JP2005240139A - Production method for anatase type titanium oxide film by anodic electrolytic oxidation treatment - Google Patents

Production method for anatase type titanium oxide film by anodic electrolytic oxidation treatment Download PDF

Info

Publication number
JP2005240139A
JP2005240139A JP2004053609A JP2004053609A JP2005240139A JP 2005240139 A JP2005240139 A JP 2005240139A JP 2004053609 A JP2004053609 A JP 2004053609A JP 2004053609 A JP2004053609 A JP 2004053609A JP 2005240139 A JP2005240139 A JP 2005240139A
Authority
JP
Japan
Prior art keywords
titanium
anatase
titanium oxide
oxide film
type titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004053609A
Other languages
Japanese (ja)
Other versions
JP3858058B2 (en
Inventor
Susumu Yoshikawa
暹 吉川
Makoto Asano
誠 浅野
Teruki Takayasu
輝樹 高安
Kinji Onoda
金児 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA AUTO ENG
Showa Corp
Nara Prefecture
Original Assignee
SHOWA AUTO ENG
Showa Corp
Nara Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA AUTO ENG, Showa Corp, Nara Prefecture filed Critical SHOWA AUTO ENG
Priority to JP2004053609A priority Critical patent/JP3858058B2/en
Publication of JP2005240139A publication Critical patent/JP2005240139A/en
Application granted granted Critical
Publication of JP3858058B2 publication Critical patent/JP3858058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an anatase type titanium oxide film which is large in the formation amount of anatase type titanium oxide and is useful as a photocatalyst, a photoelectric conversion element, etc. <P>SOLUTION: The anatase type titanium oxide film is produced by the following processes: (i) the process of forming titanium nitride on the surface of titanium or titanium alloy. (ii) the process of immersing the titanium or titanium alloy obtained in the process (i) into an electrolyte containing at least one acid selected from the group consisting of an inorganic acid having an etching effect on the titanium and an organic acid having the same effect and anodically oxidizing the titanium or titanium alloy by applying a voltage above a spark discharge generation voltage thereto. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光触媒や光電変換素子等として有用であるアナターゼ型酸化チタン皮膜を製造する方法に関する。   The present invention relates to a method for producing an anatase-type titanium oxide film that is useful as a photocatalyst, a photoelectric conversion element, or the like.

酸化チタンは、光エネルギーを化学エネルギーや電気エネルギーに変換させることが可能であり、様々な分野への応用が期待されている材料である。酸化チタンの結晶構造は、ルチル型、ブルッカイト型、アナターゼ型の3種類が存在しており、中でもアナターゼ型の酸化チタンが光触媒特性や光電変換特性において優れていることが知られている。   Titanium oxide is a material that can convert light energy into chemical energy and electrical energy, and is expected to be applied in various fields. There are three types of crystal structures of titanium oxide: rutile type, brookite type, and anatase type. Among them, it is known that anatase type titanium oxide is excellent in photocatalytic characteristics and photoelectric conversion characteristics.

従来、チタン又はチタン合金の表面に酸化チタン皮膜を製造する方法として、一般的には、リン酸等の通常の電解液中でチタン又はチタン合金を陽極酸化処理する方法等が知られている。しかしながら、このような従来の酸化チタン皮膜の製造方法では、アモルファス型の酸化チタンが生成し、アナターゼ型の酸化チタンは生成しないことが分かっている。   Conventionally, as a method for producing a titanium oxide film on the surface of titanium or a titanium alloy, generally, a method of anodizing titanium or a titanium alloy in a normal electrolyte such as phosphoric acid is known. However, it has been found that such a conventional method for producing a titanium oxide film produces amorphous titanium oxide and does not produce anatase titanium oxide.

近年、アナターゼ型の酸化チタン皮膜を製造する方法が精力的に検討されており、種々の方法が提案されている。例えば、特許文献1には、希薄酸性溶液中でチタンを陽極酸化処理を行った後に、酸化性雰囲気で加熱処理する方法が提案されている。また、特許文献2には、酸及び光触媒活性を有する微粒子が添加されている電解浴中で、火花放電発生電圧以上の電圧を印加してチタンを陽極電解酸化する方法が開示されている。また、特許文献3には、硫酸、リン酸及び過酸化水素を含有する電解液でチタンを陽極電解酸化する方法が開示されている。しかしながら、これらの方法では、工程が煩雑で実用的ではない、或いは、得られるアナターゼ型の酸化チタンが不均一になるため光触媒としての特性に劣る、得られるアナターゼ型の酸化チタンの量が少ない等といった問題点があった。   In recent years, methods for producing anatase-type titanium oxide films have been energetically studied, and various methods have been proposed. For example, Patent Document 1 proposes a method in which titanium is anodized in a dilute acidic solution and then heat-treated in an oxidizing atmosphere. Patent Document 2 discloses a method of subjecting titanium to anodic electrolytic oxidation by applying a voltage higher than a spark discharge generation voltage in an electrolytic bath to which fine particles having acid and photocatalytic activity are added. Patent Document 3 discloses a method for anodic electrolytic oxidation of titanium with an electrolytic solution containing sulfuric acid, phosphoric acid and hydrogen peroxide. However, in these methods, the process is complicated and impractical, or the obtained anatase-type titanium oxide is not uniform, resulting in poor photocatalytic properties, and the amount of the obtained anatase-type titanium oxide is small. There was a problem.

このような従来技術を背景として、工業的生産に適しており、しかもアナターゼ型酸化チタンの形成量が多く、光触媒活性等の特性に優れているアナターゼ型酸化チタン皮膜を製造する方法の確立が望まれている。
特開平8−246192号公報 特開平11−1006952号公報 特開平11−315398号公報
Against the background of such conventional technology, establishment of a method for producing an anatase-type titanium oxide film that is suitable for industrial production, has a large amount of anatase-type titanium oxide, and has excellent characteristics such as photocatalytic activity is desired. It is rare.
JP-A-8-246192 JP-A-11-1006952 JP-A-11-315398

そこで本発明の目的は、上記従来技術の課題を解決することである。具体的には、本発明は、工業的生産に適しており、アナターゼ型酸化チタンの形成量が多く、光触媒や光電変換素子等として有用であるアナターゼ型酸化チタン皮膜を製造する方法を提供することを目的とするものである。   Accordingly, an object of the present invention is to solve the above-described problems of the prior art. Specifically, the present invention provides a method for producing an anatase-type titanium oxide film that is suitable for industrial production, has a large amount of anatase-type titanium oxide, and is useful as a photocatalyst or a photoelectric conversion element. It is intended.

本発明者らは、上記課題を解決すべく鋭意検討したところ、チタン又はチタン合金の表面にチタン窒化物を形成した後に、該チタン又はチタン合金を特定条件下で陽極酸化することにより、アナターゼ型酸化チタンの形成量が多くて、光触媒や光電変換素子等に適したアナターゼ型酸化チタン皮膜を調製できることを見出した。本発明は、かかる知見に基づき、更に改良を重ねることによって完成したものである。   The present inventors have intensively studied to solve the above-mentioned problems. After forming titanium nitride on the surface of titanium or titanium alloy, the anatase type is formed by anodizing the titanium or titanium alloy under specific conditions. It has been found that an anatase-type titanium oxide film suitable for photocatalysts, photoelectric conversion elements and the like can be prepared because of the large amount of titanium oxide formed. The present invention has been completed by making further improvements based on this finding.

