JP2008302328A - Method for manufacturing titanium oxide film-formed member, photocatalyst, photoelectrode, and water treatment apparatus - Google Patents

Method for manufacturing titanium oxide film-formed member, photocatalyst, photoelectrode, and water treatment apparatus Download PDF

Info

Publication number
JP2008302328A
JP2008302328A JP2007153419A JP2007153419A JP2008302328A JP 2008302328 A JP2008302328 A JP 2008302328A JP 2007153419 A JP2007153419 A JP 2007153419A JP 2007153419 A JP2007153419 A JP 2007153419A JP 2008302328 A JP2008302328 A JP 2008302328A
Authority
JP
Japan
Prior art keywords
titanium oxide
oxide film
electrode
water
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007153419A
Other languages
Japanese (ja)
Other versions
JP5093801B2 (en
Inventor
Yasuhisa Maeda
康久 前田
Hiroshi Tsukagoshi
洋 塚越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka University NUC
Ihara Science Corp
Original Assignee
Shizuoka University NUC
Ihara Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka University NUC, Ihara Science Corp filed Critical Shizuoka University NUC
Priority to JP2007153419A priority Critical patent/JP5093801B2/en
Publication of JP2008302328A publication Critical patent/JP2008302328A/en
Application granted granted Critical
Publication of JP5093801B2 publication Critical patent/JP5093801B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a titanium oxide film-formed member, with which the titanium oxide film exhibiting adhesive strength even to the member having a comparatively large area can be formed uniformly and with good reproducibility by a simple and easy-to-handle constitution and to provide a water treatment apparatus using a photoelectrode obtained by this manufacturing method. <P>SOLUTION: A base body BP consisting of a titanium material is oxidized electrolytically in a solution 12 of 0.1 mol/L nitric acid concentration to oxidize the surface of the base body BP and form the titanium oxide film. The titanium oxide film-formed base body BP is exposed to an atmosphere of 500°C and heat-treated to cause the titanium oxide film on the base body BP to have an anatase structure by thermal oxidation. The base body BP having the titanium oxide film of the anatase structure is used as a first electrode 25a to constitute the water treatment apparatus. The water treatment apparatus has a pair of electrodes 25 including the first electrode 25a in the upper part of a water storage tank 21 for storing the water W to be treated. A bias voltage is applied between the pair of electrodes from a power unit 27. An ultraviolet illumination lamp 28 is arranged above the first electrode 25a. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、チタンまたはチタンを含む合金からなる基体の表面に酸化チタンからなる膜を有する酸化チタン膜成形部材の製造方法、同製造方法により製造された光触媒、光電極および同製造方法により製造された酸化チタン膜成形部材を用いた水処理装置に関する。   The present invention relates to a method for producing a titanium oxide film-formed member having a film made of titanium oxide on the surface of a substrate made of titanium or an alloy containing titanium, a photocatalyst produced by the production method, a photoelectrode, and the production method. The present invention relates to a water treatment apparatus using a titanium oxide film forming member.

従来から、酸化チタン(TiO)は、紫外線を受けることにより強力な酸化力を発揮する性質を利用して光触媒として用いられている。光触媒は、紫外線を含む光が照射されることにより、その表面に生じる活性酸素による強力な酸化力によって、同表面に接する有機物の分解や細菌の死滅化を行うことができる物質の総称である。光触媒としての酸化チタンは、粒状または粉末状で用いられることがあるが、被処理物(例えば、水)内での均一な分散や被処理物からの回収が困難であるなどその取り扱いが極めて不便であるため、薄膜として用いられることが多い。 Conventionally, titanium oxide (TiO 2 ) has been used as a photocatalyst by utilizing the property of exhibiting a strong oxidizing power by receiving ultraviolet rays. A photocatalyst is a general term for substances that can decompose organic substances in contact with the surface or kill bacteria by the strong oxidizing power of active oxygen generated on the surface when irradiated with light including ultraviolet rays. Titanium oxide as a photocatalyst may be used in the form of particles or powder, but its handling is extremely inconvenient because it is difficult to uniformly disperse in the object to be treated (for example, water) or to recover from the object to be treated. Therefore, it is often used as a thin film.

具体的には、導体または不導体からなる基体の表面に電気泳動やゾルゲル法などにより酸化チタンの薄膜を成形して用いられる。ところが、このような電気泳動やゾルゲル法を用いた薄膜の成形法においては、基体に対して酸化チタンの微粒子を付着させることにより膜の成形が行われることから、成形される膜の密着性、均一性および再現性が低く、面積の大きな基体表面に膜を成形することが困難であるという問題があった。   Specifically, a titanium oxide thin film is formed on the surface of a base made of a conductor or a nonconductor by electrophoresis or a sol-gel method. However, in such a thin film forming method using electrophoresis or sol-gel method, since the film is formed by attaching fine particles of titanium oxide to the substrate, the adhesion of the film to be formed, There is a problem that the uniformity and reproducibility are low and it is difficult to form a film on a substrate surface having a large area.

このため、例えば、下記特許文献1に示す製造方法においては、チタンまたはチタン基合金からなる基体を硝酸を含む強酸液中に浸漬することにより、基体の表面を酸化させて酸化チタンの膜を成形している。すなわち、チタン(またはチタン基合金)の表面を酸化させて膜を成形することにより、酸化チタンの膜の密着性等を担保しようとしている。
特開2001−170495号公報
For this reason, for example, in the manufacturing method shown in Patent Document 1 below, a substrate made of titanium or a titanium-based alloy is immersed in a strong acid solution containing nitric acid to oxidize the surface of the substrate to form a titanium oxide film. is doing. That is, an attempt is made to secure the adhesion of a titanium oxide film by oxidizing the surface of titanium (or a titanium-based alloy) to form a film.
JP 2001-170495 A

しかしながら、上記特許文献1による製造方法においては、チタン(またはチタン基合金)の表面を酸化させるために硝酸の濃度が20%を超える強酸液を用いている。このため、大きな面積の基体の表面を酸化させるためには、多くの硝酸が必要となり経済性が悪いという問題がある。また、硝酸は、強酸性の液体であり強力な酸化能力を有するため、20%を超える強酸液の取り扱いには相当の注意を要し、作業や管理が煩雑であるという問題もある。   However, in the manufacturing method according to Patent Document 1, a strong acid solution having a nitric acid concentration exceeding 20% is used to oxidize the surface of titanium (or a titanium-based alloy). For this reason, in order to oxidize the surface of a base | substrate with a large area, many nitric acids are needed and there exists a problem that economical efficiency is bad. Further, since nitric acid is a strongly acidic liquid and has a strong oxidizing ability, handling of a strong acid solution exceeding 20% requires considerable care, and there is also a problem that work and management are complicated.

本発明は上記問題に対処するためなされたもので、その目的は、簡易かつ取り扱いが容易な構成で、従来技術よりも比較的大きな面積に対しても密着性、均一性および再現性良く酸化チタンの膜を成形することができる酸化チタン膜成形部材の製造方法を提供するとともに、同製造方法により製造された光触媒、光電極および同製造方法により製造された酸化チタン膜成形部材を用いた水処理装置も併せて提供することにある。   The present invention has been made to address the above problems, and its purpose is to have a simple and easy-to-handle structure, and has good adhesion, uniformity and reproducibility over a relatively large area as compared with the prior art. The manufacturing method of the titanium oxide film molding member which can shape | mold the film | membrane of this is provided, and the water treatment using the photocatalyst manufactured by the manufacturing method, the photoelectrode, and the titanium oxide film molding member manufactured by the manufacturing method The device is also provided.

上記目的を達成するため、本発明の特徴は、チタンまたはチタンを含む合金からなる基体の表面に酸化チタンからなる膜を有する酸化チタン膜成形部材の製造方法であって、硝酸を含む溶液中において、前記基体を陽極とするとともに導電性部材を陰極として基体を電解酸化する電解酸化工程を含むことにある。この場合、電解酸化工程における溶液内の硝酸の濃度を、例えば、0.05mol/L以上0.5mol/L以下にするとよい。   In order to achieve the above object, a feature of the present invention is a method for producing a titanium oxide film molded member having a film made of titanium oxide on the surface of a substrate made of titanium or an alloy containing titanium, in a solution containing nitric acid. And an electrolytic oxidation step of electrolytically oxidizing the base body using the base body as an anode and a conductive member as a cathode. In this case, the concentration of nitric acid in the solution in the electrolytic oxidation step may be set to, for example, 0.05 mol / L or more and 0.5 mol / L or less.

このように構成した本発明の特徴によれば、チタンまたはチタンを含む合金によって構成される基体を硝酸が含まれる溶液中において電解酸化処理することにより基体の表面に酸化チタンの膜を成形している。すなわち、基体の表面を酸化させることにより膜の成形が行われている。このため、従来例のように基体の表面に酸化チタンの微粒子を付着させる方法に比べて、密着性および均一性が良好な状態で膜を成形することができる。また、酸化チタンの膜の成形精度は、基体と導電性部材との間に印加する電圧の大きさおよび時間、基体と導電性部材との距離、および溶液中における硝酸の濃度によって制御することができる。すなわち、再現性良く酸化チタンの膜を形成することができる。また、溶液中における硝酸の濃度を0.05mol/L以上0.5mol/L以下の範囲で用いることができるため、従来例に比べて溶液の取り扱いが容易であるとともに、大きな面積に酸化チタンの膜を成形する場合であっても経済的に膜の成形を行うことができる。これらの結果、簡易かつ取り扱いが容易な構成で、比較的大きな面積に対しても密着性、均一性および再現性良く酸化チタンの膜を成形することができる。   According to the feature of the present invention thus configured, a titanium oxide film is formed on the surface of the substrate by electrolytically oxidizing the substrate formed of titanium or an alloy containing titanium in a solution containing nitric acid. Yes. That is, the film is formed by oxidizing the surface of the substrate. For this reason, a film can be formed with good adhesion and uniformity as compared with the conventional method in which fine particles of titanium oxide are adhered to the surface of the substrate. The forming accuracy of the titanium oxide film can be controlled by the magnitude and time of the voltage applied between the substrate and the conductive member, the distance between the substrate and the conductive member, and the concentration of nitric acid in the solution. it can. That is, a titanium oxide film can be formed with good reproducibility. Further, since the concentration of nitric acid in the solution can be used in the range of 0.05 mol / L or more and 0.5 mol / L or less, handling of the solution is easier than in the conventional example, and the titanium oxide has a large area. Even when the film is formed, the film can be formed economically. As a result, a titanium oxide film can be formed with good adhesion, uniformity and reproducibility over a relatively large area with a simple and easy-to-handle configuration.

また、本発明における他の特徴は、前記酸化チタン膜成形部材の製造方法において、さらに、電解酸化工程にて電解酸化された基体を加熱して熱酸化する熱処理工程を含むことにある。この場合、熱処理工程は、例えば、基体を300℃以上850℃以下の温度の雰囲気内で加熱するようにすればよい。これによれば、基体の表面に成形された酸化チタンの膜の表面をアナターゼ構造またはルチル構造とすることができ、光触媒や光電極として好適な酸化チタン膜成形部材とすることができる。   Another feature of the present invention is that the method for producing a titanium oxide film molded member further includes a heat treatment step of heating and thermally oxidizing the substrate that has been electrolytically oxidized in the electrolytic oxidation step. In this case, in the heat treatment step, for example, the substrate may be heated in an atmosphere having a temperature of 300 ° C. or higher and 850 ° C. or lower. According to this, the surface of the titanium oxide film formed on the surface of the substrate can have an anatase structure or a rutile structure, and a titanium oxide film forming member suitable as a photocatalyst or a photoelectrode can be obtained.

また、本発明における他の特徴は、前記酸化チタン膜成形部材の製造方法により製造された酸化チタン膜成形部材によって光触媒または光電極を構成したことにある。これによれば、従来技術に比して面積の大きな光触媒を構成することができ、大量のガスや液体の浄化(有機物の分解やイオンの除去)や殺菌(抗菌、滅菌)、防臭などに用いることができる。また、光電極としても従来技術に比して面積の大きな光電極を構成することができ、大量の液体の浄化(有機物の分解やイオンの除去)や殺菌(抗菌、滅菌)、防臭などに用いることができる。なお、ここで光電極とは、導電性材料の表面に光触媒として作用する半導体物質が電気的に結合したもので電極として用いられるものである。   Another feature of the present invention resides in that a photocatalyst or a photoelectrode is constituted by the titanium oxide film forming member manufactured by the method for manufacturing a titanium oxide film forming member. According to this, a photocatalyst having a larger area than that of the prior art can be formed, and it is used for purification of a large amount of gas and liquid (decomposition of organic substances and removal of ions), sterilization (antibacterial and sterilization), deodorization and the like. be able to. In addition, a photoelectrode having a larger area than that of the prior art can be configured as a photoelectrode, and it is used for purification of a large amount of liquid (decomposition of organic substances and removal of ions), sterilization (antibacterial and sterilization), deodorization, and the like. be able to. Here, the photoelectrode is an electrode in which a semiconductor substance that acts as a photocatalyst is electrically coupled to the surface of a conductive material.

また、本発明の他の特徴は、被処理水を貯留する貯水槽と、前記酸化チタン膜成形部材の製造方法により製造された酸化チタン膜成形部材からなり、貯水槽内に浸漬される第1の電極と、導電性部材からなり、第1の電極と対をなす第2の電極を備えた水処理装置であることにある。   In addition, another feature of the present invention is a first tank which is composed of a water storage tank for storing water to be treated and a titanium oxide film formed member manufactured by the method for manufacturing a titanium oxide film formed member and is immersed in the water storage tank. And a water treatment apparatus including a second electrode which is made of a conductive member and forms a pair with the first electrode.

このように構成した本発明の特徴によれば、従来技術に比して大きな面積の酸化チタン膜成形部材を光電極として用いることができ、大量の被処理水の浄化(有機物の分解やイオンの除去)や殺菌などに用いることができる。   According to the characteristics of the present invention configured as described above, a titanium oxide film-forming member having a larger area than that of the prior art can be used as a photoelectrode, and purification of a large amount of water to be treated (decomposition of organic matter and ion It can be used for removal) and sterilization.

また、本発明の他の特徴は、前記水処理装置において、さらに、第1の電極に紫外線を含む光を照射する光照射手段を備えたことにある。これによれば、光電極である第1の電極に積極的に紫外線を照射することができ、自然光を照射する場合に比べて効率的被処理水を処理することができるとともに、照射される光量を制御することにより処理の効率を制御することもできる。   Another feature of the present invention resides in that the water treatment apparatus further includes light irradiation means for irradiating the first electrode with light containing ultraviolet light. According to this, it is possible to positively irradiate the first electrode, which is a photoelectrode, with ultraviolet rays, and to treat the water to be treated more efficiently compared with the case of irradiating with natural light, and the amount of light to be irradiated. It is also possible to control the processing efficiency by controlling.

また、本発明の他の特徴は、前記水処理装置において、さらに、第1の電極および第2の電極に電圧を印加する電圧印加手段を備えたことにある。これによれば、第1の電極および第2の電極に電圧が印加されると、光(紫外線)が照射されることにより第1の電極内に生じたホール(h+)と電子(e)の分離が促進される。すなわち、第1の電極内に生じたホール(h+)と電子(e)の再結合が減少し、光酸化還元反応の量子効率が高くなる。この結果、第1の電極に接する被処理水の酸化反応がより促進されて、被処理水の浄化処理をより短時間に効率良く行うことができる。 Another feature of the present invention resides in that the water treatment apparatus further includes voltage applying means for applying a voltage to the first electrode and the second electrode. According to this, when a voltage is applied to the first electrode and the second electrode, holes (h + ) and electrons (e generated in the first electrode by irradiation with light (ultraviolet rays) are applied. ) Is promoted. That is, the recombination of holes (h + ) and electrons (e ) generated in the first electrode is reduced, and the quantum efficiency of the photoredox reaction is increased. As a result, the oxidation reaction of the water to be treated in contact with the first electrode is further promoted, and the purification treatment of the water to be treated can be efficiently performed in a short time.

また、本発明の他の特徴は、前記水処理装置において、さらに、貯水槽内の被処理水を流動させる流動手段を備えたことにある。この場合、流動手段は、貯水槽内の被処理水を循環または撹拌するようにすればよい。これによれば、被処理水の処理が行われる第1の電極には常に新たな被処理水が導かれることになる。このため、貯水槽内の被処理水を均一に処理することができる。   In addition, another feature of the present invention is that the water treatment apparatus further includes a flow means for flowing the water to be treated in the water storage tank. In this case, the flow means may circulate or agitate the water to be treated in the water storage tank. According to this, new treated water is always led to the first electrode where the treated water is treated. For this reason, the to-be-processed water in a water tank can be processed uniformly.

以下、本発明に係る酸化チタン膜成形部材の製造方法について図面を参照しながら説明する。図1は、本発明に係る酸化チタン膜成形部材の製造方法における電解酸化の工程を模式的に示す構成概略図である。この酸化チタン膜成形部材の製造方法においては、まず、チタン材の表面を酸化させて酸化チタンの膜の成形を行う。   Hereinafter, a method for producing a titanium oxide film molded member according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram schematically showing the electrolytic oxidation step in the method for producing a titanium oxide film-formed member according to the present invention. In this method of manufacturing a titanium oxide film forming member, first, the surface of the titanium material is oxidized to form a titanium oxide film.

有底円筒状に形成されたプール11内には、硝酸を含む溶液12が満たされている。溶液12における硝酸の濃度は、本実施形態においては0.1mol/Lである。溶液12が満たされたプール11内には、平板状に形成された基体BPと、同様な平板状に形成された電極13とが互いに対向した状態で配置されている。基体BPは、酸化チタン(TiO)を成形する対象となる部材であり、チタン(Ti)材により構成されている。また、電極13は、導電性を有しかつ電解液中において電極電位が「正」である材料、例えば、グラファイトによって構成されている。 A pool 11 formed in a bottomed cylindrical shape is filled with a solution 12 containing nitric acid. The concentration of nitric acid in the solution 12 is 0.1 mol / L in this embodiment. In the pool 11 filled with the solution 12, a base plate BP formed in a flat plate shape and an electrode 13 formed in the same flat plate shape are arranged so as to face each other. The base BP is a member to be formed of titanium oxide (TiO 2 ), and is made of a titanium (Ti) material. The electrode 13 is made of a material having conductivity and having an electrode potential of “positive” in the electrolytic solution, for example, graphite.

基体BPおよび電極13は、電気配線14a,14bを介してそれぞれ電源装置15に接続されている。電源装置15は、作業者による手動操作によって基体BPと電極13との間に所定の電圧を印加して溶液12中に電位差を生じさせるための電源である。この場合、基体BPは電気配線14aを介して電源装置15の陽極に接続されるとともに、電極13は電気配線14bを介して電源装置15の陰極に接続される。   The base BP and the electrode 13 are connected to the power supply device 15 via electrical wirings 14a and 14b, respectively. The power supply device 15 is a power supply for generating a potential difference in the solution 12 by applying a predetermined voltage between the base BP and the electrode 13 by a manual operation by an operator. In this case, the base BP is connected to the anode of the power supply device 15 via the electric wiring 14a, and the electrode 13 is connected to the cathode of the power supply device 15 via the electric wiring 14b.

このような構成において、電源装置15が操作されて基体BPと電極13との間に所定の電圧が印加されることにより、基体BPの表面が電解酸化される。そして、このような状態を所定の時間維持することにより、基材BPの表面に酸化チタンの膜が成形される。なお、この場合、基体BPと電極13との間に印加する電圧の大きさや時間は、基材BPの大きさや成形したい酸化チタンの膜の厚さに応じて適宜設定される。この電解酸化によって基材BPの表面に酸化チタンの膜を成形する工程が、本発明に係る電解酸化工程に相当する。なお、本発明の発明者らは、硫酸、シュウ酸、酢酸および硝酸をそれぞれ溶液12として用い、それぞれ同様な条件で基材BP上に酸化チタンの膜の成形を試みた。この結果、酸化チタンの膜の成形には、溶液12として硝酸を用いることが最適であることを見出したものである。   In such a configuration, when the power supply device 15 is operated and a predetermined voltage is applied between the base BP and the electrode 13, the surface of the base BP is electrolytically oxidized. Then, by maintaining such a state for a predetermined time, a titanium oxide film is formed on the surface of the base material BP. In this case, the magnitude and time of the voltage applied between the base BP and the electrode 13 are appropriately set according to the size of the base material BP and the thickness of the titanium oxide film to be formed. The step of forming a titanium oxide film on the surface of the substrate BP by this electrolytic oxidation corresponds to the electrolytic oxidation step according to the present invention. The inventors of the present invention tried to form a titanium oxide film on the base material BP using sulfuric acid, oxalic acid, acetic acid and nitric acid as the solution 12, respectively. As a result, it has been found that it is optimal to use nitric acid as the solution 12 for forming a titanium oxide film.

次に、電解酸化工程によって酸化チタンの膜が成形された基体BPには熱処理が施される。具体的には、大気を500℃に熱した雰囲気中に酸化チタンの膜が成形された基体BPを所定時間曝して、基体BPの表面を熱酸化させる。この熱処理工程は、基体BPの表面を光触媒として好適なアナターゼ構造とするために行われる。したがって、基材BPを光触媒として用いず、基材BPの表面をアナターゼ構造とする必要がない場合には、本熱処理工程は不要である。この熱処理が施された基体BPは大気中において徐冷される。これにより、成形された酸化チタンの膜がアナターゼ構造に変化した基体BPが得られる。すなわち、光触媒または光電極として好適な基体BPが製造される。   Next, the substrate BP on which the titanium oxide film is formed by the electrolytic oxidation process is subjected to heat treatment. Specifically, the surface of the base BP is thermally oxidized by exposing the base BP on which the titanium oxide film is formed for a predetermined time in an atmosphere heated to 500 ° C. This heat treatment step is performed in order to make the surface of the substrate BP a suitable anatase structure as a photocatalyst. Therefore, when the base material BP is not used as a photocatalyst and the surface of the base material BP does not need to have an anatase structure, this heat treatment step is unnecessary. The substrate BP that has been subjected to the heat treatment is gradually cooled in the atmosphere. Thereby, the base BP in which the formed titanium oxide film is changed to an anatase structure is obtained. That is, a substrate BP suitable as a photocatalyst or photoelectrode is manufactured.

次に、上記製造方法によって製造された基体BPを用いた水処理装置について図面を参照しながら説明する。図2は、本発明に係る水処理装置の構成を模式的に示す構成概略図である。この水処理装置は、生活排水などの被処理水に含まれる有機物を分解するとともに、同被処理水に含まれる細菌を死滅化して被処理水を浄化する装置である。   Next, a water treatment apparatus using the substrate BP manufactured by the above manufacturing method will be described with reference to the drawings. FIG. 2 is a schematic configuration diagram schematically showing the configuration of the water treatment apparatus according to the present invention. This water treatment apparatus is an apparatus that purifies the water to be treated by decomposing organic substances contained in the water to be treated such as domestic wastewater and killing bacteria contained in the water to be treated.

水処理装置は、貯水槽21を備えている。貯水槽21は、水処理装置の処理対象である被処理水Wを貯留するための容器であり、上面が開放された箱状に形成されている。貯水槽21における一方の側面(図示左側側面)の下部には、吸水管22を介して吸水ポンプ23が接続されている。吸水ポンプ23は、貯水槽21内の被処理水Wを循環させるための電動ポンプであり、図示しない電源に接続されている。具体的には、貯水槽21の底部側から吸引した被処理水Wを配管24を介して貯水槽21の上部に導く。   The water treatment device includes a water storage tank 21. The water storage tank 21 is a container for storing the to-be-processed water W which is a treatment target of the water treatment apparatus, and is formed in a box shape having an open upper surface. A water absorption pump 23 is connected to a lower portion of one side surface (the left side surface in the drawing) of the water storage tank 21 via a water absorption pipe 22. The water absorption pump 23 is an electric pump for circulating the water to be treated W in the water storage tank 21 and is connected to a power source (not shown). Specifically, the water to be treated W sucked from the bottom side of the water storage tank 21 is guided to the upper part of the water storage tank 21 through the pipe 24.

貯水槽21内の上部には、平板状に形成された第1電極25aと第2電極25bとから構成された上下一対の電極25が配置されている。第1電極25aは、平板状に形成された前記基体BPによって構成されている。すなわち、チタン材からなる平板の表面にアナターゼ構造の酸化チタンの膜が成形されて構成されている。この第1電極25aは、図示しない支持装置によって貯水槽21内の上部に水平状態で配置されている。一方、第2電極25bは、電解液中において電極電位が「正」である材料、具体的にはグラファイトによって構成されている。この第2電極25bは、第1電極25aの下方であって同第1電極25aに対向した状態で図示しない支持装置によって支持されている。   A pair of upper and lower electrodes 25 composed of a first electrode 25a and a second electrode 25b formed in a flat plate shape are disposed in the upper part of the water storage tank 21. The 1st electrode 25a is comprised by the said base | substrate BP formed in flat form. That is, a titanium oxide film having an anatase structure is formed on the surface of a flat plate made of a titanium material. This 1st electrode 25a is arrange | positioned in the horizontal state in the upper part in the water storage tank 21 with the support apparatus which is not shown in figure. On the other hand, the second electrode 25b is made of a material whose electrode potential is “positive” in the electrolytic solution, specifically, graphite. The second electrode 25b is supported by a support device (not shown) below the first electrode 25a and facing the first electrode 25a.

第1電極25aおよび第2電極25bは、電気配線26a,26bを介して電源装置27にそれぞれ接続されている。電源装置27は、作業者による手動操作によって第1電極25aと第2電極25bとの間に所定の定電圧を印加して被処理水W中に電位差を生じさせるための電源である。この場合、第1電極25aは、電気配線26aを介して電源装置27の陽極に接続されるとともに、第2電極25bは電気配線26bを介して電源装置27の陰極に接続される。貯水槽21の上方には、紫外線照明28が配置されている。紫外線照明28は、365nmの波長の紫外線を第1電極25aに向けて照射する照明装置であり、本実施形態においては、ブラックライトを用いている。この紫外線照明28は、図示しない電源に接続されているとともに、図示しない支持装置により第1電極25aの上方に固定されている。   The first electrode 25a and the second electrode 25b are connected to the power supply device 27 via electrical wirings 26a and 26b, respectively. The power supply device 27 is a power supply for applying a predetermined constant voltage between the first electrode 25a and the second electrode 25b by a manual operation by an operator to cause a potential difference in the water to be treated W. In this case, the first electrode 25a is connected to the anode of the power supply device 27 through the electric wiring 26a, and the second electrode 25b is connected to the cathode of the power supply device 27 through the electric wiring 26b. Above the water tank 21, an ultraviolet illumination 28 is arranged. The ultraviolet illumination 28 is an illumination device that irradiates ultraviolet light having a wavelength of 365 nm toward the first electrode 25a, and in the present embodiment, black light is used. The ultraviolet illumination 28 is connected to a power source (not shown) and is fixed above the first electrode 25a by a support device (not shown).

次に、上記のように構成した水処理装置の作動について説明する。まず、作業者は、貯水槽21内に処理対象となる被処理水Wを導入する。この場合、作業者は、貯水槽21内の第1電極25aが被処理水Wによって浸漬された状態となるまで、被処理水Wを導入する。次に、作業者は、被処理水Wの浄化処理を開始する。具体的には、作業者は、紫外線照明28を点灯させるとともに、電源装置27を操作して第1電極25aと第2電極25bとの間に所定の定電圧を印加する。   Next, the operation of the water treatment apparatus configured as described above will be described. First, the worker introduces the water to be treated W to be treated into the water storage tank 21. In this case, the operator introduces the water to be treated W until the first electrode 25a in the water storage tank 21 is immersed in the water to be treated W. Next, the worker starts purification treatment of the water to be treated W. Specifically, the worker turns on the ultraviolet illumination 28 and operates the power supply device 27 to apply a predetermined constant voltage between the first electrode 25a and the second electrode 25b.

これにより、第1電極25aの上面には紫外線照明28による紫外線が照射される。紫外線が照射された第1電極25aの表面、すなわち、酸化チタンの膜上にはホール(h+)と電子(e)が生じる。そして、酸化チタンの膜上に生じた電子(e)は、電極電位が「正」である第2電極25bに向けて移動する。一方、酸化チタンの膜上に生じたホール(h+)は、第1電極25aの表面、より具体的には、酸化チタンの膜の表面(界面)に移動する。これにより、第1電極25aにおいてはホール(h+)による酸化反応が開始されるとともに、第2電極25bにおいては電子(e)による還元反応が開始され被処理水Wの浄化が開始される。 As a result, the upper surface of the first electrode 25a is irradiated with ultraviolet rays from the ultraviolet illumination 28. Holes (h + ) and electrons (e ) are generated on the surface of the first electrode 25a irradiated with ultraviolet rays, that is, on the titanium oxide film. Then, electrons (e ) generated on the titanium oxide film move toward the second electrode 25b whose electrode potential is “positive”. On the other hand, holes (h + ) generated on the titanium oxide film move to the surface of the first electrode 25a, more specifically to the surface (interface) of the titanium oxide film. Thereby, the oxidation reaction by holes (h + ) is started in the first electrode 25a, and the reduction reaction by electrons (e ) is started in the second electrode 25b, and the purification of the water to be treated W is started. .

また、電源装置26により第1電極25aと第2電極25bとの間に所定の定電圧が印加されると、紫外線が照射されることにより第1電極25aの電極内に生じたホール(h+)と電子(e)の分離が効率良く行われる。これにより、第1電極25aに接する被処理水Wの酸化反応がより促進されて、被処理水Wの浄化処理が促進される。すなわち、第1電極25aと第2電極25bとの間に所定の定電圧のバイアス電圧を印加することにより、被処理水Wの浄化処理を効率良く行うことができる。 In addition, when a predetermined constant voltage is applied between the first electrode 25a and the second electrode 25b by the power supply device 26, holes (h +) generated in the electrode of the first electrode 25a by being irradiated with ultraviolet rays. ) And electrons (e ) are efficiently separated. Thereby, the oxidation reaction of the to-be-processed water W which contact | connects the 1st electrode 25a is accelerated | stimulated more, and the purification process of the to-be-processed water W is accelerated | stimulated. In other words, by applying a bias voltage having a predetermined constant voltage between the first electrode 25a and the second electrode 25b, the treatment water W can be efficiently purified.

このような被処理水Wの浄化処理は、第1電極25aに接する被処理水Wに対して行われるため、被処理水Wの浄化処理の開始後作業者は、吸水ポンプ23を作動させて貯水槽21内の被処理水Wを循環させる。これにより、貯水槽21の底部に存在する被処理水Wが第1電極25aに導かれ、貯水槽21内の被処理水Wが均一に浄化処理される。作業者は、第1電極25aと第2電極25bとの間に所定の定電圧を印加した状態を維持することにより貯水槽21内の被処理水Wの浄化処理を行う。そして、作業者は、貯水槽21内の被処理水Wの水質が所定のレベルに達した場合には、吸水ポンプ23、電源装置27および紫外線照明28の作動をそれぞれ停止させる。これにより、被処理水Wの浄化処理が終了する。作業者は、貯水槽21から浄化処理された被処理水Wを抜き取り、再度浄化処理を行う場合には新たな被処理水Wを前記と同様な手順にて貯水槽21内に導入して浄化処理を行う。また、新たな被処理水Wがない場合には作業は終了する。   Such purification treatment of the water to be treated W is performed on the water to be treated W that is in contact with the first electrode 25a. Therefore, the operator after starting the purification treatment of the water to be treated W operates the water absorption pump 23. The treated water W in the water storage tank 21 is circulated. Thereby, the to-be-processed water W which exists in the bottom part of the water storage tank 21 is guide | induced to the 1st electrode 25a, and the to-be-processed water W in the water storage tank 21 is uniformly purified. An operator performs the purification process of the to-be-treated water W in the water storage tank 21 by maintaining a state in which a predetermined constant voltage is applied between the first electrode 25a and the second electrode 25b. Then, when the quality of the water to be treated W in the water storage tank 21 reaches a predetermined level, the worker stops the operations of the water absorption pump 23, the power supply device 27, and the ultraviolet illumination 28, respectively. Thereby, the purification process of the to-be-processed water W is complete | finished. The operator removes the treated water W that has been purified from the water storage tank 21, and when performing the purification process again, introduces new treated water W into the water storage tank 21 and purifies it in the same procedure as described above. Process. Further, when there is no new water to be treated W, the work is finished.

次に、本発明の酸化チタン膜成形部材の製造方法および同製造方法によって製造された水処理装置について実施例を用いて、より具体的に説明する。   Next, the manufacturing method of the titanium oxide film molded member of the present invention and the water treatment apparatus manufactured by the manufacturing method will be described more specifically using examples.

(実施例1)
まず、酸化チタン膜成形部材の製造方法の実施例について説明する。縦横各50mm、厚さ0.2mmのチタン材を基体BPとして用いるとともに、グラファイト材を電極13として用いて図1に示す電解酸化の工程を行った。この場合、溶液12の硝酸の濃度を0.1mol/Lとし、基体BPと電極13との間に印加する電圧を60(V)とした。このような条件において、電解酸化処理時間を2分、15分、30分および90分として基体BPをそれぞれ電解酸化した。そして、電解酸化した各基体BPを、大気を500℃に熱した雰囲気内に1時間曝して熱処理を行った。
Example 1
First, the Example of the manufacturing method of a titanium oxide film forming member is described. A titanium material having a length and width of 50 mm each and a thickness of 0.2 mm was used as the base BP, and the graphite material was used as the electrode 13 to perform the electrolytic oxidation step shown in FIG. In this case, the concentration of nitric acid in the solution 12 was set to 0.1 mol / L, and the voltage applied between the base BP and the electrode 13 was set to 60 (V). Under such conditions, the substrate BP was electrolytically oxidized with electrolytic oxidation treatment times of 2, 15, 30, and 90 minutes, respectively. Each electrolytically oxidized base BP was subjected to heat treatment by exposing it to an atmosphere heated to 500 ° C. for 1 hour.

熱処理を行った、すなわち製造された各基体BPの表面のSEM画像を図3(A)〜(D)に示す。図3において、(A)は電解酸化処理時間が2分の基体BPを示し、(B)は電解酸化処理時間が15分の基体BPを示し、(C)は電解酸化処理時間が30分の基体BPを示し、(D)は電解酸化処理時間が90分の基体BPを示している。また、製造された各基体BPのXRD分析の結果を図4に示す。図4によれば、酸化チタンの膜にアナターゼ構造を示す角度(25°付近)で回折強度におけるピークを生じるのは、電解酸化処理時間が30分および90分である(図において矢印参照)。また、図3(A)〜(D)によれば、電解酸化処理時間が30分および90分において基体BPの表面の粗さが著しく粗に変化していることが確認できる。すなわち、これらの図3(A)〜(D)および図4によれば、酸化チタンの膜表面をアナターゼ構造に変化させるためには、電解酸化処理時間が30分以上必要であると考えられる。   FIGS. 3A to 3D show SEM images of the surface of each substrate BP that has been heat-treated, that is, manufactured. In FIG. 3, (A) shows a substrate BP with an electrolytic oxidation treatment time of 2 minutes, (B) shows a substrate BP with an electrolytic oxidation treatment time of 15 minutes, and (C) shows an electrolytic oxidation treatment time of 30 minutes. The substrate BP is shown, and (D) shows the substrate BP with an electrolytic oxidation treatment time of 90 minutes. Moreover, the result of the XRD analysis of each manufactured base BP is shown in FIG. According to FIG. 4, the peak of the diffraction intensity occurs at an angle indicating the anatase structure (around 25 °) in the titanium oxide film at 30 minutes and 90 minutes (see arrows in the figure). Further, according to FIGS. 3A to 3D, it can be confirmed that the surface roughness of the base BP is remarkably changed when the electrolytic oxidation treatment time is 30 minutes and 90 minutes. That is, according to FIGS. 3A to 3D and FIG. 4, it is considered that an electrolytic oxidation treatment time of 30 minutes or more is required to change the titanium oxide film surface to the anatase structure.

(実施例2)
次に、上記酸化チタン膜成形部材の製造方法によって製造された酸化チタン膜成形部材、すなわち、基体BP(電界酸化処理時間60分)を第1電極25aとして用いるとともに、グラファイト材を第2電極25bとして用いて図2に示す水処理装置によって被処理水Wの浄化処理を行った。この場合、第1電極25aの大きさは、縦横各50mm、厚さ0.2mmである。この第1電極25aを20枚用意するとともに、同20枚の第1電極25aを貯水槽21内の上部に縦横4×5枚の配置で固定した。一方、第2電極25bは、縦横270×215mm、厚さ0.6mmのグラファイトシートを用いた。また、紫外線照明28は、波長365nm、出力1.45mW/cmの紫外線を照射するブラックライトを4本使用した。また、被処理水Wとして1μmol/Lの濃度のメチレンブルー溶液(MB溶液)を20L用意した。このような条件において、第1電極25aと第2電極25bとの間に印加するバイアス電圧を、0(V)、1(V)、3(V)および5(V)として被処理水Wの浄化処理を行った。
(Example 2)
Next, the titanium oxide film molded member manufactured by the method for manufacturing a titanium oxide film molded member, that is, the base BP (field oxidation treatment time 60 minutes) is used as the first electrode 25a, and the graphite material is used as the second electrode 25b. The water to be treated W was purified by the water treatment apparatus shown in FIG. In this case, the size of the first electrode 25a is 50 mm in length and width and 0.2 mm in thickness. 20 sheets of the first electrodes 25 a were prepared, and the 20 first electrodes 25 a were fixed to the upper part of the water storage tank 21 in a 4 × 5 arrangement. On the other hand, a graphite sheet having a length and width of 270 × 215 mm and a thickness of 0.6 mm was used for the second electrode 25b. The ultraviolet illumination 28 used four black lights that irradiate ultraviolet rays having a wavelength of 365 nm and an output of 1.45 mW / cm 2 . Further, 20 L of methylene blue solution (MB solution) having a concentration of 1 μmol / L was prepared as the water to be treated W. Under such conditions, the bias voltage applied between the first electrode 25a and the second electrode 25b is set to 0 (V), 1 (V), 3 (V), and 5 (V). A purification treatment was performed.

紫外線照明28から紫外線を照射した際における第1電極25aから第2電極25bに流れる電流(光電流)の大きさと紫外線の照射時間との関係を図5に示す。また、被処理水Wにおけるメチレンブルーの濃度と紫外線の照射時間との関係を図6に示す。これらの図5および図6によれば、バイアス電圧が0(V)、すなわち、バイアス電圧を印加しない状態であっても被処理水Wの浄化が進むことが確認できる。すなわち、第1電極25aと第2電極25bとの間にバイアス電圧を印加する電源装置27は、本発明において必ずしも必須の構成要素ではないことになる。   FIG. 5 shows the relationship between the magnitude of the current (photocurrent) flowing from the first electrode 25a to the second electrode 25b and the irradiation time of the ultraviolet rays when the ultraviolet rays 28 are irradiated with the ultraviolet rays. Moreover, the relationship between the density | concentration of the methylene blue in the to-be-processed water W and the irradiation time of an ultraviolet-ray is shown in FIG. According to FIGS. 5 and 6, it can be confirmed that the purification of the water to be treated W proceeds even when the bias voltage is 0 (V), that is, the bias voltage is not applied. That is, the power supply device 27 that applies a bias voltage between the first electrode 25a and the second electrode 25b is not necessarily an essential component in the present invention.

一方、第1電極25aと第2電極25bとの間にバイアス電圧を印加した場合においては、印加したバイアス電圧が大きい程、第1電極25aから第2電極25bに流れる光電流が大きいとともに、被処理水Wにおけるメチレンブルーの濃度が略0μmol/Lとなる時間も短い。すなわち、被処理水Wを短時間に浄化するためにはバイアス電圧を印加することが有効である。なお、本実施例2においては、5(V)のバイアス電圧を印加するだけでバイアス電圧を印加しない場合に比べて約1000分も早く被処理水Wを浄化処理することができ、バイアス電圧を印加することは被処理水Wの効率的な処理には極めて有効である。また、バイアス電圧の大きさを適宜調整することで被処理水Wの処理速度を制御することもできる。   On the other hand, when a bias voltage is applied between the first electrode 25a and the second electrode 25b, the greater the applied bias voltage, the greater the photocurrent flowing from the first electrode 25a to the second electrode 25b, and The time for the concentration of methylene blue in the treated water W to be approximately 0 μmol / L is also short. That is, in order to purify the water to be treated W in a short time, it is effective to apply a bias voltage. In the second embodiment, the treated water W can be purified about 1000 minutes earlier than when no bias voltage is applied only by applying a bias voltage of 5 (V). The application is extremely effective for efficient treatment of the water to be treated W. Moreover, the processing speed of the to-be-processed water W can also be controlled by adjusting the magnitude | size of a bias voltage suitably.

上記実施形態および実施例の各説明からも理解できるように、上記実施形態に係る酸化チタン膜成形部材の製造方法によれば、チタン材によって構成される基体BPを硝酸が含まれる溶液12中において電解酸化処理することにより基体BPの表面に酸化チタンの膜を成形している。すなわち、基体BPの表面を酸化させることにより膜の成形が行われている。このため、従来例のように基体の表面に酸化チタンの微粒子を付着させる方法に比べて、密着性および均一性が良好な状態で膜を成形することができる。また、酸化チタンの膜の成形精度は、基体BPと電極13との間に印加する電圧の大きさおよび時間、基体BPと電極13との距離、および電解液12における硝酸の濃度によって制御することができる。すなわち、再現性良く酸化チタンの膜を形成することができる。また、本実施形態においては、硝酸の濃度は0.1mol/Lである。すなわち、従来例に比べて溶液12の取り扱いが容易であるとともに、大きな面積に酸化チタンの膜を成形する場合であっても経済的に膜を成形することができる。これらの結果、簡易かつ取り扱いが容易な構成で、比較的大きな面積に対しても密着性、均一性および再現性良く酸化チタンの膜を成形することができる。   As can be understood from the descriptions of the above embodiments and examples, according to the method for manufacturing a titanium oxide film molded member according to the above embodiments, the base BP made of a titanium material is contained in the solution 12 containing nitric acid. A titanium oxide film is formed on the surface of the base BP by electrolytic oxidation treatment. That is, the film is formed by oxidizing the surface of the base BP. For this reason, a film can be formed with good adhesion and uniformity as compared with the conventional method in which fine particles of titanium oxide are adhered to the surface of the substrate. Further, the forming accuracy of the titanium oxide film is controlled by the magnitude and time of the voltage applied between the base BP and the electrode 13, the distance between the base BP and the electrode 13, and the concentration of nitric acid in the electrolytic solution 12. Can do. That is, a titanium oxide film can be formed with good reproducibility. In the present embodiment, the concentration of nitric acid is 0.1 mol / L. That is, handling of the solution 12 is easier than in the conventional example, and even when a titanium oxide film is formed over a large area, the film can be formed economically. As a result, a titanium oxide film can be formed with good adhesion, uniformity and reproducibility over a relatively large area with a simple and easy-to-handle configuration.

具体的には、上記実施例1に示したように縦横各50mmの大きさの平板に酸化チタンの膜を容易に成形することができる。このように、大きな面積の基体BPを光電極として用いれば、上記実施例2に示したように、大量の被処理水Wを短時間に効率良く浄化することができる。   Specifically, as shown in the first embodiment, a titanium oxide film can be easily formed on a flat plate having a size of 50 mm in length and width. As described above, when the base BP having a large area is used as the photoelectrode, a large amount of water to be treated W can be efficiently purified in a short time as shown in the second embodiment.

さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。   Furthermore, in carrying out the present invention, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the object of the present invention.

上記実施形態においては、基体BPおよび第1電極25aをチタン材によって構成したが、これに限定されるものではない。チタン材を含む各種合金を用いても上記実施形態と同様の効果が期待できる。   In the above embodiment, the base BP and the first electrode 25a are made of a titanium material, but the present invention is not limited to this. Even if various alloys including a titanium material are used, the same effect as the above embodiment can be expected.

また、上記実施形態においては、電極13および第2電極25bとしてグラファイトを用いたが、電解液中において電極電位が「正」である材料であって容易に溶出しない材料であれば、これに限定されるものではない。例えば、他のカーボン系の部材(炭素繊維、炭素繊維を織り込んだ布、異方性構造を持つ炭素構造体、導電性ダイヤモンドまたはグラファイトシートなど)や白金などを用いても、上記実施形態と同様の効果が期待できる。   In the above embodiment, graphite is used for the electrode 13 and the second electrode 25b. However, the material is limited to this as long as the electrode potential is “positive” in the electrolyte and does not easily elute. Is not to be done. For example, even when other carbon-based members (carbon fiber, cloth woven with carbon fiber, carbon structure having anisotropic structure, conductive diamond, graphite sheet, etc.) or platinum are used, the same as in the above embodiment Can be expected.

また、上記実施形態においては、電解酸化を行った基体BPに対して熱処理を施した。これは、光触媒または光電極として好適なアナターゼ構造の基体BPを得るためである。したがって、基体BP上に酸化チタンの膜を成形すればよい場合、例えば、酸化チタンの半導体的性質を利用して各種センサなどの部材に用いる場合には、上記熱処理は不要である。   Moreover, in the said embodiment, heat processing was performed with respect to the base | substrate BP which performed electrolytic oxidation. This is for obtaining a base BP having an anatase structure suitable as a photocatalyst or a photoelectrode. Therefore, when it is sufficient to form a titanium oxide film on the substrate BP, for example, when using it as a member for various sensors using the semiconductor properties of titanium oxide, the heat treatment is not necessary.

また、上記実施形態においては、電解酸化した基体BPに対して500℃の雰囲気内において熱処理を行う構成とした。これは、電解酸化した基体BPの表面を精度良くアナターゼ構造に変化させるためである。本発明の発明者らは、電解酸化した基体BPの表面をアナターゼ構造に変化させるためには、熱処理の温度を約300℃以上500℃以下の範囲が好適であることを見出した。また、本発明の発明者らは、電解酸化した基体BPの表面をルチル構造に変化させるためには、熱処理の温度を約500℃を越え850℃以下の範囲が好適であることも見出した。したがって、電解酸化した基体BPの表面をルチル構造に変化させたい場合には、熱処理を500℃を越え850℃以下の範囲で行うと良い。なお、基体BPを熱酸化させる雰囲気は、少なくとも酸素を含む気体中であればよい。   Moreover, in the said embodiment, it was set as the structure which heat-processes in 500 degreeC atmosphere with respect to the base | substrate BP oxidized electrolytically. This is because the surface of the electrolytically oxidized base BP is accurately changed to an anatase structure. The inventors of the present invention have found that the temperature of the heat treatment is preferably in the range of about 300 ° C. to 500 ° C. in order to change the surface of the electrolytically oxidized substrate BP to an anatase structure. The inventors of the present invention have also found that the temperature of the heat treatment is more than about 500 ° C. and not more than 850 ° C. in order to change the surface of the electrolytically oxidized base BP to the rutile structure. Therefore, when it is desired to change the surface of the electrolytically oxidized base BP to the rutile structure, the heat treatment is preferably performed in the range of more than 500 ° C. and 850 ° C. or less. The atmosphere for thermally oxidizing the base BP may be in a gas containing at least oxygen.

また、上記実施形態においては、溶液13中における硝酸の濃度を0.1mol/Lとしたが、これに限定されるものではない。溶液13中における硝酸の濃度は、基体BPの表面に成形する酸化チタンの膜の成膜速度や厚さなどに応じて適宜設定されるものである。しかし、本発明の発明者らによれば、溶液内の硝酸の濃度は、概ね0.05mol/L以上0.5mol/L以下が好適である。   Moreover, in the said embodiment, although the density | concentration of nitric acid in the solution 13 was 0.1 mol / L, it is not limited to this. The concentration of nitric acid in the solution 13 is appropriately set according to the film formation speed and thickness of the titanium oxide film formed on the surface of the base BP. However, according to the inventors of the present invention, the concentration of nitric acid in the solution is preferably about 0.05 mol / L or more and 0.5 mol / L or less.

また、上記実施形態においては、本発明に係る酸化チタン膜成形部材の製造方法により製造された基体BPを本発明に係る水処理装置の光電極(第1電極25a)に用いたが、これに限定されるものではない。本発明に係る酸化チタン膜成形部材の製造方法により製造された基体BPを単に光触媒として用いてもよいことは当然である。これによれば、面積の大きな光触媒を構成することができ、大量のガスや液体の浄化(有機物の分解やイオンの除去)や殺菌などに用いることができる。また、酸化チタンの半導体的性質を利用して各種センサなどの部材として用いることができる。   Moreover, in the said embodiment, although the base | substrate BP manufactured by the manufacturing method of the titanium oxide film shaping | molding member which concerns on this invention was used for the photoelectrode (1st electrode 25a) of the water treatment apparatus which concerns on this invention, It is not limited. Of course, the substrate BP manufactured by the method for manufacturing a titanium oxide film-forming member according to the present invention may be used simply as a photocatalyst. According to this, a photocatalyst with a large area can be constituted, and it can be used for purification of a large amount of gas or liquid (decomposition of organic matter or removal of ions) or sterilization. Moreover, it can use as members, such as various sensors, using the semiconductor property of a titanium oxide.

また、上記実施形態においては、紫外線照明28を備え、光電極、すなわち第1電極25aに紫外線を照射するように構成した。しかし、第1電極25aに紫外線が照射される構成であれば、これに限定されるものではない。すなわち、太陽光に含まれる紫外線を利用して第1電極25aの触媒活性を活発化させてもよい。なお、上記実施形態においては、365nmの紫外線を用いたが第1電極25aの触媒活性が励起される範囲の紫外線であれば、これに限定されるものではない。一般的に、アナターゼ構造の酸化チタンにおいては、触媒活性が励起される波長は400nm以下の紫外線である。また、第1電極25aの触媒活性が励起される範囲の紫外線を含む光を照射する光源であれば、紫外線のみを照射する光源である必要もない。   In the above embodiment, the ultraviolet illumination 28 is provided, and the photoelectrode, that is, the first electrode 25a is irradiated with ultraviolet rays. However, the configuration is not limited to this as long as the first electrode 25a is irradiated with ultraviolet rays. That is, the catalytic activity of the first electrode 25a may be activated using ultraviolet rays contained in sunlight. In the above embodiment, although 365 nm ultraviolet light is used, the ultraviolet light is not limited to this as long as the catalytic activity of the first electrode 25 a is excited. In general, in a titanium oxide having an anatase structure, the wavelength at which catalytic activity is excited is ultraviolet light of 400 nm or less. Further, if the light source emits light including ultraviolet light in a range in which the catalytic activity of the first electrode 25a is excited, the light source need not be irradiated with only ultraviolet light.

また、上記実施形態においては、第1電極25aと第2電極25bとの間にバイアス電圧を印加するように構成した。しかし、実施例2でも明らかなように、必ずしも第1電極25aと第2電極25bとの間にバイアス電圧を印加する必要はない。すなわち、電源装置27を省略した構成であっても、被処理水Wを浄化することはできる。   In the above embodiment, the bias voltage is applied between the first electrode 25a and the second electrode 25b. However, as is clear from the second embodiment, it is not always necessary to apply a bias voltage between the first electrode 25a and the second electrode 25b. That is, even if the power supply device 27 is omitted, the water to be treated W can be purified.

また、上記実施形態においては、吸水ポンプ23を用いて貯水槽21内の被処理水Wを循環させるように構成した。しかし、被処理水Wを循環させる必要がない場合、例えば、被処理水Wに対して概ね第1電極25aが接している構成の場合には、吸水ポンプ23を省略してもよい。また、上記実施形態においては、吸水ポンプ23を用いて貯水槽21内の被処理水Wを循環させるように構成したが、第1電極25aに新たな被処理水Wが接するように構成すれば、他の構成、例えば、貯水槽21内の被処理水Wをスクリュー羽根などで撹拌するように構成してもよい。これによっても、上記実施形態と同様の効果が期待できる。   Moreover, in the said embodiment, it comprised so that the to-be-processed water W in the water storage tank 21 might be circulated using the water absorption pump 23. FIG. However, when it is not necessary to circulate the water to be treated W, for example, in the case where the first electrode 25a is in general contact with the water to be treated W, the water absorption pump 23 may be omitted. Moreover, in the said embodiment, although it comprised so that the to-be-processed water W in the water storage tank 21 might be circulated using the water absorption pump 23, if it comprised so that the new to-be-processed water W might contact the 1st electrode 25a. In another configuration, for example, the water to be treated W in the water storage tank 21 may be stirred with a screw blade or the like. Also by this, the same effect as the above-mentioned embodiment can be expected.

また、上記実施形態においては、基体BPおよび第1電極25aを平板状に構成したが、これに限定されるものではない。基体BPおよび第1電極25aを平板形状以外の形状、例えば、棒状、筒状、ハニカム状、メッシュ状または波板状などの形状で構成してもよい。これによっても、上記実施形態と同様の効果が期待できる。なお、電極13および第2電極25bの形状についても同様である。   Moreover, in the said embodiment, although base | substrate BP and the 1st electrode 25a were comprised in flat form, it is not limited to this. The base BP and the first electrode 25a may be configured in a shape other than a flat plate shape, for example, a rod shape, a cylindrical shape, a honeycomb shape, a mesh shape, a corrugated plate shape, or the like. Also by this, the same effect as the above-mentioned embodiment can be expected. The same applies to the shapes of the electrode 13 and the second electrode 25b.

また、上記実施形態においては、第1電極25aを貯水槽21内の上部に配置するとともに、紫外線照明28を第1電極25aの上方に配置する構成とした。しかし、紫外線照明28から照射された紫外線が第1電極25aに照射される位置であれば、第1電極25aおよび紫外線照明28の配置位置は、これに限定されるものではない。例えば、貯水槽25a内の側面に第1電極25aを配置するとともに、貯水槽21の外側において第1電極25aと対向する位置に紫外線照明28を配置してもよい。これによっても、上記実施形態と同様の効果が期待できる。   Moreover, in the said embodiment, while setting the 1st electrode 25a in the upper part in the water storage tank 21, it was set as the structure which arrange | positions the ultraviolet illumination 28 above the 1st electrode 25a. However, the arrangement positions of the first electrode 25a and the ultraviolet illumination 28 are not limited to this as long as the ultraviolet rays emitted from the ultraviolet illumination 28 are applied to the first electrode 25a. For example, the first electrode 25a may be arranged on the side surface in the water storage tank 25a, and the ultraviolet illumination 28 may be arranged at a position facing the first electrode 25a outside the water storage tank 21. Also by this, the same effect as the above-mentioned embodiment can be expected.

また、上記実施形態においては、1つのプール11および1つの貯水槽21内において基体BPの電解酸化および被処理水Wの浄化処理を行うように構成した。しかし、基体BPの電解酸化および被処理水Wの浄化処理が行える構成であれば、これに限定されるものではない。例えば、第1電極25aを浸漬する第1貯水槽21aと、第2電極25bを浸漬する第2貯水槽21bとの2つの貯水槽によって構成してもよい。この場合、第1貯水槽21aには被処理水Wが満たされるとともに、第2貯水槽21bには第2電極25bの酸化反応を可能にする電解液(例えば、第二硫酸鉄水溶液など)が満たされる。また、第1貯水槽21a内の被処理水Wと第2貯水槽21b内の電解水とを液絡(例えば、塩橋)、またはイオン交換膜などを介して電気的に接続しておく。なお、このように2つの独立した貯水槽を設けた場合、被処理水Wが貯留された貯水槽、すなわち第1貯水槽21a内の被処理水Wは浄化処理とともに酸性化するため、被処理水Wを浄化しつつ酸性化させたい場合には有効である。   Moreover, in the said embodiment, it comprised so that the electrolytic oxidation of the base | substrate BP and the purification process of the to-be-processed water W might be performed in the one pool 11 and the one water tank 21. FIG. However, the configuration is not limited to this as long as the configuration allows electrolytic oxidation of the base BP and purification of the water to be treated W. For example, you may comprise by two water storage tanks, the 1st water storage tank 21a which immerses the 1st electrode 25a, and the 2nd water storage tank 21b which immerses the 2nd electrode 25b. In this case, the first water storage tank 21a is filled with the water to be treated W, and the second water storage tank 21b is provided with an electrolytic solution (for example, an aqueous solution of ferric sulfate) that enables an oxidation reaction of the second electrode 25b. It is filled. Moreover, the to-be-processed water W in the 1st water storage tank 21a and the electrolyzed water in the 2nd water storage tank 21b are electrically connected through a liquid junction (for example, salt bridge) or an ion exchange membrane. In addition, when two independent water tanks are provided in this way, the water tank in which the water to be treated W is stored, that is, the water to be treated W in the first water tank 21a is acidified together with the purification treatment. This is effective when it is desired to acidify the water W while purifying it.

また、上記実施形態における水処理装置においては、被処理水Wの浄化、より具体的には、生活排水などからなる被処理水Wに含まれる有機物質の分解、および細菌の死滅化を行う構成とした。しかし、処理対象となる被処理水Wの種類や処理の適用範囲は、これに限定されるものではない。例えば、工場排水や廃液、海水、湖沼河川の水、水生生物の養殖や飼育のための水、各種飲料水、プールの水、温泉水、風呂水、水溶性切削・潤滑液、食品・農作物・精密部品・医療器具・半導体などの洗浄液、水溶性バイオマスなどの浄化に適用することができる。また、溶液中に含まれる鉛やマンガンなどの金属イオンを除去することによる水の浄化や超純水の生成過程にも適用することができる。   Moreover, in the water treatment apparatus in the said embodiment, the structure which purifies the to-be-processed water W, More specifically, decomposes | disassembles the organic substance contained in the to-be-processed water W which consists of domestic waste water etc., and kills bacteria. It was. However, the type of treated water W to be treated and the application range of the treatment are not limited to this. For example, factory effluents and waste liquids, seawater, water for lakes and rivers, water for aquaculture and breeding, various drinking water, pool water, hot spring water, bath water, water-soluble cutting / lubricating fluids, food, crops, It can be applied to the cleaning of precision parts, medical equipment, semiconductors, and other cleaning liquids, and water-soluble biomass. Further, the present invention can be applied to water purification by removing metal ions such as lead and manganese contained in the solution and a process of generating ultrapure water.

例えば、精密機械、精密部品または半導体の製造工程においては、完成品や半製品、またはこれらを構成する部品を超純水で洗浄する工程がある。この場合、部品等の洗浄に用いた水を浄化(金属イオンの除去も含む)すれば、同水を再び超純水として用いることができる。すなわち、水をリサイクルして用いることができ、水資源の有効利用を図ることができる。   For example, in the manufacturing process of a precision machine, a precision part, or a semiconductor, there is a process of cleaning a finished product, a semi-finished product, or a component constituting these with ultrapure water. In this case, if the water used for cleaning the parts and the like is purified (including removal of metal ions), the water can be used again as ultrapure water. That is, water can be recycled and used, and water resources can be used effectively.

本発明の実施形態に係る酸化チタン膜成形部材の製造方法における電解酸化工程の構成を模式的に示す構成概略図である。It is the structure schematic which shows typically the structure of the electrolytic oxidation process in the manufacturing method of the titanium oxide film shaping | molding member which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置の構成を模式的に示す構成概略図である。It is a composition schematic diagram showing typically the composition of the water treatment equipment concerning the embodiment of the present invention. (A)〜(D)は本発明の実施例1に係る酸化チタン膜成形部材の製造方法によって製造された基体の表面のSEM画像である。(A)-(D) are the SEM images of the surface of the base | substrate manufactured by the manufacturing method of the titanium oxide film molded member which concerns on Example 1 of this invention. 本発明の実施例1に係る酸化チタン膜成形部材の製造方法によって製造された基体の表面のXRD分析の分析結果を示すグラフである。It is a graph which shows the analysis result of the XRD analysis of the surface of the base | substrate manufactured by the manufacturing method of the titanium oxide film shaping | molding member which concerns on Example 1 of this invention. 本発明の実施例2に係る水処理装置において生じる電流(光電流)の大きさと紫外線の照射時間との関係を示すグラフである。It is a graph which shows the relationship between the magnitude | size of the electric current (photocurrent) produced in the water treatment apparatus which concerns on Example 2 of this invention, and the irradiation time of an ultraviolet-ray. 本発明の実施例2に係る水処理装置における被処理水内のメチレンブルーの濃度と紫外線の照射時間との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of the methylene blue in the to-be-processed water in the water treatment apparatus which concerns on Example 2 of this invention, and the irradiation time of an ultraviolet-ray.

符号の説明Explanation of symbols

BP…基体、W…被処理水、11…プール、12…溶液、13…電極、14a,14b…電気配線、15…電源装置、21…貯水槽、23…吸水ポンプ、25a…第1電極、25b…第2電極、26a,26b…電気配線、27…電源装置、28…紫外線照明。 BP ... Substrate, W ... Water to be treated, 11 ... Pool, 12 ... Solution, 13 ... Electrode, 14a, 14b ... Electrical wiring, 15 ... Power supply device, 21 ... Water tank, 23 ... Water absorption pump, 25a ... First electrode, 25b ... second electrode, 26a, 26b ... electric wiring, 27 ... power supply device, 28 ... ultraviolet illumination.

Claims (9)

チタンまたはチタンを含む合金からなる基体の表面に酸化チタンからなる膜を有する酸化チタン膜成形部材の製造方法であって、
硝酸を含む溶液中において、前記基体を陽極とするとともに導電性部材を陰極として前記基体を電解酸化する電解酸化工程を含むことを特徴とする酸化チタン膜成形部材の製造方法。
A method for producing a titanium oxide film-formed member having a film made of titanium oxide on the surface of a substrate made of titanium or an alloy containing titanium,
A method for producing a titanium oxide film-forming member, comprising an electrolytic oxidation step of electrolytically oxidizing the base body in a solution containing nitric acid using the base body as an anode and a conductive member as a cathode.
請求項1に記載した酸化チタン膜成形部材の製造方法において、さらに、
前記電解酸化工程にて電解酸化された前記基体を加熱して熱酸化する熱処理工程を含む酸化チタン膜成形部材の製造方法。
In the manufacturing method of the titanium oxide film forming member according to claim 1, further,
A method for producing a titanium oxide film-formed member, comprising a heat treatment step of heating and thermally oxidizing the substrate that has been electrolytically oxidized in the electrolytic oxidation step.
請求項1または請求項2に記載した酸化チタン膜成形部材の製造方法において、
前記電解酸化工程における前記溶液内の硝酸の濃度は、0.05mol/L以上0.5mol/L以下である酸化チタン膜成形部材の製造方法。
In the manufacturing method of the titanium oxide film forming member according to claim 1 or 2,
The method for producing a titanium oxide film-formed member, wherein the concentration of nitric acid in the solution in the electrolytic oxidation step is 0.05 mol / L or more and 0.5 mol / L or less.
請求項1ないし請求項3のうちのいずれか1つに記載した酸化チタン膜成形部材の製造方法において、
前記熱処理工程は、前記基体を300℃以上850℃以下の温度の雰囲気内で加熱する酸化チタン膜成形部材の製造方法。
In the manufacturing method of the titanium oxide film molded member according to any one of claims 1 to 3,
In the heat treatment step, the substrate is heated in an atmosphere having a temperature of 300 ° C. or higher and 850 ° C. or lower.
前記請求項1ないし前記請求項4のうちのいずれか1つに記載した酸化チタン膜成形部材によって構成される光触媒または光電極。   The photocatalyst or photoelectrode comprised with the titanium oxide film shaping | molding member as described in any one of the said Claim 1 thru | or the said Claim 4. 被処理水を貯留する貯水槽と、
前記請求項2ないし前記請求項4のうちのいずれか1つに記載した酸化チタン膜成形部材からなり、前記貯水槽内に浸漬される第1の電極と、
導電性部材からなり、前記第1の電極と対をなす第2の電極を備えることを特徴とする水処理装置。
A water storage tank for storing treated water;
The titanium oxide film forming member according to any one of claims 2 to 4 and comprising a first electrode immersed in the water tank,
A water treatment apparatus comprising a second electrode made of a conductive member and paired with the first electrode.
請求項6に記載した水処理装置において、さらに、
前記第1の電極に紫外線を含む光を照射する光照射手段を備える水処理装置。
The water treatment apparatus according to claim 6, further comprising:
A water treatment apparatus comprising light irradiation means for irradiating the first electrode with light containing ultraviolet light.
請求項6または請求項7に記載した水処理装置において、さらに、
前記第1の電極および第2の電極に電圧を印加する電圧印加手段を備える水処理装置。
The water treatment device according to claim 6 or 7, further comprising:
A water treatment apparatus comprising voltage application means for applying a voltage to the first electrode and the second electrode.
請求項6ないし請求項8のうちのいずれか1つに記載した水処理装置において、さらに、
前記貯水槽内の被処理水を流動させる流動手段を備える水処理装置。
The water treatment device according to any one of claims 6 to 8, further comprising:
A water treatment apparatus comprising flow means for flowing the water to be treated in the water tank.
JP2007153419A 2007-06-08 2007-06-08 Method for producing titanium oxide film molded member, photocatalyst, photoelectrode, and water treatment apparatus Expired - Fee Related JP5093801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007153419A JP5093801B2 (en) 2007-06-08 2007-06-08 Method for producing titanium oxide film molded member, photocatalyst, photoelectrode, and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007153419A JP5093801B2 (en) 2007-06-08 2007-06-08 Method for producing titanium oxide film molded member, photocatalyst, photoelectrode, and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2008302328A true JP2008302328A (en) 2008-12-18
JP5093801B2 JP5093801B2 (en) 2012-12-12

Family

ID=40231506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007153419A Expired - Fee Related JP5093801B2 (en) 2007-06-08 2007-06-08 Method for producing titanium oxide film molded member, photocatalyst, photoelectrode, and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP5093801B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120967A (en) * 2009-12-08 2011-06-23 Japan Organo Co Ltd Apparatus and method for decomposing organic substance in pure water
CN101693560B (en) * 2009-10-21 2012-07-25 华北水利水电学院 Integral solar energy photoelectricity water-treatment device
WO2013111788A1 (en) * 2012-01-23 2013-08-01 シャープ株式会社 Water purification system and apparatus for producing antiseptic solution
WO2013144660A2 (en) * 2012-03-30 2013-10-03 Keronite International Limited Photocatalyst
GB2515324A (en) * 2013-06-19 2014-12-24 Ramsey Yousif Haddad Electrolytic advance oxidation processes to treat wastewater, brackish and saline water without hydrogen evolution
WO2015079594A1 (en) * 2013-11-29 2015-06-04 鈴木 健治 Hydrogen water production apparatus, and electrode for use in same
ES2616276A1 (en) * 2015-12-11 2017-06-12 Universidad Politécnica de Madrid Procedure to obtain a titanium plate with photocatalytic activity (Machine-translation by Google Translate, not legally binding)
JP2017104849A (en) * 2015-12-09 2017-06-15 Hack Japan ホールディングス株式会社 Polluted water treatment device
CN113321353A (en) * 2021-04-23 2021-08-31 大唐环境产业集团股份有限公司 Photoelectrocatalysis wastewater treatment system and treatment method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173084A (en) * 1992-12-08 1994-06-21 Nippon Steel Corp Surface treatment of titanium plate excellent in press molding property
JPH06235091A (en) * 1993-02-10 1994-08-23 Nkk Corp Pretreatment of colored titanium material by anodization and production of colored titanium material
JPH08246192A (en) * 1995-03-03 1996-09-24 Kobe Steel Ltd Oxidation-treated titanium or titanium-based alloy material having photocatalytic activity and its production
JPH10130886A (en) * 1996-10-23 1998-05-19 Nippon Steel Corp Production of color-developing titanium excellent in corrosion resistance and that color developing titanium
JPH11101695A (en) * 1997-09-25 1999-04-13 Fujita Corp Member made of rubber for load detection
JP2001096276A (en) * 1999-09-29 2001-04-10 Sanyo Electric Co Ltd Electrolytic device of water
JP2002194591A (en) * 2000-12-21 2002-07-10 Nippon Steel Corp Titanium sheet and manufacturing method therefor
JP2005240139A (en) * 2004-02-27 2005-09-08 Nara Prefecture Production method for anatase type titanium oxide film by anodic electrolytic oxidation treatment
JP2006297230A (en) * 2005-04-18 2006-11-02 Tokyo Institute Of Technology Titanium oxide thin film, titanium oxide thin film-containing photocatalytic material, its manufacturing method, apparatus for cleaning water by using photocatalyst, and method for cleaning water by using photocatalytic reaction

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173084A (en) * 1992-12-08 1994-06-21 Nippon Steel Corp Surface treatment of titanium plate excellent in press molding property
JPH06235091A (en) * 1993-02-10 1994-08-23 Nkk Corp Pretreatment of colored titanium material by anodization and production of colored titanium material
JPH08246192A (en) * 1995-03-03 1996-09-24 Kobe Steel Ltd Oxidation-treated titanium or titanium-based alloy material having photocatalytic activity and its production
JPH10130886A (en) * 1996-10-23 1998-05-19 Nippon Steel Corp Production of color-developing titanium excellent in corrosion resistance and that color developing titanium
JPH11101695A (en) * 1997-09-25 1999-04-13 Fujita Corp Member made of rubber for load detection
JP2001096276A (en) * 1999-09-29 2001-04-10 Sanyo Electric Co Ltd Electrolytic device of water
JP2002194591A (en) * 2000-12-21 2002-07-10 Nippon Steel Corp Titanium sheet and manufacturing method therefor
JP2005240139A (en) * 2004-02-27 2005-09-08 Nara Prefecture Production method for anatase type titanium oxide film by anodic electrolytic oxidation treatment
JP2006297230A (en) * 2005-04-18 2006-11-02 Tokyo Institute Of Technology Titanium oxide thin film, titanium oxide thin film-containing photocatalytic material, its manufacturing method, apparatus for cleaning water by using photocatalyst, and method for cleaning water by using photocatalytic reaction

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101693560B (en) * 2009-10-21 2012-07-25 华北水利水电学院 Integral solar energy photoelectricity water-treatment device
JP2011120967A (en) * 2009-12-08 2011-06-23 Japan Organo Co Ltd Apparatus and method for decomposing organic substance in pure water
WO2013111788A1 (en) * 2012-01-23 2013-08-01 シャープ株式会社 Water purification system and apparatus for producing antiseptic solution
JPWO2013111788A1 (en) * 2012-01-23 2015-05-11 シャープ株式会社 Water purification device and disinfectant production device
US9492810B2 (en) 2012-03-30 2016-11-15 Keronite International Limited Photocatalyst
WO2013144660A2 (en) * 2012-03-30 2013-10-03 Keronite International Limited Photocatalyst
WO2013144660A3 (en) * 2012-03-30 2013-12-12 Keronite International Limited Photocatalyst
GB2505025B (en) * 2012-03-30 2019-07-17 Atg R&D Ltd Method for making assembly for photocatalytic treatment of water
GB2515324A (en) * 2013-06-19 2014-12-24 Ramsey Yousif Haddad Electrolytic advance oxidation processes to treat wastewater, brackish and saline water without hydrogen evolution
JP2015104690A (en) * 2013-11-29 2015-06-08 株式会社インテクトプランニング Device for producing hydrogen water, and electrode used therefor
WO2015079594A1 (en) * 2013-11-29 2015-06-04 鈴木 健治 Hydrogen water production apparatus, and electrode for use in same
JP2017104849A (en) * 2015-12-09 2017-06-15 Hack Japan ホールディングス株式会社 Polluted water treatment device
ES2616276A1 (en) * 2015-12-11 2017-06-12 Universidad Politécnica de Madrid Procedure to obtain a titanium plate with photocatalytic activity (Machine-translation by Google Translate, not legally binding)
WO2017098070A1 (en) * 2015-12-11 2017-06-15 Universidad Politécnica de Madrid Method for obtaining a sheet of titanium with photocatalytic activity
CN113321353A (en) * 2021-04-23 2021-08-31 大唐环境产业集团股份有限公司 Photoelectrocatalysis wastewater treatment system and treatment method
CN113321353B (en) * 2021-04-23 2022-04-26 大唐环境产业集团股份有限公司 Photoelectrocatalysis wastewater treatment system and treatment method

Also Published As

Publication number Publication date
JP5093801B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5093801B2 (en) Method for producing titanium oxide film molded member, photocatalyst, photoelectrode, and water treatment apparatus
Peralta-Hernández et al. In situ electrochemical and photo-electrochemical generation of the fenton reagent: a potentially important new water treatment technology
Lincho et al. Nanostructured photocatalysts for the abatement of contaminants by photocatalysis and photocatalytic ozonation: An overview
CN110759437B (en) Method for electrochemical-UV composite treatment of refractory organic matters
Lim et al. Anodization parameters influencing the growth of titania nanotubes and their photoelectrochemical response
Nyongesa et al. Electrophoretic deposition of titanium dioxide thin films for photocatalytic water purification systems
Chang et al. Significant enhancement of the photoelectrochemical activity of nanoporous TiO2 for environmental applications
US5932111A (en) Photoelectrochemical reactor
JP2007319812A (en) Method and apparatus for cleaning water
Thind et al. A highly efficient photocatalytic system for environmental applications based on TiO 2 nanomaterials
CN104803444B (en) Advanced oxidation pollution control technology and device
EP3990395B1 (en) Modular photocatalytic system
JP2008302308A (en) Photocatalyst and method for manufacturing thereof, method and apparatus for water treatment using thereof
JP2018196883A (en) Method for controlling generation of halogen-containing by-products in drinking water treatment
JP5357540B2 (en) Method for treating substance to be treated in aqueous liquid, apparatus used for the method, and photocatalyst material
JP2007237027A (en) Water purification method
CN103820834A (en) Preparation and silver doping methods of titania nanotubes
JPH0751675A (en) Wet treatment and treating device
KR101726039B1 (en) Catalyst for wastewater treatment, method for preparing the catalyst, and device for wastewater treatment including the catalyst
JP5496629B2 (en) Organic substance decomposition apparatus and organic substance decomposition method in pure water
CN108409030A (en) A kind of multiple-unit desalination plant and method
KR100888677B1 (en) Method of manufacuring oxidized layer of oxidized titanium for photo-catalyst and Oxidized layer oxidized titanium for photo-catalyst manufactured by the same
JP6713121B2 (en) Carbon dioxide reduction device and reduction method
CN104944531B (en) A kind of method that Ti nano-electrodes efficiently remove nitrate in groundwater
Momeni Influence of top morphology of hematite nanotubes on photo degradation of methylene blue and solar water splitting performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120912

R150 Certificate of patent or registration of utility model

Ref document number: 5093801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees