを短絡させることで構成してあり、2種類の金属3a、3bは一方がZnであってイオン化傾向の違いにより短絡させるだけで、両金属3間に電位差を生じさせてZnイオンを液体W中に溶出するようになっている(つまり、電池と同じシステムでZnイオンを液体W中に溶出するようになっている)。   Further, the metal ion elution means B in the embodiment shown in FIGS. 5 and 6 arranges two kinds of metals 3 (3a, 3b) in the liquid reservoir 1, and short-circuits the two kinds of metals 3a, 3b. The two kinds of metals 3a and 3b are Zn, and one of them is Zn, and only a short circuit occurs due to a difference in ionization tendency, thereby causing a potential difference between the two metals 3 and eluting Zn ions into the liquid W. (That is, Zn ions are eluted in the liquid W in the same system as the battery).

使用される金属3としては除菌性を有する金属3としてZnが用いられ、電圧を印加することでZnイオンを溶出するようになっている。   As the metal 3 used, Zn is used as the metal 3 having sterilization properties, and Zn ions are eluted by applying a voltage.

また、図5、図6の実施形態では2種類の金属3a、3bとしてZn、Cuを用いた例を示しているが、必ずしもこれにのみ限定されるものではない。   5 and 6 show examples using Zn and Cu as the two types of metals 3a and 3b, the present invention is not necessarily limited to this.

また、本実施形態における静電霧化装置Aは、活性種を含んだナノメータサイズの帯電微粒子ミストを発生させる第1運転モードと、活性種を含んだナノメータサイズの帯電微粒子ミストとミクロンサイズの帯電微粒子ミストとを発生させる第2運転モードとを備ており、更に、上記第1運転モードと第2運転モードとを選択して運転させるための切換え手段9を備えている。   In addition, the electrostatic atomizer A in the present embodiment includes a first operation mode for generating nanometer-sized charged fine particle mist containing active species, a nanometer-sized charged fine particle mist containing active species, and a micron-sized charged particle. A second operation mode for generating fine particle mist is provided, and a switching means 9 is provided for selecting and operating the first operation mode and the second operation mode.

図中7は液体補給部を構成するタンクであり、前述の第1運転モード時及び第2運転モード時にそれぞれ、マイクロポンプのようなポンプ15により液体補給部7内に溜まっている水Wを液体溜め部1に補給して液体溜め部1の水位(液位)を第1運転モード時における設定水位又は第2運転モード時における設定水位にそれぞれ保つようになっている。   In the figure, reference numeral 7 denotes a tank constituting the liquid replenishment unit, and the water W accumulated in the liquid replenishment unit 7 by the pump 15 such as a micropump is liquid in the first operation mode and the second operation mode. The reservoir 1 is replenished to keep the water level (liquid level) of the liquid reservoir 1 at the set water level in the first operation mode or the set water level in the second operation mode.

液体溜め部1には液位検出手段16が設けてある。液位検出手段16としては、第1運転モード時における設定水位(液位)を検出するための第1液位検出手段16aと、第2運転モード時における設定水位(液位)を検出するための第2液位検出手段16bとがある。   The liquid reservoir 1 is provided with a liquid level detecting means 16. The liquid level detection means 16 includes a first liquid level detection means 16a for detecting a set water level (liquid level) in the first operation mode, and a set water level (liquid level) in the second operation mode. Second liquid level detecting means 16b.

第1液位検出手段16aで検出する第1運転モード時における液体溜め部1内における設定水位(液位)は霧化ノズル4の先端部のレベルと同じ水位に設定してある。したがって、静電霧化装置Aを、切換え手段9により第1運転モードに設定して第1運転モードで運転している時は、第1液位検出手段16aにより液体溜め部1の水位を検知し、液体溜め部1の水位が上記設定水位よりも下がるとポンプ15により液体補給部7内に溜まっている水Wを液体溜め部1に補給し、図1、図3、図5に示すように液体溜め部1の水位(液位)を第1運転モード時における上記設定水位(つまり液体溜め部1の先端部と同じ水位)に保つようになっている。   The set water level (liquid level) in the liquid reservoir 1 during the first operation mode detected by the first liquid level detection means 16a is set to the same level as the level of the tip of the atomizing nozzle 4. Therefore, when the electrostatic atomizer A is set to the first operation mode by the switching means 9 and is operated in the first operation mode, the water level of the liquid reservoir 1 is detected by the first liquid level detection means 16a. When the water level of the liquid reservoir 1 falls below the set water level, the water W accumulated in the liquid replenishment unit 7 is replenished to the liquid reservoir 1 by the pump 15, as shown in FIGS. 1, 3, and 5. Further, the water level (liquid level) of the liquid reservoir 1 is maintained at the set water level in the first operation mode (that is, the same water level as the tip of the liquid reservoir 1).