即ち、本発明は下記に掲げるアナターゼ型酸化チタン皮膜の製造方法である:
項1. 以下の工程を含む、アナターゼ型酸化チタン皮膜の製造方法:
(i)チタン又はチタン合金の表面にチタン窒化物を形成する工程、及び
(ii)チタンに対してエッチング作用を有する無機酸及び該作用を有する有機酸よりなる群から選択される少なくとも1種の酸を含有する電解液中に、上記工程(i)で得られたチタン又はチタン合金を浸漬し、火花放電発生電圧以上の電圧を印加することにより陽極酸化を行う工程。
項2. 工程(i)におけるチタン窒化物の形成が、PVD、CVD、溶射、及び窒素ガス雰囲気下での加熱よりなる群から選択される少なくとも1種の処理により行われる、項1に記載のアナターゼ型酸化チタン皮膜の製造方法。
項3. 窒素ガス雰囲気下での加熱処理が、窒素ガス雰囲気下でチタン又はチタン合金を750℃以上の温度に加熱することにより行われる、項2に記載のアナターゼ型酸化チタン皮膜の製造方法。
項4. 工程(ii)の陽極酸化において、電解液が硫酸を含有するものである、項1乃至3のいずれかに記載のアナターゼ型酸化チタン皮膜の製造方法。
項5. 工程(ii)の陽極酸化において、電解液が更に過酸化水素を含有するものである、項1乃至4のいずれかに記載のアナターゼ型酸化チタン皮膜の製造方法。
項6. 工程(ii)の陽極酸化において、火花放電発生電圧まで一定の割合にて電圧を上昇させ、火花放電発生電圧以上の電圧にて、一定時間定電圧を印加する、項1乃至5のいずれかに記載のアナターゼ型酸化チタン皮膜の製造方法。
項7. アナターゼ型酸化チタン皮膜が光触媒用又は光電変換素子用材料である、項1乃至6のいずれかに記載のアナターゼ型酸化チタン皮膜の製造方法。
That is, this invention is the manufacturing method of the anatase type titanium oxide film hung up below:
Item 1. A method for producing anatase-type titanium oxide film comprising the following steps:
(i) forming titanium nitride on the surface of titanium or titanium alloy; and
(ii) Titanium obtained in the above step (i) in an electrolytic solution containing at least one acid selected from the group consisting of an inorganic acid having an etching action on titanium and an organic acid having the action Or the process of anodizing by immersing a titanium alloy and applying a voltage higher than the spark discharge generation voltage.
Item 2. Item 4. The anatase oxidation according to Item 1, wherein the formation of titanium nitride in step (i) is performed by at least one treatment selected from the group consisting of PVD, CVD, thermal spraying, and heating in a nitrogen gas atmosphere. A method for producing a titanium film.
Item 3. Item 3. The method for producing an anatase-type titanium oxide film according to Item 2, wherein the heat treatment in a nitrogen gas atmosphere is performed by heating titanium or a titanium alloy to a temperature of 750 ° C or higher in the nitrogen gas atmosphere.
Item 4. Item 4. The method for producing an anatase-type titanium oxide film according to any one of Items 1 to 3, wherein in the anodic oxidation in the step (ii), the electrolytic solution contains sulfuric acid.
Item 5. Item 5. The method for producing an anatase-type titanium oxide film according to any one of Items 1 to 4, wherein in the anodic oxidation in step (ii), the electrolytic solution further contains hydrogen peroxide.
Item 6. In the anodic oxidation in step (ii), the voltage is increased at a constant rate up to the spark discharge generation voltage, and a constant voltage is applied for a predetermined time at a voltage equal to or higher than the spark discharge generation voltage. The manufacturing method of the anatase type titanium oxide film as described.
Item 7. Item 7. The method for producing an anatase-type titanium oxide film according to any one of Items 1 to 6, wherein the anatase-type titanium oxide film is a material for a photocatalyst or a photoelectric conversion element.

以下、本発明を詳細に説明する。本発明のアナターゼ型酸化チタン皮膜の製造方法は、以下の工程(i)及び工程(ii)を含むことを特徴とするものである。以下、本発明を工程毎に説明する。なお、以下本明細書において、チタン及びチタン合金を、単にチタン材料と記すこともある。   Hereinafter, the present invention will be described in detail. The method for producing an anatase-type titanium oxide film of the present invention includes the following steps (i) and (ii). Hereinafter, this invention is demonstrated for every process. Hereinafter, in the present specification, titanium and a titanium alloy may be simply referred to as a titanium material.

工程(i)
工程(i)では、チタン又はチタン合金の表面にチタン窒化物の形成を行う。
Process (i)
In step (i), titanium nitride is formed on the surface of titanium or a titanium alloy.

本発明においてチタン合金を使用する場合、その種類については、特に限定されない。当該チタン合金として、例えばTi-6Al-4V、Ti-0.5Pd等が挙げられる。   When a titanium alloy is used in the present invention, the type is not particularly limited. Examples of the titanium alloy include Ti-6Al-4V and Ti-0.5Pd.

当該工程(i)において、チタン材料の表面にチタン窒化物の層を、通常0.1〜100μm、好ましくは0.5〜50μm、更に好ましくは1〜30μm程度形成する。   In the step (i), a titanium nitride layer is usually formed on the surface of the titanium material in the range of 0.1 to 100 μm, preferably 0.5 to 50 μm, more preferably about 1 to 30 μm.

チタン材料の表面にチタン窒化物を形成する手段については、特に制限されず、例えば、チタン材料の表面にチタン窒化物を物理的又は化学的に付着させる方法や、チタン材料の表面上でチタンと窒素とを反応させてチタン窒化物を形成させる方法が挙げられる。かかる方法として、具体的には、PVD(物理気相蒸着)処理、CVD(化学気相蒸着)処理、溶射処理(吹きつけによる被膜形成)、及び窒素ガス雰囲気下でのチタン材料の加熱処理等を例示できる。   The means for forming titanium nitride on the surface of the titanium material is not particularly limited. For example, a method of physically or chemically attaching titanium nitride to the surface of the titanium material, or titanium on the surface of the titanium material. There is a method of forming titanium nitride by reacting with nitrogen. Specific examples of such methods include PVD (physical vapor deposition) processing, CVD (chemical vapor deposition) processing, thermal spray processing (film formation by spraying), and heat treatment of a titanium material in a nitrogen gas atmosphere. Can be illustrated.

PVD処理としては、例えば、イオンプレーティング、スパッタリング等が挙げられる。   Examples of the PVD process include ion plating and sputtering.

CVD処理としては、例えば、熱CVD、プラズマCVD、レーザーCVD等が挙げられる。   Examples of the CVD process include thermal CVD, plasma CVD, and laser CVD.

溶射処理としては、例えば、フレーム溶射、アーク溶射、プラズマ溶射、レーザー溶射等の溶射処理が挙げられる。   Examples of the thermal spraying process include thermal spraying processes such as flame spraying, arc spraying, plasma spraying, and laser spraying.

窒素ガス雰囲気下でのチタン材料の加熱処理としては、具体的には、窒素ガス雰囲気下で、通常500℃以上(好ましくは750〜150℃、更に好ましくは850〜950℃)にチタン材料を加熱する方法を例示できる。当該加熱処理時の窒素ガス雰囲気としては、特に制限されるものではないが、窒素ガスの気圧が、通常0.01〜100MPa、好ましくは0.1〜10MPa、更に好ましくは0.1〜1MPaとなる程度であればよい。当該加熱処理におけるチタン材料の加熱時間は、通常1〜12時間、好ましくは2〜8時間、更に好ましくは3〜6時間に設定することができる。   As the heat treatment of the titanium material in a nitrogen gas atmosphere, specifically, the titanium material is usually heated to 500 ° C. or higher (preferably 750 to 150 ° C., more preferably 850 to 950 ° C.) in a nitrogen gas atmosphere. The method of doing can be illustrated. The nitrogen gas atmosphere during the heat treatment is not particularly limited, but the pressure of the nitrogen gas is usually 0.01 to 100 MPa, preferably 0.1 to 10 MPa, more preferably 0.1 to 1 MPa. As long as it is about. The heating time of the titanium material in the heat treatment can be generally set to 1 to 12 hours, preferably 2 to 8 hours, and more preferably 3 to 6 hours.

工程(i)の方法において、チタン材料の表面に形成されるチタン窒化物の種類につい
ては、特に制限されない。当該チタン窒化物の一例として、TiN、Ti2N、α-TiN0.3、η-Ti3N2-X、ζ-Ti4N3-X(但し、xは0以上3未満の数値を示す)、これらの混在物、及びアモルファス状チタン窒化物等が挙げられる。これらの中で好ましくは、TiN、Ti2N、及びこれらの混在物、更に好ましくはTiN、及びTiNとTi2Nの混在物、特に好ましくはTiNが例示される。
In the method of step (i), the type of titanium nitride formed on the surface of the titanium material is not particularly limited. As an example of the titanium nitride, TiN, Ti 2 N, α-TiN 0.3 , η-Ti 3 N 2-X , ζ-Ti 4 N 3-X (however, x represents a numerical value of 0 or more and less than 3) , Mixtures thereof, amorphous titanium nitride, and the like. Among these, TiN, Ti 2 N, and a mixture thereof, more preferably TiN, and a mixture of TiN and Ti 2 N, particularly preferably TiN are exemplified.

本発明では、上記チタン窒化物を形成する手段として、上記方法の内、1つの方法を単独で行ってもよく、また2種以上の方法を任意に組み合わせて行ってもよい。上記チタン窒化物を形成する方法の中で、簡便性、量産性、或いは製造コスト等の観点から、好ましくは、窒素ガス雰囲気下でのチタン材料の加熱処理である。   In the present invention, as a means for forming the titanium nitride, one of the above methods may be performed alone, or two or more methods may be arbitrarily combined. Among the methods for forming titanium nitride, from the viewpoints of simplicity, mass productivity, production cost, etc., heat treatment of the titanium material in a nitrogen gas atmosphere is preferable.

工程(ii)
工程(ii)では、チタンに対してエッチング作用を有する無機酸及び該作用を有する有機酸よりなる群から選択される少なくとも1種の酸を含有する電解液中に、上記工程(i)で得られたチタン又はチタン合金を浸漬し、火花放電発生電圧以上の電圧を印加することにより陽極酸化を行う。
Step (ii)
In the step (ii), an electrolyte containing at least one acid selected from the group consisting of an inorganic acid having an etching action on titanium and an organic acid having the action is obtained in the step (i). Anodization is performed by immersing the obtained titanium or titanium alloy and applying a voltage higher than the spark discharge generation voltage.

工程(ii)の陽極酸化において、電解液として、チタンに対してエッチング作用を有する無機酸及び/又は該作用を有する有機酸が含有されている水溶液を用いる。チタンに対してエッチング作用を有する無機酸としては、例えば、硫酸、リン酸、フッ化水素酸、塩酸、硝酸、王水等が挙げられる。また、チタンに対してエッチング作用を有する有機酸としては、例えば、シュウ酸、ギ酸、クエン酸、トリクロル酢酸等が挙げられる。これらの酸の中で、好ましくは、硫酸、リン酸、塩酸、シュウ酸、及びトリクロル酢酸、更に好ましくは硫酸を挙げることができる。これらの酸は、1種単独で使用してもよく、また有機酸、無機酸の別を問わず、これらの酸を2種以上任意に組み合わせて使用してもよい。2種以上の酸を含有する電解液の好ましい態様の一例として、硫酸及びリン酸を含有する水溶液が挙げられる。   In the anodic oxidation in the step (ii), an aqueous solution containing an inorganic acid having an etching action on titanium and / or an organic acid having the action is used as an electrolytic solution. Examples of inorganic acids having an etching action on titanium include sulfuric acid, phosphoric acid, hydrofluoric acid, hydrochloric acid, nitric acid, aqua regia and the like. Moreover, as an organic acid which has an etching effect | action with respect to titanium, an oxalic acid, a formic acid, a citric acid, a trichloroacetic acid etc. are mentioned, for example. Among these acids, sulfuric acid, phosphoric acid, hydrochloric acid, oxalic acid, and trichloroacetic acid are preferable, and sulfuric acid is more preferable. These acids may be used alone, or two or more of these acids may be used in any combination regardless of whether they are organic acids or inorganic acids. As an example of the preferable aspect of the electrolyte solution containing 2 or more types of acids, the aqueous solution containing a sulfuric acid and phosphoric acid is mentioned.

当該電解液における上記酸の配合割合については、使用する酸の種類、陽極酸化条件等によって異なるが、通常、上記酸の総量で0.01〜10M、好ましくは0.1〜10M、更に好ましくは1〜10Mとなる割合を挙げることができる。例えば、硫酸及びリン酸を含有する電解液の場合であれば、硫酸1〜8M及びリン酸0.1〜2Mの割合で含有する電解液を例示できる。   The mixing ratio of the acid in the electrolytic solution varies depending on the type of acid used, anodizing conditions, and the like, but is usually 0.01 to 10 M, preferably 0.1 to 10 M, more preferably the total amount of the acid. The ratio which becomes 1-10M can be mentioned. For example, in the case of an electrolytic solution containing sulfuric acid and phosphoric acid, an electrolytic solution containing sulfuric acid 1 to 8M and phosphoric acid 0.1 to 2M can be exemplified.

当該電解液は、上記有機酸及び/又は無機酸に加えて、過酸化水素を含有しているものが望ましい。電解液中に過酸化水素が含まれていることによって、一層効率的にアナターゼ型酸化チタン皮膜を調製することが可能になる。電解液に過酸化水素を配合する場合、その配合割合については、特に制限されないが、例えば0.01〜5M、好ましくは0.01〜1M、更に好ましくは0.1〜1Mとなる割合が例示される。   The electrolyte solution preferably contains hydrogen peroxide in addition to the organic acid and / or inorganic acid. By containing hydrogen peroxide in the electrolytic solution, an anatase-type titanium oxide film can be prepared more efficiently. When hydrogen peroxide is blended in the electrolytic solution, the blending ratio is not particularly limited. For example, the ratio is 0.01 to 5M, preferably 0.01 to 1M, and more preferably 0.1 to 1M. Is done.

工程(ii)の陽極酸化で使用される電解液の好ましい態様の一例として、硫酸1〜8M、リン酸0.1〜2M及び過酸化水素0.1〜1Mの割合で含有する水溶液が挙げられる。   As an example of the preferable aspect of the electrolyte solution used by the anodic oxidation of process (ii), the aqueous solution contained in the ratio of 1-8M sulfuric acid, 0.1-2M phosphoric acid, and 0.1-1M hydrogen peroxide is mentioned. .

上記電解液中に上記工程(i)で得られたチタン又はチタン合金を浸漬し、火花放電発生電圧以上の電圧を印加して陽極酸化を行うことにより、アナターゼ型の酸化チタンの皮膜が得られる。   An anatase-type titanium oxide film can be obtained by immersing the titanium or titanium alloy obtained in the step (i) in the electrolyte and applying a voltage higher than the spark discharge generation voltage to perform anodization. .

当該陽極酸化では、火花放電発生電圧以上の電圧を印加して行う。火花放電発生電圧以上の電圧としては、通常100V以上、好ましくは150V以上が例示される。   In the anodic oxidation, a voltage higher than the spark discharge generation voltage is applied. The voltage higher than the spark discharge generation voltage is typically 100 V or higher, preferably 150 V or higher.

当該陽極酸化は、例えば、上記の火花放電発生電圧まで一定の割合にて電圧を上昇させ、火花放電発生電圧以上の電圧にて、一定時間定電圧を印加することにより行うことができる。火花放電発生電圧まで電圧を上昇させる速度としては、通常0.01〜1V/秒、好ましくは0.05〜0.5V/秒、更に好ましくは0.1〜0.5V/秒に設定される。また、火花放電発生電圧以上の電圧を印加する時間としては、通常1分以上、好ましくは1〜60分間、更に好ましくは10〜30分間に設定される。   The anodization can be performed, for example, by increasing the voltage at a constant rate up to the spark discharge generation voltage and applying a constant voltage for a predetermined time at a voltage equal to or higher than the spark discharge generation voltage. The speed at which the voltage is increased to the spark discharge generation voltage is usually set to 0.01 to 1 V / second, preferably 0.05 to 0.5 V / second, more preferably 0.1 to 0.5 V / second. . Moreover, as time to apply the voltage more than a spark discharge generation voltage, it is 1 minute or more normally, Preferably it is set to 1 to 60 minutes, More preferably, it is set to 10 to 30 minutes.

上記製造方法によれば、膜厚が1〜100μm程度のアナターゼ型酸化チタン皮膜を得ることができる。また、本発明の方法によれば、アナターゼ型酸化チタンの量が多い皮膜を形成することができる。本発明の方法により得られるアナターゼ型酸化チタン皮膜は、光触媒や光電変換素子等の特性において優れているので、光触媒用材料や光電変換素子用材料等として有用である。   According to the manufacturing method, an anatase-type titanium oxide film having a thickness of about 1 to 100 μm can be obtained. Moreover, according to the method of the present invention, a film having a large amount of anatase-type titanium oxide can be formed. Since the anatase-type titanium oxide film obtained by the method of the present invention is excellent in the characteristics of a photocatalyst, a photoelectric conversion element, etc., it is useful as a photocatalyst material, a photoelectric conversion element material, or the like.

本発明によれば、膜厚が大きく、しかもアナターゼ型酸化チタンの形成量が多い皮膜を、簡便な方法で製造することができる。また、本発明により得られるアナターゼ型酸化チタン皮膜は光触媒特性や光電変換特性を効果的に発揮できるので、本発明の方法は、光触媒用材料又は光電変換素子用材料の製造方法としても有用である。   According to the present invention, a film having a large film thickness and a large amount of anatase-type titanium oxide can be produced by a simple method. Further, since the anatase-type titanium oxide film obtained by the present invention can effectively exhibit photocatalytic properties and photoelectric conversion properties, the method of the present invention is also useful as a method for producing a photocatalyst material or a photoelectric conversion element material. .

以下、実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
50mm角の金属チタンを窒素ガス雰囲気下(窒素ガス気圧約0.1MPa)で、750℃、850℃、及び950℃のそれぞれの温度で6時間加熱した。この加熱処理後、金属チタン上の窒化チタン(TiN)の生成量を確認するために、TiN結晶相の200面、111面及び220面のX線回折強度を測定した。得られた結果を図1に示す。この結果から、窒素ガス雰囲気下でチタンを750℃以上に加熱することによって、チタン表面に窒化チタンが形成されることが確認された。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to these Examples.
Example 1
50 mm square titanium metal was heated at 750 ° C., 850 ° C., and 950 ° C. for 6 hours in a nitrogen gas atmosphere (nitrogen gas pressure of about 0.1 MPa). After this heat treatment, the X-ray diffraction intensities of the 200, 111, and 220 planes of the TiN crystal phase were measured in order to confirm the amount of titanium nitride (TiN) produced on the titanium metal. The obtained results are shown in FIG. From this result, it was confirmed that titanium nitride was formed on the titanium surface by heating titanium to 750 ° C. or higher in a nitrogen gas atmosphere.

次いで、窒化チタンが形成された各々の金属チタンに対して下記条件で陽極酸化を行い、得られたアナターゼ型酸化チタン皮膜の量を、アナターゼ型酸化チタン結晶相の101面及び200面のX線回折強度を測定することにより評価した。また、比較として、チタン窒化物を形成していない金属チタンを用いて同様に陽極酸化したものについてもアナターゼ型酸化チタン皮膜の量を評価した。また、併せて、850℃の温度条件下で窒化チタンの形成を行った後に、150V、180V又は200Vで陽極酸化処理を行うことにより得られたアナターゼ型酸化チタン皮膜についてX線回折を行った。当該X線回折については、比較として、850℃の温度条件下でチタン窒化物の形成のみを行い、陽極酸化処理をしなかったものについても評価した。なお、下記陽極酸化条件では、何れの電圧においても火花放電の発生が確認された。
<陽極酸化条件>
電解液:1.5M硫酸、0.3Mリン酸及び0.3M過酸化水素を含有する水溶液
電圧上昇速度:0.1V/秒
ピーク電圧:150、160、170、180、190及び200V
ピーク電圧保持時間:10分
アナターゼ型酸化チタン皮膜の量に関して、得られた結果を図2(101面)及び3(200面)に示す。この結果から、窒化チタン形成量が多い程、アナターゼ型酸化チタンの生成量が増大することが確認された。
Subsequently, each metal titanium on which titanium nitride was formed was anodized under the following conditions, and the amount of the obtained anatase-type titanium oxide film was determined by the X-rays on the 101- and 200-planes of the anatase-type titanium oxide crystal phase. The diffraction intensity was evaluated by measuring. For comparison, the amount of the anatase-type titanium oxide film was also evaluated for those that were similarly anodized using metal titanium that did not form titanium nitride. In addition, after the formation of titanium nitride under a temperature condition of 850 ° C., X-ray diffraction was performed on the anatase-type titanium oxide film obtained by anodizing at 150V, 180V or 200V. For the X-ray diffraction, as a comparison, a case where only titanium nitride was formed under a temperature condition of 850 ° C. and anodization treatment was not performed was also evaluated. Note that generation of spark discharge was confirmed at any voltage under the following anodic oxidation conditions.
<Anodic oxidation conditions>
Electrolyte solution: aqueous solution containing 1.5 M sulfuric acid, 0.3 M phosphoric acid and 0.3 M hydrogen peroxide Voltage rise rate: 0.1 V / sec Peak voltage: 150, 160, 170, 180, 190 and 200 V
Peak voltage holding time: 10 minutes The results obtained with respect to the amount of the anatase-type titanium oxide film are shown in FIGS. 2 (101 plane) and 3 (200 plane). From this result, it was confirmed that the production amount of anatase-type titanium oxide increases as the titanium nitride formation amount increases.

また、併せて、850℃の温度条件下でチタン窒化物の形成を行った後に、150V、180V又は200Vで陽極酸化処理を行うことにより得られたアナターゼ型酸化チタン皮膜のX線回折パターンを図4に示す。また、図4には、比較として、850℃の温度条件下でチタン窒化物の形成のみを行い、陽極酸化処理をしなかったもののX線回折パターンについても併せて示す。なお、図4中のA101及びA200は、アナターゼ酸化チタンの101面及び200面を夫々示す。当該図4からも、本発明の方法によって、アナターゼ型酸化チタンが生成していることが確認された。   In addition, an X-ray diffraction pattern of the anatase-type titanium oxide film obtained by performing anodization at 150 V, 180 V or 200 V after forming titanium nitride at 850 ° C. is also shown. 4 shows. For comparison, FIG. 4 also shows the X-ray diffraction pattern of titanium nitride formed only at 850 ° C. and not anodized. In addition, A101 and A200 in FIG. 4 show the 101 surface and 200 surface of anatase titanium oxide, respectively. FIG. 4 also confirmed that anatase-type titanium oxide was produced by the method of the present invention.

実施例2
50mm角の金属チタンにイオンプレーティング法によるPVD処理を行い、表面に窒化チタンを形成させた。金属チタン上の窒化チタン(TiN)の生成量を、TiN結晶相の200面、111面のX線回折強度を測定することにより確認した。得られた結果を図5に示す。なお、図5には、実施例1において窒素ガス雰囲気下でチタンを950℃で加熱することにより形成された窒化チタンのX線回折強度の測定結果についても併せて示す。この結果から、PVD処理により、チタン金属表面に窒化チタンが形成されていることが確認された。
Example 2
A 50 mm square metal titanium was subjected to PVD treatment by an ion plating method to form titanium nitride on the surface. The amount of titanium nitride (TiN) produced on titanium metal was confirmed by measuring the X-ray diffraction intensity on the 200th and 111th surfaces of the TiN crystal phase. The obtained results are shown in FIG. FIG. 5 also shows the measurement result of the X-ray diffraction intensity of titanium nitride formed by heating titanium at 950 ° C. in a nitrogen gas atmosphere in Example 1. From this result, it was confirmed that titanium nitride was formed on the titanium metal surface by the PVD treatment.

次いで、PVD処理により窒化チタンが形成された金属チタンを実施例1と同条件の陽極酸化(但し、ピーク電圧は200V)を行い、得られたアナターゼ型酸化チタン皮膜の量を、アナターゼ型酸化チタン結晶相の101面及び200面のX線回折強度を測定することにより評価した。また、得られたアナターゼ型酸化チタン皮膜を走査型電子顕微鏡により確認した。   Subsequently, the metal titanium on which titanium nitride was formed by PVD treatment was anodized under the same conditions as in Example 1 (however, the peak voltage was 200 V), and the amount of the obtained anatase-type titanium oxide film was determined by the amount of the anatase-type titanium oxide film. Evaluation was made by measuring X-ray diffraction intensities on the 101 and 200 planes of the crystal phase. Moreover, the obtained anatase type titanium oxide film was confirmed with a scanning electron microscope.

得られた結果を図6及び7に示す。なお、図6には、950℃の加熱処理によって窒化チタンを形成した後に陽極酸化することにより得られたアナターゼ型酸化チタン皮膜(実施例1)のX線回折強度の測定結果についても併せて示す。この結果から、PVD処理してチタン窒化物を形成させた後に、陽極酸化を行うことによって、アナターゼ型酸化チタンを生成できることが確認された。また、この結果からは、陽極酸化に先だって行われるチタン窒化物の形成が、アナターゼ型酸化チタンの効率的な生成に重要であることが確認された。   The obtained results are shown in FIGS. FIG. 6 also shows the measurement results of the X-ray diffraction intensity of the anatase-type titanium oxide film (Example 1) obtained by anodizing after forming titanium nitride by heat treatment at 950 ° C. . From this result, it was confirmed that anatase-type titanium oxide can be generated by performing anodic oxidation after PVD treatment to form titanium nitride. Also, from this result, it was confirmed that the formation of titanium nitride performed prior to anodic oxidation is important for the efficient production of anatase-type titanium oxide.

また、本実施例2において得られたアナターゼ型酸化チタン皮膜を走査型電子顕微鏡により観察したところ、当該アナターゼ型酸化チタン皮膜は膜厚が5μm以上あることが確認された(図7参照)。   Further, when the anatase-type titanium oxide film obtained in Example 2 was observed with a scanning electron microscope, it was confirmed that the anatase-type titanium oxide film had a thickness of 5 μm or more (see FIG. 7).

実施例3
実施例1において得られたアナターゼ型酸化チタン皮膜の光触媒活性を以下の方法で評価した。
Example 3
The photocatalytic activity of the anatase-type titanium oxide film obtained in Example 1 was evaluated by the following method.

実施例1で得られた3種のアナターゼ型酸化チタン皮膜形成金属チタン(窒化チタン形成時の温度が各750、850及び950℃で、陽極酸化時の印加電圧のピークが150Vのもの)を10ppmのメチレンブルー水溶液に24時間浸漬した。次いで、このアナターゼ型酸化チタン皮膜形成金属チタンを取り出し、再度10ppmメチレンブルー水溶液10mlに浸漬して、これに中心波長360nm近辺の近紫外領域の光線を照射し、該メチレンブルー水溶液の663nmの吸光度(光路長1cm、石英セル)の経時的変化を測定した。また、比較として、窒化チタンの形成を行わずに実施例1と同条件の陽極酸化(但し、陽極酸化時の印加電圧のピークは150V)のみを行った金属チタン、及びチタン窒化物の形成及び陽極酸化を行っていない金属チタンについても、同様に試験を行った。   10 ppm of the three types of anatase-type titanium oxide film-formed metal titanium obtained in Example 1 (temperatures when forming titanium nitride are 750, 850 and 950 ° C., respectively, and the peak of the applied voltage during anodization is 150 V) For 24 hours. Next, this anatase-type titanium oxide film-forming metal titanium is taken out and immersed again in 10 ml of a 10 ppm methylene blue aqueous solution. 1 cm, quartz cell) was measured over time. Further, as a comparison, the formation of titanium metal and titanium nitride that were subjected only to anodic oxidation under the same conditions as in Example 1 without forming titanium nitride (however, the applied voltage peak during anodic oxidation was 150 V) The same test was performed on metal titanium that had not been anodized.

得られた結果を図8に示す。この結果から、予めチタン窒化物を形成した後に、火花発生電圧以上の電圧で陽極酸化を行って得られたアナターゼ型酸化チタン皮膜では、メチレンブルーの退色が認められ、優れた光触媒活性を有していることが確認された。特に、陽極酸化処理に先立って行われるチタン窒化物の形成において、そのチタン窒化物の形成量が多い程、優れた光触媒活性を有するアナターゼ型酸化チタンが得られることが分かった。   The obtained result is shown in FIG. From this result, in the anatase-type titanium oxide film obtained by performing anodization at a voltage higher than the spark generation voltage after forming titanium nitride in advance, fading of methylene blue was observed and it had excellent photocatalytic activity. It was confirmed that In particular, in the formation of titanium nitride performed prior to the anodic oxidation treatment, it was found that the more the amount of titanium nitride formed, the more anatase-type titanium oxide having excellent photocatalytic activity can be obtained.

実施例4
実施例2で得られたアナターゼ型酸化チタン皮膜の光電変換特性を以下の方法で評価した。具体的には、下記色素溶液にアナターゼ型酸化チタン皮膜を浸漬して酸化チタン皮膜に色素を被覆させた。得られた色素被覆酸化チタン皮膜について、下記電解液及び対極として白金をスパッタリングしたITO(Indium Tin Oxide)を使用して下記試験装置により、光電変換特性を評価した。
<色素溶液>
0.0003Mルテニウム系色素(商品名「535-bisTBA」、SOLAONIX社製)含有アセトニトリル・t−ブタノール混合液(混合比は体積比で50:50)
<電解液>
0.1Mヨウ化リチウム、0.05Mヨウ素、0.5M TBP(tetrabutylammonium)、及び0.6M有機系ヨウ化物塩(1-propyl-2,3-dimethylmidazolium iodize)を含有する水溶液
<試験装置>
光電気特性評価装置(分光計器、光源:キセノンランプ)(CLR―25、分光計器社製)。
Example 4
The photoelectric conversion characteristics of the anatase-type titanium oxide film obtained in Example 2 were evaluated by the following methods. Specifically, the anatase-type titanium oxide film was immersed in the following dye solution to coat the titanium oxide film with the dye. The obtained dye-coated titanium oxide film was evaluated for photoelectric conversion characteristics by the following test apparatus using the following electrolyte and ITO (Indium Tin Oxide) obtained by sputtering platinum as a counter electrode.
<Dye solution>
A mixture of acetonitrile and t-butanol containing 0.0003M ruthenium dye (trade name “535-bisTBA”, manufactured by SOLAONIX) (mixing ratio is 50:50 by volume)
<Electrolyte>
Aqueous solution containing 0.1M lithium iodide, 0.05M iodine, 0.5M TBP (tetrabutylammonium), and 0.6M organic iodide salt (1-propyl-2,3-dimethylmidazolium iodize)
Photoelectric characteristic evaluation device (spectrometer, light source: xenon lamp) (CLR-25, manufactured by Spectrometer Co., Ltd.).

得られた結果を図9に示す。この結果から、本発明により得られたアナターゼ型酸化チタン皮膜は、光電変換素子として使用し得ることが確認された。   The results obtained are shown in FIG. From this result, it was confirmed that the anatase-type titanium oxide film obtained by the present invention can be used as a photoelectric conversion element.

実施例1のアナターゼ型酸化チタン皮膜の製造のチタン窒化物形成工程において形成されたチタン窒化物(TiN)のX線回折強度を示す図である。FIG. 3 is a graph showing the X-ray diffraction intensity of titanium nitride (TiN) formed in the titanium nitride forming step of manufacturing the anatase-type titanium oxide film of Example 1. 実施例1において、各印加電圧で陽極酸化して得られたアナターゼ型酸化チタン皮膜(101面)のX線回折強度を示す図である。In Example 1, it is a figure which shows the X-ray-diffraction intensity of the anatase type titanium oxide membrane | film | coat (101 surface) obtained by anodizing with each applied voltage. 実施例1において、各印加電圧で陽極酸化して得られたアナターゼ型酸化チタン皮膜(200面)のX線回折強度を示す図である。In Example 1, it is a figure which shows the X-ray-diffraction intensity | strength of the anatase type titanium oxide membrane | film | coat (200 surface) obtained by anodizing with each applied voltage. 実施例1において得られたアナターゼ型酸化チタン皮膜のX線解析パターンを示す図である。2 is a diagram showing an X-ray analysis pattern of an anatase-type titanium oxide film obtained in Example 1. FIG. 実施例2のアナターゼ型酸化チタン皮膜の製造のチタン窒化物形成工程において形成されたチタン窒化物(TiN)のX線回折強度を示す図である。It is a figure which shows the X-ray-diffraction intensity of the titanium nitride (TiN) formed in the titanium nitride formation process of manufacture of the anatase type titanium oxide film of Example 2. 実施例2において得られたアナターゼ型酸化チタン皮膜(101面及び200面)のX線回折強度を示す図である。It is a figure which shows the X-ray-diffraction intensity | strength of the anatase type titanium oxide film (101 surface and 200 surface) obtained in Example 2. FIG. 走査型電子顕微鏡により、実施例2において得られたアナターゼ型酸化チタン皮膜を観察した写真図を示す。The photograph figure which observed the anatase type titanium oxide film obtained in Example 2 with the scanning electron microscope is shown. 実施例1で得られたアナターゼ型酸化チタン皮膜の光触媒活性を示す図である。FIG. 3 is a diagram showing the photocatalytic activity of the anatase-type titanium oxide film obtained in Example 1. 実施例2で得られたアナターゼ型酸化チタン皮膜の光電変換特性を示す図である。6 is a graph showing photoelectric conversion characteristics of an anatase-type titanium oxide film obtained in Example 2. FIG.

Claims (7)

以下の工程を含む、アナターゼ型酸化チタン皮膜の製造方法:
(i)チタン又はチタン合金の表面にチタン窒化物を形成する工程、及び
(ii)チタンに対してエッチング作用を有する無機酸及び該作用を有する有機酸よりなる群から選択される少なくとも1種の酸を含有する電解液中に、上記工程(i)で得られたチタン又はチタン合金を浸漬し、火花放電発生電圧以上の電圧を印加することにより陽極酸化を行う工程。
A method for producing anatase-type titanium oxide film comprising the following steps:
(i) forming titanium nitride on the surface of titanium or titanium alloy; and
(ii) Titanium obtained in the above step (i) in an electrolytic solution containing at least one acid selected from the group consisting of an inorganic acid having an etching action on titanium and an organic acid having the action Or the process of anodizing by immersing a titanium alloy and applying a voltage higher than the spark discharge generation voltage.
工程(i)におけるチタン窒化物の形成が、PVD、CVD、溶射、及び窒素ガス雰囲気下での加熱よりなる群から選択される少なくとも1種の処理により行われる、請求項1に記載のアナターゼ型酸化チタン皮膜の製造方法。 The anatase type according to claim 1, wherein the formation of titanium nitride in step (i) is performed by at least one treatment selected from the group consisting of PVD, CVD, thermal spraying, and heating under a nitrogen gas atmosphere. A method for producing a titanium oxide film. 窒素ガス雰囲気下での加熱処理が、窒素ガス雰囲気下でチタン又はチタン合金を750℃以上の温度に加熱することにより行われる、請求項2に記載のアナターゼ型酸化チタン皮膜の製造方法。 The method for producing an anatase-type titanium oxide film according to claim 2, wherein the heat treatment in a nitrogen gas atmosphere is performed by heating titanium or a titanium alloy to a temperature of 750 ° C or higher in the nitrogen gas atmosphere. 工程(ii)の陽極酸化において、電解液が硫酸を含有するものである、請求項1乃至3のいずれかに記載のアナターゼ型酸化チタン皮膜の製造方法。 The method for producing an anatase-type titanium oxide film according to any one of claims 1 to 3, wherein in the anodic oxidation in step (ii), the electrolytic solution contains sulfuric acid. 工程(ii)の陽極酸化において、電解液が更に過酸化水素を含有するものである、請求項1乃至4のいずれかに記載のアナターゼ型酸化チタン皮膜の製造方法。 The method for producing an anatase-type titanium oxide film according to any one of claims 1 to 4, wherein in the anodic oxidation in step (ii), the electrolytic solution further contains hydrogen peroxide. 工程(ii)の陽極酸化において、火花放電発生電圧まで一定の割合にて電圧を上昇させ、火花放電発生電圧以上の電圧にて、一定時間定電圧を印加する、請求項1乃至5のいずれかに記載のアナターゼ型酸化チタン皮膜の製造方法。 6. The anodic oxidation in step (ii), wherein the voltage is increased at a constant rate up to a spark discharge generation voltage, and a constant voltage is applied for a predetermined time at a voltage equal to or higher than the spark discharge generation voltage. The manufacturing method of the anatase type titanium oxide membrane | film | coat of description. アナターゼ型酸化チタン皮膜が光触媒用又は光電変換素子用材料である、請求項1乃至6のいずれかに記載のアナターゼ型酸化チタン皮膜の製造方法。 The method for producing an anatase-type titanium oxide film according to any one of claims 1 to 6, wherein the anatase-type titanium oxide film is a material for a photocatalyst or a photoelectric conversion element.
JP2004053609A 2004-02-27 2004-02-27 Method for producing anatase-type titanium oxide film by anodic electrolytic oxidation treatment Expired - Fee Related JP3858058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053609A JP3858058B2 (en) 2004-02-27 2004-02-27 Method for producing anatase-type titanium oxide film by anodic electrolytic oxidation treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053609A JP3858058B2 (en) 2004-02-27 2004-02-27 Method for producing anatase-type titanium oxide film by anodic electrolytic oxidation treatment

Publications (2)

Publication Number Publication Date
JP2005240139A true JP2005240139A (en) 2005-09-08
JP3858058B2 JP3858058B2 (en) 2006-12-13

Family

ID=35022175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053609A Expired - Fee Related JP3858058B2 (en) 2004-02-27 2004-02-27 Method for producing anatase-type titanium oxide film by anodic electrolytic oxidation treatment

Country Status (1)

Country Link
JP (1) JP3858058B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260991A (en) * 2005-03-17 2006-09-28 Nippon Oil Corp Manufacturing method of titania nano-array electrode and photoelectric conversion device using the same
WO2008020585A1 (en) * 2006-08-14 2008-02-21 Nakayama Steel Works, Ltd. Method and apparatus for forming amorphous coating film
JP2008174784A (en) * 2007-01-17 2008-07-31 Nakayama Steel Works Ltd Method for forming amorphous coating by thermal spraying
JP2008302328A (en) * 2007-06-08 2008-12-18 National Univ Corp Shizuoka Univ Method for manufacturing titanium oxide film-formed member, photocatalyst, photoelectrode, and water treatment apparatus
KR100888677B1 (en) * 2006-05-27 2009-03-13 고려대학교 산학협력단 Method of manufacuring oxidized layer of oxidized titanium for photo-catalyst and Oxidized layer oxidized titanium for photo-catalyst manufactured by the same
JP2009097060A (en) * 2007-10-19 2009-05-07 Sumitomo Metal Ind Ltd Titanium material and method of manufacturing titanium material
WO2010090226A1 (en) * 2009-02-03 2010-08-12 株式会社昭和 Dye-sensitized solar cell
WO2010140700A1 (en) 2009-06-01 2010-12-09 新日本製鐵株式会社 Titanium-based material responsive to visible light and having excellent photocatalytic activity, and process for producing same
WO2011013911A2 (en) * 2009-07-27 2011-02-03 일진소재산업(주) Insoluble anode and preparation method thereof
JP2011120998A (en) * 2009-12-10 2011-06-23 Tohoku Univ Visible light responsive rutile type titanium dioxide photocatalyst
CN101250738B (en) * 2007-12-04 2011-09-14 东南大学 Photoelectrocatalysis oxidization preparation method for titanium alloy surface anticoagulant titanium white film
EP2366809A1 (en) * 2008-12-17 2011-09-21 Sumitomo Metal Industries, Ltd. Titanium material and method for producing titanium material
JP2011183240A (en) * 2010-03-04 2011-09-22 U-Vix Corp Photocatalytic sheet and method for producing the same
WO2011118631A1 (en) * 2010-03-25 2011-09-29 有限会社アルセ・エコ開発 Cooking-oil degradation preventer and cooking-oil degradation prevention method
WO2011152338A1 (en) 2010-06-04 2011-12-08 株式会社昭和 Decomposition/elimination method using a photocatalytic material
JP2013255906A (en) * 2012-06-14 2013-12-26 Showa:Kk Method of treating soil polluting water by photocatalyst material
JP5452744B1 (en) * 2013-02-26 2014-03-26 株式会社昭和 A method for producing a surface-treated metal titanium material or titanium alloy material, and a surface treatment material.
JP5490303B1 (en) * 2013-12-27 2014-05-14 株式会社昭和 A method for producing an edible oil deterioration preventing member and an edible oil deterioration preventing member.
WO2014181792A1 (en) * 2013-05-10 2014-11-13 株式会社昭和 Dye-sensitized solar cell having high durability and high conversion efficiency
JP5689202B1 (en) * 2014-08-26 2015-03-25 株式会社昭和 Dye-sensitized solar cell provided with a condensing device
JP5689190B1 (en) * 2014-01-27 2015-03-25 株式会社昭和 Dye-sensitized solar cell provided with a condensing device
JPWO2013065661A1 (en) * 2011-11-01 2015-04-02 株式会社昭和 Cleaning method and cleaning device
KR20160025528A (en) * 2013-06-28 2016-03-08 가부시키가이샤 쇼와 Method for treating soil-contaminating water using photocatalytic material
WO2016182025A1 (en) * 2015-05-14 2016-11-17 株式会社昭和 Dye-sensitized solar cell having counter electrode that is provided with collector electrode
CN109811389A (en) * 2018-12-27 2019-05-28 浙江工业大学 A kind of preparation method of titanium niobium nitride nano-tube array and nitriding layer composite construction
CN110551962A (en) * 2018-05-30 2019-12-10 西安柯辰威尔金属材料有限公司 Method for preparing high-hardness composite tissue layer on surface of titanium and titanium alloy by thermal spraying
JP7018154B1 (en) 2021-04-14 2022-02-09 医療法人藤井会 Method for manufacturing photocatalytic material having virus inactivating properties

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6325159B1 (en) 2017-09-29 2018-05-16 株式会社エス・オー・ダブリュー PHOTOCATALYST MATERIAL, PHOTOELECTRIC CONVERSION ELEMENT MATERIAL, Abrasion Resistant Member, Edible Oil Deterioration Prevention Member Manufacturing Method, and Photocatalyst Material, Photoelectric Conversion Element Material, Abrasion Resistant Member, and Edible Oil Deterioration Prevention Member

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260991A (en) * 2005-03-17 2006-09-28 Nippon Oil Corp Manufacturing method of titania nano-array electrode and photoelectric conversion device using the same
KR100888677B1 (en) * 2006-05-27 2009-03-13 고려대학교 산학협력단 Method of manufacuring oxidized layer of oxidized titanium for photo-catalyst and Oxidized layer oxidized titanium for photo-catalyst manufactured by the same
WO2008020585A1 (en) * 2006-08-14 2008-02-21 Nakayama Steel Works, Ltd. Method and apparatus for forming amorphous coating film
JP2008174784A (en) * 2007-01-17 2008-07-31 Nakayama Steel Works Ltd Method for forming amorphous coating by thermal spraying
JP2008302328A (en) * 2007-06-08 2008-12-18 National Univ Corp Shizuoka Univ Method for manufacturing titanium oxide film-formed member, photocatalyst, photoelectrode, and water treatment apparatus
JP2009097060A (en) * 2007-10-19 2009-05-07 Sumitomo Metal Ind Ltd Titanium material and method of manufacturing titanium material
CN101250738B (en) * 2007-12-04 2011-09-14 东南大学 Photoelectrocatalysis oxidization preparation method for titanium alloy surface anticoagulant titanium white film
EP2366809A1 (en) * 2008-12-17 2011-09-21 Sumitomo Metal Industries, Ltd. Titanium material and method for producing titanium material
US9487882B2 (en) 2008-12-17 2016-11-08 Nippon Steel & Sumitomo Metal Corporation Titanium material and method for producing titanium material
EP2366809A4 (en) * 2008-12-17 2012-05-30 Sumitomo Metal Ind Titanium material and method for producing titanium material
KR101592970B1 (en) * 2009-02-03 2016-02-11 가부시키가이샤 쇼와 Dye-sensitized solar cell
WO2010090226A1 (en) * 2009-02-03 2010-08-12 株式会社昭和 Dye-sensitized solar cell
US8637766B2 (en) 2009-02-03 2014-01-28 Showa Co., Ltd. Dye-sensitized solar cell
KR20110112862A (en) * 2009-02-03 2011-10-13 가부시키가이샤 쇼와 Dye-sensitized solar cell
JP5161967B2 (en) * 2009-02-03 2013-03-13 株式会社昭和 Dye-sensitized solar cell
WO2010140700A1 (en) 2009-06-01 2010-12-09 新日本製鐵株式会社 Titanium-based material responsive to visible light and having excellent photocatalytic activity, and process for producing same
US8865612B2 (en) 2009-06-01 2014-10-21 Nippon Steel & Sumitomo Metal Corporation Titanium-based material having visible light response and excellent in photocatalytic activity and method of production of same
JP5197766B2 (en) * 2009-06-01 2013-05-15 新日鐵住金株式会社 Titanium-based material having visible light responsiveness and excellent photocatalytic activity and method for producing the same
WO2011013911A2 (en) * 2009-07-27 2011-02-03 일진소재산업(주) Insoluble anode and preparation method thereof
WO2011013911A3 (en) * 2009-07-27 2011-03-31 일진소재산업(주) Insoluble anode and preparation method thereof
JP2011120998A (en) * 2009-12-10 2011-06-23 Tohoku Univ Visible light responsive rutile type titanium dioxide photocatalyst
JP2011183240A (en) * 2010-03-04 2011-09-22 U-Vix Corp Photocatalytic sheet and method for producing the same
WO2011118631A1 (en) * 2010-03-25 2011-09-29 有限会社アルセ・エコ開発 Cooking-oil degradation preventer and cooking-oil degradation prevention method
US8597603B2 (en) 2010-06-04 2013-12-03 Showa Co., Ltd. Decomposition/elimination method using a photocatalytic material
JP2012011372A (en) * 2010-06-04 2012-01-19 Showa:Kk Decomposition/elimination method using photocatalytic material
EP2578301A4 (en) * 2010-06-04 2014-11-05 Showa Co Ltd Decomposition/elimination method using a photocatalytic material
WO2011152338A1 (en) 2010-06-04 2011-12-08 株式会社昭和 Decomposition/elimination method using a photocatalytic material
CN102985167A (en) * 2010-06-04 2013-03-20 株式会社昭和 Decomposition/elimination method using a photocatalytic material
JPWO2013065661A1 (en) * 2011-11-01 2015-04-02 株式会社昭和 Cleaning method and cleaning device
JP2013255906A (en) * 2012-06-14 2013-12-26 Showa:Kk Method of treating soil polluting water by photocatalyst material
JP5452744B1 (en) * 2013-02-26 2014-03-26 株式会社昭和 A method for producing a surface-treated metal titanium material or titanium alloy material, and a surface treatment material.
US10053762B2 (en) 2013-02-26 2018-08-21 Showa Co., Ltd. Method for producing surface-treated metal titanium material or titanium alloy material, and surface-treated material
WO2014132874A1 (en) 2013-02-26 2014-09-04 株式会社昭和 Method for producing surface-treated metal titanium material or titanium alloy material, and surface-treated material
WO2014181792A1 (en) * 2013-05-10 2014-11-13 株式会社昭和 Dye-sensitized solar cell having high durability and high conversion efficiency
EP2996125A4 (en) * 2013-05-10 2016-12-28 Showa Co Ltd Dye-sensitized solar cell having high durability and high conversion efficiency
JP2014220180A (en) * 2013-05-10 2014-11-20 株式会社昭和 Dye-sensitized solar cell having high durability and high conversion efficiency
KR102036352B1 (en) * 2013-06-28 2019-10-24 가부시키가이샤 쇼와 Method for treating soil-contaminating water using photocatalytic material
US9822025B2 (en) 2013-06-28 2017-11-21 Showa Co., Ltd. Method for treating soil-contaminating water using photocatalytic material
KR20160025528A (en) * 2013-06-28 2016-03-08 가부시키가이샤 쇼와 Method for treating soil-contaminating water using photocatalytic material
WO2015020238A3 (en) * 2013-12-27 2015-04-23 株式会社昭和 Method for manufacturing edible oil deterioration preventing member, and edible oil deterioration preventing member
CN109943853A (en) * 2013-12-27 2019-06-28 株式会社昭和 The manufacturing method and the anti-deterioration component of edible oil of the anti-deterioration component of edible oil
JP5490303B1 (en) * 2013-12-27 2014-05-14 株式会社昭和 A method for producing an edible oil deterioration preventing member and an edible oil deterioration preventing member.
CN104995337A (en) * 2013-12-27 2015-10-21 株式会社昭和 Method for manufacturing edible oil deterioration preventing member, and edible oil deterioration preventing member
EP3088568A4 (en) * 2013-12-27 2017-08-30 Showa Co., Ltd. Method for manufacturing edible oil deterioration preventing member, and edible oil deterioration preventing member
TWI576047B (en) * 2013-12-27 2017-04-01 Showa Co Ltd Method for producing resistant oil-resistant member and edible oil-resistant member
TWI622178B (en) * 2014-01-27 2018-04-21 Showa Co Ltd Pigment-sensitized solar cell with light collecting device
JP2015141954A (en) * 2014-01-27 2015-08-03 株式会社昭和 Dye-sensitized solar battery provided with light condensing device
WO2015064774A3 (en) * 2014-01-27 2015-06-25 株式会社昭和 Dye-sensitized solar cell equipped with beam-condensing unit
US20160133393A1 (en) * 2014-01-27 2016-05-12 Showa Co., Ltd. Dye-sensitized solar cell equipped with beam-condensing unit
JP5689190B1 (en) * 2014-01-27 2015-03-25 株式会社昭和 Dye-sensitized solar cell provided with a condensing device
JP5689202B1 (en) * 2014-08-26 2015-03-25 株式会社昭和 Dye-sensitized solar cell provided with a condensing device
JP2015142130A (en) * 2014-08-26 2015-08-03 株式会社昭和 Dye-sensitized solar battery provided with light condensing device
CN107615426A (en) * 2015-05-14 2018-01-19 株式会社昭和 The dye-sensitized solar cell of colelctor electrode is provided with to electrode
JPWO2016182025A1 (en) * 2015-05-14 2017-08-31 株式会社昭和 Dye-sensitized solar cell with a collector electrode at the counter electrode
WO2016182025A1 (en) * 2015-05-14 2016-11-17 株式会社昭和 Dye-sensitized solar cell having counter electrode that is provided with collector electrode
JP6161860B2 (en) * 2015-05-14 2017-07-12 株式会社昭和 Dye-sensitized solar cell with a collector electrode at the counter electrode
CN110551962A (en) * 2018-05-30 2019-12-10 西安柯辰威尔金属材料有限公司 Method for preparing high-hardness composite tissue layer on surface of titanium and titanium alloy by thermal spraying
CN109811389A (en) * 2018-12-27 2019-05-28 浙江工业大学 A kind of preparation method of titanium niobium nitride nano-tube array and nitriding layer composite construction
JP7018154B1 (en) 2021-04-14 2022-02-09 医療法人藤井会 Method for manufacturing photocatalytic material having virus inactivating properties
JP2022163606A (en) * 2021-04-14 2022-10-26 医療法人藤井会 Method for producing photocatalytic material having virus inactivation properties

Also Published As

Publication number Publication date
JP3858058B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP3858058B2 (en) Method for producing anatase-type titanium oxide film by anodic electrolytic oxidation treatment
KR101210416B1 (en) Process for producing crystalline titanium oxide coating film through electrolytic anodizing
Mattos-Costa et al. Characterisation of surfaces modified by sol-gel derived RuxIr1− xO2 coatings for oxygen evolution in acid medium
Sieber et al. Porous tantalum oxide prepared by electrochemical anodic oxidation
Tsuchiya et al. Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization
Vercesi et al. Morphological and microstructural the Ti/IrO2 Ta2O5 electrode: effect of the preparation temperature
Liu et al. Water annealing and other low temperature treatments of anodic TiO2 nanotubes: A comparison of properties and efficiencies in dye sensitized solar cells and for water splitting
JP4560089B2 (en) Electrode used for electrolysis of aqueous solution to produce hypochlorite
JP2019157273A5 (en)
JP4965455B2 (en) Electrode structure, capacitor, and method of manufacturing electrode structure
CN101238244A (en) Process for producing crystalline titanium oxide coating film through electrolytic anodizing
JP5452744B1 (en) A method for producing a surface-treated metal titanium material or titanium alloy material, and a surface treatment material.
Stojadinović et al. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid
KR20080024988A (en) Electrolysis electrode and electrolysis method using the same, and electrolysis device using the same
Far et al. A study on electrical properties of thermally grown TiO2 film at the interface of Ti/RuO2–IrO2–TiO2 anode using Mott-Schottky and electrochemical impedance spectroscopy techniques
Lei et al. Low-temperature liquid phase deposited TiO2 films on stainless steel for photogenerated cathodic protection applications
Yoo et al. Critical factors in the anodic formation of extremely ordered titania nanocavities
RU2001115940A (en) An electrode with a firmly applied outer catalytic layer
Kojima et al. Investigation of influence of electrolyte composition on formation of anodic titanium oxide nanotube films
CA2522900C (en) Smooth surface morphology anode coatings
CN114427112A (en) Method for preparing multi-color photochromic Ag/TiO2 film
Ryshchenko et al. Electrochemical synthesis of crystalline niobium oxide
Mahmoudabadi et al. Synthesis of TiO2 nanotubes by atmospheric microplasma electrochemistry: Fabrication, characterization and TiO2 oxide film properties
Lassali et al. Structural, morphological and surface properties as a function of composition of Ru+ Ti+ Pt mixed-oxide electrodes
Liu et al. IrO2-Ta2O5 anode for oxygen evolution with TaOx interlayer prepared by thermal decomposition in inert atmosphere

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

R150 Certificate of patent or registration of utility model

Ref document number: 3858058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees