JP2008298874A - Reflection prism, optical pickup, and method for manufacturing reflection prism - Google Patents

Reflection prism, optical pickup, and method for manufacturing reflection prism Download PDF

Info

Publication number
JP2008298874A
JP2008298874A JP2007142265A JP2007142265A JP2008298874A JP 2008298874 A JP2008298874 A JP 2008298874A JP 2007142265 A JP2007142265 A JP 2007142265A JP 2007142265 A JP2007142265 A JP 2007142265A JP 2008298874 A JP2008298874 A JP 2008298874A
Authority
JP
Japan
Prior art keywords
reflective film
incident
film
tendency
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007142265A
Other languages
Japanese (ja)
Inventor
Takuya Okada
岡田  卓也
Hideyuki Matsushita
英之 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2007142265A priority Critical patent/JP2008298874A/en
Priority to CN2008101079462A priority patent/CN101315432B/en
Publication of JP2008298874A publication Critical patent/JP2008298874A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve the suppression of aberration generated by a reflection film of a reflection prism having an incident face, a reflection film face and an emission face. <P>SOLUTION: The reflection prism has the incident face 2 on which light is incident, the reflection film face 4 in which a reflection film R is formed, and the emission face 3 being a face in which light incident from the incident face 2 is reflected toward the reflection film face 4 and light reflected on the reflection film face 4 is emitted. The emission face 3 and the reflection film face 4 are optical planes, and the inclination of a recess or a projection of the emission face 3 is in a reverse direction to the inclination of a recess or a projection of the reflection film face 4. Thereby the aberration generated on the reflection film face 4 can be suppressed by the action of film stress of the reflection film R. In addition, the suppression of the aberration can be achieved further by making the incident face 2 and the emission face 3 the optical face having the same recess or projection inclination. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光路を変えるための反射プリズム、この反射プリズムを適用した光ピックアップ及び前記の反射プリズムを製造する反射プリズムの製造方法に関するものである。   The present invention relates to a reflecting prism for changing an optical path, an optical pickup using the reflecting prism, and a reflecting prism manufacturing method for manufacturing the reflecting prism.

光ピックアップや液晶プロジェクタ等の光学システムは種々の光学部品から構成され、その構成部品の1つとして、光路を変えるための反射プリズムがある。反射プリズムとしては、一般的には、断面が直角二等辺三角形の三角プリズムが用いられ、三角プリズムの斜面を反射面として用いている。反射面には反射膜を形成しているものが多く、反射膜に入射した光を反射させている。   Optical systems such as optical pickups and liquid crystal projectors are composed of various optical components, and one of the components is a reflecting prism for changing the optical path. In general, a triangular prism having a right-angled isosceles triangle is used as the reflecting prism, and the inclined surface of the triangular prism is used as a reflecting surface. Many of the reflective surfaces are formed with a reflective film, and reflect light incident on the reflective film.

このとき、反射膜はプリズムの面に対して凹又は凸に反らせる膜応力を作用するため、反射面で反射した光には、非点収差やパワー(焦点がずれて、スポット像が劣化するような収差)が発生する。非点収差やパワー(これらの収差を、以下、単に収差という)は面の平面度に起因して発生するものである。反射膜は、膜の種類によっても変わるが、内部応力を有しており、この内部応力により反射膜面の平面度に影響を与えてしまう。よって、反射膜面において収差が不可避的に発生してしまう。   At this time, since the reflecting film exerts a film stress that warps concavely or convexly with respect to the surface of the prism, astigmatism and power (the focal point shifts and the spot image deteriorates in the light reflected by the reflecting surface. Aberrations). Astigmatism and power (these aberrations are hereinafter simply referred to as aberrations) are caused by the flatness of the surface. Although the reflective film varies depending on the type of film, it has an internal stress, and the internal stress affects the flatness of the reflective film surface. Therefore, aberrations are inevitably generated on the reflective film surface.

特に、近年の光学システムのコンパクト化の要請から、より薄型の反射プリズムが要求されるようになっている。薄型の反射プリズムとして、光が入射する入射面と、反射膜が成膜された反射膜面と、入射面から入射した光を反射膜面に向かって反射させ、反射膜面で反射した光を出射させる出射面と、を有して構成される反射プリズムがある。この反射プリズムは、入射面と反射膜面とのなす角度が鈍角となり、反射膜面と出射面とのなす角度及び入射面と出射面とのなす角度は鋭角となっている。反射膜面と出射面とのなす角度が鈍角であるため、反射プリズム全体として薄型の形状とすることができる。従って、この薄型の反射プリズムにおいても、反射膜面が形成されているため、反射膜の膜応力により、反射膜面で反射した光に収差が生じてしまう。   In particular, due to the recent demand for compact optical systems, thinner reflective prisms have been required. As a thin reflective prism, the incident surface on which light is incident, the reflective film surface on which the reflective film is formed, the light incident from the incident surface is reflected toward the reflective film surface, and the light reflected by the reflective film surface is reflected. There is a reflecting prism configured to have an exit surface that emits light. In this reflecting prism, the angle formed between the incident surface and the reflecting film surface is an obtuse angle, and the angle formed between the reflecting film surface and the emitting surface and the angle formed between the incident surface and the emitting surface are acute angles. Since the angle formed between the reflecting film surface and the emitting surface is an obtuse angle, the reflecting prism as a whole can be made thin. Accordingly, even in this thin reflecting prism, since the reflecting film surface is formed, aberration is generated in the light reflected by the reflecting film surface due to the film stress of the reflecting film.

反射膜による膜応力の影響を改善している光学多層膜フィルタが特許文献1に開示されている。特許文献1は、ガラス基板に形成した誘電体多層膜の膜応力によって基板に生じた反りを、ガラス基板の誘電体多層膜の反対面に誘電体単層膜を形成することによって、反りを戻している。
特開2005−43755号公報
Patent Document 1 discloses an optical multilayer filter that improves the influence of film stress caused by a reflective film. Patent Document 1 discloses that a warp caused by a film stress of a dielectric multilayer film formed on a glass substrate is returned to the warp by forming a dielectric single layer film on the opposite surface of the dielectric multilayer film of the glass substrate. ing.
JP-A-2005-43755

特許文献1の光学多層膜フィルタは、平板状の基板に生じた膜応力による変形を是正するために、誘電体単層膜を用いている。この誘電体単層膜は、基板の変形を是正するために用いられており、光学素子の機能を発揮するためには、本来的には不要な膜である。例えば、反射プリズムの反射面以外の面である出射面(又は入射面)に基板の変形を是正するための誘電体単層膜を成膜した場合、この誘電体単層膜は反射プリズムの反射機能には本来的には不要である。このとき、誘電体単層膜を光が透過することになるが、誘電体単層膜を光が透過することにより、光に対して影響を及ぼすことになる。この影響の1つとして、特許文献1にも記載されているように、光が誘電体単層膜を透過することにより透過率にリップルが生じ、良好な光学特性を得ることができなくなるという問題がある。特許文献1ではリップルを微小な範囲に収めてはいるが、やはり本来的に光学素子の機能を発揮するために不要な膜を形成することにより、光に対して何らかの作用を及ぼし、結果として光学特性に影響を与えている。   The optical multilayer filter of Patent Document 1 uses a dielectric single layer film in order to correct deformation due to film stress generated on a flat substrate. This dielectric single-layer film is used to correct the deformation of the substrate, and is essentially an unnecessary film in order to exhibit the function of the optical element. For example, when a dielectric single layer film for correcting deformation of the substrate is formed on the exit surface (or incident surface) which is a surface other than the reflective surface of the reflective prism, the dielectric single layer film is reflected by the reflective prism. It is essentially not necessary for the function. At this time, light is transmitted through the dielectric single-layer film. However, light is transmitted through the dielectric single-layer film, thereby affecting light. As one of the effects, as described in Patent Document 1, when light passes through the dielectric single layer film, ripples occur in the transmittance, and it becomes impossible to obtain good optical characteristics. There is. In Patent Document 1, the ripple is kept in a very small range, but by forming an unnecessary film to essentially exhibit the function of the optical element, some effect is exerted on the light, resulting in optical It affects the characteristics.

また、形状を是正するための誘電体単層膜を成膜すると、本来的には不要な膜を必要としてしまい、その分のコストが増加してしまうという問題もある。   In addition, when a dielectric single layer film for correcting the shape is formed, there is a problem that an essentially unnecessary film is required and the cost increases accordingly.

そこで、本発明は、膜を使用することなく、反射プリズムの反射膜によって生じる収差の抑制を図ることを目的とする。   Therefore, an object of the present invention is to suppress aberrations caused by the reflection film of the reflection prism without using a film.

以上の課題を解決するために、本発明の請求項1の反射プリズムは、光が入射する入射面と、反射膜が形成された反射膜面と、前記入射面から入射した光を前記反射膜面に向けて反射させ且つ前記反射膜面で反射した光を出射させる面である出射面と、を有する反射プリズムであって、前記出射面と前記反射膜面とは光学的平面であり、前記出射面の凹又は凸の傾向を、前記反射膜面の凹又は凸の傾向と反対方向にした、ことを特徴とする。   In order to solve the above problems, a reflecting prism according to claim 1 of the present invention includes an incident surface on which light is incident, a reflecting film surface on which a reflecting film is formed, and light incident from the incident surface. A reflecting prism having an exit surface that is a surface that reflects toward the surface and emits light reflected by the reflective film surface, wherein the exit surface and the reflective film surface are optical planes, The concave or convex tendency of the exit surface is set in a direction opposite to the concave or convex tendency of the reflective film surface.

反射膜面は主に反射膜の膜応力の影響により、凹又は凸の何れかの傾向を持つ光学的平面となり、反射膜面で反射した光には収差が発生する。そこで、出射面を反射膜面の凹又は凸の傾向と反対方向の凹凸の傾向を持つ光学的平面とすることにより、収差の抑制を図ることができる。つまり、出射面を凹又は凸の傾向を持つ光学的平面にすることにより、基板の形状を是正するための膜を用いることなく、収差を抑制することができる。なお、光学的平面は理想的な平面(平面度が0の理想平面)ではないが、微小に凹又は凸の傾向を持つ平面である。また、ここでいう収差とは、非点収差やパワー等をいい、球面収差は含まない。   The reflection film surface is an optical flat surface having a tendency of being concave or convex mainly due to the influence of the film stress of the reflection film, and aberration is generated in the light reflected by the reflection film surface. Therefore, aberration can be suppressed by making the exit surface an optical flat surface having a tendency of unevenness in the opposite direction to the tendency of the reflection film surface to be concave or convex. In other words, aberration can be suppressed without using a film for correcting the shape of the substrate by making the exit surface an optical flat surface having a tendency of being concave or convex. The optical plane is not an ideal plane (ideal plane having a flatness of 0), but is a plane having a tendency of being slightly concave or convex. In addition, the aberration here refers to astigmatism, power, and the like, and does not include spherical aberration.

透明部材の一面を研磨したときに、理想平面とすることはできず、研磨精度を高めたとしても、微小に凹又は凸の傾向を持つことになる。そこで、この微小凹凸の傾向を積極的に利用して、反射膜の膜応力の反対方向の傾向を持つ光学的平面となるような出射面を形成する。光学的平面を形成するためには、ポリッシュ研磨やラッピング研磨等の平面研磨を適用することができる。例えば、ラップ等の研磨治具を用いて透明部材の面を研磨することにより、光学的平面を形成することができる。そして、光学的平面の凹凸を積極的にコントロールするために、ラップに凹凸を持たせる。凹の傾向を持つ光学的平面を形成するためには、ラップには凸のものを用い、凸の傾向を持つ光学的平面を形成するためには、ラップには凹のものを用いる。これにより、光学的平面の凹凸の傾向を積極的にコントロールできる。   When one surface of the transparent member is polished, it cannot be an ideal plane, and even if the polishing accuracy is increased, it tends to be slightly concave or convex. Therefore, by actively utilizing the tendency of the micro unevenness, an emission surface that forms an optical plane having a tendency in the opposite direction of the film stress of the reflective film is formed. In order to form an optical plane, plane polishing such as polishing or lapping can be applied. For example, an optical plane can be formed by polishing the surface of the transparent member using a polishing jig such as a lap. And in order to control the unevenness | corrugation of an optical plane actively, an unevenness | corrugation is given to a wrap. In order to form an optical plane having a concave tendency, a convex one is used for the wrap, and in order to form an optical plane having a convex tendency, a concave one is used. Thereby, the tendency of the unevenness of the optical plane can be positively controlled.

本発明の請求項2の反射プリズムは、請求項1記載の反射プリズムにおいて、前記入射面を、前記出射面と同じ凹又は凸の傾向を持つ光学的平面とした、ことを特徴とする。   The reflecting prism according to claim 2 of the present invention is characterized in that, in the reflecting prism according to claim 1, the entrance surface is an optical plane having the same concave or convex tendency as the exit surface.

反射膜の膜応力によって生じた収差は、出射面を凹又は凸の傾向を持つ光学的平面とすることにより抑制することができるが、入射面を出射面と同じ凹又は凸の傾向を持つ光学的平面とすることにより、さらに収差の抑制を図ることができる。   Aberration caused by the film stress of the reflective film can be suppressed by making the exit surface an optical plane having a concave or convex tendency, but the incident surface has the same concave or convex tendency as the exit surface. By setting the target plane, aberration can be further suppressed.

本発明の請求項3の反射プリズムは、請求項1記載の反射プリズムにおいて、前記反射膜面と前記入射面とのなす角度が鈍角である、ことを特徴とする。   A reflecting prism according to a third aspect of the present invention is the reflecting prism according to the first aspect, characterized in that an angle formed by the reflecting film surface and the incident surface is an obtuse angle.

反射膜面と入射面とのなす角度を大きくすると、反射プリズムを薄型にすることができ、光学システム全体のコンパクト化の要求を満たすことができる。そこで、反射膜面と入射面とのなす角度を鈍角にすることにより、反射プリズムをより薄型化することができる。   Increasing the angle formed between the reflecting film surface and the incident surface can reduce the thickness of the reflecting prism, thereby satisfying the demand for downsizing the entire optical system. Therefore, the reflecting prism can be made thinner by making the angle between the reflecting film surface and the incident surface an obtuse angle.

本発明の請求項4の光ピックアップは、請求項1乃至3何れか1項に記載の反射プリズムを有している。光ピックアップの他にも、液晶プロジェクタ等の投射型表示装置やデジタルカメラ等の撮像装置等にも前述した反射プリズムを適用することができる。   An optical pickup according to a fourth aspect of the present invention has the reflecting prism according to any one of the first to third aspects. In addition to the optical pickup, the above-described reflecting prism can be applied to a projection display device such as a liquid crystal projector and an imaging device such as a digital camera.

本発明の請求項5の反射プリズムの製造方法は、光が入射する入射面と、反射膜が形成された反射膜面と、前記入射面から入射した光を前記反射膜面に向けて反射させ且つ前記反射膜面で反射した光を出射させる面である出射面と、を有する反射プリズムの製造方法であって、透明部材の一面に前記反射膜を成膜して、凹又は凸の傾向を持つ光学的平面となるような前記反射膜面を形成した後に、前記反射膜面が凹の傾向を持つ光学的平面のときには、凸の傾向を持つ光学的平面となるような出射面を形成し、前記反射膜面が凸の傾向を持つ光学的平面のときには、凹の傾向を持つ光学的平面となるような出射面を形成する、ことを特徴とする。   According to a fifth aspect of the present invention, there is provided a reflecting prism manufacturing method, wherein an incident surface on which light is incident, a reflecting film surface on which a reflecting film is formed, and light incident from the incident surface is reflected toward the reflecting film surface. And a reflecting prism having a light emitting surface that emits light reflected by the reflecting film surface, wherein the reflecting film is formed on one surface of the transparent member, and has a tendency to be concave or convex. After forming the reflective film surface to be an optical flat surface, when the reflective film surface is an optical flat surface having a concave tendency, an output surface to be an optical flat surface having a convex tendency is formed. When the reflective film surface is an optical flat surface having a convex tendency, an output surface is formed so as to be an optical flat surface having a concave tendency.

反射膜の膜応力により反射膜面に大きな収差が生じるため、まず反射膜面を形成して、その後、反射膜面の膜応力に対応して、出射面を凹又は凸の傾向を持つ光学的平面とすることにより、収差の抑制を効率的に行うことができる。このとき、出射面は反射膜の膜応力とは反対方向の凹又は凸の傾向を持つ光学的平面に形成する。   Since a large aberration occurs on the reflecting film surface due to the film stress of the reflecting film, the reflecting film surface is first formed, and then the optical surface has a tendency to have a concave or convex exit surface corresponding to the film stress on the reflecting film surface. By using a plane, aberration can be efficiently suppressed. At this time, the emission surface is formed on an optical plane having a tendency of being concave or convex in the direction opposite to the film stress of the reflective film.

本発明の請求項6記載の反射プリズムの製造方法は、請求項5記載の反射プリズムの製造方法において、前記出射面と同じ凹又は凸の傾向を持つ光学的平面となるような入射面を形成する、ことを特徴とする、ことを特徴とする。   The reflecting prism manufacturing method according to claim 6 of the present invention is the reflecting prism manufacturing method according to claim 5, wherein an incident surface is formed so as to be an optical flat surface having the same concave or convex tendency as the exit surface. It is characterized by that.

前述したように、入射面を出射面と同じ凹又は凸の傾向を持つ光学的平面とすることによりさらに収差の抑制を図った反射プリズムを製造することができる。   As described above, it is possible to manufacture a reflecting prism that further suppresses aberration by making the incident surface an optical flat surface having the same concave or convex tendency as the output surface.

本発明の請求項7の反射プリズムの製造方法は、光が入射する入射面と、反射膜が形成された反射膜面と、前記入射面から入射した光を前記反射膜面に向けて反射させ且つ前記反射膜面で反射した光を出射させる面である出射面と、を有し、前記入射面と前記反射膜面とのなす角度が鈍角である三角柱状の反射プリズムを製造する反射プリズムの製造方法であって、平板状の透明部材の一面に、凹又は凸の方向に作用する膜応力を有する前記反射膜を成膜する成膜工程と、前記反射膜が成膜された透明部材を短冊状に切断して短冊部材を生成する切断工程と、前記切断工程で切断された短冊部材の研磨を行って、この研磨を行った面と前記反射膜面とのなす角度が鋭角となるように研磨を行う第1の研磨工程と、前記第1の研磨工程を経た短冊部材の研磨を行って、この研磨を行った面と前記反射膜面とのなす角度が鈍角となるように研磨を行う第2の研磨工程と、を有し、前記第1の研磨工程では、研磨を行った面が、前記反射膜の膜応力とは反対方向の凹又は凸の傾向を持つような光学的平面となるように研磨した、ことを特徴とする。   According to a seventh aspect of the present invention, there is provided a reflecting prism manufacturing method, wherein an incident surface on which light is incident, a reflecting film surface on which a reflecting film is formed, and light incident from the incident surface is reflected toward the reflecting film surface. And a reflecting prism for manufacturing a triangular prism-shaped reflecting prism having an obtuse angle between the incident surface and the reflecting film surface, and an emitting surface that emits light reflected by the reflecting film surface. A manufacturing method comprising: forming a reflective film having a film stress acting in a concave or convex direction on one surface of a flat transparent member; and a transparent member on which the reflective film is formed. A cutting process for generating a strip member by cutting into a strip shape, and polishing the strip member cut in the cutting process so that the angle formed between the polished surface and the reflective film surface becomes an acute angle. A first polishing step for performing polishing, and a short time after the first polishing step. A second polishing step for polishing the member, and polishing so that an angle formed between the polished surface and the reflective film surface is an obtuse angle, and in the first polishing step, Polishing is performed so that the polished surface becomes an optical flat surface having a tendency of concave or convex in the direction opposite to the film stress of the reflective film.

反射プリズムを製造する具体的な製造方法としては、例えば請求項7のような製造方法を適用することができる。請求項7の製造方法は一度に大量的に反射プリズムを製造する方法であり、平板状の透明部材から複数の反射プリズムが製造される。このとき、反射膜成膜工程で、複数の反射プリズムを構成する透明部材に対して反射膜の成膜を行っている。反射プリズムの形状をしたものに対して個別的に反射膜を成膜しても、本発明の反射プリズムを製造することはできる。この場合、反射膜を成膜する蒸着装置の内部において、複数の反射プリズムを配置して、蒸着物質を蒸着させる。このとき、反射膜面だけではなく、入射面や出射面の一部に反射膜が付着することがある。本発明では、複数の反射プリズムを構成する透明部材に対して反射膜の成膜を行っているため、前記の問題は招来しない。   As a specific manufacturing method for manufacturing the reflecting prism, for example, a manufacturing method as in claim 7 can be applied. The manufacturing method of claim 7 is a method for manufacturing a large number of reflecting prisms at a time, and a plurality of reflecting prisms are manufactured from a flat transparent member. At this time, the reflection film is formed on the transparent member constituting the plurality of reflection prisms in the reflection film formation step. The reflective prism of the present invention can be manufactured even if a reflective film is individually formed on the reflective prism. In this case, a plurality of reflecting prisms are arranged inside the vapor deposition apparatus for forming the reflective film to deposit the vapor deposition material. At this time, the reflective film may adhere not only to the reflective film surface but also to a part of the incident surface and the outgoing surface. In the present invention, since the reflective film is formed on the transparent member constituting the plurality of reflective prisms, the above-described problem does not occur.

本発明の請求項8の反射プリズムの製造方法は、請求項7記載の反射プリズムの製造方法において、前記第2の研磨工程では、研磨を行った面が、前記第1の研磨工程の凹又は凸の傾向と同じ傾向を持つ光学的平面となるように研磨する、ことを特徴とする。   The reflecting prism manufacturing method according to an eighth aspect of the present invention is the reflecting prism manufacturing method according to the seventh aspect, wherein in the second polishing step, the polished surface is a concave or concave portion in the first polishing step. It is characterized by polishing so as to be an optical plane having the same tendency as the convex tendency.

前述したように、入射面を出射面と同じ凹又は凸の傾向を持つ光学的平面とすることが好ましい。そこで、第2の研磨工程において、第1の研磨工程と同じ凹又は凸の傾向を持つ光学的平面となるように研磨を行う。   As described above, it is preferable that the incident surface is an optical plane having the same concave or convex tendency as the output surface. Therefore, in the second polishing step, polishing is performed so that the optical surface has the same concave or convex tendency as in the first polishing step.

前述した反射プリズムにおいて、光が反射すると、1回の反射であっても位相差に変化が生じ、さらに2回の反射が行われているため、許容できない位相差の変化が生じる。そこで、出射面に位相調整部材を形成することもできる。位相差調整部材としては、例えば位相差膜や所定の厚みを有する複屈折部材等を適用することができる。位相差調整部材を形成することにより、反射プリズムから出射するときの位相差に変化が生じたとしても、その位相差を調整することができる。なお、位相差調整部材として位相差膜を用いた場合には、膜応力が少ない膜を用いるようにすることが好ましい。   In the above-described reflecting prism, when light is reflected, the phase difference is changed even if it is reflected once, and further, since the reflection is performed twice, an unacceptable change in phase difference occurs. Therefore, a phase adjusting member can be formed on the exit surface. As the retardation adjusting member, for example, a retardation film or a birefringent member having a predetermined thickness can be applied. By forming the phase difference adjusting member, even if a change occurs in the phase difference when the light is emitted from the reflecting prism, the phase difference can be adjusted. When a retardation film is used as the retardation adjustment member, it is preferable to use a film having a small film stress.

本発明は、収差を抑制するための膜を用いることなく、入射面と出射面と反射膜面とを有する薄型の反射プリズムの出射面を、反射膜面の膜応力とは反対方向の凹又は凸の傾向を持つ光学的平面とすることにより、反射膜面で生じる収差を抑制することができる。   In the present invention, the exit surface of a thin reflective prism having an entrance surface, an exit surface, and a reflective film surface is formed without using a film for suppressing aberrations. By using an optical plane having a convex tendency, it is possible to suppress aberrations that occur on the reflective film surface.

以下、図面を参照して本発明の実施形態について説明する。図示はしていないが、例えば光ピックアップの場合には、反射プリズム1の後段(反射プリズム1から出射した光の光路上)に対物レンズが配置されている。反射プリズム1で収差が発生すると、対物レンズのピントがずれたり、ぼけが生じたりして、スポット像の劣化といった問題を招来する。以下、反射プリズム1で発生した収差の抑制について説明していく。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Although not shown, for example, in the case of an optical pickup, an objective lens is disposed after the reflecting prism 1 (on the optical path of light emitted from the reflecting prism 1). When aberration occurs in the reflecting prism 1, the objective lens is out of focus or blurred, causing a problem such as deterioration of the spot image. Hereinafter, suppression of aberration generated in the reflecting prism 1 will be described.

図1に示すように、本発明の反射プリズム1は、入射面2と出射面3と反射膜面4とを有している。反射膜面4には反射膜Rが形成されている。反射膜Rには、例えば酸化チタンを使用した誘電体多層膜や酸化タンタルを使用した誘電体多層膜を適用することができる。そして、入射面2と反射膜面4とのなす角度は鈍角となっており、入射面2と出射面3とのなす角度及び出射面3と反射膜面4とのなす角度は鋭角となっている。   As shown in FIG. 1, the reflecting prism 1 of the present invention has an entrance surface 2, an exit surface 3, and a reflective film surface 4. A reflective film R is formed on the reflective film surface 4. As the reflective film R, for example, a dielectric multilayer film using titanium oxide or a dielectric multilayer film using tantalum oxide can be applied. The angle formed between the incident surface 2 and the reflecting film surface 4 is an obtuse angle, and the angle formed between the incident surface 2 and the emitting surface 3 and the angle formed between the emitting surface 3 and the reflecting film surface 4 are acute angles. Yes.

入射面2は、光が入射する面である。また、光の進行方向に対して入射面2は傾斜している。従って、入射面2から入射した光は屈折して出射面3に向かって進行する。   The incident surface 2 is a surface on which light is incident. Further, the incident surface 2 is inclined with respect to the light traveling direction. Therefore, the light incident from the incident surface 2 is refracted and travels toward the exit surface 3.

出射面3は、入射面2から入射した光を反射して、且つ反射膜面4で反射した光を出射させる面である。入射面2から入射した光は、出射面3で1回目の反射をする。出射面3には反射膜は形成されておらず、光の入射角と屈折率差(反射プリズム1の屈折率と空気の屈折率との間の屈折率差)とにより光を反射させている。そして、光ピックアップに反射プリズム1を適用する場合には、反射プリズム1で光路が90度変えられている必要があり、図1に示されるように、入射面2に入射するときの光路と出射面3から出射するときの光路とは直交している。   The exit surface 3 is a surface that reflects the light incident from the entrance surface 2 and emits the light reflected by the reflective film surface 4. The light incident from the incident surface 2 is reflected at the exit surface 3 for the first time. No reflection film is formed on the exit surface 3, and the light is reflected by the incident angle of light and the refractive index difference (the refractive index difference between the refractive index of the reflecting prism 1 and the refractive index of air). . When the reflecting prism 1 is applied to the optical pickup, the optical path needs to be changed by 90 degrees in the reflecting prism 1, and as shown in FIG. It is orthogonal to the optical path when exiting from the surface 3.

反射膜面4は、出射面3で1回目の反射をした光に対して、さらに2回目の反射をさせる面である。反射膜面4では、反射膜Rの作用によって光を出射面3に向けて反射させている。   The reflection film surface 4 is a surface that further reflects the light reflected on the output surface 3 for the first time by the second time. On the reflection film surface 4, the light is reflected toward the emission surface 3 by the action of the reflection film R.

前述の入射面2、出射面3及び反射膜面4は、全て光学的平面にする。反射膜面4は反射膜Rが成膜された面であるが、理想平面とすることはできず、主に反射膜Rの膜応力により凹又は凸の何れかの傾向を持つ光学的平面となる。反射膜面4が凹又は凸の傾向を持つ光学的平面となるため、反射膜面4で反射した光には収差が発生する。そこで、出射面3を、反射膜面4の凹凸の傾向とは反対の傾向を持つ光学的平面とすることによって、収差を抑制することができる。   The entrance surface 2, the exit surface 3 and the reflection film surface 4 are all optically flat. The reflection film surface 4 is a surface on which the reflection film R is formed, but cannot be an ideal plane, and is an optical plane that tends to be concave or convex mainly due to the film stress of the reflection film R. Become. Since the reflective film surface 4 is an optical flat surface having a tendency of being concave or convex, aberration occurs in the light reflected by the reflective film surface 4. Therefore, the aberration can be suppressed by making the exit surface 3 an optical plane having a tendency opposite to the unevenness of the reflective film surface 4.

ここで、出射面3を凹凸の傾向を持つ光学的平面にするために、出射面3の平面研磨を行う。この平面研磨を行うときには、反射膜面4の凹凸の傾向に対応して、出射面3の研磨を行う。例えば、反射膜Rに酸化チタンを使用した誘電体多層膜を適用すると、膜応力は凹に作用するため、反射膜面4は凹の傾向を持つ光学的平面となる。この場合は、出射面3を凸の傾向を持つ光学的平面となるように平面研磨を行う。一方、反射膜Rに酸化タンタルを主成分とした膜を用いると、膜応力は凸に作用するため、反射膜面4は凸の傾向を持つ光学的平面となる。この場合は、出射面3を凹の傾向を持つ光学的平面となるように平面研磨を行う。   Here, in order to make the emission surface 3 an optical flat surface having an unevenness, the surface of the emission surface 3 is polished. When performing this planar polishing, the exit surface 3 is polished in accordance with the tendency of the unevenness of the reflective film surface 4. For example, when a dielectric multilayer film using titanium oxide is applied to the reflective film R, the film stress acts concavely, so the reflective film surface 4 becomes an optical plane having a concave tendency. In this case, planar polishing is performed so that the emission surface 3 becomes an optical plane having a convex tendency. On the other hand, when a film containing tantalum oxide as a main component is used as the reflective film R, the film stress acts convexly, so that the reflective film surface 4 becomes an optical plane having a convex tendency. In this case, planar polishing is performed so that the emission surface 3 becomes an optical plane having a concave tendency.

基本的には、出射面3の光学的平面に前記のような凹又は凸の傾向を持たせれば光の収差を改善することができるが、入射面2も出射面3と同じ凹又は凸の傾向を持つ光学的平面にすることにより、さらに収差の改善を図ることができる。   Basically, if the optical plane of the exit surface 3 has a concave or convex tendency as described above, the light aberration can be improved. However, the entrance surface 2 has the same concave or convex shape as the exit surface 3. By using an optical plane having a tendency, the aberration can be further improved.

また、図1に示すように、出射面3に位相差調整部材としての位相差膜6を成膜する。出射面3から出射する光は、位相差にずれを生じているため、この位相差を是正すべく位相差膜6を出射面3に成膜する。位相差膜6は、位相差機能を持つ反射防止膜として成膜される。これにより、位相差のずれをなくすることができる。なお、位相差膜6には膜応力の少ない材料を用いることにより、この膜の影響によって生じる収差の影響を回避することができる。   Further, as shown in FIG. 1, a retardation film 6 as a phase difference adjusting member is formed on the emission surface 3. Since the light emitted from the emission surface 3 has a phase difference, a phase difference film 6 is formed on the emission surface 3 in order to correct this phase difference. The retardation film 6 is formed as an antireflection film having a retardation function. Thereby, the shift | offset | difference of a phase difference can be eliminated. Note that the use of a material having a small film stress for the retardation film 6 can avoid the influence of aberration caused by the influence of this film.

次に、反射プリズム1の製造方法について、図2のフローチャートに基づいて説明をする。図3に示すように、平板状の透明部材10の一面10Rに対して反射膜Rを成膜する(ステップS1:成膜工程)。反射膜Rを成膜するために、図示しない蒸着装置の上部に透明部材10を配置し、下部に配置された蒸着源20から蒸着物質を蒸発させて、透明部材10の一面10Rに反射膜Rを成膜する。ここでは、反射膜Rの材料として酸化チタンを使用した誘電体多層膜を適用する。このため、反射膜Rの膜応力は凹の方向に作用し、透明部材10の一面10Rに対して凹の応力を作用する。   Next, a manufacturing method of the reflecting prism 1 will be described based on the flowchart of FIG. As shown in FIG. 3, a reflective film R is formed on one surface 10R of the flat transparent member 10 (step S1: film forming process). In order to form the reflective film R, the transparent member 10 is disposed on the upper part of the vapor deposition apparatus (not shown), the vapor deposition material is evaporated from the vapor deposition source 20 disposed on the lower part, and the reflective film R is formed on one surface 10R of the transparent member 10. Is deposited. Here, a dielectric multilayer film using titanium oxide as the material of the reflective film R is applied. For this reason, the film stress of the reflective film R acts in the concave direction, and the concave stress acts on the one surface 10 </ b> R of the transparent member 10.

次に、反射膜Rが成膜された透明部材10を図中の破線で示す切断面に沿って短冊状に切断を行って、図4(a)に示す短冊部材11を複数個得る(ステップS2:切断工程)。この切断工程では、短冊部材11の断面が長方形となるように透明部材10の切断を行う。このとき、短冊部材11の反射膜成膜面11Rは、膜応力の作用により凹の傾向を持つ光学的平面となる。   Next, the transparent member 10 on which the reflective film R is formed is cut into strips along the cutting plane indicated by broken lines in the drawing to obtain a plurality of strip members 11 shown in FIG. S2: Cutting step). In this cutting step, the transparent member 10 is cut so that the cross section of the strip member 11 is rectangular. At this time, the reflecting film forming surface 11R of the strip member 11 becomes an optical plane having a concave tendency due to the action of the film stress.

図4(b)に示すように、固定平面22に第1の固定治具23を配置して、短冊部材11を接着剤等で貼り付けて第1の固定治具23に固定する。第1の固定治具23には第1の傾斜面23Sが設けられ、第1の傾斜面23Sと水平方向とのなす角度は鋭角となっている。短冊部材11を第1の固定治具23に固定するときには、反射膜成膜面11Rと第1の傾斜面23Sとを固定して行う。そして、この状態で、凹研磨治具(微小に凸の傾向を持つ光学的平面を得るために凹面を有するラップ等の研磨治具)24を用いて、短冊部材11の平面研磨を行う(ステップS3:第1の研磨工程)。この第1の研磨工程における研磨では、図中の一点鎖線の位置まで研磨を行い、この研磨を行った第1の研磨面11Aと反射膜成膜面11Rとが鋭角となるように研磨を行う。このとき、凹研磨治具24を用いて平面研磨を行っているため、第1の研磨面11Aは、凸の傾向を持つ光学的平面となる。つまり、第1の研磨面11Aは、反射膜Rが作用する膜応力の凹方向とは反対の凸の傾向を持つことになる。   As shown in FIG. 4B, the first fixing jig 23 is disposed on the fixing plane 22, and the strip member 11 is attached to the first fixing jig 23 with an adhesive or the like. The first fixing jig 23 is provided with a first inclined surface 23S, and the angle formed between the first inclined surface 23S and the horizontal direction is an acute angle. When the strip member 11 is fixed to the first fixing jig 23, the reflecting film forming surface 11R and the first inclined surface 23S are fixed. In this state, the strip member 11 is planarly polished using a concave polishing jig (a polishing jig such as a wrap having a concave surface to obtain an optical flat surface having a slight convexity) (step). S3: First polishing step). In the polishing in the first polishing step, polishing is performed up to the position of the one-dot chain line in the drawing, and polishing is performed so that the first polished surface 11A and the reflective film forming surface 11R that have been polished are at an acute angle. . At this time, since the flat polishing is performed using the concave polishing jig 24, the first polishing surface 11A is an optical flat surface having a convex tendency. That is, the first polished surface 11A has a convex tendency opposite to the concave direction of the film stress on which the reflective film R acts.

次に、図5(a)に示すように、固定平面22に第2の固定治具26を配置して、第1の研磨工程を経た短冊部材11を第2の固定治具26に固定する。第2の固定治具26には第2の傾斜面26Sが設けられ、第2の傾斜面26Sと水平方向とのなす角度は鋭角となっている。短冊部材11を第2の固定治具26に固定するときには、第1の研磨面11Aを第2の傾斜面26Sに固定して行う。そして、この状態で、同じく凹研磨治具24を用いて、短冊部材11の平面研磨を行う(ステップS4:第2の研磨工程)。この第2の研磨工程における研磨では、図中の一点鎖線の位置まで研磨を行い、この研磨を行った第2の研磨面11Bと反射膜成膜面11Rとが鈍角となるように研磨を行う。このとき、凹研磨治具24を用いて平面研磨を行っているため、第2の研磨面11Bは凸の傾向を持つ光学的平面となっている。つまり、第2の研磨面11Bは、反射膜Rが作用する膜応力の凹方向とは反対の凸の傾向を持つことになる。   Next, as shown in FIG. 5A, the second fixing jig 26 is disposed on the fixing plane 22, and the strip member 11 that has undergone the first polishing step is fixed to the second fixing jig 26. . The second fixing jig 26 is provided with a second inclined surface 26S, and the angle formed between the second inclined surface 26S and the horizontal direction is an acute angle. When the strip member 11 is fixed to the second fixing jig 26, the first polishing surface 11A is fixed to the second inclined surface 26S. In this state, the strip member 11 is planarly polished using the concave polishing jig 24 (step S4: second polishing step). In the polishing in the second polishing step, the polishing is performed up to the position of the one-dot chain line in the drawing, and the polishing is performed so that the second polished surface 11B and the reflective film forming surface 11R that have been polished have an obtuse angle. . At this time, since the planar polishing is performed using the concave polishing jig 24, the second polishing surface 11B is an optical plane having a convex tendency. That is, the second polished surface 11B has a convex tendency opposite to the concave direction of the film stress on which the reflective film R acts.

そして、第2の研磨工程を経て得られたものが、図5(b)に示すような短冊部材11となる。第2の研磨工程後の短冊部材11が、最終的に反射プリズム1となる。短冊部材11のうち、反射膜成膜面11Rが反射膜面4を構成し、第1の研磨面11Aが出射面3を構成し、第2の研磨面11Bが入射面2を構成する。なお、図5(b)の短冊部材11は細長の部材であるため、これを切断して、複数のコンパクトな反射プリズム1を得るようにしてもよい。   And what was obtained through the 2nd grinding | polishing process becomes the strip member 11 as shown in FIG.5 (b). The strip member 11 after the second polishing step finally becomes the reflecting prism 1. Among the strip members 11, the reflecting film forming surface 11 </ b> R constitutes the reflecting film surface 4, the first polishing surface 11 </ b> A constitutes the emission surface 3, and the second polishing surface 11 </ b> B constitutes the incident surface 2. In addition, since the strip member 11 of FIG.5 (b) is an elongate member, this may be cut | disconnected and you may make it obtain the some compact reflective prism 1. FIG.

反射プリズムを説明する図である。It is a figure explaining a reflective prism. 反射プリズムの製造方法の流れを説明するフローチャートである。It is a flowchart explaining the flow of the manufacturing method of a reflecting prism. 反射プリズムの製造方法のうち成膜工程を説明する図である。It is a figure explaining the film-forming process among the manufacturing methods of a reflecting prism. 反射プリズムの製造方法のうち切断工程及び第1の研磨工程を説明する図である。It is a figure explaining a cutting process and the 1st grinding | polishing process among the manufacturing methods of a reflective prism. 反射プリズムの製造方法のうち第2の研磨工程及び最終的に得られる反射プリズムを説明する図である。It is a figure explaining the 2nd grinding | polishing process and the reflective prism finally obtained among the manufacturing methods of a reflective prism.

符号の説明Explanation of symbols

1 反射プリズム 2 入射面
3 出射面 4 反射膜面
6 位相差膜
DESCRIPTION OF SYMBOLS 1 Reflection prism 2 Incident surface 3 Outgoing surface 4 Reflective film surface 6 Retardation film

Claims (8)

光が入射する入射面と、反射膜が形成された反射膜面と、前記入射面から入射した光を前記反射膜面に向けて反射させ且つ前記反射膜面で反射した光を出射させる面である出射面と、を有する反射プリズムであって、
前記出射面と前記反射膜面とは光学的平面であり、
前記出射面の凹又は凸の傾向を、前記反射膜面の凹又は凸の傾向と反対方向にした、ことを特徴とする反射プリズム。
An incident surface on which light is incident; a reflective film surface on which a reflective film is formed; and a surface that reflects light incident from the incident surface toward the reflective film surface and emits light reflected by the reflective film surface A reflecting prism having an exit surface,
The exit surface and the reflective film surface are optical planes,
A reflecting prism having a concave or convex tendency on the exit surface in a direction opposite to the concave or convex tendency on the reflecting film surface.
前記入射面を、前記出射面と同じ凹又は凸の傾向を持つ光学的平面とした、ことを特徴とする請求項1記載の反射プリズム。   The reflecting prism according to claim 1, wherein the incident surface is an optical flat surface having the same concave or convex tendency as the output surface. 前記反射膜面と前記入射面とのなす角度が鈍角である、ことを特徴とする請求項1記載の反射プリズム。   2. The reflecting prism according to claim 1, wherein an angle formed between the reflecting film surface and the incident surface is an obtuse angle. 請求項1乃至3何れか1項に記載の反射プリズムを有する光ピックアップ。   An optical pickup having the reflecting prism according to any one of claims 1 to 3. 光が入射する入射面と、反射膜が形成された反射膜面と、前記入射面から入射した光を前記反射膜面に向けて反射させ且つ前記反射膜面で反射した光を出射させる面である出射面と、を有する反射プリズムの製造方法であって、
透明部材の一面に前記反射膜を成膜して、凹又は凸の傾向を持つ光学的平面となるような前記反射膜面を形成した後に、
前記反射膜面が凹の傾向を持つ光学的平面のときには、凸の傾向を持つ光学的平面となるような出射面を形成し、前記反射膜面が凸の傾向を持つ光学的平面のときには、凹の傾向を持つ光学的平面となるような出射面を形成する、ことを特徴とする反射プリズムの製造方法。
An incident surface on which light is incident; a reflective film surface on which a reflective film is formed; and a surface that reflects light incident from the incident surface toward the reflective film surface and emits light reflected by the reflective film surface A method of manufacturing a reflecting prism having a certain exit surface,
After forming the reflective film on one surface of the transparent member and forming the reflective film surface to be an optical plane having a tendency of being concave or convex,
When the reflective film surface is an optical plane with a tendency to be concave, an output surface is formed to be an optical plane with a tendency to be convex, and when the reflective film surface is an optical plane with a tendency to be convex, A method of manufacturing a reflecting prism, comprising forming an exit surface that is an optical flat surface having a concave tendency.
前記出射面と同じ凹又は凸の傾向を持つ光学的平面となるような入射面を形成する、ことを特徴とする請求項5記載の反射プリズムの製造方法。   6. The method of manufacturing a reflecting prism according to claim 5, wherein an incident surface is formed so as to be an optical flat surface having the same concave or convex tendency as the output surface. 光が入射する入射面と、反射膜が形成された反射膜面と、前記入射面から入射した光を前記反射膜面に向けて反射させ且つ前記反射膜面で反射した光を出射させる面である出射面と、を有し、前記入射面と前記反射膜面とのなす角度が鈍角である三角柱状の反射プリズムを製造する反射プリズムの製造方法であって、
平板状の透明部材の一面に、凹又は凸の方向に作用する膜応力を有する前記反射膜を成膜する成膜工程と、
前記反射膜が成膜された透明部材を短冊状に切断して短冊部材を生成する切断工程と、
前記切断工程で切断された短冊部材の研磨を行って、この研磨を行った面と前記反射膜面とのなす角度が鋭角となるように研磨を行う第1の研磨工程と、
前記第1の研磨工程を経た短冊部材の研磨を行って、この研磨を行った面と前記反射膜面とのなす角度が鈍角となるように研磨を行う第2の研磨工程と、を有し、
前記第1の研磨工程では、研磨を行った面が、前記反射膜の膜応力とは反対方向の凹又は凸の傾向を持つような光学的平面となるように研磨した、ことを特徴とする反射プリズムの製造方法。
An incident surface on which light is incident; a reflective film surface on which a reflective film is formed; and a surface that reflects light incident from the incident surface toward the reflective film surface and emits light reflected by the reflective film surface A reflecting prism manufacturing method for manufacturing a triangular prism-shaped reflecting prism having an obtuse angle with the incident surface and the reflecting film surface,
A film forming step of forming the reflective film having a film stress acting in a concave or convex direction on one surface of a flat transparent member;
A cutting step of generating a strip member by cutting the transparent member on which the reflective film is formed into a strip shape;
A first polishing step of polishing the strip member cut in the cutting step, and polishing so that an angle formed between the polished surface and the reflective film surface is an acute angle;
A second polishing step of polishing the strip member that has undergone the first polishing step, and polishing so that the angle formed between the polished surface and the reflective film surface is an obtuse angle; ,
In the first polishing step, the polished surface is polished so as to be an optical plane having a tendency of being concave or convex in the direction opposite to the film stress of the reflective film. A method of manufacturing a reflecting prism.
前記第2の研磨工程では、研磨を行った面が、前記第1の研磨工程の凹又は凸の傾向と同じ傾向を持つ光学的平面となるように研磨する、ことを特徴とする請求項7記載の反射プリズムの製造方法。   In the second polishing step, the polished surface is polished so as to be an optical plane having the same tendency as the concave or convex tendency of the first polishing step. The manufacturing method of the reflecting prism of description.
JP2007142265A 2007-05-29 2007-05-29 Reflection prism, optical pickup, and method for manufacturing reflection prism Abandoned JP2008298874A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007142265A JP2008298874A (en) 2007-05-29 2007-05-29 Reflection prism, optical pickup, and method for manufacturing reflection prism
CN2008101079462A CN101315432B (en) 2007-05-29 2008-05-21 Reflector prism, optical pick-up apparatus and production method for the reflector prism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007142265A JP2008298874A (en) 2007-05-29 2007-05-29 Reflection prism, optical pickup, and method for manufacturing reflection prism

Publications (1)

Publication Number Publication Date
JP2008298874A true JP2008298874A (en) 2008-12-11

Family

ID=40172482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007142265A Abandoned JP2008298874A (en) 2007-05-29 2007-05-29 Reflection prism, optical pickup, and method for manufacturing reflection prism

Country Status (1)

Country Link
JP (1) JP2008298874A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113901A (en) * 1981-12-26 1983-07-07 Nippon Kogaku Kk <Nikon> Laminated optical structural body
JPS61210301A (en) * 1985-03-15 1986-09-18 Ricoh Co Ltd Method for constituting optical total reflection surface
JPH0461301U (en) * 1990-10-04 1992-05-26
JPH05181005A (en) * 1991-08-02 1993-07-23 Olympus Optical Co Ltd Prism and production thereof
JPH06186418A (en) * 1992-06-30 1994-07-08 Victor Co Of Japan Ltd Production of dichroic mirror
JPH07161059A (en) * 1993-12-03 1995-06-23 Asahi Optical Co Ltd Light deflecting element
JPH09243809A (en) * 1996-03-07 1997-09-19 Olympus Optical Co Ltd Production of crystal prism
JP2002196243A (en) * 2000-12-25 2002-07-12 Olympus Optical Co Ltd Image-formation optical system
JP2005221703A (en) * 2004-02-05 2005-08-18 Fujinon Sano Kk Manufacturing method of optical element
JP2006267716A (en) * 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd Light beam deflector

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58113901A (en) * 1981-12-26 1983-07-07 Nippon Kogaku Kk <Nikon> Laminated optical structural body
JPS61210301A (en) * 1985-03-15 1986-09-18 Ricoh Co Ltd Method for constituting optical total reflection surface
JPH0461301U (en) * 1990-10-04 1992-05-26
JPH05181005A (en) * 1991-08-02 1993-07-23 Olympus Optical Co Ltd Prism and production thereof
JPH06186418A (en) * 1992-06-30 1994-07-08 Victor Co Of Japan Ltd Production of dichroic mirror
JPH07161059A (en) * 1993-12-03 1995-06-23 Asahi Optical Co Ltd Light deflecting element
JPH09243809A (en) * 1996-03-07 1997-09-19 Olympus Optical Co Ltd Production of crystal prism
JP2002196243A (en) * 2000-12-25 2002-07-12 Olympus Optical Co Ltd Image-formation optical system
JP2005221703A (en) * 2004-02-05 2005-08-18 Fujinon Sano Kk Manufacturing method of optical element
JP2006267716A (en) * 2005-03-24 2006-10-05 Fuji Photo Film Co Ltd Light beam deflector

Similar Documents

Publication Publication Date Title
JP7303557B2 (en) augmented reality display
JP4156776B2 (en) Zoom lens
JP4609160B2 (en) Optical element, combiner optical system, and information display device
JP2847883B2 (en) Catadioptric reduction projection optical system
US7613373B1 (en) Substrate guided relay with homogenizing input relay
US7653268B1 (en) Substrate guided relay with polarization rotating apparatus
US10078222B2 (en) Light guide device and virtual-image display device
US20200096780A1 (en) Optical system
JP2002107520A (en) Diffractive optical element and optical system having the diffractive optical element
CN110989172B (en) Waveguide display device with ultra-large field angle
US7035022B2 (en) Observation optical system and optical apparatus
JP5727152B2 (en) REFLECTOR USING DIELECTRIC LAYER AND LIGHT EMITTING DEVICE
JP2009192708A (en) Beam splitter, single-lens reflex digital camera using the same, and autofocus video camera
JP2008298874A (en) Reflection prism, optical pickup, and method for manufacturing reflection prism
JP2008298873A (en) Reflection prism, optical pickup, and method for manufacturing reflection prism
JP4657895B2 (en) Transmission phase plate, polarizing beam splitter, and projection display device
JP2008275715A (en) Focus detection optical system and imaging device using the same
JP5169420B2 (en) Lighting device, display device, finder device, and camera
JP2006284656A (en) Light antireflection optical system and imaging optical system
KR20160104342A (en) Virtual image display apparatus
JPH08179400A (en) Finder optical system and reversal optical system thereof
WO2022019010A1 (en) Optical device
JP2001174705A (en) Variable power reflecting optical system
TWI467311B (en) Projection apparatus
JP3027953B2 (en) Semiconductor device manufacturing method, projection exposure apparatus and projection exposure method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100409

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110810

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20111004