このように第1液位検出手段16aで水位を検知し、この第1液位検出手段16aを制御部17に入力し、液体溜め部1の水位が液体溜め部1の先端部と同じ水位に保持されるように制御部17によりポンプ15を制御することで、第1運転モード時における上記設定水位を保持し、霧化ノズル4の先端部には水頭圧が作用せず、孔13の最先端の最も小径となった毛細管現象を発生させる部分における毛細管現象により液体溜め部1に連通した孔13内の水Wが供給されるようになっている。   In this way, the first liquid level detection means 16a detects the water level, the first liquid level detection means 16a is input to the control unit 17, and the water level of the liquid reservoir 1 is the same as the tip of the liquid reservoir 1. By controlling the pump 15 by the control unit 17 so as to be held, the set water level in the first operation mode is held, and the water head pressure does not act on the tip of the atomizing nozzle 4, so The water W in the hole 13 communicating with the liquid reservoir 1 is supplied by the capillary phenomenon at the portion where the capillary phenomenon having the smallest diameter at the tip is generated.

ここで、本実施形態においては、上記第1液位検出手段16a、ポンプ15、制御部17により、第1運転モードの設定時に液体溜め部1の液位が霧化ノズル4の先端部のレベルとほぼ同じ位置を保つように液体補給部7から液体Wを供給する手段を構成してある。   Here, in the present embodiment, the liquid level of the liquid reservoir 1 is set to the level of the tip of the atomizing nozzle 4 when the first operation mode is set by the first liquid level detection means 16a, the pump 15, and the control unit 17. Means for supplying the liquid W from the liquid replenishing unit 7 so as to maintain the substantially same position.

また、第2液位検出手段16bで検出する第2運転モード時における液体溜め部1内における設定水位(液位)は霧化ノズル4の先端部のレベルよりも所定高さ高い水位に設定してある。したがって、静電霧化装置Aを、切換え手段9により第2運転モードに設定して第2運転モードで運転している時は、第2液位検出手段16bにより液体溜め部1の水位を検知し、液体溜め部1の水位が上記設定水位よりも下がるとポンプ15により液体補給部7内に溜まっている水Wを液体溜め部1に補給し、図2、図4、図6に示すように液体溜め部1の水位(液位)を第2運転モード時における上記設定水位に保つようになっている。   Further, the set water level (liquid level) in the liquid reservoir 1 in the second operation mode detected by the second liquid level detecting means 16b is set to a water level that is a predetermined height higher than the level of the tip of the atomizing nozzle 4. It is. Therefore, when the electrostatic atomizer A is set to the second operation mode by the switching means 9 and is operated in the second operation mode, the water level of the liquid reservoir 1 is detected by the second liquid level detection means 16b. Then, when the water level of the liquid reservoir 1 falls below the set water level, the water W accumulated in the liquid replenisher 7 is replenished to the liquid reservoir 1 by the pump 15, as shown in FIGS. 2, 4, and 6. In addition, the water level (liquid level) of the liquid reservoir 1 is maintained at the set water level in the second operation mode.

このように第2液位検出手段16bで水位を検知し、この第2液位検出手段16bを制御部17に入力し、液体溜め部1の水位が上記液体溜め部1の先端部よりも所定高さ高い水位に保持されるように制御部17によりポンプ15を制御することで、第2運転モード時における上記設定水位を保持し、霧化ノズル4の先端部の放電電極4aの先端部に表面張力により形成される液玉W1に常に決められた一定の水頭圧が作用するようになっている。この水頭圧(つまり、水頭圧を発生させるための上記第2運転モード時における設定水位)は霧化ノズル4の先端部に設けた放電電極4aの最先端に表面張力により液玉W1が形成されるのを阻害しない程度の水頭圧が作用するように設定してある。   In this way, the water level is detected by the second liquid level detection means 16b, and this second liquid level detection means 16b is input to the control unit 17, so that the water level of the liquid reservoir 1 is more predetermined than the tip of the liquid reservoir 1. By controlling the pump 15 by the control unit 17 so as to be held at a high water level, the set water level in the second operation mode is held, and the tip of the discharge electrode 4a at the tip of the atomizing nozzle 4 is held. A constant water head pressure determined at all times acts on the liquid ball W1 formed by the surface tension. This water head pressure (that is, the set water level in the second operation mode for generating the water head pressure) forms a liquid ball W1 due to surface tension at the forefront of the discharge electrode 4a provided at the tip of the atomizing nozzle 4. The water head pressure is set so that it does not impede.

ここで、本実施形態においては、上記第2液位検出手段16b、ポンプ15、制御部17により、第2運転モードの設定時に液体溜め部1の液位が霧化ノズル4の先端部のレベルよりも所定高さ高い位置を保つように液体補給部7から液体溜め部1に液体Wを供給する手段を構成してある。   Here, in the present embodiment, the liquid level of the liquid reservoir 1 is set to the level of the tip of the atomizing nozzle 4 when the second operation mode is set by the second liquid level detection unit 16b, the pump 15, and the control unit 17. Means for supplying the liquid W from the liquid replenishing unit 7 to the liquid reservoir 1 is configured to maintain a position higher than the predetermined height.

第1液位検出手段16a、第2液位検出手段16bとしては、例えば磁石付の発泡材料のようなフロートを液体溜め部1内に浮かべて、上下2箇所の液位の検出部にかかる磁界の変化を検出することで第1運転モード、第2運転モードにおけるそれぞれの設定液置を検出するようなもの、あるいは、第1液位検出手段16a、第2液位検出手段16bとして、発泡材料のようなフロートを液体溜め部1内に浮かべて、上下2箇所の検出部における光の反射率を検出することで第1運転モード、第2運転モードにおけるそれぞれの設定液置を検出するようなものが考えられるが、必ずしもこれにのみ限定されず、従来から公知の種々の水位センサ等が採用できる。   As the first liquid level detection means 16a and the second liquid level detection means 16b, for example, a float such as a foam material with a magnet is floated in the liquid reservoir 1, and the magnetic field applied to the two liquid level detection parts at the top and bottom. As the first liquid level detecting means 16a and the second liquid level detecting means 16b, the foam material is detected by detecting the set liquid positions in the first operation mode and the second operation mode by detecting the change of A float such as the above is floated in the liquid reservoir 1, and the set liquid positions in the first operation mode and the second operation mode are detected by detecting the reflectance of light in the two upper and lower detectors. However, the present invention is not necessarily limited thereto, and various conventionally known water level sensors can be employed.

そして、各検出部における検出信号を制御部17に入力して液体Wの供給制御及び高電圧の印加状態の制御を行う。   And the detection signal in each detection part is input into the control part 17, and supply control of the liquid W and control of the application state of a high voltage are performed.

なお、上限液位センサ31を第2液位検出手段16bの検出部よりも上方位置に設けてもよい。この場合、何らかの理由で液体補給部7から液体溜め部1に液体Wが過剰に供給された場合、上限液位センサ31により検出して制御部17によりポンプ15を停止するように制御する。これにより霧化ノズル4の先端部に形成された液玉W1に必要以上の水頭圧が作用しないようにでき、霧化ノズル4の先端部から水Wが下方に垂れ落ちないようにし、高電圧を印加した場合における安全性を確保することができるようになっている。   The upper limit liquid level sensor 31 may be provided at a position above the detection unit of the second liquid level detection means 16b. In this case, when the liquid W is excessively supplied from the liquid replenishment unit 7 to the liquid reservoir 1 for some reason, it is detected by the upper limit liquid level sensor 31 and controlled to stop the pump 15 by the control unit 17. This prevents excessive water head pressure from acting on the liquid ball W1 formed at the tip of the atomizing nozzle 4 and prevents the water W from dripping downward from the tip of the atomizing nozzle 4. It is possible to ensure the safety when applying.

上記した静電霧化装置Aは、切換え手段9により第1運転モード又は第2運転モードのいずれかを選択して運転するものである。   The electrostatic atomizer A described above is operated by selecting either the first operation mode or the second operation mode by the switching means 9.

第1運転モードで運転する場合は、金属イオン溶出手段Bにより溶出されたZnイオンを含む液体溜め部1の液位が霧化ノズル4の先端部のレベルとほぼ同じ位置を保つように制御され、霧化ノズル4の先端部には水頭圧がかからず、霧化ノズル4の孔13の先端における毛細管現象によって霧化ノズル4の先端部にZnイオンを含んだ水Wが供給され表面張力により液玉W1状態となり、この状態で霧化ノズル4の先端部の放電電極4aと対向電極14との間に高電圧(8kV程度)を印加することで放電電極4a先端に表面張力により液玉W1状に保持された水Wが帯電し、帯電した水Wにクーロン力が働き、液玉W1が局所的に円錐形状(テイラーコーン)に盛り上がり、円錐形状となった水Wの最先端に電荷が集中して電荷の密度が高密度となり、高密度の電荷の反発力ではじけるようにして最先端の水Wが分裂・飛散(レーリー分裂)を繰り返して静電霧化を行い、ナノメータサイズの帯電微粒子ミストを大量に発生させる。このようにしてZnイオンを含む水Wを静電霧化することでより発生したナノメータサイズの帯電微粒子ミストには活性種(ラジカル)が含まれると共に、Znイオンが含まれた状態となる。   When operating in the first operation mode, the liquid level of the liquid reservoir 1 containing Zn ions eluted by the metal ion elution means B is controlled so as to maintain the same level as the level of the tip of the atomizing nozzle 4. The water head pressure is not applied to the tip of the atomizing nozzle 4, and water W containing Zn ions is supplied to the tip of the atomizing nozzle 4 by capillary action at the tip of the hole 13 of the atomizing nozzle 4. In this state, a high voltage (about 8 kV) is applied between the discharge electrode 4a at the tip of the atomizing nozzle 4 and the counter electrode 14, and the liquid ball is caused by surface tension at the tip of the discharge electrode 4a. The water W held in the shape of W1 is charged, the Coulomb force acts on the charged water W, the liquid ball W1 locally rises into a conical shape (Taylor cone), and is charged at the forefront of the conical water W. Concentration of charge It becomes Density performs electrostatic atomization state-of-the-art water W as burst repulsive force of the high density of the charge is repeated division and scattering (Rayleigh division), and generates a large amount of charged fine mist of nanometer size. The nanometer-sized charged fine particle mist generated by electrostatic atomization of the water W containing Zn ions in this manner contains active species (radicals) and also contains Zn ions.

そして、上記のようにしてテイラーコーンの最先端のZnイオンを含んだ水Wが静電霧化されて水Wが消費されると、消費された分と同じ量のZnイオンを含んだ水Wが毛細管現象により霧化ノズル4の先端に供給され、安定してZnイオンを含んだナノメータサイズの帯電微粒子ミストを発生させる運転が継続される。   And when the water W containing the state-of-the-art Zn ions of Taylor corn is electrostatically atomized and consumed as described above, the water W containing the same amount of Zn ions as consumed. Is supplied to the tip of the atomizing nozzle 4 by capillary action, and the operation of stably generating nanometer-sized charged fine particle mist containing Zn ions is continued.

このようにして第1運転モードでの運転の際に生成されたナノメータサイズの帯電微粒子ミストは放電電極4aと対向して位置する対向電極14に向けて移動して放出空間に放出される。放出空間に放出されたナノメータサイズの帯電微粒子ミストは放出空間の隅々まで飛散してナノメータサイズの帯電微粒子ミストに含まれる活性種(ラジカル)により放出空間内の除菌、脱臭、有害物質の分解等、あるいは、ナノメータサイズの帯電微粒子ミストが放出空間内にある物の内部に付着浸透して除菌、脱臭、有害物質の分解等を行なうのであるが、ナノメータサイズの帯電微粒子ミスト中には更にZnイオンが含まれているので、飛散中や付着浸透した際に放出空間や付着した物に存在する菌を除菌することとなって、より除菌効果が高まるものであり、しかも、放出空間内の物に付着したZnイオンは、付着して残っているので、その後、該当箇所に新たに発生又は新たに付着した菌もこのZnイオンにより除菌ができることになる。   Thus, the nanometer-sized charged fine particle mist generated during the operation in the first operation mode moves toward the counter electrode 14 positioned opposite to the discharge electrode 4a and is discharged into the discharge space. The nanometer-sized charged fine particle mist released into the release space is scattered to every corner of the release space, and the active species (radicals) contained in the nanometer-size charged fine particle mist disinfect, deodorize, and decompose harmful substances in the release space. Or nanometer-sized charged fine particle mist adheres and penetrates into the inside of the release space to disinfect, deodorize, decompose harmful substances, etc. Since Zn ions are contained, the bacteria present in the release space and attached objects will be sterilized during the scattering and permeation, and the sterilization effect will be further enhanced. Since the Zn ions attached to the inside remain attached, the bacteria that are newly generated or newly attached to the corresponding location can be sterilized by this Zn ion. It made.

一方、第2運転モードで運転する場合は、金属イオン溶出手段Bにより溶出されたZnイオンを含む液体溜め部1の液位が霧化ノズル4の先端部よりも所定高さ高いレベルを保つように制御される。このため、霧化ノズル4の先端部の放電電極4aの先端部に表面張力により形成されるZnイオンを含んだ液玉W1に常に決められた一定の水頭圧が作用している。この状態で電圧印加部5により高電圧を印加することで、放電電極4aの先端に表面張力により液玉W1状に保持された水Wが帯電し、帯電した水Wにクーロン力が働き、液玉W1が局所的に円錐形状(テイラーコーン)に盛り上がり、円錐形状となった水Wの最先端に電荷が集中して電荷の密度が高密度となり、高密度の電荷の反発力ではじけるようにして最先端の水Wが裂・飛散(レーリー分裂)を繰り返して静電霧化を行い、主としてナノメータサイズの帯電微粒子ミストを大量に発生させ、更に、テイラーコーンとなった液玉W1には所定の水頭圧が作用するので、液玉W1の表面においては表面張力により保たれる液玉W1状態が僅かな力でも破れ得る不安定な状態となっており、このため、最先端のように電荷が集中する箇所でない液玉W1の最先端以外の表面部分においても、高電圧の印加により液玉W1から表面の一部が千切れて分裂・飛散するものであり、この部分においては、電荷が最先端ほど集中していないので水Wを分裂させるエネルギーも小さいので、主としてミクロンサイズの帯電微粒子ミストが生成されると考えられる。上記のようにしてZnイオンを含んだナノメータサイズの帯電微粒子ミスト、Znイオンを含んだミクロンサイズの帯電微粒子ミストが生成され、このようにしてZnイオンを含んだ水Wが消費されると、放電電極4aの先端には絶えず表面張力で液玉W1が形成されるように水頭圧により水Wが供給されるので、継続してナノメータサイズの帯電微粒子ミスト、ミクロンサイズの帯電微粒子ミストが生成され続けることになる。上記のようにして生成されるナノメータサイズの帯電微粒子ミストと、ミクロンサイズの帯電微粒子ミストには活性種(ラジカル)が含まれる。   On the other hand, when operating in the second operation mode, the liquid level of the liquid reservoir 1 containing Zn ions eluted by the metal ion elution means B is maintained at a predetermined height higher than the tip of the atomizing nozzle 4. Controlled. For this reason, a constant water head pressure that is always determined acts on the liquid ball W1 containing Zn ions formed by surface tension at the tip of the discharge electrode 4a at the tip of the atomizing nozzle 4. By applying a high voltage from the voltage application unit 5 in this state, the water W held in the shape of the liquid ball W1 by the surface tension is charged at the tip of the discharge electrode 4a, and the Coulomb force acts on the charged water W, and the liquid The ball W1 locally swells into a cone shape (Taylor cone), the charge concentrates at the tip of the conical water W, the charge density becomes high, and the repulsive force of the high density charge repels it. The most advanced water W is repeatedly atomized and sprayed (Raleigh splitting) to generate electrostatic mist, generating a large amount of nanometer-sized charged fine particle mist. Therefore, the surface of the liquid ball W1 is in an unstable state where the liquid ball W1 maintained by the surface tension can be broken even with a slight force. Where it concentrates Even on the surface part of the liquid ball W1 other than the most advanced part, the surface of the liquid ball W1 is shredded and split and scattered by the application of a high voltage. Since the energy for splitting the water W is small, it is thought that charged micron mist of micron size is mainly generated. When nanometer-sized charged fine particle mist containing Zn ions and micron-sized charged fine particle mist containing Zn ions are generated as described above, and water W containing Zn ions is consumed in this way, discharge is generated. Since the water W is supplied by the water head pressure so that the liquid ball W1 is constantly formed by the surface tension at the tip of the electrode 4a, the nanometer-sized charged fine particle mist and the micron-sized charged fine particle mist are continuously generated. It will be. The nanometer-sized charged fine particle mist and the micron-sized charged fine particle mist generated as described above contain active species (radicals).

このようにして第2運転モードでの運転の際に同時に生成されたナノメータサイズの帯電微粒子ミストと、ミクロンサイズの帯電微粒子ミストは放電電極4aと対向して位置する対向電極14に向けて移動して放出空間に放出される。放出空間に放出されたナノメータサイズの帯電微粒子ミストは放出空間の隅々まで飛散してナノメータサイズの帯電微粒子ミストに含まれる活性種(ラジカル)により放出空間内の除菌、脱臭、有害物質の分解等、あるいは、ナノメータサイズの帯電微粒子ミストが放出空間内にある物の内部に付着浸透して除菌、脱臭、有害物質の分解等を行なうのであるが、ナノメータサイズの帯電微粒子ミスト及びミクロンサイズの帯電微粒子ミスト中には更にZnイオンが含まれているので、飛散中や付着浸透した際に放出空間や付着した物に存在する菌を除菌することとなって、より除菌効果が高まるものであり、しかも、放出空間内の物に付着したZnイオンは、付着して残っているので、その後、該当箇所に新たに発生又は新たに付着した菌もこのZnイオンにより除菌ができることになる。特に、ミクロンサイズの帯電微粒子ミスト中には多量のZnイオンが含まれることになるので、上記Znイオンによる殺菌効果が向上する。   Thus, the nanometer-sized charged fine particle mist and the micron-sized charged fine particle mist simultaneously generated during the operation in the second operation mode move toward the counter electrode 14 positioned opposite to the discharge electrode 4a. To be released into the release space. The nanometer-sized charged fine particle mist released into the release space is scattered to every corner of the release space, and the active species (radicals) contained in the nanometer-size charged fine particle mist disinfect, deodorize, and decompose harmful substances in the release space. , Or nanometer-sized charged fine particle mist adheres and penetrates inside objects in the release space to disinfect, deodorize, decompose harmful substances, etc. Since the charged fine particle mist further contains Zn ions, the bacteria that exist in the release space and attached objects are disinfected when scattered or adhering, and the sterilization effect is further enhanced. In addition, since the Zn ions attached to the objects in the release space remain attached, the bacteria that are newly generated or newly attached to the corresponding place are So that it is sterilization by the Zn ion. In particular, since micron-sized charged fine particle mist contains a large amount of Zn ions, the sterilization effect by the Zn ions is improved.

ここで、上記ナノメータサイズの帯電微粒子ミストだけでは粒径が極めて小さいので、放出空間の加湿、あるいは放出空間内の物の加湿に当たっては十分ではないが、第2運転モード時にミクロンサイズの帯電微粒子ミストを放出するので、放出空間の加湿、あるいは放出空間内の物への加湿を十分に行なえ、しかも、ナノメータサイズの帯電微粒子ミストだけで加湿する場合に比べて少ないエネルギーコストで大量の液体を帯電微粒子ミストとして生成できる。   Here, since the particle size is extremely small only by the nanometer-sized charged fine particle mist, it is not sufficient for humidifying the discharge space or humidifying an object in the discharge space. , Which can sufficiently humidify the discharge space or humidify objects in the discharge space, and charge a large amount of liquid at a low energy cost compared to the case of humidifying only with nanometer-sized charged fine particle mist. Can be generated as a mist.

なお、霧化ノズル4の先端部にZnイオンが溶解した水Wを加圧して供給するに当たり、加圧力を調整する加圧調整手段を設けてもよい。上記実施形態においては、第2液位検出手段16bによる測定する水位を可変可能とすることで、霧化ノズル4の先端部の放電電極4aの先端部に形成される液玉W1に作用させる水頭圧を変えることができ、これにより霧化ノズル4の先端部の放電電極4aの先端部に形成される液玉W1に作用させる加圧力を調整したりすることができる。これによりZnイオンを含んだナノメータサイズの帯電微粒子ミスト、ミクロンサイズの帯電微粒子ミストの粒径分布の調整や、Znイオンを含んだナノメータサイズの帯電微粒子ミストの発生量とミクロンサイズの帯電微粒子ミストの発生量の割合を調整でき、除菌、脱臭、農薬の分解等をより重要視する場合と、加湿をより重要視する場合等、目的に応じて使い分けることが可能となる。   In addition, when pressurizing and supplying the water W in which Zn ions are dissolved to the tip portion of the atomizing nozzle 4, a pressurizing adjusting unit that adjusts the pressurizing force may be provided. In the above embodiment, the water level to be measured by the second liquid level detection means 16b is variable, so that the water head that acts on the liquid ball W1 formed at the tip of the discharge electrode 4a at the tip of the atomizing nozzle 4 is used. The pressure can be changed, and thereby the pressure applied to the liquid ball W1 formed at the tip of the discharge electrode 4a at the tip of the atomizing nozzle 4 can be adjusted. As a result, the particle size distribution of nanometer-sized charged fine particle mist containing Zn ions and micron-sized charged fine particle mist, the generation amount of nanometer-sized charged fine particle mist containing Zn ions, and the generation of micron-sized charged fine particle mist The ratio of the amount generated can be adjusted, and it is possible to use properly according to the purpose, such as when sterilization, deodorization, decomposition of agricultural chemicals, etc. are more important, and when humidification is more important.

上記実施形態では静電霧化装置Aとして、除菌力を有するZnイオンを含んだミクロンサイズの帯電微粒子ミストのみを生成する第1運転モードとZnイオンを含んだナノメータサイズの帯電微粒子ミストとミクロンサイズの帯電微粒子ミストとを生成する第2運転モードとを切り替えて選択できるようにした例で示したが、本発明の静電霧化装置Aとしては、除菌力を有するZnイオンを含んだミクロンサイズの帯電微粒子ミストのみを生成する静電霧化装置Aであってもよく、あるいは、除菌力を有するZnイオンを含んだミクロンサイズの帯電微粒子ミストのみを生成する静電霧化装置Aであってもよい。   In the above embodiment, as the electrostatic atomizer A, the first operation mode that generates only micron-sized charged fine particle mist containing Zn ions having sterilizing power, the nanometer-sized charged fine particle mist containing Zn ions, and micron As shown in the example in which the second operation mode for generating the charged fine particle mist of the size can be switched and selected, the electrostatic atomizer A of the present invention contains Zn ions having a sterilizing power. It may be an electrostatic atomizer A that generates only micron-sized charged fine particle mist, or an electrostatic atomizer A that generates only micron-sized charged fine particle mist containing Zn ions having sterilizing power. It may be.

また、上記いずれの場合であっても、静電霧化するための液体WにZnイオンを溶出させるに当って、Znイオンの溶出量を調整する手段を設けることで、帯電微粒子ミストに含んで放出するZnイオン量を調整して除菌能力の調整を行うようにしてもよい。   In any of the above cases, when eluting Zn ions into the liquid W for electrostatic atomization, a means for adjusting the elution amount of Zn ions is provided, so that it is included in the charged fine particle mist. The amount of Zn ions to be released may be adjusted to adjust the sterilization ability.

Znイオンの溶出量を調整する手段としては、例えば、電圧調整操作部10を設け、2種類の金属3間に印加する電圧を電圧調整操作部10により調整し、該調整信号に基づき制御部17により電圧を可変制御することでZnイオンの溶出量を制御することができる。この場合、印加する電圧を可変させることでZnイオンの溶出量を制御するので、簡単且つ正確にZnイオンの溶出量を調整できて、除菌能力の調整ができることになる。   As means for adjusting the elution amount of Zn ions, for example, the voltage adjustment operation unit 10 is provided, the voltage applied between the two types of metals 3 is adjusted by the voltage adjustment operation unit 10, and the control unit 17 is based on the adjustment signal. Thus, the amount of Zn ions eluted can be controlled by variably controlling the voltage. In this case, since the elution amount of Zn ions is controlled by varying the applied voltage, the elution amount of Zn ions can be adjusted easily and accurately, and the sterilization ability can be adjusted.

また、Znイオンの溶出量は液体Wの導電率に依存するので、Znイオンの溶出量を調整するに当って、図3、図4に示すように導電率センサ20を設けて液体Wの導電率を測定し、この導電率線センサ20で測定した液体Wの導電率情報を制御部17に入力し、このようにして測定した液体Wの導電率に応じて2種類の金属3a、3b間に印加する電圧を可変して、設定されたZnイオンの溶出量となるように電圧の制御することで、正確な溶出量に調整することができる。この場合も電圧調整操作部10で調整することで、液体Wの導電率に応じて更に目的とする目的とするZnイオンの溶出量となるように電圧を制御して、溶出量の調整ができる。   In addition, since the elution amount of Zn ions depends on the conductivity of the liquid W, in adjusting the elution amount of Zn ions, the conductivity sensor 20 is provided as shown in FIGS. The conductivity information of the liquid W measured by the conductivity line sensor 20 is input to the control unit 17, and the distance between the two types of metals 3a and 3b is determined according to the conductivity of the liquid W measured in this way. By varying the voltage applied to, and controlling the voltage so that the set amount of Zn ions is eluted, the amount can be adjusted to an accurate amount. In this case as well, by adjusting with the voltage adjusting operation unit 10, the voltage can be controlled so that the target elution amount of Zn ions can be further adjusted according to the conductivity of the liquid W, and the elution amount can be adjusted. .

本発明の静電霧化装置の一実施形態を示し、第1モードの概略構成図である。1 shows an embodiment of an electrostatic atomizer of the present invention and is a schematic configuration diagram of a first mode. FIG. 同上の一実施形態を示し、第2モードの概略構成図である。It is one example of the same as above and is a schematic configuration diagram of a second mode. 本発明の静電霧化装置の他の実施形態を示し、第1モードの概略構成図である。The other embodiment of the electrostatic atomizer of this invention is shown, and it is a schematic block diagram of a 1st mode. 同上の他の実施形態を示し、第2モードの概略構成図である。It is a schematic block diagram of 2nd mode which shows other embodiment same as the above. 本発明の静電霧化装置の更に他の実施形態を示し、第1モードの概略構成図である。FIG. 6 is a schematic configuration diagram of a first mode showing still another embodiment of the electrostatic atomizer of the present invention. 同上の更に他の実施形態を示し、第2モードの概略構成図である。It is a schematic block diagram of 2nd mode which shows other embodiment same as the above.

符号の説明Explanation of symbols

1 液体溜め部
2 液体搬送部
3 金属
A 静電霧化装置
B 金属イオン溶出手段
W 液体
DESCRIPTION OF SYMBOLS 1 Liquid reservoir part 2 Liquid conveyance part 3 Metal A Electrostatic atomizer B Metal ion elution means W Liquid

Claims (1)

液体に高電圧を印加して静電霧化する静電霧化装置において、静電霧化のために供給する液体に除菌力のあるZnイオンを溶出させる金属イオン溶出手段を設けて成ることを特徴とする静電霧化装置。   In an electrostatic atomization apparatus that applies high voltage to a liquid to form an electrostatic atomization, metal ion elution means for eluting Zn ions having a sterilizing power to a liquid supplied for electrostatic atomization is provided. An electrostatic atomizer characterized by.
JP2008246916A 2008-09-25 2008-09-25 Electrostatic atomizer Expired - Fee Related JP4821826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246916A JP4821826B2 (en) 2008-09-25 2008-09-25 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246916A JP4821826B2 (en) 2008-09-25 2008-09-25 Electrostatic atomizer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006163867A Division JP4816275B2 (en) 2006-06-13 2006-06-13 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2008302364A true JP2008302364A (en) 2008-12-18
JP4821826B2 JP4821826B2 (en) 2011-11-24

Family

ID=40231534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246916A Expired - Fee Related JP4821826B2 (en) 2008-09-25 2008-09-25 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP4821826B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187742A (en) * 2009-02-16 2010-09-02 Toshiba Corp Washing/drying machine
WO2023151328A1 (en) * 2022-02-09 2023-08-17 深圳麦克韦尔科技有限公司 Atomizer and electronic atomization device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079714A (en) * 2001-09-14 2003-03-18 Matsushita Electric Works Ltd Air cleaner
JP2004298754A (en) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd Electrolyzer and washing machine equipped with the electrolyzer
JP2005164139A (en) * 2003-12-03 2005-06-23 Matsushita Electric Ind Co Ltd Humidifier
JP2005269967A (en) * 2004-03-24 2005-10-06 Sharp Corp Device and method for preservation
JP2005270278A (en) * 2004-03-24 2005-10-06 Sharp Corp Bactericidal solution applying device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003079714A (en) * 2001-09-14 2003-03-18 Matsushita Electric Works Ltd Air cleaner
JP2004298754A (en) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd Electrolyzer and washing machine equipped with the electrolyzer
JP2005164139A (en) * 2003-12-03 2005-06-23 Matsushita Electric Ind Co Ltd Humidifier
JP2005269967A (en) * 2004-03-24 2005-10-06 Sharp Corp Device and method for preservation
JP2005270278A (en) * 2004-03-24 2005-10-06 Sharp Corp Bactericidal solution applying device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187742A (en) * 2009-02-16 2010-09-02 Toshiba Corp Washing/drying machine
WO2023151328A1 (en) * 2022-02-09 2023-08-17 深圳麦克韦尔科技有限公司 Atomizer and electronic atomization device

Also Published As

Publication number Publication date
JP4821826B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4816275B2 (en) Electrostatic atomizer
JP4645501B2 (en) Electrostatic atomizer
JP4674541B2 (en) Electrostatic atomization device and food storage equipped with electrostatic atomization device
TWI324088B (en) Electrostatically atomizing device
US8398005B2 (en) Electrostatic atomizing device
JP4645503B2 (en) Electrostatic atomizer
JP2006204968A (en) Atomizer
JP4821826B2 (en) Electrostatic atomizer
JP4552905B2 (en) Electrostatic atomizer
JP2011073003A (en) Electrostatic atomizing device
JP2007260626A (en) Electrostatic atomizing device
JP4321435B2 (en) Electrostatic atomizer
JP2006122758A (en) Electrostatic atomization apparatus
JP4258497B2 (en) Electrostatic atomizer
JP2008238019A (en) Dehumidifier
JP4609145B2 (en) Electrostatic atomizer
JP2009268944A (en) Electrostatic atomizing device
JP5462707B2 (en) humidifier
JP2010046415A (en) Mist generator
JP2005279329A (en) Electrostatic atomizer
JP2005279330A (en) Electrostatic atomizer
JP2007105636A (en) Electrostatic atomizing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081006

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees